
DECIMAL FLOATING POINT ARITHMETIC UNIT

BASED ON A FUSED MULTIPLY ADD MODULE

by
Ahmed Mohammed ElShafiey ElTantawy

A Thesis Submitted to the
Faculty of Engineering at Cairo University

in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
in

ELECTRONICS AND COMMUNICATIONS ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
August 2011

DECIMAL FLOATING POINT ARITHMETIC UNIT

BASED ON A FUSED MULTIPLY ADD MODULE

by
Ahmed Mohammed ElShafiey ElTantawy

A Thesis Submitted to the
Faculty of Engineering at Cairo University

in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
in

ELECTRONICS AND COMMUNICATIONS ENGINEERING

Under the Supervision of

Associate Prof. Dr:
Hossam A. H. Fahmy

Principal Adviser

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
August 2011

DECIMAL FLOATING POINT ARITHMETIC UNIT

BASED ON A FUSED MULTIPLY ADD MODULE

by
Ahmed Mohammed ElShafiey ElTantawy

A Thesis Submitted to the
Faculty of Engineering at Cairo University

in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
in

ELECTRONICS AND COMMUNICATIONS ENGINEERING

Approved by the
Examining Committee

Associate Prof. Dr: Hossam A. H. Fahmy, Thesis Main Advisor

Prof. Dr: Ashraf M. Salem, Member

Associate Prof. Dr: Ibrahim M. Qamar, Member

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
August 2011

Abstract

Although the binary representation is convenient to computer arithmetic; it
is not natural to humans. So, decimal arithmetic has proved its necessity
in some applications such as business. Accuracy is the main reason to in-
clude the decimal floating point specifications in IEEE 745- 2008. This can
be performed either in software or hardware. However, hardware imple-
mentations speed up the operation with more energy savings. One of the
operations in the standard is the Fused Multiply-Add (FMA).

The implementation of a direct Fused Multiply-Add unit rather than suc-
cessive multiplication and addition has three main advantages: (1) The op-
eration A + (B × C) is performed with only one rounding instead of two,
hence more accuracy is obtained. (2) Several components can be shared.
Therefore, this results in a reduction in the area. (3) Efficient parallel im-
plementation can result in a reduced delay in the critical path of execution
the multiply-add operation. This is besides replacing the delay of fetching
and decoding of two instructions (multiply then add) by the delay of only
one instruction (FMA).

The FMA is designed to reduce the critical path delay. It uses a mini-
mally redundant radix-10 recoding in the multiplier tree. This leads to a fast
carry free reduction for the partial products. It uses a leading zero anticipa-
tor (LZA) that anticipates the leading zero count (LZC) of the intermediate
result. The LZC is important to determine the final alignment value to reach

iv

a correct result that conforms to the standard. After alignment, the rounding
position is known, hence a combined add/round module is used to replace a
successive addition and rounding steps. The design supports the five round-
ing directions listed in the IEEE Std 754-2008 as well as two more widely
used rounding directions. The FMA also handles exceptions such as over-
flow, underflow, inexact and invalid operations. The resulting design can be
used also for multiplication and addition using the same hardware.

The design is tested using more than 720,000,000 selected test vectors
that test the different corner cases for FMA, addition and multiplication and
it passed all test vectors correctly.

v

Contents

Abstract iv

1 Decimal Floating Point Arithmetic 1
1.1 Decimal Arithmetic in Computers 3
1.2 Importance of Decimal Floating Point Arithmetic 6
1.3 IEEE Decimal Floating-Point Standard 9

1.3.1 Decimal Formats 9
1.3.2 Operations . 11
1.3.3 Rounding . 12
1.3.4 Special numbers and Exceptions 13

1.4 Standard Compliant Hardware Implementations of DFP
Operations . 16

1.5 IEEE 754-2008 DFP Support in Microprocessors 17

2 Fused Multiply-Add Operation 20
2.1 Multiply-Add Operation Importance 20
2.2 Fused Multiply-Add (FMA) standard specifications 22
2.3 Binary FMAs . 25

2.3.1 Basic Architecture 26
2.3.2 Parallel Architecture 28
2.3.3 Other Variants 30

vi

2.4 Decimal FMAs . 32
2.4.1 Monsson’s Architecture 32
2.4.2 SillMinds’ Architecture 38

3 Fused Multiply-Add Building Blocks 44
3.1 Multiplier Tree . 44

3.1.1 Background . 44
3.1.2 Literature Review 46

3.2 Leading Zero Anticipator 48
3.2.1 Background . 48
3.2.2 Literature Review 50

3.3 Significand BCD Addition and Rounding 51
3.3.1 Background . 51
3.3.2 Literature Review 53

4 Proposed Fused Multiply Add 57
4.1 Quick Overview . 57
4.2 Default Significand Datapath 58

4.2.1 Decoding the Operands 62
4.2.2 Multiplication . 62

4.2.2.1 SD-Radix 5 Architecture 64
4.2.2.2 Partial Product Generation 65
4.2.2.3 Partial Product Array 72
4.2.2.4 Partial Product Reduction 75

4.2.3 Addend Preparation 79
4.2.4 Selection and Decimal Carry Save Adder 82
4.2.5 Leading Zero Anticipator 83

4.2.5.1 Inputs to the LZA 85
4.2.5.2 Effective Subtraction Case 86
4.2.5.3 Effective Addition Case 92

vii

4.2.5.4 Reduced Datapath of Cases (1, 2, 3 and 4) 94
4.2.6 Intermediate Sign Detection 95
4.2.7 Final Alignment 96
4.2.8 Rounding Set Up 100

4.2.8.1 Top Level Architecture 100
4.2.8.2 The addend 10’s complement 101
4.2.8.3 Generating Final Carry out (inc1), Guard

and Round Digits. 102
4.2.8.4 Sticky Generation 102

4.2.9 Combined Add/Round 103
4.2.9.1 General Algorithm 104
4.2.9.2 Pre-Correction 109
4.2.9.3 Compound Adder 110
4.2.9.4 Rounding Stage 112
4.2.9.5 Post-Correction and Selection 116

4.2.10 Encoding the result 117
4.3 Default Exponent Datapath 118
4.4 Default Sign Logic . 118
4.5 Flag Generation . 119

4.5.1 Inexact Flag . 119
4.5.2 Invalid Falg . 119
4.5.3 Overflow Flag 120
4.5.4 Underflow Flag 120

4.6 Special Signals Generation 121
4.6.1 Infinity . 121
4.6.2 Not a Number (NaN) 121

4.7 Exceptional Datapath . 121
4.7.1 Zero Addend . 121
4.7.2 Zero Multiplier Result 122

viii

4.7.3 ExpC > ExpM+3p+1 and ExpC < ExpM−2p 122
4.8 Improvements in the architecture 123

4.8.1 Reducing the width of the decimal carry save adder 123
4.8.2 R/L shifter in parallel to the LZA 124
4.8.3 Proposed enhancements 128

5 Pipelined Decimal Floating-Point Arithmetic Unit 129
5.1 Addition . 129
5.2 Multiplication . 130
5.3 Fixed Latency Pipelining 130

5.3.1 3-Stages Pipeline 130
5.3.2 6-Stages Pipeline 131

5.4 Variable Latency Pipelining 133
5.4.1 6-Stages Pipeline 133

6 Results and Future Work 135
6.1 Verification . 135
6.2 Synthesis Results . 136

6.2.1 Combinational FMA 136
6.2.2 Pipelined Arithmetic Unit 138

6.3 Comparison . 138
6.3.1 FMA . 138

6.4 Future Work . 139

Bibliography 140

ix

List of Tables

1.1 Parameters for different decimal interchange formats . . . 10
1.2 Different Rounding Modes 13
1.3 Examples of some DFP operations that involve infinities . 14
1.4 Different Types of Exceptions 15

2.1 Examples of FMA operations compared with successive
multiplication and addition 43

4.1 Decoding each DPD to BCD 63
4.2 Decoding each DPD to BCD 63
4.3 Decimal Codings . 71
4.4 Four Cases of Reduced Datapath 83
4.5 Signaled used for Leading Zeros Anticipation 86
4.6 Different Digit Patterns 88
4.7 Outputs of the Compound Adder 110
4.8 Different Rounding Conditions 115
4.9 Selected Final Result . 117

6.1 Number of test vectors applied for each operation 136
6.2 Comparison of Different FMA designs 139

x

List of Figures

1.1 Decimal interchange floating-point format 10

2.1 (a) Basic Architecture (b)Parallel Architec-
ture . 27

2.2 Monsson’s Architecture 33
2.3 SillMinds’ Architecture 39

3.1 Decimal Fixed Point Multiplication Steps 46
3.2 (a) Leading Zero Detection (b) Leading Zero An-

ticipation . 49
3.3 Different Algorithms for Significand BCD Addition and

Rounding . 52

4.1 Top Level Architecture 59
4.2 Default Significand Datapath 60
4.3 Decimal Interchange Format 62
4.4 Multiplier Architecture for SD-Radix 5 Encoding 65
4.5 Partial Product Array Generated For 16-Digit Operand us-

ing SD-Radix 5 implementation 74
4.6 First Reduction Step . 76
4.7 Final Reduced Array . 77
4.8 Regular Algorithm For FMA Operation 80
4.9 Preparing Addend . 82

xi

4.10 Decimal Carry Save Adder 84
4.11 Different Cases of Operands to the CSA Signs 84
4.12 (a) Leading Zero Detection for 4-bit Binary String

(b)Internal Structure of LZD4 90
4.13 Leading Zero Detector of 32-bit Binary String 91
4.14 Leading Zero Anticipator Block Diagram 91
4.15 Intermediate Sign Detector For 16-Digit Operands 97
4.16 Final Alignment Stage 100
4.17 Final Alignment Stage 101
4.18 Addition and Rounding Steps (a)Regular (b)Proposed 107
4.19 Rounding Position . 108
4.20 Combined/Add Round Module 108
4.21 Pre-Correction Block . 110
4.22 Compound Adder . 111
4.23 Rounding Stage . 112
4.24 Layout of the three operands prior to the decimal carry save

adder . 124
4.25 Modified Leading Zero Detector Circuitry 126

5.1 3-Stages Pipeline . 131
5.2 6-Stages Pipeline . 132
5.3 6-Stages Variable Latency Pipeline 133

6.1 Delay of Each Block on the Critical Path 137
6.2 Area Profile for the Building Blocks of the FMA 137
6.3 Area . 138

xii

Chapter 1

Decimal Floating Point Arithmetic

The invention of numbers is one of the great and remarkable achievements
of the human race. The numeration system used by humans have always
been subjected to developments in order to satisfy the needs of a certain
society at a certain point in time. The variation of these needs from a culture
to another along with the evolution of numbering demands led to many
different numeration systems across the ages. The traces of these systems
were found and tracked by both linguists and archaeologists [1].

However, the fundamental step in developing all number systems was to
develop the number sense itself which is the fact that the number is an ab-
stract idea independent of the counted object. The sense of numbers evolved
into three main stages. The first was to assign different sets of numbers to
different types of objects. The second stage was matching the counted items
against other more available and/or accessible ones. For example, counted
items of any type were matched against a group of pebbles, grain of corns,
or simply fingers. There were many bases for various numeration systems,
however, the most common number systems at this stage were based on ten
which is logically justified by the ease of counting on fingers. This fact is

1

also, most probably, the main reason for the stability of our nowadays dec-
imal system. Finally, once the sense of numbers is completely developed,
distinct names should be assigned to numbers [1].

The need to record the results of counting led to inventing different ways
to express numbers in a symbolic written format. This step in the numerals
evolution led to two distinct systems, additive and positional. The addi-
tive system assigns distinct symbols to certain numbers. A combination of
these symbols with the possibility of repeating any symbol as much as nec-
essary can represent any number. This system was used by old Romans and
Egyptians. It is easy for counting and simple for calculations, however, it
is very complex with advanced arithmetic operations. On the other hand, in
the positional system, the symbols representing numbers are positioned in
a string with each position indicating a certain weight for the digit inside it.
The Chinese and Babylonians used positional number systems. However, a
main drawback with these systems was that, there was no symbol for ’zero’
to indicate an empty position. This led to both complexity and ambiguity in
their numbering system [2].

The decimal numbering system was completely represented by Al-
Khwarizmi in his book “The Keys of Knowledge” [3]. In the ninth century,
while he was working as a scholar in the House of Wisdom in Baghdad, he
developed the science of Algebra based on decimal numeration. The most
remarkable achievement was introducing the digit ’zero’. In his book, he
indicates that he learned this numbering system from Indians. This system,
known as the Hindu-Arabic number system, spreaded gradually in Europe
until it almost completely replaced the previously widespread Roman sys-
tem at the 17th century [2].

2

The rest of this chapter is organized as follows: Section 1.1 gives an
overview about the history of the decimal numeration system in comput-
ers. Next, Section 1.2 explains the increasing importance of decimal float-
ing point arithmetic. The decimal floating point standard format with its
arithmetic operations is discussed in Section1.3. Section 1.4 surveys the
recent published hardware implementations for different decimal floating
point operations. Finally, a brief review for processors that support decimal
is presented in Section 1.5.

1.1 Decimal Arithmetic in Computers

Since the decimal number system was completely the dominant used num-
bering system at the 17th century, the first trials for mechanical computers
adopted this system for calculations. A well-known example for these me-
chanical computers is the analytical engine by Charles Babbage [4]. How-
ever, the decimal numeration system was questionable again when the com-
puter industry entered the electronic era.

The early electronic computers that depended on vacuum tube technol-
ogy such as the ENIAC maintained the decimal system for both addressing
and numbers. The main representation used was BCD (Binary Coded Dec-
imal) [5]. The superiority of binary system over decimal was first discussed
by Burks, Goldstine and von Neumann [6]. Despite the longstanding tra-
dition of building digital machines using decimal numbering system, they
argued that a pure binary system for both addressing and data processing
would be more suitable for machines based on the two-state digital elec-
tronic devices such as vacuum tubes. They stated that binary system will
be simpler, more reliable and more efficient than decimal. According to
their reports, the simplicity stems from the fact that the fundamental unit of

3

memory is naturally adapted to the binary which leads to more efficient rep-
resentation and hence more precision. Also, they pointed out to the preva-
lence of binary system in elementary arithmetic and, of course, logical op-
erations which can be performed much faster than in decimal case. Due
to its simplicity, it implies greater reliability due to the reduced number of
components. Meanwhile, they underestimated the problem of conversion
between binary and decimal, that is more familiar to humans. They argued
that this conversion problem can be solved by the computer itself without
considerable delay.

On the other hand, other researchers [7] outlined that, the format conver-
sions between decimal and binary can contribute significantly to the delay
in many applications that perform few arithmetic operations on huge data
workloads. They concluded that the best solution for such case is to build
separate arithmetic units. One of them is binary for addressing and the
other is decimal for data processing. This debate ended up with two sep-
arate lines of computers around the 6th decade of the 20th century, one of
them is dedicated to scientific and engineering applications which do com-
plex calculations on small amount of input data and this line uses a fully
binary ALU. While the other line is dedicated to the commercial applica-
tions which operates on huge data amounts with simple operations so it uses
decimal ALU for data processing and binary ALU for addressing [8].

Two main factors led to merging these two lines in a single product
between 1960 and 1970. First, the evolution of the solid-state semiconduc-
tor technology which contributed to the large scale production of computers
with reduced area and cost. Second, the fact that customers used to run com-
mercial applications on scientific computers as well as business-oriented
computers were used for some research purposes. These two reasons pro-
vided both the ability and the desire to merge both binary and decimal arith-
metic units in one ALU [9].

4

In the 1970s, huge research efforts were exerted to speed up arith-
metic operations in binary with limited equivalent efforts for decimal
[10, 11, 12, 13, 14]. This led to more popularity for binary systems. There-
fore, the early personal computers integrated only binary ALUs with limited
decimal operations on the software layer performed on a binary hardware.
A remarkable example is the Intel x86 microprocessor which provides some
instructions for BCD such as DAA (Decimal Adjustment after Addition)
and DAS (Decimal Adjustment after Subtraction) which adjust the binary
result of addition or subtraction as if the operation was conducted on dec-
imal hardware [15]. On the other side, binary floating point, which was
first proposed in 1914, was supported in the x86 by specialized chips called
floating-point accelerators. This was mainly because of its complexity and
hence the difficulty to integrate it within the microprocessor chip [16].

The floating point units gained increased popularity, specifically for sci-
entific applications. This led to many designs with different formats and
rounding behaviors for arithmetic operations. Therefore it was necessary to
standardize a floating-point system so that the same operation can provide
the same result on different designs. Thus, the IEEE 754-1985 standard was
issued as a binary floating-point standard.

In 1987, another standard for radix independent floating-point arithmetic
(IEEE 854-1987) was released [17]. However, it found no echo in the mar-
ket. This was, from one hand, due to a shortage in the standard itself which
lacked some features such as an efficient binary encoding. On the other
hand, there was no sufficient demand in the market for decimal floating
point processing, particularly that, a decimal floating point unit was still
relatively complex enough not to be integrated into a general-purpose mi-
croprocessor with the fabrication technologies available at that time [9].

5

At the beginning of 2000s, there was growing importance of decimal
arithmetic in commercial and financial applications, along with technolog-
ical improvements that allow integration of more complex units. This re-
sulted in a demand for standard specifications for decimal floating-point
arithmetic. Thus, the new revision of the IEEE standard for floating-point
arithmetic (IEEE 754-2008) includes specifications for decimal floating-
point arithmetic [18].

In the next section, the importance of decimal floating point that led to
its adoption in the new standard will be explored.

1.2 Importance of Decimal Floating Point Arith-

metic

The controversy over binary and decimal numeration system that was
opened in the 1970s led initially to merging both systems in the same ALU
and ended up with the complete adoption of binary system and depending
only on software to perform decimal calculations. Yet, the same debate was
reopened again in the 2000s.

Banking, billing, and other financial applications use decimal exten-
sively. Such applications should produce final results that are expected by
humans and required by law. Since conversion of some decimal fractions to
their binary equivalents may result in endless fractions, this implies a loss
of accuracy due to limited storage in case of using pure binary arithmetic.
For example, simple decimal fractions such as 0.1 that might represent a tax
amount or a sales discount yield an infinitely recurring number if converted
to a binary representation (0.0001100110011· · ·). This conversion error ac-
cumulates and may lead to significant losses in the business market. In a

6

large telephone billing application such an error may end up to $5 million
per year [19].

In addition to the accuracy problem, the user of a human oriented appli-
cation expect trailing zeros to be preserved in different operations. Without
these trailing zeros the result of operation appears to be vague. For example,
if the specifications of a resistor states that it should be of 1.200 kΩ resis-
tance, this implies that this measurement is to the nearest Ohm. However,
if this specification is altered to 1.2 kΩ, then the precision of the measure-
ment may be understood to be to the nearest 100 Ω. This example shows
that it is not only the numerical value of a number that is significant, how-
ever, the full precision of a number should be also taken into consideration.
The binary floating point arithmetic does not follow this rule because of its
normalized nature.

Such applications may rely on either a low level decimal software library
or use dedicated hardware circuits to perform the basic decimal arithmetic
operations. However, as stated in [8], some applications use the decimal
processing in 50% to 90% of their work and that software libraries are
much slower than hardware designs. So, instead of pure software layer-
ing on binary floating-point hardware, one solution is to use decimal fixed-
point (DXP) hardware to perform decimal arithmetic. Yet, there are still
several reasons to use direct decimal floating-point (DFP) hardware imple-
mentations. First, financial applications often need to deal with both very
large numbers and very small numbers. Therefore, it is efficient to store
these numbers in floating-point formats. Second, DFP arithmetic provides
a straightforward mechanism for performing decimal rounding, which pro-
duces the same results as when rounding is done using manual calculations.
This feature is often needed to satisfy the rounding requirements of finan-
cial applications, such as legal requirements for tax calculations. Third,

7

DFP arithmetic also supports representations of special values, such as not-
a-number (NaN) and infinity ∞, and status flags, such as inexact result and
divide by zero. These special values and status flags simplify exception
handling and facilitate error monitoring.

A benchmarking study [20] estimates that many financial applications
spend over 75% of their execution time in Decimal Floating Point (DFP)
functions. For this class of applications, the speedup for a complete applica-
tion (including non-decimal parts) resulting from the use of a fast hardware
implementation versus a pure software implementation ranges from a factor
of 5.3 to a factor of 31.2 depending on the specific application running.

Besides the accuracy and the speed up factors, savings in energy are very
important. A research paper estimates that energy savings for the whole ap-
plication due to the use of a dedicated hardware instead of a software layer
are of the same order of magnitude as the time savings. It also indicates
that the process normalized Energy Delay Product (EDP) metric, suggested
in [21], clearly shows that a hardware implementation for DFP units gives
from two to three orders of magnitude improvement in EDP as a conserva-
tive estimate if compared with software implementations.

The decimal arithmetic seems to take the same road map of binary. Af-
ter the domination of binary ALUs in processors, a common trend now is
to include either separated Decimal (including DFP) ALUs besides their bi-
nary equivalents [22, 23]or to use combined binary and decimal ALUs [24].
This leads to a question whether the decimal arithmetic will dominate if the
performance gap between the decimal and binary implementations shrinks
enough.

8

1.3 IEEE Decimal Floating-Point Standard

As previously indicated, there was an increasing need to DFP arithmetic.
Hence, there were many efforts to find out the most appropriate DFP for-
mats, operations and rounding modes that completely define the DFP arith-
metic. These efforts ended up with the IEEE 754-2008 floating-point arith-
metic standard. This section gives a brief overview to this standard [18].

1.3.1 Decimal Formats

The IEEE 754-2008 defines DFP number as : (−1)s× (10)q× c , where:
S is the sign bit, q is the exponent, c = (dp−1dp−2 · · ·d0) is the significand
where di ∈ 0,1,2,3,4,5,6,7,8,9, and p is the precision.

Figure4.3 shows the basic decimal interchange format specified in the
IEEE 754-2008 standard. S is the sign bit which indicates either the DFP
number is positive (S = 0) or negative (S = 1) and G is a combination field
that contains the exponent, the most significant digit of the significand, and
the encoding classification. The rest of the significand is stored in the Trail-
ing Significand Field, T, using either the Densely Packed Decimal (DPD)
encoding or the Binary Integer Decimal (BID) encoding, where the total
number of significand digits corresponds to the precision, p. The DPD en-
coding represents every three consecutive decimal digits in the decimal sig-
nificand using 10 bits, and the BID encoding represents the entire decimal
significand in binary.

Before being encoded in the combination field, the exponent is first en-
coded as binary excess code and its bias value depends on the precision
used. There are also minimum and maximum representable exponents for
each precision. The different parameters for different precision values are
presented in Table 1.1.

9

Parameter decimal32 decimal64 decimal128
Total storage width (bits) 32 64 128

Combination Field (w+5) (bits) 11 13 17
Trailing significand Field (t) (bits) 20 50 110

Total Significand Digits (p) 7 16 34
Exponent Bias 101 398 6176

Exponent Width (bits) 8 10 14

Table 1.1: Parameters for different decimal interchange formats

In a decimal floating-point format a number might have multiple repre-
sentations. This set of representations is called the floating-point number’s
cohort. For example, if c is a multiple of 10 and q is less than its maximum
allowed value, then (s, q, c) and (s, q+1, c/10) are two representations for
the same floating-point number and are members of the same cohort. In
other words, a one-digit floating-point number might have up to p differ-
ent representations while a p-digit floating-point number with no trailing
zeros has only one representation (a n-digit floating-point number might
have fewer than p−n+1 members in its cohort if it is near the extremes of
the format’s exponent range). A zero has a much larger cohort: the cohort
of +0 contains a representation for each exponent, as does the cohort of
−0. This property is added to decimal floating-point to provide results that
are matched to the human sense by preserving trailing zeros as discussed
before. Hence, different members of a cohort can be distinguished by the
decimal-specific operations. In brief, for decimal arithmetic, besides spec-
ifying a numerical result, the arithmetic operations also select a member

Figure 1.1: Decimal interchange floating-point format

10

of the result’s cohort. And thus, decimal applications can make use of the
additional information cohorts convey.

1.3.2 Operations

The standard specifies more than 90 obligatory operations classified into
two main groups according to the kinds of results and exceptions they pro-
duce:

- Computational Operations:
These operations operate on either floating-point or integer operands and

produce floating-point results and/or signal floating-point exceptions. This
general category can be also decomposed into three classes of operations.

General-computational operations: produce floating-point or integer
results, round all results and might signal floating-point exceptions. For ex-
ample, all arithmetic operations such as addition, subtraction, multiplication
and so on.

Quiet-computational operations: produce floating-point results and
do not signal floating-point exceptions. It includes operations such as
negate, absolute, copy and others.

Signaling-computational operations: produce no floating-point re-
sults and might signal floating point exceptions; comparisons are signaling-
computational operations.

- Non-Computational Operations:
These operations do not produce floating-point results and do not signal

floating-point exceptions. It includes, for example, operations that identify
whether a DFP number is negative/positive, finite/infinite, Zero/Non-zero
and so on.

Operations can be also classified in a different way according to the
relationship between the result format and the operand formats:

11

Homogeneous operations: in which the floating-point operands and
floating-point results are all of the same format

FormatOf operations: which indicates that the format of the result,
independent of the formats of the operands.

Each of the computational operations that return a numeric result spec-
ified by this standard shall be performed as if it first produced an interme-
diate result correct to an infinite precision and with unbounded range, and
then rounded that intermediate result, if necessary, to fit in the destination’s
format . In some cases, exceptions are raised to indicate that the result is
not the same as expected or invalid operations. On the other hand, as indi-
cated before, a floating-point number might have multiple representations
in a decimal format. All these operations, if producing DFP numbers, do
not only specify the correct numerical value but they also determines the
correct member of the cohort.

It should be highlighted that, besides the required operations for a stan-
dard compliant implementation, there are other recommended operations
for each supported format. These operations mainly include the elementary
functions such as sinusoidal and exponential functions and so on.

The details of some decimal operations will be presented later in next
chapters.

1.3.3 Rounding

There are five rounding modes defined in the standard, Round ties to even,
Round ties to away, Round toward zero, Round toward positive infinity, and
Round toward negative infinity. Also, there are two well-known rounding
modes supported in the Java BigDecimal class [25]. Table 1.2 summarizes
the different rounding modes with their required action.

12

Rounding Mode Rounding Behavior
Round Ties To Away Round to nearest number and round ties

RA to nearest away from zero, the result is
the one with larger magnitude.

Round Ties to Even Round to nearest number and round ties
RNE to even, the result is the one with the

even least significand digit.
Round Toward Zero Round always towards zero , the result

RZ is the closest DFP number with smaller
magnitude.

Round Toward Positive Round always towards positive infinity,
RPI the result is the closest DFP number

greater than the exact result.
Round Toward Negative Round always towards negative infinity,

RNI the result is the closest DFP number
smaller than the exact result.

Round Ties to Zero Round to the nearest number and round
RZ ties to zero.

Round To Away Round always to nearest away from zero,
RA the result is the one with larger magnitude.

Table 1.2: Different Rounding Modes

1.3.4 Special numbers and Exceptions

Special numbers:
Operations on DFP numbers may result in either exact or rounded re-

sults. However, the standard also specifies two special DFP numbers, infin-
ity and NaN.

Normal and Subnormal numbers:
A normal number can be defined as a non-zero number in a floating-

point representation which is within the balanced range supported by a
given floating-point format. The magnitude of the smallest normal number
in a format is given by bemin , where b is the base (radix) of the format and

13

Operation Exception Operation Exception
∞+ x = ∞ None ∞/x = ∞ None
∞+∞ = ∞ None x/∞ = 0 None
∞− x = ∞ None ∞/∞ = NaN Invalid

∞−∞ = NaN Invalid
√

∞ = ∞ None
∞× x = ∞ None

√
−∞ = NaN Invalid

∞×∞ = ∞ None ±x/0 =±∞ Division by Zero
∞×0 = NaN Invalid subnormal÷ x Underflow

Table 1.3: Examples of some DFP operations that involve infinities

emin is the minimum representable exponent. On the other hand, subnor-
mal numbers fill the underflow gap around zero in floating point arithmetic.
Such that any non-zero number which is smaller than the smallest normal
number is ’subnormal’.

Infinities:
Infinity represent numbers of arbitrarily large magnitudes, larger than

the maximum represented number by the used precision. That is: −∞ <

{each representable f inite number} < +∞. In Table 1.3, a list of some
arithmetic operations that involve infinities as either operands or results are
presented. In this table, the operand x represents any finite normal number.

NaNs (Not a Number):
Two different kinds of NaN, signaling and quiet, are supported in the

standard. Signaling NaNs (sNaNs) represent values for uninitialized vari-
ables or missing data samples. Quiet NaNs (qNaNs) result from any invalid
operations or operations that involve qNaNs as operands. When encoded,
all NaNs have a sign bit and a pattern of bits necessary to identify the en-
coding as a NaN and which determines its kind (sNaN vs. qNaN). The
remaining bits, which are in the trailing significand field, encode the pay-
load, which might contain diagnostic information that either indicates the

14

reason of the NaN or how to handle it. However, the standard specifies a
preferred (canonical) representation of the payload of a NaN.

Exceptions:
There are five different exceptions which occur when the result of an

operation is not the expected floating-point number. The default nonstop
exception handling uses a status flag to signal each exception and continues
execution, delivering a default result. The IEEE 754-2008 standard defines
these five types of exceptions as shown in Table 1.4.

Exceptions Description Output
Invalid Operation -Computations with sNaN operands Quite NaN

-Multiplication of 0×∞

(Description shows -Effective subtraction of infinities
only common examples) -Square-root of negative operands

-Division of 0/0 or ∞/∞

-Quantize in an insufficient format
-Remainder of x/0 or ∞/x

(x: finite non zero number)
Division by Zero The divisor of a divide operation Correctly signed ∞

is zero and the dividend is a finite
non-zero number.

Overflow The result of an operation exceeds The largest finite number
in magnitude the largest finite number representable or a signed
representable. ∞ according to the

rounding direction.
Underflow The result of a DFP operation in zero, a subnormal number

magnitude is below 10emin and or±10emin according
not zero to rounding mode.

Inexact The final rounded result is not The rounded or the
numerically the same as the exact overflowed result.
result (assuming infinite precision)

Table 1.4: Different Types of Exceptions

15

1.4 Standard Compliant Hardware Implementa-

tions of DFP Operations

As mentioned earlier, support of DFP arithmetic can either be through soft-
ware libraries such as the Java BigDecimal library [25], IBM’s decNum-
ber library [26], and Intel’s Decimal Floating-Point Math library [27], or
through hardware modules. Many hardware implementations have been in-
troduced in the last decade to perform different operations defined in the
standard. This includes adders, multipliers, dividers and some elementary
functions and others.

Many DFP adder designs have been proposed for the last few years.
Thompson et al. [28] proposed the first published DFP adder compliant
with the standard. A faster implementation with architectural improvements
is proposed in [29]. An extension and enhancement of this work is proposed
again in [30]. Further improvements are proposed by Vazquez and Antelo
in [31]. Fahmy et al [21] proposed two other different adder implementa-
tions, one for high speed and the other for low area. Yehia and Fahmy [32]
proposed the first published redundant DFP adder to allow for a carry-free
addition.

There are also many designs for integer decimal multiplication [33][34].
Erle et al. [35] published the first serial DFP multiplier compliant with
the IEEE 754-2008 standard. While Hickmann et al. [36] published the
first parallel DFP multiplier. Raafat et al. [37] presented two proposals to
decrease the latency of parallel decimal multiplication. Also Vazquez, in
[38], proposed two high performance schemes for DFP multiplications, one
optimized for area and the other optimized for delay.

An incomplete decimal FMA based floating-point unit is developed and
combined with a known binary FMA algorithm in [24] . This incomplete
unit supports the decimal64 and binary64 formats and claims conformance

16

to the standard’s specification for rounding and exceptions, but not under-
flow and subnormal numbers. However, the first known conforming hard-
ware implementation for decimal FMA is presented in [39]. More details
about these implementations are discussed in Chapter 2.

Early proposals for DFP dividers are introduced in [40, 41]. However,
the first DFP standard compliant designs can be found in IBM POWER6
[23] and Z10 [23] microprocessors. Also, another compliant DFP divider is
proposed by Vazquez in[42].

Since the IEEE 754-2008 standard has been approved, many designs and
implementations for elementary functions in decimal are introduced. For
example, different proposals for modifying the CORDIC method to work
on decimal without conversion to binary [43]. The CORDIC algorithms
is also used to implement different transcendental functions [44]. A com-
prehensive library of transcendental functions for the new IEEE decimal
floating-point formats is presented in [45]. There is also different proposal
for a DFP logarithmic function in [46] and [47].

1.5 IEEE 754-2008 DFP Support in Microproces-

sors

As discussed in section 1.2, decimal arithmetic was supported by many
processors. Moreover, the first generations of processors, such as ENIAC,
support only decimal. However, the zSeries DFP facility was introduced
in the IBM System z9 platform. The z9 processor implements the facility
with a mixture of low-level software - using vertical microcode, called mil-
licode - and hardware assists using the fixed point decimal hardware [48].
Because the DFP was not fully defined when the z9 processor was devel-
oped, there was only basic hardware support for decimal. Yet, more than

17

50 DFP instructions are supported in millicode. Millicode enables imple-
menting complex instructions where hardware support is not possible, and
to add functions after hardware is finalized. This leaves System z9 as the
first machine to support the decimal floating point (DFP) instructions in the
IEEE Standard P754.

The POWER6 is the first processor that implements standard compli-
ant decimal floating-point architecture in hardware. It supports both the
64-bit and the 128-bit formats. As described in [49, 50], 54 new instruc-
tions and a decimal floating-point unit (DFU) are added to perform basic
DFP operations, quantum adjustments, conversions, and formatting. The
POWER6 implementation uses variable-latency operations to optimize the
performance of common cases in DFP addition and multiplication.

The IBM System z10 microprocessor is a CISC (complex instruction
set computer) microprocessor. It implements a hardwired decimal floating-
point arithmetic unit (DFU) which is similar to the DFU of the POWER6
with some differences [23, 22]. The differences are mainly about the DXP
unit architecture and its interface with DFP unit. However, many of the DFP
operations are implemented in hardware in both POWER6 and System z10,
but there are other operations that are not. For example, the FMA operation
which is required for a standard compliant DFP unit is not implemented in
hardware.

In this chapter, an introduction to the decimal floating-point arithmetic
is presented. The second chapter gives details about the FMA operation
and survey the its binary and decimal implementaions. The third chapter
discusses the basic blocks used in the FMA design. In the fourth chapter,
we introduce our own propsal for a decimal fused multiply-add unit. We

18

exten this unit to a pipelined decimal arithmetic unit that performs floating-
point multiplication, addition and fused multiply-add. Finally, at the last
chapter, we present the results of our proposal.

19

Chapter 2

Fused Multiply-Add Operation

In this chpater, we introduce the specifications of the Fused Multiply-Add
(FMA) operation defined in the standard in detail. We also explain the im-
portance of this operation and survey the recent hardware implementations
for this operation in both binary and decimal.

2.1 Multiply-Add Operation Importance

The multiply-add operation is fundamental in many scientific and engineer-
ing applications. For examples, Digital Signal Processing (DSP) involve
algorithms that utilize the (A × B) + C single-instruction equation. This is
illustrated by an investigation that shows that almost 50% of the multiply
instructions are followed by add or subtract instructions [51]. Some of the
steps involved in the multiply-add operation such as the multiplication and
the summation of the result with another operand can be performed con-
currently. Hence, the multiply-add can be considered as a single operation
called fused multiply-add (FMA).

The implementation of a direct fused multiply-add unit has three advan-
tages [52]:

20

(1) The operation (A × B)+C is performed with only one rounding in-
stead of two, hence more accuracy is obtained.

(2) Several components can be shared. Therefore, it results in a reduced
area.

(3) Efficient parallel implementation can result in a reduced critical path
delay. This is besides replacing the delay of fetching and decoding of two
instructions (multiply then add) by the delay of only one instruction (FMA).

Moreover, the FMA can still perform other standard floating-point oper-
ations by replacing operands with constants. Making C = 0.0 or B = 1.0 the
FMA unit performs floating-point multiplication or floating-point addition
respectively.

On the other hand, combining the two operations in a single instruction
increases the complexity of the hardware. Consequently, the pure multi-
plication or pure addition using FMA unit will have greater latencies than
expected when executing them on a dedicated floating-point multiplier or
adder respectively. Also, it needs three read ports to read the three operands
concurrently, otherwise, the third operand must be read in a separate cycle.
A good design should keep the FMA advantages and efficiently address its
problems.

Since 1990, many algorithms that utilize the A×B+C single instruction
operation have been introduced, for applications in DSP and graphics pro-
cessing [53, 54], FFTs [55], division [56], etc. To accommodate the in-
creased use of the FMA instruction and to consider the advantages of the
FMA operation, several commercial processors have implemented embed-
ded FMA units [57, 53, 54, 55, 56]. However, decimal FMA operation is
not included as hardware in any of current processors. Yet, there are only
two implementations one of them is incomplete [24] and the other leaves a
room for improvements [39].

21

2.2 Fused Multiply-Add (FMA) standard specifica-

tions

As the standard states [18], the Fused Multiply-Add operation for the three
operands (A, B, C) ‘FMA(A,B,C)’ computes (A × B) + C as if they were
with unbounded range and precision, with rounding only once to the desti-
nation format. Moreover, no underflow, overflow, or inexact exception can
arise due to multiplication, but only due to addition; and so Fused Multiply-
Add differs from a multiplication operation followed by an addition opera-
tion. The preferred exponent is min(Q(A) + Q(B), Q(C)) where Q(x) means
the exponent of operand x.

This definition of the FMA operation highlights two important restric-
tions: the intermediate unbounded result of the multiplication and the single
rounding step after addition. This clearly shows that this operation produces
more accurate result than a multiplication with a result rounded to the re-
quired precision then followed by addition with the final result rounded
again.

The standard also stresses that exception decisions are taken based on
the final result and not due to the multiplication step. Hence, to have a
complete definition of the operation, we should explore the effect of this
operation on the different flags.

- Invalid Exception:
The invalid operation exception is signaled if and only if there is no use-

fully definable result. The standard specifies three cases for the FMA opera-
tion. First, the exception is due to invalid multiplication such as FMA(0,±∞,
c) or FMA(±∞, 0, c). In this case the invalid flag is raised unless c is a quiet
NaN; if c is a quiet NaN then it is implementation defined whether the in-
valid operation exception is signaled. In other words, if c is a quiet NaN, it
is optional to signal invalid operation or not but the implementation should

22

maintain a unified behavior. Second, the exception may result from an in-
valid final addition step. For example, FMA(+|c|,+∞,−∞), FMA(+|c|,−∞,
+∞) or any combination that leads to (|∞|− |∞|). In the last example, c is
any representable floating point number and is not quiet NaN. Finally, the
invalid exception is signaled if any of the three operands is signaling NaN.
In all these cases, the default result of the operation shall be a quiet NaN
that may provide some diagnostic information.

- Overflow Exception:
There is nothing special with the overflow exception in case of FMA

operation. The overflow exception shall be signaled if and only if the des-
tination format’s largest finite number is exceeded in magnitude by what
would have been the rounded floating-point result in case of unbounded
exponent range. The default result shall be determined by the rounding-
direction attribute and the sign of the intermediate result as follows:

a) roundTiesToEven and roundTiesToAway carry all overflows to ∞with
the sign of the intermediate result.

b) roundTowardZero carries all overflows to the format’s largest finite
number with the sign of the intermediate result.

c) roundTowardNegative carries positive overflows to the format’s
largest finite number, and carries negative overflows to −∞.

e)roundTowardPositive carries negative overflows to the format’s most
negative finite number, and carries positive overflows to +∞.

In addition, under default exception handling for overflow, the overflow
flag shall be raised and the inexact exception shall be signaled.

- Underflow Exception:
The underflow exception shall be signaled when a tiny non-zero result

is detected. The way to detect an underflow is not the same for binary and
decimal. For binary formats, it is optional to detect this tininess before

23

rounding or after rounding. However, the implementation has to detect un-
derflow in the same way for all binary operations. Thus in binary, underflow
exception shall be raised either:

a) after rounding, when a non-zero result computed as though the expo-
nent range were unbounded would lie strictly between ± bemin or

b) before rounding, when a non-zero result computed as though both
the exponent range and the precision were unbounded would lie strictly
between ± bemin . Where |bemin| is the magnitude of the smallest normal
floating point number.

For decimal formats, tininess is detected only before rounding, when a
non-zero result computed as though both the exponent range and the pre-
cision were unbounded would lie strictly between ±bemin . The default ex-
ception handling for underflow shall always deliver a rounded result which
might be zero, subnormal, or ±bemin . In addition, under default exception
handling for underflow, if the rounded result is inexact - that is, it differs
from what would have been computed were both exponent range and preci-
sion unbounded - the underflow flag shall be raised and the inexact excep-
tion shall be signaled. If the rounded result is exact, no flag is raised and no
inexact exception is signaled.

- Inexact Exception:
If the rounded result of an operation is inexact, i.e. it differs from what

would have been computed when both exponent range and precision are
unbounded, then the inexact exception shall be signaled. The rounded or
overflowed result shall be delivered to the destination.

In the rest of this thesis, the following symbols are given to different
flags in any numerical example to simplify their representation:

x: inexact o: overflow u: underflow i:invalid

24

Table 2.2 compares the results of FMA operation with a multiplication
followed by addition. All examples are for 64-bit format of decimal float-
ing point. It shows how the FMA operation produces more accurate result.
The flags due to addition in case of multiply then add are Ored with stored
flags due to the multiplication step. The rounding mode is indicated in each
operation. Refer to Table 1.2 for more details. For complete understanding
of the table, it should be noted that the maximum representable exponent
in the 64-bit decimal format is expMax = 369. Also, before any addition
operation the operands are aligned to have the same exponent then the re-
sult is shifted to the left to reach or approach the preferred exponent (the
minimum of the two operands). In case of FMA, the addition is performed
on the exact multiplication result and the addend; while in the successive
multiplication and addition steps the addition is performed on the rounded
multiplication result and the addend.

2.3 Binary FMAs

As stated previously, several general purpose processors are designed in-
cluding a binary fused Multiply-Add unit (FMA) .The first fused-multiply
add operation was introduced in 1990 on the IBM RS/6000 for the single in-
struction execution of the equation A×B+C with single and double precision
floating-point operands [58, 57]. The architecture of binary floating-point
FMAs varies from a basic architecture [57, 52, 59] to a fully parallel one
proposed in [60]. However, there are many variants from these architec-
tures that either target better throughput in a pipelined design or efficient
execution for the addition and multiplication operations on the FMA. Fur-
thermore, there are some proposals that suggest minor modifications that
can result in faster or reduced area designs. Hence in the following, we will

25

first discuss the two main architectures in [52] and [60] then follow them by
their variants.

2.3.1 Basic Architecture

The FMA architecture proposed before [52], implemented in several float-
ing–point units of general purpose processors [57, 52, 59], is shown in Fig-
ure 2.1 (a). The necessary steps are:

1. Multiplication of A and B to produce an intermediate product A × B
in carry-save representation.

2. Bit inversion and Alignment. To reduce the latency, the bit inver-
sion and alignment of C is done in parallel with the multiplication. The
alignment is implemented as a right shift by placing C to the left of the
most–significant bit of A × B. Two extra bits are placed between C and A
× B to allow correct rounding when C is not shifted. This means that the
alignment requires a (3p+2) bits right shifter (three p-bits for operand C
and the multiplication result of A and B, and the rounding extra two bits).
These calculations depend on the fact that binary floating point numbers are
normalized.

3. The aligned C is added to the carry-save representation of A×B. Only
the (2p) least-significant bits of the aligned C are needed as input to the 3:2
CSA, because the product has only (2p) bits. The (p+2) most-significant
bits of the aligned C are concatenated at the output of the CSA to obtain the
(3p+2) bits sum.

4. Addition of the carry and sum words in a (3p+2) bits adder and deter-
mination of the shift amount for normalization by means of a LZD (Leading
Zero Detector).

5. Possible complement if the result is negative. The 2’s complement
requires an adder.

26

6. Normalization of the final result to determine the rounding position.
7. Rounding of the result with a possible one bit shift right in case of

carry propagation to the most significant bit. The rounding step is itself an
addition that results in a carry propagation, yet, it only operates on (p) bits.

This leaves this basic design with a critical path of : a multiplier tree, a
CSA, an adder of width (3p+2), an incrementer of width (3p+2) for com-
plementation, a shifter of width (3p) and finally an adder of (p) bits.

mult

C
A B

LSBs

MSBs

Sub

(p+2)-d

d=Exp(C)-(Exp(A)+Exp(B))

recode

CSA Tree

Rounding

Sticky

Complementer

Normalization Shifter

3p+2-bits

ADDER

 LZA

3:2 CSA

Bit Invert

3p+2-bits

Alignment

Shifter

C

Bit Invert
recode

CSA Tree

3:2 CSA

3p+2-bits

Alignment

Shifter

Complement HAs and part

of adder

Normalization Shifters

Sign

Extension

LZA

:

A B

Sub

(p+2)-d

complement

p-bit adder

sum sum+1

Round bit

Guard bit

Carry and

Sticky

selection

LSBs

MSBs

Combined

Addition and

Rounding

Figure 2.1: (a) Basic Architecture (b)Parallel Architecture

27

2.3.2 Parallel Architecture

The objective of the FMA architecture proposed in [60] is to reduce the
overall delay of the FMA operation. It uses one of the approaches used
in floating–point addition and multiplication to reduce latency which is to
combine addition with rounding [61, 62, 63]. For this approach, in float-
ing–point addition and multiplication the order of normalization and round-
ing is interchanged. However, this seems impractical to do for FMA; be-
cause the rounding position is not known before the normalization. The
solution is to perform the normalization before the addition. The resulting
scheme is shown in Figure 2.1 (b). This implementation shares several
characteristics with the basic implementation:

(1) The alignment is performed in parallel with the multiplication, by
shifting the addend A and

(2) The result of multiplication is in carry-save representation and a 3:2
CSA is used to obtain a redundant representation of the unnormalized and
unrounded result.

On the other hand, the proposal is different in the following aspects:
(1) Normalization is performed before the addition. The two result-

ing vectors of the 3:2 CSA are normalized (before the addition) and the
add/round operation is performed. By performing the normalization be-
fore the addition the final result is always normalized, which simplifies the
rounding step. Note that, in this case there are two normalization shifters,
instead of one as in the basic approach. This requires anticipating the lead-
ing zero count of the result from the added/subtracted operands. To hide the
delay of this anticipation, it is overlapped with the normalization shifter.
Hence, the shift count is obtained starting from the most–significant bit
(MSB), and once the MSB bit is obtained, the normalization shift can start.

28

(2) There is a dual adder of (p) bits to obtain both the sum and the sum+1
of the (p) most-significant bits of the two resulting vectors from the normal-
ization step. The final answer is selected based on the rounding decision.
Hence, the inputs to the add/round module are split into two parts: the (p)
most-significant bits are input to the dual adder and the remaining least-
significant bits are inputs to the logic for the calculation of the carry into
the most–significant part and for the calculation of the rounding and sticky
bits.

(3) Sign detection. This block anticipates the sign of the intermediate
result then complements the outputs of the CSA, the sum and carry words,
when the result would be negative. Hence, this guarantees a positive inter-
mediate result selected from the sum or the sum+1 produced from the dual
adder.

(4) Advance part of the adder. Since the sign detection as well as the
part of the LZA that cannot be overlapped have a significant delay, half
adders (HAs) are placed to perform some parts of the dual adder before the
inversion/ normalization.

Hence, this design has a critical path of : a multiplier tree, a CSA, shifter
of width (3p+2), a LZA (3p+2) overlapped with normalization of width
(3p+2), and at the end an adder of width (p) bits.

Bruguera and Lang conclude that this improved design achieves about
15% to 20% reduction in the delay if compared to the basic architecture.
They do not report area, however, it is excepted to have more area due to
two normalization shifters for both the sum and the carry resulting from the
CSA rather than only one shifter in the basic architecture. Also, the dual
adder requires more hardware to produce the two sums (sum and sum+1).
This is in addition to the LZA and the sign detection modules.

29

2.3.3 Other Variants

While previous parallel FMA architectures compute the three operations
with the same latency, Bruguera and Lang propose another architecture that
permits to skip the first pipeline stages, those related with the multiplica-
tion A× B, in case of an addition [64]. For instance, for an FMA unit
pipelined into three or five stages, the latency of the floating-point addi-
tion is reduced to two or three cycles, respectively. To achieve the latency
reduction for floating-point addition, the alignment shifter, which in pre-
vious organizations is in parallel with the multiplication, is moved so that
the multiplication can be bypassed. To avoid increasing the critical path, a
double-datapath organization is used, in which the alignment and normal-
ization are in separate paths. Moreover, they use the techniques developed
previously of combining the addition and the rounding and of performing
the normalization before the addition.

The delay of the proposed architecture has been estimated and compared
with the single-datapath FMA architectures. The conclusion is that there is
a significant delay reduction in the computation of a floating-point addition,
about 40% with respect to the basic FMA, and around 30% with respect to
the single-datapath FMA with normalization before the addition.

On the other hand, an optimization in the LZA proposed in [60] is pre-
sented in [65]. The new LZA accepts three operands directly and gener-
ates a pre-encoding pattern directly from them. This approach results in a
16.67% improvement in the LZA speed and 19.63% reduction it its area if
compared to the LZA proposed in [60] which accepts only two operands.

Another design that improves design[60] is a fully pipelined implemen-
tation of single precision multiply-add-fused operation presented in [66]
that can be easily extended for double precision format. The proposed FMA
unit is also based on the combination of the final addition with rounding,

30

which is used to reduce the latency of the FMA unit. However, the authors
in [66] also present a new implementation of the LZA, in which the shift
conditions are subdivided into several types based on the alignment of the
addend and the products. Together with a three-step normalization method,
the largest shift amount for normalization is reduced to just bp/2c-bits . In
contrast, it is about p-bits in[60]. Furthermore, only one of those three nor-
malization steps is in the critical path. The other two steps are annihilated
into the time gap of other modules. Because the delay of a shifter is mostly
generated by the connective wire, the decrease of the shift amount reduces
the length of the wire in a large amount and consequently reduces the time
delay significantly.

There is another proposal [67] that presents an FMA unit that can per-
form either one double-precision or two parallel single-precision operations
using about 18% more hardware than a conventional double-precision FMA
unit [60] and with only 9% increase in delay. It redesigns several basic
modules of double-precision FMA unit to accommodate the simultaneous
computation of two single-precision FMA operations.

A modified dual-path algorithm [68] is proposed by classifying the ex-
ponent difference into three cases and implementing them with CLOSE and
FAR paths, which can reduce latency and facilitate lowering power con-
sumption by enabling only one of the two paths. In addition, in case of ADD
instructions, the multiplier in the first stage is bypassed and kept in stable
mode, which can significantly improve ADD instruction performance and
lower power consumption. The overall FMA unit has a latency of 4 cycles
while the ADD operation has 3 cycles. Compared with the conventional
double-precision FMA [52], about 13% delay is reduced and about 22%
area is increased, which is acceptable since two single-precision results can
be generated simultaneously.

31

Since, subnormal numbers are the most difficult type of numbers to im-
plement in float-point units. Because of the difference between normal-
ized and denormalized number, it is a complex problem to fuse the de-
normalized number into traditional MAF datapath without adding a dedi-
cated unit or introducing extra latency. Many designs avoid handling them
in hardware. However, on the other hand, the denormalized number pro-
cessing costs extra clock cycles in software implementations. An on-fly
floating point denormalized number processing implemented in a multiply-
add-fused (FMA) with little extra latency is presented in [69].

2.4 Decimal FMAs

There are only two FMA designs in the literature. However, one of them
is incomplete and the other is not completely verified. Besides, both de-
signs leave a room for improvement. This section explains in brief the two
architectures.

2.4.1 Monsson’s Architecture

The first design is proposed in [24] and shown in Figure 2.2. The design is
for a combined binary and decimal FMA, however, in this part we are only
interested in decimal. In the following, an overview of the basic blocks in
this design is presented.

Multiplier Tree:

The partial product generation scheme used in this multiplier utilizes this
set of multiplier multiples (0,A,2A,4A,5A) to generate the partial products

32

Multiplier Tree

R –Shifter (5p+3) Controller-1

CSA

CPA

L-Shifter (5p+3)

Rounding

LZD

Exponent Calculating

Decoding Stage

C B A

SgnC ExpC SigC SpcSignC

SigC

SgnB ExpB SigB SpcSignB SgnA ExpA SigA SpcSignA

LZCC

C
LZCC

C

ExpA ExpB ExpC

Shft1

SigC

5p+3

SigA SigB

p

Sign Calculation

SgnA SgnB SgnC op SgnInt

SgnResult

ExpA ExpB ExpC Shft1 Shft2

INC[1:0]

 ExpResult

INC[1]

Encoding Stage

SgnResult ExpResult SigResult SpcSignResult

Result

LOP

Controller-2

ALZCIR ExpA ExpB ExpC

Shft2

Special Case

Handling

SpcSignA SpcSignB SpcSignC

RndMode

Others

SpcSignResult Flags

SgnInt

INC[0]

1-Digit R-Shifter

SigResult

Figure 2.2: Monsson’s Architecture

33

where A is the multiplier. Each digit in the multiplicand (B) results in two
partial products selected using two muxes. This technique is suggested by
Erle and Schulte in [70].

It uses regular a 8421-BCD encoding to encode the partial products.
The set of multiplier multiples is generated such that ‘2A’ is a left shift of
a single bit and adds a correction of ‘+6’ to the shifted digit if a > 4 where
a is any digit in the multiplier. This correction is needed because the left
shift of one bit is equivelent to multiplication by 2 for a binary string; not
a decimal one. Therefore, if the binary multiple exceeds ‘10’ (i.e. a > 4),
‘+6’ is added to set the digit again in the BCD format. The multiple ‘4A’
is a double application of ‘2A’. While, the multiple ‘5A’ is a left shift of
three bits and adds five to the shifted digit if the LSB of the unshifted digit
is one. This is because any digit whose value is odd will initially become a
five (‘0101’), and any digit whose value is even will initially become a zero.
Further, any digit whose value is (≥ 2) will produce a carry-out of (1,2,3 or
4). Thus, when a carry-out does occur, it will not propagate beyond the next
more significant digit, which has a maximum value of five before adding the
carry.

The reduction tree rows is double the number of digits in the multipli-
cation operands, so for decimal64 where the precision is 16 digits, the re-
duction tree supports 32 operands. It uses a non-speculative addition for the
reduction tree which is simply a Wallace tree of binary CSAs. Every fourth
carry out (at digit boundaries) drives a counter for the correction logic.

Alignment:

This design uses a one way shifter and sets the zero of the shifter at the
MSB of the 5p + 3 digit wide shifted C. A positive shift value shifts C down
to have the same exponent as the multiplication result. The extra positions

34

that decimal addition needs after the base of the product will be shifted out
into the sticky bit during normalization.

Addition:

The addition step of the FMA combines the two vectors resulting from
the multiplication and the aligned addend ‘C’ into a single result. This step
consists of a CSA, a CPA and some correction logic. First, the three vectors
are reduced to only two using a decimal CSA.

For fast operation, a binary adder with a carry prefix network is used to
add the two vectors resulting from the CSA. This requires a precorrection
step by adding ‘+6’ digitwisely. For subtraction one operand must nine’s
complement and pre-correct each digit with +6. This is the same as fifteen’s
complement which is a simple bit inversion. The adder used is a compund
adder that produces both the sum and the sum+1 of the two inputs. This
avoids the need to complement the result in case of negative intermediate re-
sult. Since the 10’s complement requires an incrementer (adder) to perform
(+1) addition. However, in case of the compond adder, if the intermediate
result is negative the sum is 9’s complemented (no need for an adder) to
produce the final result. On the other hand, if the intermediate result is pos-
itive and the effective operation is subtraction, the sum+1 is selected. Both
results, sum and sum+1 are computed in parallel in the compound adder. In
case of effective addition, the sum is selected. Finally, in all these cases, the
result must be postcorrected.

It is important to note that the compound adder in Mosson’s proposal is
of with 5p+3 digits.

Leading Digit Prediction (LDP):

35

Monsson proposes an algorithm for leading digit prediction in decimal
operands. The LDP module accepts two inputs and returns a predicted po-
sition for the leading non-zero digit, hence it can be more accurately named
leading non-zero digit prediction (LD). In case of effective addition, the
leading non-zero digit is predicted to be at the same position of the lead-
ing non-zero digit of the addend operands. This preliminary anticipation
ignores the possibility for a carry out at this digit. In other words, it gives
an anticipation with a possible 1-digit error.

In case of effective subtraction, if it is assumed that a decimal digit by
digit subtraction is made and the result is the string of digits Y with each
digit labeled by a subscript (Yi). Then each digit in the result is in the range
{-9, . . . , 9}. This string is tracked from the MSD to the LSD searching for
a specific sequence. Exploring the different digit patterns allows to enode
the resulting string Y in an anticipated LD position.

Finally, a combinatorial logic is designed to perform this algorithm. It
is important to note that this anticipation is over a 5p+3 digits width that
results from the CSA.

This explains the main strategy used, however, the research discusses
more details that is not mentioned here. However, in the next chapter, we
explore the leading zero anticipators (LZA) which performs the same func-
tionality of the leading digit predictors in more details.

Normalization:

Taking into consideration both the leading zero count and the preferred
exponent of the result according to the standard.The normalization is a two
stage left shifter starting with a coarse shift based on the LDP and finishing
with a fine correcting shift. The coarse shifter operates on the preliminary

36

anticipation of the LDP with sticky bit calculation. The shifter is of 3p+1
width. Since, it is the maximum required value of shift to either cover
leading zeros or to reach the preferred exponent.

Rounding:

The rounding step is split up in two parts: A rounding decision and an
increment. The rounding decision is simply a selection of one of the dif-
ferent calculations based on the rounding mode and the operation mode. A
combinational Boolean logic triggers the round up decision. The rounding
itself is performed by a decimal CPA of width (p-digits) which acts as an
incrementer.

After rounding the result may overflow and it will have to be renormal-
ized, and furthermore the exponent has to be updated.

Design Disadvantages:
First of all, according to Monsson, the design is tested over only 30

test vectors and some of them failed. The researcher states clearly that the
design does not work correctly in case of underflow and for some cases
near overflow. However, even if not mentioned in the thesis, it is very likely
that it does not work correctly for many other corner cases, because 30 test
vectors is a very tiny number of tests compared to the massive testing space
in decimal floating point operations.

Also, regardless the functionality and the cost required to correct it, the
design itself is not efficient. It uses a very wide datapath (5p+3) which is
wider than necessary. The worst case carry propagation happens only for 3p
width. Moreover, the design uses two successive adders for initial addition

37

and then for rounding, although this can be avoided as shown in Burgura’s
binay implementation.

2.4.2 SillMinds’ Architecture

This is the first published design that was tested on a considerable test vec-
tors and claims a complete conformance to the standard. The design in [39]
is shown in Figure 2.3.

Multiplier Tree:

The proposed design generates multiples of the multiplicand based on
the multiplier digits using a signed digit recoding technique to generate the
partial products in parallel. It uses the Signed Digit Radix-10 architecture
proposed in [33]. The radix-10 recoding converts the digit set [0, . . . , 9]
into the SD set [-5, . . . ,5]. It encodes partial products in a redundant BCD
(i.e. redundancy is only in the representation of each digit and not the whole
number) format to simplify both the generation and the reduction steps of
the partial products.

Alignment:

The addend C is shifted either to the right or to the left within 4p width to
align it to the expected multiplication result. The fractional point is assumed
to follow the least significant digit of the multiplication result.

Addition:

38

Multiplier Tree

R/L-Shifter

R: p L: 2p

Master Control

CSA

CPA

LZD

LZD

L-Shifter (4p)

Rounding

LZD TZD

Exponent Calculating

Decoding Stage

C B A

SgnC ExpC SigC SpcSignC

SigC SigC

SgnB ExpB SigB SpcSignB SgnA ExpA SigA SpcSignA

TZCC

C

LZCC

C TZCC

C

LZCC

C

ExpA ExpB ExpC

R/L

Shft1

SigC

4p

p

2p

Shft2

SigA SigB

p

3p

4p

LZCIR1

C

LZCIR2

C

LZCIR1

C
LZCIR2

C

2p 2p

Special Case

Handling

SpcSignA SpcSignB SpcSignC

RndMode

Others

SpcSignResult

Sign Calculation

SgnA SgnB SgnC op SgnInt

SgnResult

ExpA ExpB ExpC Shft1 Shft2

INC[1:0]

 ExpResult

SgnInt

INC[0]

INC[1]

Encoding Stage

SgnResult ExpResult SigResult SpcSignResult

Result

R/L 2p 2p

1-Digit R-Shifter

SigResult

Figure 2.3: SillMinds’ Architecture

39

The middle 2p digits of thr aligned addend is fed to the carry save adder
(CSA) tree as one of the partial products. The final sum and carry vectors
resulring from the reduction tree are added using a fast decimal carry prop-
agation adder (CPA) to generate 2p intermediate result digits. The least and
most p digits of the aligned addend are handled out of the CSA tree

Normalization:

The result may need a left shift to reach or to approach the preferred
exponent. This requires to get the leading zero count (LZC) of the interme-
diate result, in order to know maximum allowed value of shift. To speed
up the leading zero detection, two leading zero-digit counters are used after
the CPA adder in parallel to get the LZC of the intermediate result. One of
them counts the zero-digits in the most significant 2p digits of the result and
the other counts zeros in the middle 2p digits. The final LZC is either the
LZC of the most significant part or the sum of the two LZCs if all the most
significant part is zeros.

Rounding:

The Rounder unit depends on the rounding mode and the intermedi-
ate sign to round the result. It takes p+1 digits of the shifted-unrounded
result and the sticky bit. If a rounding up decision is made, the result is
incremented by one, else the intermediate result is truncated selecting the
shifted-unrounded FMA result truncated to p digits. It supports the five
rounding directions listed in the IEEE Std 754-2008 as well as two more
rounding directions supported in the Java BigDecimal class [25].

40

Master Control:
In this unit, the control signals that determines the amount of the addend

shift and the amound of the intermediate result shift are calculated. Hence,
it controls the shifters in the architecture.

Design Disadvantages:
Although the design claims conformance to the standard, it does not

explain how the worst case of carry propagation over 3p digits is handled
while the CPA of only 2p width. The design also does not clearly indicate
how a correct underflowed result can be obtained because this case must
be considered in the final shift of the result. Moreover, the flags are not
correctly set. Since, according to [39], the underflow flag is set in case
of underflow exception even if the result is exact which is not the case in
decimal. On the other hand, the inexact flag is raised in case of underflow
which is not necessarily correct.

This is besides that the design is not completely parallel and uses a lead-
ing zero detection in the critical path and a successive additions operations
for both initial addition and rounding.

From this brief survey on both binary and decimal implementations for
FMA operation. We can conclude that, there are much more reseach per-
formed in binary FMAs compared to decimal. This led to higher perfor-
mance architectures that use more parallelism than found in decimal. For
example, Bruguera’s binary implementation uses a combined add/round
module with a leading zero anticipator to speed up the operation [60]. This
is not explored in decimal yet. Also, there are reseach products that ex-
plores performing addition and multiplication with a variable latencies on a
binary fused multiply-add module [64]; which is not also explored in deci-
mal. In brief, there are still many improvements and extensions that can be

41

performed on decimal FMA architectures. In thesis, we explore a part of
this.

This chapter explored the fused multiply add operation as defined in the
standard and as surveyed its different implementations in both binary and
decimal literature. In the following chapter, the building blocks of the FMA
module are discussed in more details.

42

Example-1
Operation 9999999999999999E369×1E1−9999999999999999E369RPI

Exact Multiplication Result +9999999999999999E370
Multiply Rounded Multiplication +in f xo
Then Add Rounded Final Result +in f xo

Rounded FMA Result +8999999999999991E369 x
Example-2
Operation 9999999999999999E369×1E1− in f RPI

Exact Multiplication Result +9999999999999999E370
Multiply Rounded Multiplication +in f xo

Then Add Rounded Final Result +qNaN xo
Rounded FMA Result −in f

Example-3
Operation −246913578024696E0×49999999999999E−13+1234567890123456E0 RZ

Exact Multiplication Result −12345678901234553086421975304E−13
Multiply Rounded Multiplication −1234567890123455E0

Then Add Rounded Final Result +1E0 x
FMA Result +6913578024696E−13 x
Example-4
Operation 1234567891011120E0×1234567891011120E0−670895963654400E0 RZ

Exact Multiplication Result +1524157877515644670895963654400E0
Multiply Rounded Multiplication +1524157877515644E15x

Then Add Rounded Final Result 1524157877515643E15x
FMA Result 1524157877515644E15

Table 2.1: Examples of FMA operations compared with successive multi-
plication and addition

43

Chapter 3

Fused Multiply-Add Building Blocks

This chapter gives an overview of some basic modules that will be used in
our proposed FMA. It mainly focuses on three modules: the multiplier tree,
the leading zero anticipator and the BCD addition and rounding. It gives a
background of the functionality required from each module and a literature
review. In our FMA, we select the design that gives higher performance
(speed). However, there are some modifications performed to enable the
module to fit in our FMA as a whole, achieving higher speed or removing
unnecessary area. The selected design and its modifications will be dis-
cussed in details in the next chapter, however, in this chapter, only a brief
overview is presented on the available design options.

3.1 Multiplier Tree

3.1.1 Background

Multiplication is implemented by the accumulation of partial products, each
of which is generated via multiplying the whole multiplicand by a weighted
digit of the multiplier. Multiplication may be accomplished sequentially

44

[71, 35] or in parallel [34, 33]. However, in decimal multiplication, there
is an increased complexity, compared to binary, in both the generation and
reduction of partial products. Since there are several multiples of the multi-
plicand (from 0 to 9), there is a considerable complexity in the generation of
the partial products. Also, the reduction must be complex enough to handle
carries across digit boundaries in decimal and the implied correction steps.

Since we target a high performance design, we will focus only on fully
parallel BCD multiplication, which is generally composed from three-steps;
briefly described below:

1. Partial Product Generation (PPG): A partial product Pi = Y i×
X , as in Figure 3.1, is generated via multiplying the multiplicand X by a
multiplier digit Y i, where the positional weight of Pi and Y i is equal to the
ith power of the radix (e.g., 10i).

2. Partial Product Reduction (PPR): This is the major step in parallel
multiplication, which is a special case of the more general problem of mul-
tioperand decimal addition [72]. A parallel solution for this problem may
use a reduction tree that leads to a redundant intermediate representation of
product (i.e. two vectors of BCD numbers).

3. Final Product Computation: The redundant product computed in
Step 2 is converted to the final BCD product. This is regularly performed
using any type of carry propagation adders.

Figure 3.1 illustrates Steps 1, 2, and 3 for a k-digit BCD multiplication,
where uppercase letters denote decimal digits, superscripts indicate the dec-
imal weighted position of the digits, and subscripts are meant to distinguish
the relative decimal weights of partial products.

45

Xk-1… X2 X1 X0

x Yk-1… Y2 Y1 Y0

P
0

k-1… P
0

2 P
0

1 P
0

0

P
1

k-1… P
1

2 P
1

1 P
1

0 P
2

0

:

:

Partial Product Partial Product

GenerationGeneration

Partial Product Partial Product :

P
k-1

k-1… P
k-1

2 P
k-1

1 P
k-1

0 P0

M
1

2k-2… M
1

k-1 … M
1

2 M
1

1 M
1

0

M
2

2k-2… M
2

k-1 … M
2

2 M
2

1 M
2

0

M2k-1 M2k-2 … Mk-1 … M2 M1 M0

Partial Product Partial Product

ReductionReduction

Final Product Final Product

ComputationComputation

Figure 3.1: Decimal Fixed Point Multiplication Steps

3.1.2 Literature Review

As stated previously, some decimal multipliers use sequential techniques to
accumulate partial products, others add all the partial products in parallel
using and result in a redundant representation then convert the result back
to non-redundant BCD representation. In this subsection, we survey the
parallel proposals for multiplication found in the literature so far.

Lang and Nannarelli [73] present the first fully parallel decimal mul-
tiplier, in which X is the multiplicand and Y is the multiplier. In their
design, they recode each digit of the multiplier as Y i = YUi +Y Li such
that YUi ∈ {0,5,10} and Y Li ∈ {−2,−1,0,1,2}. Each partial product Pi

is converted into carry-save format, such that Pi = PUi + PLi. For deci-
mal64 operands, this process generates 16 PUi terms and 16 PLi terms. By
using 17 radix-10 CSAs and two carry counters, the partial products are
accumulated into a 32-digit sum-and-carry pair. These values are then fed
into a simplified decimal carry-propagate adder to generate a 32-digit result.

46

Lang and Nannarelli present the first fully parallel decimal multiplier with
recoding of only multiplier digits. Only 2X and 5X are formed for partial
product generation; and a mixture of radix-10 CSAs and carry counters to
improve the accumulation of partial products.

Vazquez et al. [33] present a new family of parallel decimal multipliers.
To efficiently generate partial products, two recoding methods for multiplier
operands are proposed. The radix-10 recoding converts the digit set [0, . . .
, 9] into the SD set [-5, . . . ,5]. Each digit in the radix-5 recoding is repre-
sented as Y i = 5×YUi +Y Li, where YUi ∈ {0,1,2} andY Li ∈ {−2, · · · ,2}.
The radix-5 recoding gives simpler logic to generate partial products than
the radix-10 but with more partial products to reduce. Furthermore, redun-
dant BCD format is used to encode partial products in order to simplify both
the generation and the reduction steps of the partial products. The partial
product accumulation is done via a decimal CSA tree. The final carry-
propagate addition is performed by a quaternary-tree decimal adder to gen-
erate the final 32-digit decimal product. The quaternary adder uses a full
binary parallel prefix carry network to obtain all the binary carries. Since
decimal and binary carries are equal when the operands are pre-corrected,
the speculative sum digits can be obtained directly from the XOR operation
of input operands bits and binary carries. A post–correction scheme is nec-
essary after carry evaluation to correct the speculative sum digits when they
are wrong. The sum digits are pre–evaluated in a parallel pre–sum stage
of 4–bit carry–select adders. The decimal carries computed in the quater-
nary–tree select the right pre-sum. The correction of wrong speculative sum
digits is done in the pre–sum stage for each of the two possible values of
the input decimal carry, in parallel with carry computation [?] (conditional
speculative).

Castellanos and Stine [74] compare the approaches of decimal partial
product generation presented by Lang and Nannarelli and Vazquez et al. and

47

introduce two new hybrid approaches. The hybrid approaches involve im-
plementing the Boolean expressions for the multiplicand double and quin-
tuple, instead of the BCD recoding schemes in the case of the architecture
from Vazquez et al. [33], and performing the converse for the case of the ar-
chitecture from Lang and Nannarelli [73]. The authors show that the hybrid
approaches yield faster and smaller partial product generation than their
original counterparts.

Jaberipur and Kaivani [34] propose an improved partial product
generation approach involving the following multiplicand multiple set
X ,2X ,5X ,8X ,9X , where 8X and 9X are compsed of 2 components that
are easily generated. This approach allows for fast multiple set generation
at the expense of doubling the number of multiples to be compressed in
the partial product reduction step. To improve the delay of partial product
reduction, they describe how to combine the reduction technique by Lang
and Nannarelli [73] with a modified decimal full adder. The authors also
adapt the adder developed to use a Kogge–Stone tree. The authors compare
their implementation to those of Lang and Nannarelli [73] and Vazquez et
al. [33] and show a notable improvement in delay, yet at the expense of
area.

3.2 Leading Zero Anticipator

3.2.1 Background

A leading zero detector (LZD) is a basic unit in FP addition and FMA either
in binary or decimal. Since the intermediate result has to be normalized to
save the precision or to meet the decimal preferred exponent, it is necessary
to detect the number of leading zeros in the intermediate result. Hence,
a LZD waits for the result of the adder/subtractor to count the number of

48

Adder

LZD

Shifter

BA

result

(a)

AdderLZA

Shifter

BA

result

(b)

Figure 3.2: (a) Leading Zero Detection (b) Leading Zero Antici-
pation

leading zeros (LZC), then this count is used to shift the result to the left by
an appropriate value. However, this adds the delay of the LZD to the critical
path. As a solution, the LZD may be replaced by a leading zero anticipator
(LZA) that anticipates the LZC in parallel to the addition. The top-level of
the two architectures is shown in Figure 3.2.

The LZA anticipates the number of the leading zeros in the result di-
rectly from the input operands. Most of the LZA designs in binary and dec-
imal consist mainly of two blocks, the preliminary anticipation block and
the correction block that corrects the error of one bit/digit in the prelimi-
nary anticipation. The bulk of the research in the LZAs is in the correction
circuitry. This is mainly to avoid more overhead in the critical path or to
reduce the area of this circuitry.

49

3.2.2 Literature Review

Preliminary Anticipation Step
In binary, there is no need to anticipate leading zeros in case of effective

addition. Since binary operands are already normalized. However, it is
not the case in decimal. For effective subtraction, both binary [43, 75] and
decimal LZAs [30] perform the preliminary anticipation on three steps.

First, the two operands are encoded digitwisely to produce a string of
signals ‘W’. In binary, wi = ai−bi where wi is the signal corresponding to
bit ‘i’ in the string W; and ai ,bi are the bits number ‘i’ in the operand A or
B respectively, where it is required to calculate A-B. However, in case of
decimal, more signals are generated to cover the larger digit set in decimal.
The decimal case will be explained in details in the next chapter.

Second, the string ‘W’ generated from the last step is encoded again
taking into consideration the different patterns of cancellation into a new
binary string ‘P’ with leading zero bit count equals to the leading zero count
supposed to be in the intermediate result. However, in order to simplify the
logic of generating the string ‘P’, it is generated based only on each two
successive digits. This leaves some patterns with a wrong anticipation of
one digit.

Finally, the number of the leading zero bits in the string ‘P’ is detected
using a leading zero detector.

In case of decimal effective addition, the proposal in [30] assumes the
preliminary anticipation of the leading zero count in calculating (A+B) as
Min{LZCA,LZCB}, where LZCA and LZCB are the leading zero counts in
A, B respectively. However, this anticipation is also of one digit error due
to a possible carry out when adding the two operands.

The decimal preliminary leading zero anticipation is dicussed in detail
in the next chapter with a numerical example to give more explanation.

50

Final Correction Step
Amin et al. survey five different architectures for binary correction cir-

cuitry and one for decimal. Then, three different proposals are suggested
for decimal. As stated, these proposals intend to minimize the cost of the
correction circuitry on either the delay or the area. As we do not use a cor-
rection circuitry in our FMA, then it is not discussed here. However, the
reader can refer to [?] (Asilomar) for more details.

3.3 Significand BCD Addition and Rounding

3.3.1 Background

The BCD sign-magnitude addition is a fundamental step in the floating-
point addition, multiplication or fused-multiply add. The result of the addi-
tion has to be rounded to fit in the required precision. Also, the final result
must be in a correct sign-magnitude representation (i.e. negative result has
to be complemented). There are different proposals to perform these steps.
However, we are interested only in the high performance implementations.
Hence, we will briefly survey three high performance proposals: a separate
rounding stage, rounding by injection and combined add/round. In the next
subsection, we assume A and B are the two operands to be added.

51

GD RD Lst

GD

p-digits 3-digits

A

B

MSD LSD A-1 A-2 A-3

B-1 B-2 B-3

GD RD Lst

P+2-digits

•Effective Addition

MSD MSD-1

GD

•Effective Subtraction

Separate Rounding Unit

S-1 S-2 Lst

Rounding

Decision

inc

Shift Right by 1 or 2

GD RD LstGD

•Effective Subtraction

GD RD LstGD

Rx (p+1-digits)

•Effective Addition

0

0 GD RD Lst

GD INJ INJ

p-digits 3-digits

A

B

MSD LSD

•Effective Subtraction

0 INJ INJ

9-GD 9-RD Lst

p-digits 3 digits

A

B\

MSD LSD

A-1 A-2 A-3

B-1 B-2 B-3

A-1 A-2 A-3

B-1 B-2 B-3

p-digits 3 digits

Rounding with Injection

GD RD Lst

INJCorr INJCorr

Rx (p+1-digits)

•Effective Addition

0

0 GD RD Lst

GD

p-digits 3-digits

A

B

MSD LSD

•Effective Subtraction

0 Lst\ 0

9-GD 9-RD Lst

p-digits 3 digits

A

B\

MSD LSD

A-1 A-2 A-3

B-1 B-2 B-3

A-1 A-2 A-3

B-1 B-2 B-3

p-digits 3 digits

Combined Add/Round unit

S-1 S-2 LstSH / SH+2 / SH\

Rounding

Decision

inc1

inc2

Rx (p-digits) Rx-1

Figure 3.3: Different Algorithms for Significand BCD Addition and Round-
ing

52

3.3.2 Literature Review

Separate Rounding Stage
This technique is used in the first published DFP adder [28]. First, the

inputs A and B are aligned as shown in Figure 3.3.Then, the sign-magnitude
BCD addition is performed using a single compound adder that results in
both (S , LS) where

S =

{
A+B eop = 0
A+B eop = 1

where B is nine′s complement o f B (3.1)

and
LS = S+1 (3.2)

Rounding requires an additional +1 ulp increment of the BCD mag-
nitude to the sum. It uses a separate decimal rounding unit. This sign-
magnitude BCD adder uses a binary (compound) flagged prefix adder to
compute the BCD sums S andLS.

In case of effective addition, the required result is the sum of two
operands (i.e. A+B), hence, the final result is S. However, in case of effec-
tive subtracion, the required result is (|A−B|). If A is larger than or equals
to B, then the intermediate result (A−B = A+B+1) is positive. Therefore,
the final result in this case is selected as LS = A+B+1. On the other hand,
in case of B > A , then the intermediate result (A−B = A+B+1) is nega-
tive and requires another 10’s complement. In other words, the final result
should be (A+B+1+1 = (A+B) = S.

In order to know the larger operand in both A and B, the carry out (Cout)
to the most significant digit (MSD) is used. If the eop = 1 and Cout = 1,
then the intermediate result is positive and A ≥ B. Otherwise, if eop = 0
and Cout = 0, then the intermediate result is negative and A < B. Therefore,

53

the MSD = Cout .eop , since the carry out in case of effective subtraction
indicates only to a negative result.

Once the addition is complete, the result may need to be shifted two po-
sitions to the right if MSD = 1 or one position to the right if MSD−1 6= 0.
The decimal rounding unit is placed after the significant BCD addition and
the R1/R2 shifter. Thus, it receives the BCD p-digit truncated and shifted
(SX) with the round digit (SRD) and the sticky bit (Sst). It uses a straightfor-
ward implementation of IEEE 75-2008 rounding. This involves detecting a
condition for each rounding mode in order to increment SX or not by one
ulp. Each increment condition (inc) is determined from the rounding digit,
the sticky bit, the sign of the result and SXlsb, the least significant bit SX .
The +1 ulp increment can generate a new carry propagate from the LSD
(least significant digit) up to the MSD of SX . This carry propagation is de-
termined examining the number of consecutive 9’s starting from the LSD
of SX . A prefix tree of AND gates detects this chain. A vector of muxes
selects the correct sum digit at each position (SXi or SXi + 1) the selection
line for each mux is generated from the AND gates prefix tree.

Rounding with Injection
This method was proposed for binary [61] and extended to decimal [29].

It is based on adding an injection value (INJ) to the input operands that re-
duces all the rounding modes to round towards zero (truncated by the round
digit position). However, when the truncated result has more significant dig-
its than the format precision p, it is necessary to inject a correction amount
(INJcorr) to obtain the correctly rounded result.

The layout of the inputs A and B is shown in Figure 3.3. The decimal
injection values INJ are inserted in the round and sticky positions of A such
that:

54

roundmode(X) = roundRZ(X + INJ)|within the required precision (3.3)

If the MSD of the sum is not zero (i.e. result has more significant digits
that the required precision), an injection correction value INJcorr is used to
compute the correctly rounded result R such that:

roundmode(X) = roundRZ(X + INJ+ INJcorr) (3.4)

The INJcorr value is added using a 2-digit BCD adder. The increment
signal inc is true if carry-out is generated to the least significant digit posi-
tion. This correction can generate a decimal carry propagation, determined
by the trailing chain of 9’s of S. To reduce the critical path delay of the
unit, the trailing 9’s detection is performed examining the uncorrected bi-
nary sum digits and the decimal carries obtained before the BCD correction
in the sign magnitude BCD adder. This hides the logarithmic delay of the
trailing 9’s detection. Hence, the carries produced from the trailing 9’s de-
tection selects digitwisely the final rounded result.

Combined Add/Round
This technique was proposed by Vazquez and Antelo in [76] based on a

previous binary version proposed by [60]. The aligned BCD input operands
A and B (including the guard, round and sticky digits) are aligned as shown
in Figure 3.3. To incorporate rounding into the significant BCD addition,
they perform the computation in two parts. First, they split BCD operands
A and B in a p-digit most significant part (AH , BH) and a least significant
one, which includes the digits/bits placed at the guard (A−1, B−1), round
(B−2) and sticky (Bst) positions. The p-digit operands SH (S̄H), SH +1 and
SH +2 are computed speculatively, with:

55

S =

{
AH +BH eop = 0
AH +BH eop = 1

where B is nine′s complement o f B . (3.5)

Two signals, inc1 and inc2 represent the carries into the least significant
digit of SH due to the addition of the least significant part and the rounding.
Signal inc1 is a decimal carry into the least significant digit of SH due to the
addition of the 3 least significant digits of A and B. Also rounding gener-
ates another decimal carry inc2 into the least significant of SH . The values
of inc1, inc2, the intermediate sign of the result and the most significant
digit of the result before rounding selects the appropriate result for both the
most significant part (SH ,SH +2,SH) and also the correct value of the least
significant digit.

A modified version of the combined add/round module will be discussed
in more details in the next chapter.

In this chapter we introduced the most important basic building blocks in
any FMA design with a literature review on each block. In the next chapter,
we will explain in detail our proposed architecture with its implementation
details. In our proposed FMA, we select, modify and use some of the ideas
presented in this chapter to build our basic modules.

56

Chapter 4

Proposed Fused Multiply Add

As stated in Chapter 2, the IEEE 754-2008 standard specifies the require-
ments of the decimal fused multiply-add (FMA) operation which computes
A×B±C with only one rounding step.

This Chapter introduces the basic architecture of a 64-bit fused multiply-
add module. The design explores the potential of using a leading zero antic-
ipator and a combined add/round module to speed up the FMA operation.
Hence, this chapter starts with a quick overview of this architecture. Then
the detailed datapath for both the significand and the exponent is discussed.
Some exceptional cases are handled apart from the default datapath. These
cases are discussed at the end of this chapter.

4.1 Quick Overview

The top level of this architecture is shown in Figure 4.1. As shown in the
figure, the architecture can be divided into three main stages. The first stage
is the multiplier tree which produces the multiplication result. Meanwhile,
the addend is prepared for addition, in parallel to the multiplier tree. This
eliminates the need for further processing on the multiplication result which

57

in turn reduces the critical path delay. The second stage is the leading zero
anticipator which is important to align the operands preparing them for the
third stage which is the combined add/round unit. The three stages is shown
is Figure 4.2 which represents in brief the default datapath in the architec-
ture.

The default alignment of the addend is such that the fractional point is
to the right of the multiplication result. While the multiplier tree produces
the multiplication result, the addend is aligned by shifting it to the right
(case-1) or to the left (cases-2,3,4). From a 4p width, where p is the number
of significand digits (16 digits in case of 64-bits format), it is required to
anticipate the leading zeros in only 2p-digits. According to the exponent
difference and the leading zeros of the addend, the appropriate 2p width
is selected. In next sections, more details are discussed for these different
cases.

A leading zero anticipator anticipates the leading zeros in the result sup-
posed to outcome from the selected width of the two operands. Based on the
anticipated leading zero count and taking into consideration the preferred
exponent, a final shift amount is determined for the two operands. The
rounding position in the aligned operands is approximately known (with an
error of one digit). Hence, a combined add/round module can be used to get
the final result instead of successive addition and rounding steps.

This overview ignores some details and leaves others without explana-
tion. However, it is a good start point to understand the architecture. In the
following, the default datapath is explored in detail.

4.2 Default Significand Datapath

As stated in Chapter 1, the IEEE 754-2008 standard specifies formats for
both binary floating-point (BFP) and decimal floating-point (DFP) numbers

58

RndMode

Others

SpcSignResult Flags

Datapath Control Unit

LZA LZB LZC ExpExpB ExpC

Shft1 R/L)1sel ExpInitial Gthan3p

Multiplier Tree

SigA (p-digit) SigB(p-digit)

 4221-encoding

M1 (2p+1-digit) M2 (2p+1-digit)

Decoding Stage

C B A

SgnC ExpC SigC SpcSignC SgnB ExpB SigB SpcSignB SgnA ExpA SigA SpcSignA

Special Cases and

Exceptions

SpcSignA SpcSignB SpcSignC

Encoding Stage

SgnResult ExpResult SigResult SpcSignResult

Result

Sign Calculation

SgnA SgnB SgnC op eop SgnInt

SgnResult

1-Digit Left

Shift

Shft

SigResult

ExpInc Combined Add

Round
eop

PrefExpRchd

Op2-Add

(p-digit)

St

Op2-Rnd

(2p+1-digit)

Op1-Add

(p-digit)
RndMode

St1C St1M

GD

RD

St1RShf

Op1-Rnd

(2p+1-digit)

 Rounding Setup

Gthan3p

eop

FShift

R/L Shifter

Op2Ext (3p+1-digit) Op1Ext (3p+1-digit)

R/L)2

Selection Stage sel

StM

M1 (2p-digit) M2 (2p-digit) R (4p-digit)

Decimal CSA- 4221 to BCD

I0 (3p+1-digit) I1 (3p+1-digit) I2 (3p+1-digit)

Sgn Ext.

Op1 (2p+1-digit) Op2 (2p+1-digit)

LZA
SgnInt

 Final Shift Controller

Shft1

sel

PrefExpRchd

LZD

SigC

LZC

BCD to 4221

R (4p-digit)

4221 Encoding

9’s complement
eop

R (4p-digit)

R/L Shifter

SigC

Shft1

R/L

R (4p-digit)
St1

Shft

Exponent Calculations

ExpInitia FShift

ExpResult

 Shift1

A, B multiplier operands

C Addend

SgnX sign of operand X

ExpX exponent of operand X

SigX significant of operand X

SpcSignX special signals of X (includes NaN, Infinity, Zero)

LZX leading zero count of X

op Operation

StX Contribution of signal X to the sticky.

CSA carry save adder

R/L control signal determines a right or left shift

SgnInt Intermediate Result Sign

Shft1,2 right of Left shift amount

RndMode rounding mode

ExpInitial intermediate exponent

ExpInc exponent increment

sel control signal selects a narrower width to operate on

LZA leading zero anticipator

eop effective operation

GD,RD Guard and Round digits

BCD Binary coded decimal (8421 weights)

Others Other control signals from other modules

Gthan3p Signaled if shifting to left > 3p+1

Figure 4.1: Top Level Architecture

59

Shift1

A

B

C

M

C

×

×±

×

Default Alignment

Shift1

After Selection

Alignment after LZA

Shift1

Case(4) ���� − �	� −
� < ����

Shift1

Case(3) ���� − �	� − � < ���� <= ���� − �	� −
�

Case(1) ���� > ����

Case(2) ���� − �	� − � < ���� <= ����

Add and Round

 Final Result

Shift2

Figure 4.2: Default Significand Datapath

60

[18]. An IEEE 754-2008 DFP number contains a sign bit, an integer sig-
nificand with a precision of p digits, and a biased exponent. The value of a
finite DFP number is:

D = (−1)S×C×10E−bias (4.1)

where S is the sign bit, C is the non-negative integer significand, and
E is the biased non-negative integer exponent. The significand can be en-
coded either in Binary Integer Decimal (BID) format or in Densely Packed
Decimal (DPD) format; which is referred to in the standard as the binary
and decimal encodings respectively. In the BID encoding, the number is
encoded as a whole in the significant bits. However, the DPD encoding en-
codes each three digits of the significand in 10-bits with the most significant
digit encoded separately. The exponent must be in the range [Emin,Emax]
biased with a certain bias value. Representations for infinity and Not-a-
Number (NaN) are also provided.

Since the fused multiply-add design presented here uses 64-bit DFP
numbers. This format has p = 16 decimal digits of precision in the sig-
nificand, an unbiased exponent range of [−383, 384], and a bias of 398.

The encoding used in the significand format is the DPD encoding rather
than the BID encoding; since the former encodes each three digits in 10-
bits, hence the digit boundries are easier to detect; then it is faster to decode
the number to BCD which is much easier for the addition operation.

Therefore, the 64-bits are encoded as follws: the MSB represents the
sign of the number (S). S=0 for a positive number and S=1 for a negative
one. The least significant 50 bits called the trailing (T) encodes the least
significant 15 digits in DPD format (i.e. each 10-bits represents three dec-
imal digits). Finally, the combination field (G) follows the sign directly
to encode both the exponent and the most significant digit (MSD) in the

61

Figure 4.3: Decimal Interchange Format

significand. Also, it is used to encode special signals such as NaNs and
Infinities.

4.2.1 Decoding the Operands

The operation begins with reading the three operands in the IEEE 754-2008
format and decoding each one to produce the sign bit, significand, expo-
nent, and flags for special values of Not-a-Number (NaN) or infinity. The
significands of the three operands are then decoded from the DPD encoding
to Binary Coded Decimal (BCD).

As shown in Figure 4.3, the DFP number is decoded such that its sign
is the MSB. The 13-bit combination field ,in case of 64-bit format, is de-
coded according to Table 4.2.1 to get the MSD in the DFP Number and the
exponent and also to determine if the number is an infinity, quite NaN or
Signaling NaN. The other 15 digits of the DFP number are decoded from
the trailing part. Each successive 10-bits are decoded according to Table
4.2.1 to get three digits from the significand.

4.2.2 Multiplication

The decoded significands of both the multiplier and the multiplicand go
directly to the multiplier tree to produce the multiplication result. The
multiplier tree is very critical to both the speed and the area of the fused
multiply-add unit. Hence, it should be fast for high performance architec-
tures, however, its complexity should also be taken into account.

62

Combinational Filed (G) Special Case or
G12G11 · · · · · ·G7 Exponent and MSD

0xxxxx MSD = 0G5G6G7 ,Ebiased = G12G11G6G5 · · ·G0
10xxxx MSD = 0G5G6G7 ,Ebiased = G12G11G6G5 · · ·G0
110xxx MSD = 100G7 ,Ebiased = G9G8G6G5 · · ·G0
1110xx MSD = 100G7 ,Ebiased = G9G8G6G5 · · ·G0

1111xx
11110x MSD = 0000

Ebiased = 00 · · ·0
Infinity

111110 Signaling NaN
111111 Quiet NaN

Table 4.1: Decoding each DPD to BCD

Declet (I9 · · · · · · I0) BCD {O2}{O1}{O0}
(I3I2I1I6I5) {O2

3O2
2O2

1O2
0O1

3O1
2O1

1O1
0O0

3O0
2O0

1O0
0

0xxxx {0, I9, I8, I7}{0, I6, I5, I4}{1, I2, I1, I0}
100xx {0, I9, I8, I7}{0, I6, I5, I4}{1,0,0, I0}
101xx {0, I9, I8, I7}{1,0,0, I4}{1, I2, I1, I0}
110xx {1,0,0, I7}{0, I6, I5, I4}{0, I9, I8, I0}
11100 {1,0,0, I7}{1,0,0, I4}{0, I9, I8, I0}
11101 {1,0,0, I7}{0, I9, I8, I4}{1,0,0, I0}
11110 {0, I9, I8, I7}{1,0,0, I4}{1,0,0, I0}
11111 {1,0,0, I7}{1,0,0, I4}{1,0,0, I0}

Table 4.2: Decoding each DPD to BCD

63

The radix-5 implementation suggested in [38] is a very good option for
a high performance design. Moreover, it has a property that can be used
to simplify the rest of the design; that is the sum vector resulting from the
reduction tree is always negative. The importance of this property will be
discussed later in Section 4.2.5. Other proposals discussed in the previous
chapter are either of lower performance, or comparable performance with
larger complexity.

The multiplier tree used in our FMA design is essentially the same as
that presented in [38]. We present it in some detail for completeness and
becasue it is the basis for next stages operation of the FMA.

4.2.2.1 SD-Radix 5 Architecture

Figure 4.4 shows the block diagram of the multiplier tree that uses SD-
Radix 5 recoding. The multiplier consists of the following stages: genera-
tion of decimal partial products coded in (4221/5211) and reduction of par-
tial products into two final vectors (M1 and M2). Coding the partial products
in (4221/5211) representation facilitates the generation of the multiplicand
multiples and also the reduction of the partial products which would be ex-
plained later.

Each digit in the multiplier (Y) is recoded from regular BCD for-
mat whereYi ∈ {0, · · · ,9} into an SD radix-5 Yi = 5×YU

i +Y L
i , where

YU
i ∈ {0,1,2} andY L

i ∈ {−2, · · · ,2}. This results in a 2p digit recoded
multiplier (p-digits YU and p-digits Y L). Then each recoded digit in the
multiplier controls two MUXs; the first one selects a positive multiplicand
multiple out of {0,X ,2X} coded in (4221), while the other selects a mutiple
out of {0,5X ,10X} coded in (5211). For a negative multiplicand multiple
{−X or −2X}; the corresponding positive multiple is inverted. This in-
version is equivelent to 9’s complement when the digits are coded in 4221

64

Figure 4.4: Multiplier Architecture for SD-Radix 5 Encoding
[38]

format. A (+1) is added to each negated partial product to get the 10’s com-
plement. This (+1) digit is inserted within the partial products array without
extra overhead delay.

Before being reduced, the 2p partial products are aligned according to
their decimal weights. Each p-digit column of the partial product array is
reduced to two (4221) decimal digits using one of the decimal digit 2p:2
CSA trees.

4.2.2.2 Partial Product Generation

Multiplier Recoding As explained earlier, each BCD digit in the mul-
tiplier Yi ∈ {0, · · · ,9} is recoded into an SD radix-5 digit such thatYi =

5×YU
i +Y L

i , where YU
i ∈ {0,1,2} andY L

i ∈ {−2, · · · ,2}. In order to se-
lect the correct partial products (multiplicand multiple), each digit YU

i is
represented as two signals {y1U

i , y2U
i }. Also each digit Y L

i is represented

65

as four signals {y(+2)L
i , y(+1)L

i , y(−1)L
i , y(−2)L

i } and a sign bit ysi. By
examining the different possibilities, these signals can be obtained directly
from the BCD multiplier digits Yi using the following logical expressions:

(YU
i)

 y2U
i = yi,3;

y1U
i = yi,2 |(yi,1.yi,0);

(4.2)

(Y L
i)



y(+2)L
i = yi,1 .((yi,2 .yi,0) |(yi,2 .yi,0));

y(+1)L
i = (yi,3 .yi,2 .yi,1 .yi,0) |(yi,2 .yi,1 .yi,0);

y(−1)L
i = (yi,3 .yi,0) |(yi,2 .yi,1 .yi,0);

y(−2)L
i = (yi,3 .yi,0) |(yi,2 .yi,1 .yi,0);

ysi = y(−2)L
i |y(−1)L

i ;

(4.3)

In the following, we will present an example of how the multiplier is
recoded.

Example:
Given Multiplicand (Yi) 6 2 3 7 8 9 1 0 5 2 3 1 1 5 0 1

Recoded Multiplicand (YU
i) 5 0 5 5 10 10 0 0 5 0 5 0 0 5 0 0

Recoded Multiplicand (Y L
i) 1 2 -2 2 -2 -1 1 0 0 2 -2 1 1 0 0 1

Signal y1U
i 1 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0

Signal y2U
i 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

Signal y(+2)Ui 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0
Signal y(+1)Ui 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1
Signal y(−1)Ui 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
Signal y(−2) 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0

66

Multiplicand Multiples Generation All the required decimal multiplicand
multiples are obtained in a few levels of combinational logic using different
digit recoders and performing different fixed m-bit left shifts (LmShift) in
the bit-vector representation of operands. In the following, we will use
various representations for BCD numbers with different weights, rather than
the regular 8421 format. These different representations will simplify the
generation of the multiplicand multiples and also the reduction of the partial
products. So, we will firstly list some properties for these different codes
that will be used later in this section.

Property 1)
Among all the possible decimal codes, there is a family of codes suitable

for simple decimal carry-save addition. This family of decimal codings
verifies that the sum of their weight bits is 9, that is,

3

∑
j=0

r j = 9, (4.4)

where r j represents the weight of bit number j in the BCD digit.
This set of codes includes the (4221) and (5211) codes. Moreover, they

are redundant codes, since two or more different 4-bit vectors may represent
the same decimal digit.

These codes have an important property, that is all the sixteen 4-bit vec-
tors represent a decimal digit (Xi ∈ [0,9]). Therefore, any Boolean function
(AND, OR, XOR,. . .) operating over the 4-bit vector representation of two
or more input digits produces a 4-bit vector that represents a valid decimal
digit (input and output digits represented in the same code).

Property 2)
The 9’s complement of a digit Xi can be obtained by inverting their bits

(as a 1’s complement) since

67

9−Xi =
3

∑
j=0

r j−
3

∑
j=0

xi, jr j =
3

∑
j=0

(1− xi, j)r j =
3

∑
j=0

r j (4.5)

Hence, negative operands can be obtained by inverting the bits of the
positive bit vector representation and adding a 1 ulp, as follows,

−Xr3r2r1r0 = Xr3r2r1r0 +1 (4.6)

where Xr3r2r3r1 means the number X is encoded by BCD weights of
(r3r2r1r0).

Property 3)
If a decimal number X is encoded such that the 4-bits of each digit is

weighted as (5421) then shifted left by ’1’ bit and and the result is read
again as if weighted by (8421) for each digit, it is the same as multiplying
the decimal number X by 2 in its original format of (8421). In other words:

(L1shi f t{X5421})8421 = (2×X)8421 (4.7)

This can be simply proved as follows: (v j
i bit number (i) in digit (j) in

5421 encoding)

X5421= (· · ·vi+1
0 vi

3vi
2vi

1vi
0 vi−1

3 · · ·)5421

= · · ·10i+1 × (· · · + vi+1
0) + 10i × (5vi

3 + 4vi
2 + 2vi

1 + vi
0) + 10i−1 ×

(5vi−1
3 + · · ·)

with one bit left shift:

(L1shi f t{X5421})8421= (· · ·vi+1
0 vi

3vi
2vi

1vi
0vi−1

3 vi−1
2 · · ·)8421

68

= · · ·10i+1 × (· · · + vi
3) + 10i × (8vi

2 + 4vi
1 + 2vi

0 + vi−1
3) + 10i−1 ×

(5vi−1
2 + · · ·)

= 2× (· · ·10i+1× (· · ·+ vi+1
0)+10i× (5vi

3 +4vi
2 +2vi

1 + vi
0)+10i−1×

(5vi−1
3 + · · ·))

= 2× (· · ·vi+1
0 vi

3vi
2vi

1vi
0vi−1

3 · · ·)5421 = (2X)8421

This proves the initial claim.

Property 4)
If a decimal number X is encoded such that the 4-bits of each digit is

weighted as (4221) then shifted left by ’3’ bits and the result is read again
as if weighted by (5211) for each digit, it is the same as multiplying the
decimal number X by 5 in the format of (4221). In other words:

(L3shi f t{X4221}p)5211 = (5×X)4221 (4.8)

This can be simply proved as follows: (v j
i bit number (i) in digit (j) in

5421 encoding)

X4221= (· · ·vi+1
0 vi

3vi
2vi

1vi
0 vi−1

3 · · ·)4221

= · · ·10i+1 × (· · · + vi+1
0) + 10i × (4vi

3 + 2vi
2 + 2vi

1 + vi
0) + 10i−1 ×

(4vi−1
0 + · · ·)

with three bits left shift:

69

(L3shi f t{X4221})5211= (· · ·vi
1vi

0vi−1
3 vi−1

2 vi−1
1 vi−1

0 · · ·)5211

= · · ·10i+1 × (· · ·+ vi
1) + 10i × (5vi

0 + 2vi−1
3 + vi−1

2 + vi−1
1) + 10i−1 ×

(5vi−1
0 + · · ·)

= 5× (· · ·10i+1× (· · ·+ vi+1
0)+10i× (4vi

3 +2vi
2 +2vi

1 + vi
0)+10i−1×

(4vi−1
0 + · · ·))

= 5× (· · ·vi+1
0 vi

3vi
2vi

1vi
0vi−1

3 · · ·)4221 = (5X)5211

This proves the initial claim.

Property 5)
If a decimal number X is encoded such that the 4-bits of each digit is

weighted as (5211) then shifted left by ’1’ bit and the result is read again
as if weighted by (4221) for each digit, it is the same as multiplying the
decimal number X by 2 in the format of (4221).

(L1shi f t{X5211}p)4221 = (2×X)4221 (4.9)

This can be simply proved as follows: (v j
i bit number (i) in digit (j) in

5221 encoding)

X5211= (· · ·vi+1
0 vi

3vi
2vi

1vi
0 vi−1

3 · · ·)5211

= · · ·10i+1 × (· · · + vi+1
0) + 10i × (5vi

3 + 2vi
2 + 2vi

1 + vi
0) + 10i−1 ×

(5vi−1
3 + · · ·)

with one bit left shift:

70

Digit 8421 4221 5211 5421
0 0000 0000 0000 0000
1 0001 0001 0001 0001
2 0010 0010 0100 0010
3 0011 0011 0101 0011
4 0100 1000 0111 0100
5 0101 1001 1000 1000
6 0110 1010 1001 1001
7 0111 1011 1100 1010
8 1000 1110 1101 1011
9 1001 1111 1111 1100

Table 4.3: Decimal Codings

(L1shi f t{X5211})4221= (· · ·vi+1
0 vi

3vi
2vi

1vi
0vi−1

3 vi−1
2 · · ·)8421

= · · ·10i+1 × (· · · + vi
3) + 10i × (4vi

2 + 2vi
1 + 2vi

0 + vi−1
3) + 10i−1 ×

(4vi−1
2 + · · ·)

= 2× (· · ·10i+1× (· · ·+ vi+1
0)+10i× (5vi

3 +2vi
2 +2vi

1 + vi
0)+10i−1×

(5vi−1
3 + · · ·))

= 2× (· · ·vi+1
0 vi

3vi
2vi

1vi
0vi−1

3 · · ·)5221 = (2X)5211

In order to use the previous characteristics of these different encodings,
we should first define how the recoding from a format to another is done.
Table 4.2.2.2lists the different decimal codings (8421, 5421,4221,5211).
Although, the mapping is not unique, the selected mapping reduces logic
complexity as much as possible.

71

In the following, we will summerize how the different multiples are gen-
erated in the 4221 format:

The X BCD multiplicand: is easily recoded to (4221) using the logical
expressions.

Multiple 2X: Each BCD digit is first recoded to the (5421) decimal cod-
ing shown in Table 4.2.2.2. Using property (3) defined by Equation 4.7, an
L1shift is performed to the recoded multiplicand, obtaining the 2X multiple
in BCD. Then, the 2X BCD multiple is recoded to (4221).

Multiple 5X: It is obtained by a simple L3shift of the (4221) recoded
multiplicand, with resultant digits coded in (5211).

Multiple 10X: It is obtained by a simple L3shift of the 2X (4221) re-
coded multiplicand multiples, with resultant digits coded in (5211).

Negative Multiples: For negative multiples (i.e. ysi = 1), the positive
multiple is inverted to get the 9’s complement. For 10’s complement, a (+1)
is added at the least significant digit position. Since only the Y L

i multiples
may be negative, the (+1) is inserted in the least significant bit of the corre-
sponding YU

i multiple.

4.2.2.3 Partial Product Array

As we detailed before, the SD radix-5 architecture produces 2p partial prod-
ucts coded in (4221/5211). Before being reduced, the 2p partial products
Pi are aligned according to their decimal weights by 4i-bit wired left shifts
(PPi×10i). The resultant partial product array for 16-digit input operands is
shown in Figure 4.5. In this case, the number of digits to be reduced varies

72

from 32 partial products to 2 partial products. For negative partial products
we insert ’+1’ at the least significant bit of the least significant digit of the
YU

i .
However, the part of the sign extension can be reduced off line (i.e. in

design time). Since the digit S is either (S=0) for positive partial products or
(S=9) for negative partial products, we can explore the different possibilities
of adding two sign vectors and try to reduce them.

Case(1) Case(2) Case(3) Case(4)
S1 · · ·S1S1 0 · · ·00 0 · · ·00 9 · · ·99 9 · · ·99
S2 · · ·S2S2 0 · · ·00 9 · · ·99 0 · · ·00 9 · · ·99

SR · · ·SRSR 0 · · ·00 9 · · ·99 9 · · ·99 9 · · ·98

; where S represents the sign digit.

Or equivelently

Case(1) Case(2) Case(3) Case(4)
S1 · · ·S1S1 0 · · ·01 0 · · ·01 0 · · ·00 0 · · ·00
S2 · · ·S2S2 9 · · ·99 9 · · ·98 9 · · ·99 9 · · ·98

SR · · ·SRSR 0 · · ·00 9 · · ·99 9 · · ·99 9 · · ·98

All these cases can be represented as follows:

Q1 · · ·Q1Q1 0 · · ·0(000s1)

Q2 · · ·Q2Q2 9 · · ·9(111s2)
, si =

{
0 Si = 0
1 Si = 9

; where Q is the sign digit after the first reduction.

This result can be used to reduce partial product array in Figure 4.5 to
the one in Figure 4.6 (a).

73

S S S S S S S S S S S S S S S S X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
S S S S S S S S S S S S S S S X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
S S S S S S S S S S S S S S X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 0 0 0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
S S S S S S S S S S S S S X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 0 0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
S S S S S S S S S S S S X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
S S S S S S S S S S S X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
S S S S S S S S S S X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
S S S S S S S S S X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
S S S S S S S S X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
S S S S S S S X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
S S S S S S X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
S S S S S X X X X X X X X X X X X X X X X X
0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
S S S S X X X X X X X X X X X X X X X X X
0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
S S S X X X X X X X X X X X X X X X X X
0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
S S X X X X X X X X X X X X X X X X X
0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
S X X X X X X X X X X X X X X X X X
0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H

X : Digit Coded in 4221
Y : Digit Coded in 5211
H : Includes the (+1) increment
S : Sign Digit

Figure 4.5: Partial Product Array Generated For 16-Digit Operand using
SD-Radix 5 implementation

74

However, the array in Figure 4.6 (a) can be further reduced. If we foll-
wed the same technique used, we can reduce the trailing leading nines in
using each two successive vectors starting from the second row as follows:

Case(1) Case(2)
Q1 · · ·Q1Q1 9 · · ·99 9 · · ·99
Q2 · · ·Q2Q2 0 · · ·09 0 · · ·10

QR · · ·QRQR 0 · · ·08 0 · · ·09

This can be replaced by:

Case(1) Case(2)
W1 · · ·W1W1 0 · · ·00 0 · · ·00
W2 · · ·W2W2 0 · · ·0(111s2) 0 · · ·0(111s2)

; where W is the sign digit after the second reduction.

There is an important result we can conclude, that is using this design-
time technique for sign extension reduction yields a final array that will
produce two vectors one of them is definitly negative and the other must be
positive to result in a final positive result. This can be clearly shown from
the leading (9) at the most significant position in the multiplier array that
will be present in the sum vector.

4.2.2.4 Partial Product Reduction

To simplify the partial product reduction, properties (1) and (2) for
4221/5211 coding are used. Let us assume three decimal digits Ai ,Bi ,Ci

where each digit is coded in 4221 or 5211 format. If a conventional binary
carry save adder is used to reduce these three digit to only two digits; sum

75

0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ŝ S X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
9 9 9 9 9 9 9 9 9 9 9 9 9 9 Š X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
0 0 0 0 0 0 0 0 0 0 0 0 Ŝ S X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 0 0 0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
9 9 9 9 9 9 9 9 9 9 9 9 Š X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 0 0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
0 0 0 0 0 0 0 0 0 0 Ŝ S X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
9 9 9 9 9 9 9 9 9 9 Š X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
0 0 0 0 0 0 0 0 Ŝ S X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
9 9 9 9 9 9 9 9 Š X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
0 0 0 0 0 0 Ŝ S X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
9 9 9 9 9 9 Š X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
0 0 0 0 Ŝ S X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
9 9 9 9 Š X X X X X X X X X X X X X X X X X
0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
0 0 Ŝ S X X X X X X X X X X X X X X X X X
0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
9 9 Š X X X X X X X X X X X X X X X X X
0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
Ŝ S X X X X X X X X X X X X X X X X X
0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
Š X X X X X X X X X X X X X X X X X
0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H

X : Digit Coded in 4221
Y : Digit Coded in 5211
H : Includes the (+1) increment
S : Sign Digit

Ŝ = 111s̄ , s =
{

0 S = 0
1 S = 9

Š = 000s̄ , s =
{

0 S = 0
1 S = 9

Figure 4.6: First Reduction Step

76

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Š X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
0 0 0 0 0 0 0 0 0 0 0 0 0 0 Š X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
0 0 0 0 0 0 0 0 0 0 0 0 0 Š X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 0 0 0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
0 0 0 0 0 0 0 0 0 0 0 0 Š X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 0 0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
0 0 0 0 0 0 0 0 0 0 0 Š X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
0 0 0 0 0 0 0 0 0 0 Š X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
0 0 0 0 0 0 0 0 0 Š X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
0 0 0 0 0 0 0 0 Š X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
0 0 0 0 0 0 0 Š X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
0 0 0 0 0 0 Š X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
0 0 0 0 0 Š X X X X X X X X X X X X X X X X X
0 0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
0 0 0 0 Š X X X X X X X X X X X X X X X X X
0 0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
0 0 0 Š X X X X X X X X X X X X X X X X X
0 0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
0 0 Š X X X X X X X X X X X X X X X X X
0 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
0 Š X X X X X X X X X X X X X X X X X
0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H
Š X X X X X X X X X X X X X X X X X
0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y H

X : Digit Coded in 4221
Y : Digit Coded in 5211
H : Includes the (+1) increment
S : Sign Digit

Ŝ = 111s̄ , s =
{

0 S = 0
1 S = 9

Š = 000s̄ , s =
{

0 S = 0
1 S = 9

Figure 4.7: Final Reduced Array

77

(S) and carry (H), that can be expressed in Equation 4.10 then, we are only
interested in (r3,r2,r1,r0) = (4,2,2,1) or (5,2,1,1).

Ai +Bi +Ci =
3

∑
j=0

(ai, j +bi, j + ci, j)r j =
3

∑
j=0

si, jr j +2×
3

∑
j=0

hi, jr j

= Si +2×Hi (4.10)

This equation applies both the logic that the binary carry save adder
forces and property (1). Property (1) states that any logical operation on a
decimal digit coded in 4221/5211 will result in another valid decimal digit
coded in the same format. Also, the binary carry save adder forces the sum
bits to be of the same weight as the added bits, yet the carry bit to be of
double the weight. These two facts formulate equation 4.10.

However, a decimal multiplication by 2 is required before using the carry
digit Hi for later computations. Since property (5) is restricted to 4221/5211
coding out of the decimal coding familty that satisfies Equation 4.4, then
they are used to simplify the ×2 operation. The carry digit (Hi) is first
converted to 5211 format and shifted to the left by 1-bit, then reused again
as coded in 4221. This is equivelent by multiplication by 2.

In order to reduce the partial product array in Figure 4.6 (b), highest
columns are first reduced using decimal counters. Then, the result is re-
duced again by a tree of carry save adders. This tree is designed to reduce
the critical path using parallelism as much as possible and balancing the
delay of different paths. For this purpose, the intermediate operands with
higher multiplicative factors are multiplied in parallel with the reduction of
the other intermediate operands using binary 3:2 CSAs. However, this tech-
nique may result in carries of four times the weight of sum digits. Hence, in

78

these cases we need a ×4 operation which is simply composed of two ×2
cascaded stages.

To reduce the multiplier array into only two vetcors, we will need 32
trees of carry save adders (n : 2) where n ∈ {4, · · · ,16,32}. An example of
these CSA trees can be found in [33].

At the end of this stage in the multiplier tree, two vetcors are obtained:
the sum vector (M1) and the carry vector (M2). Both vectors are of 33 digit
and coded in the 4221 format. This includes a final digit that represents the
sign of each vector.

As shown in Section 4.2.2.3, the sum vector is always negative (i.e. sign
digit is 9) and the carry vector is always positive (i.e. sign digit is 0).

4.2.3 Addend Preparation

In parallel to the multiplier tree, the third operand (C) is prepared to be
added to the result. The addend is first converted to the 4221 format in order
to simplify the decimal carry save addition operation that is performed later
on the three operands; the two resulting vectors of the multiplier tree and
the addend. Then, the addend’s shift amount is determined according to its
exponent and the exponent of the multiplication result.

A regular architecture such as the one in Figure 4.8 shifts the result of the
multiplication to the right or to the left according to the values of both the
exponent of the addend and the multiplication result. However, such archi-
tecture requires shifting multiplier result after the end of the multiplication
tree, which is at the critical path. Instead, the addend is shifted in parallel to
the multiplier tree to the right or to the left maintaining the required relative
alignment positions. This is shown in Figure 4.2. This eliminates the need
for further processing on the multiplier tree result, which in turn removes
some overhead from the critical path.

79

Case 1 ���� > ����

A

B

C

M

C

×

±

± ±

Case 2

ShiftL1 ShiftR1

ShiftR1 ShiftL1

ShiftL2 ShiftL2

Round Round

���� < ����

Figure 4.8: Regular Algorithm For FMA Operation

Hence, we should have an R/L shifter that shifts the addend either to the
right with a value of Shi f tR or to the left with a value of Shi f tL. This shift
amount is called Shi f t1. The shift amount is determined as follows:

ExpM = ExpA+ExpB−Bias (4.11)

ExpDi f f = |ExpM−ExpC | (4.12)

Shi f t1 =

{
Shi f tR = Max(ExpDi f f , 2p+1) ExpM > ExpC
Shi f tL = Max(ExpDi f f , 3p+1) ExpM ≤ ExpC

(4.13)

80

As shown in Equation 4.13, in case of shifting to the right, the maximum
shift amount to be considered is (2p+1), otherwise all the addend will con-
tribute to the sticky (unless the multiplication result (M)=0, yet this case is
considered as an exception of the default datapath). It should be noted that,
although only (p) digits to right of the fractional point may be used again,
the maximum shift amount, in the worst case, is 2p+1 with the less signifi-
cant (p+1) digits out of the (2p+1) width only contribute to the sticky. Also,
in case of shifting to the left, the maximum shift amount, in the worst case,
is 3p+1, otherwise the multiplication result will only contribute to the sticky
(unless the addend (C)=0, yet this case is also considered as an exception
of the default datapath). The (+1) digit in both cases to maintain a correct
round digit that affects the rounding decision.

In summery, we will need a right shifter of width (2p+1) and a left shifter
of width (3p+1), however, only 4p+1 width is required for the shifted ad-
dend.

After the alignment of the addend is held, the nine’s complement of
the addend has to be obtained in case of effective subtraction. Since, the
addend now is in the 4221 format, the nine’s complment is simply obtained
by inverting the aligned addend. This is done using a level of XOR gates
that xor addend bits with the effective operation signal (eop), where:

eop = signA⊕ signB⊕ signC⊕op (4.14)

Figure 4.9 shows the different stages of addend preparation prior to start-
ing adding it to the multiplication result.

It should be highlighted that the 10’s complement requires adding (+1)
to the addend, this will be done by injecting (carry in=1) in a later step
(rounding set-up) to avoid having an incrementer at the critical path.

81

�������������������������

������������������	
�
�������	���

��(�
"	�������(�
"	�������(�
"	��

�"	��� ���������� �����
"��� �������(�
"	��� ��

�

��� ���

�"	����"	����"	��������������"	�	��

�"	��� ���

�����

�
"��� ��

�

���

�

�	%��%�

����������

���

���

��������

�

�����	���

����

.��
���

-�'����#��)�$%
"
���

����

����

���#'�$%
"
����'�#'�$%
"
�����#&�$%
"
���

� �#'�)�$%
"
���� �#'�)�$%
"
���� �#'�)�$%
"
���

�"	����0�

-���#'�)�$%
"
���-�'�#'�)�$%
"
���

�"	�	��

������

����

,
������(�%�

����

�������&''��

��#&�$%
"
���

&''���	(�%
	"�

12��(�*���*�	��
����

��#&�$%
"
���

�

������
���
�

�
"��

������

����

�

��#&�$%
"
���
����

�	%��%��

-���
��

��(�
"	��� ��� ������.��"��

Figure 4.9: Preparing Addend

4.2.4 Selection and Decimal Carry Save Adder

In order to reduce the width of significand path, instead of 4p+1 digits
width, a selection stage determines the position of the MSD (Most Sig-
nificant Digit) that may contribute to the result and ignores digits of higher
significance.

This selection is performed according to the four case shown in Figure
4.2. The datapath is controlled by means of the selection lines generated
from the Datapath Control Unit as shown in Figure 4.1. This unit also
determines the value of Shi f t1 and whether it is a right or a left shift. The
four cases are listed in Table 4.2.4.

After this width is selected, a decimal carry save adder is used to add
the aligned addend and the two vectors resulting from the multiplier tree.
The decimal carry save adder uses the 4221 coding properties to speed up
the operation. Figure 4.10 shows the internal struction of the decimal carry

82

Case # Condition Position of the MSD
Case 1 ExpM > ExpC 2p+1
Case 2 ExpC−LZC− p < ExpM ≤ ExpC 2p+1
Case 3 ExpC−LZC−2p≤ ExpM ≤ ExpC−LZC− p 3p+1
Case 4 ExpC−LZC−2p > ExpM 4p+1

Table 4.4: Four Cases of Reduced Datapath

save adder. The dotted blocks represent the ×2 operation discussed before.
Then a regular binary carry save adder is used. The final sum and carry
vectors are converted back to 8421 coding because it is easier in later stages
that require carry generation networks as we will see.

Only 2p+1 digits width is required to feed the decimal carry save adder
in all cases except in case 2, when the effective operation is subtraction.
The two vectors resulting from the multiplier tree has to be added then to
a chain of trailing 9’s that fills the addend least significant digits of extra
p-digits width. If this p-width is removed, this will complicate the design
of the following stages in case of effective subtraction.

On the other hand, from section 4.2.2.3, one of the vectors resulting from
the multiplier tree (the sum vector) is negative and the other is positive. If
we explored the two possibilities of the addend in case of effective addition
and subtraction and the possible carry in at the sign digit, we can prove that,
in all cases one of the resulting two vectors will be positive and the other
will be negative. These different cases are summerized in Figure.

4.2.5 Leading Zero Anticipator

As discussed in Chapter 3, the leading zero anticipator can anticipate the
leading zeros, in the result of adding/subtracting two operands, from the
operands themselves prior to the addition/subtraction operation. The LZAs

83

Carry Save Adder

4221���� 5211

1-bit Shft Left

I2 (3p+1- width) I1 (3p+1- width) I0 (3p+1- width)

SUMCARRY

4221 ���� 5211

1-bit Shft Left

4221����8421

4221 ����8421

SUMCARRY

R0 (3p+1-width)

R1 (3p+1-width)

Figure 4.10: Decimal Carry Save Adder

Sign

Ext.

Sign

Ext.

Sign

Ext.

Sign

Ext.

Cin 0 1 0 1

SI0 9 9 9 9

S 0 0 0 0SI1 0 0 0 0

SI2 0 0 9 9

SR0 9 8 0 0

SR1 0 2 8 9

Figure 4.11: Different Cases of Operands to the CSA Signs

84

consist mainly of two blocks: the preliminary anticipation that anticipates
the leading zeros with a possible error of one digit, and the correction unit
that corrects that error if found.

However, in our proposed architecture, an error of one digit in the an-
ticipation can be tolerated. This is mainly because the combined add/round
block that will be explained later can handle this error. So, in our architec-
ture we will only need the preliminary anticipation stage. This advantage
reduces the area and the delay of the LZA step.

In the following, we will discuss the technique used for leading zero
anticipation in both effective addition and subtraction operations and also
the four different cases of datapath reduction.

4.2.5.1 Inputs to the LZA

Only the most significant 2p+1 width of the two vectors resulting from the
decimal carry save adder is considered in the LZA and as stated in the pre-
vious section, one of the two vectors resulting from the CSA is negative
and the other is positive. Hence, the two operands can be cosidered in the
following format:

In case of effective subtraction, the negative operand can be considered
in the 9’s complement form. This is because, in effective subtraction the ad-
dend is negated in the 4221 format to get the 9’s complement and the (+1)
required for 10’s complement is not yet added until this stage of the archi-
tecture. So the negative operand can be considered in the 9’s complement
format and still requires adding (+1) to get the 10’s complement.

In case of effective addition, the negative operand is in its 10’s comple-
ment format because the addend in this case is not 9’s complemented. The
negative operand comes from the multiplier tree which correctly gets the
10’s complement for each negative partial product. Hence, adding the two

85

vectors will result in the required result without further correction (i.e. no
need for +1 addition).

4.2.5.2 Effective Subtraction Case

In case of effective subtraction, we use the preliminary leading zero an-
ticipation proposed in [30] with small modifications. Assume the input
operands for anticipation are A and B (the nine’s complement of B), such
that Ai is the ith digit in operand A, and Bi is the ith digit in operand B and it
is required to anticipate the leading zeros in (A−B). The steps used in the
anticipation can be listed as follows:

1) Encode the two operands digitwisely into these signals (g9, g2, g1,
zero, s1, s2, s9). Table 4.2.5.2 shows the meaning of each of these signals.

Signal Condition Signal Condition
g9i Ai = 9, Bi = 0 s9i Ai = 0, Bi = 9
g2i Ai ≥ Bi +2 s2i Ai ≤ Bi−2
g1i Ai = Bi +1 s1i Ai = Bi−1

zeroi Ai = Bi

Table 4.5: Signaled used for Leading Zeros Anticipation

2) Explore different digit pattern sets and get leading zero count of each
pattern.

3) Use these signals to get a binary string P that has leading zero bits
equivalent to the leading zero count with a possible error of one digit.

4) Detect the leading zero bits in the binary string using a leading zero
detector (LZD) with a logarithmic delay resulting in a preliminary leading
zero count PLZC such that:

86

LZA{A,B}= PLZC{A−B}=Correct LZC or Correct LZC−1 (4.15)

Step 1) Wang and Schulte [30] use a level of one digit subtractors to get
the signals (g9, g2, g1, zero, s1, s2, s9) from the result of subtraction
digitwisely. They justify this technique by the large fan out that will take
place if they processed on the input operands directly. This large fan out
is due to the simultaneous usage of the operands in the parallel correction
part and in the parallel carry network of their propsed decimal floating point
adder, where they use leading zero anticipator, at the first place, in parallel
to addition to eliminate the delay of leading zero detection after addition.

However, in our proposal, there is no correction circuitry and also the
addition combined with the rounding is done after the leading zero antici-
pator and the alignment of the operands, so it does not affect the fan out of
the signals. Hence, the signals (g9, g2, g1, zero, s1, s2, s9) are deduced
from the input operands directly by the logic that satifies conditions in Table
4.2.5.2. This takes into consideration that the negative operand (Bi in this
case) is in the 9’s complement format.

Step 2) The different digit patterns are explored in [30] and the leading
zero count in each case is shown in Table 4.2.5.2.

87

Digit Pattern LZCR PLZCR # Digit Pattern LZCR PLZCR
1 0k[2,9][−9,9]m k k 10 0k[−9,−2][−9,9]m k k
2 0k1[1,9][−9,9]m k k 11 0k(−1)[−9,−1][−9,9]m k k
3 0k10t [0,9][−9,9]m k k 12 0k(−1)0t [−9,−1][−9,9]m k k
4 0k10t [−9,−1][−9,9]m k+1 k 13 0k(−1)0t [1,9][−9,9]m k+1 k
5 0k1[−9,−1][−9,9]m k+1 k 14 0k(−1)[1,8][−9,9]m k+1 k
6 0k1(−9) j[1,9][−9,9]m k+ j k+ j 15 0k(−1)9 j[−9,−1][−9,9]m k+ j k+ j
7 0k1(−9) j[−8,−1][−9,9]m k+ j+1 k+ j 16 0k(−1)9 j[1,8][−9,9]m k+ j+1 k+ j
8 0k1(−9) j0t [0,9][−9,9]m k+ j k+ j 17 0k(−1)9 j0t [−9,−1][−9,9]m k+ j k+ j
9 0k1(−9) j0t [−9,−1][−9,9]m k+ j+1 k+ j 18 0k(−1)9 j0t [1,9][−9,9]m k+ j+1 k+ j

Table 4.6: Different Digit Patterns

Step 3) After the seven signals (g9, g2, g1, zero, s1, s2, s9) are generated
for each digit, they are recoded again to produce a binary string P using the
following logic Equation:

Pi = zeroi+1 .(g2i |s2i |(g1i .s9i−1) |(s1i .g9i−1))

|zeroi+1 .((s9i .s9i−1) |(g9i .g9i−1)) (4.16)

This binary string is intended to have leading zero bit count equivalent to
the leading zero digits in the subtraction result of the anticipated operands.
This equation can be devised from Table 4.2.5.2.

The first part of the equation describes these cases:
- case (1) :zeroi+1 .(g2i)

- case (2,3,4):zeroi+1 .((g1i .s9i−1)

- case (10): zeroi+1 .(s2i)

- cases(11,12,13): zeroi+1 .((s1i .g9i−1)

Since it does not distinguish between cases (2,3) and case (4), the antic-
ipated leading zero count in case (4) will be of (-1) digit error. The reason

88

behind this is that the digit after the string of zeros (0t) has to be detected
and this will add much overhead to the critical path. Hence, a preliminary
leading zero anticipation considers both cases (case(2,3) and case(4)) are
the same. The same goes for case (11,12) and case (13).

The second part of the equation describes these cases:
- cases (5,6,7,8,9) :zeroi+1 .(s9i .s9i−1)

- cases (14,15,16,17,18):zeroi+1 .(g9i .g9i−1)

The same discussion is valid in these cases. Cases (7,9,16,18) are antic-
ipated with (-1) digit error to simplify the preliminary anticipation step as
much as possible.

Step 4) In this step, the leading zero bits in the binary string P must be
detected. Since the binary string (P) is of 33 bits width, the leading zero
detection algorithm is critical to the performance of the LZA. It must be
as fast as possible to reduce the critical path delay. A logarithmic delay
leading zero detector (LZD) algorithm propsed in [77] is used.

The main block in this LZD tree is the LZD of 2-bit sring. This block
takes two bits B1, B0 where B1 is the most significant bit and B0 is the least
significant one. Then, it generates two signals the valid signal (v) and the
LZC signal (P) such that:

v = B0 |B1 (4.17)

P = B1 (4.18)

The valid signal indicates if the two bits are zeros or not and the leading
zero count signal ’P’ indicates if there is a leading zero bit or not. Two of
these blocks can be used to detect the LZC signal in a four bit binary string
such as Figure 4.12. As shown in Figure 4.12 (b), the two bit signal (P)

89

L
Z

D
 4

-b
it

s

LZD 2-bits LZD 2-bits

B3 B2 B1 B0

v2 P2 v1 P1L
Z

D

Combiner of a LZD-4bits

P-2bitsv

v2 P2 v1 P1

v2
P2

v1P1

MUX

1 0

MUX

P-2bits v

Figure 4.12: (a) Leading Zero Detection for 4-bit Binary String
(b)Internal Structure of LZD4

countes the number of leading zeros in the binary string (B3B2B1B0) and
the signal v = 0 if all the bits in the string are zeros.

This can be generalized for any number of bits. Hence, a 32 LZD can be
implemented as 5 levels starting with 16 LZDs of 2-bits as shown in Figure
4.13.

Since in our architecture, there is a 33 bit binary string. The most sig-
nificant 32-bits are fed to the LZD array and then if it produces an invalid
leading zero count (i.e. v = 0). This means the leading zero count is either
32 or 33 based on the value of the least significant bit. This gives us the
PLZC (preliminary leading zero count) with a maximum of 6-bits width.

This is better than anticipating on the least significant 32 bits, since this
will add a 6-bits adder at the critical path delay to increment one in case of
having the most significant digit a zero.

Figure 4.14summerizes the steps of the preliminary leading zero antici-
pator in case of effective subtraction.

90

32-bits input

P-5bits v

Figure 4.13: Leading Zero Detector of 32-bit Binary String

Generation of (g9, g2, g1, zero, s1, s2, s9)

A

_

B
131-bits

(2p+1) digits
131-bits

(2p+1) digits

33-bits for each signal

(2p+1)
(g9, g2, g1, zero, s1, s2, s9)

Generation of Binary String (P)

Leading Zero Detection

33-bits for each signal

(2p+1)
P

PLZC 6-bits

Figure 4.14: Leading Zero Anticipator Block Diagram

91

4.2.5.3 Effective Addition Case

In this section, we explore the best way to anticipate the LZC in case
of effective addition. In the previous decimal leading zero anticipa-
tor proposal [30], the preliminary leading zero anticipation in case of
addition is calculated as PLZRe f f add = Min{LZCOp1, LZCOp2} where
LZCOp1, LCZOp2 are the leading zero count of the added operands. This
anticipation gives the correct result with a possible error of (+1) digit.

However, in our architecture the leading zero count of the operands fed
to the LZA (the sum and carry vectors resulting from the decimal carry save
adder) are not known and it has to be detected in the critical path.

This can be avoided by using the LZC of initial operands that are re-
quired to be added, which are the addend and the multiplication result.
The LZC of the addend is detected in parallel to the multiplier tree and
there is no problem in it. However, the LZC of the multiplication re-
sult is not knwon. Yet, it can be anticipated with a possible error of one
digit such that PLZM = LZCB+LZCC , for M = B×C. This anticipation
may be of (-1) digit error. If we used this anticipation to get the PLZC
of the intermediate result such that PLZRe f f add = Min{PLZM, LZCC},
this will result in one of three posibilities: PLZRe f f add = Correct LZCR−
1 or Correct LZCR or Correct LZCR+1. This will complicate the combined
add/round block since we will have three possible positions for rounding.

To avoid this, we have to devise a logic that anticipates the exact leading
zero count of the multiplication result based on the multiplier and the mul-
tiplicand in parallel to the multiplier tree. However, this will add very large
area to the deisgn.

In brief, the previously proposed technique is not suitable for our archi-
tecture. Hence, we will reformulate the problem of the leading zero antic-
ipation in case of effective addition to overcome this issue. As previously

92

stated, in case of effective addition, one of the two operands is postive and
the other is negative in the 10’s complement format. Using this fact, the
problem can be reformulated as follows:

LZA{A,(B+1)}= PLZCR{A+(B+1)} (4.19)

However, this is equivelent to:

LZA{A,(B+1)}=LZA{A,(B+1)}=PLZCR{(A−(B+1)}=PLZCR{(A−1)−B}
(4.20)

Hence, the leading zero anticipation problem in case of effective ad-
dition of (A,B) is converted to be a leading zero anticipation problem for
effective subtraction but for ((A-1), B). In order to examine the effect of
this (-1) in the LZA design, we explored its effect on the different digit pat-
tens and got the new correct LZCC in each case. For example, the next table
4.2.5.2 shows the effect of the (-1) on one of the digit patterns.

Initial Digit Pattern Subsets of The Initial Digit Patterns Effect of (-1)

0k1(−9) j0t [0,9][−9,9]m All case except 0k1(−9) j0t0(−9)m
0k1(−9) j0t [0,9][−9,9]m−1[−9,8] (Case 8)

LZR = k+ j

Case(8), PLZR = k+ j 0k1(−9) j0t0(−9)m
0k1(−9) j0t(−1)(0)m (Case 9)

LZR = k+ j+1

Finally, we concluded that; in all cases, the anticipation on the two
operands without any modifications on the logic of the LZA proposed in
case of subtraction will result in either the correct LZC of the result in case
of effective addition or the correct LZC -1. This (-1) error can be tolerated
by the combined add/round module as stated previously.

93

For more explanation, four numerical examples are given next.

Effective Addion
Example-1 Example-2

A 01012100 A 05000438
B+1 99992400 B+1 95099560

R 01004500 R 00099998

LZC 1 LZC 3

A 01012100 A 05000438
B+1 00007599 B+1 04900439

g9 00000000 g9 00000000
g2 00000000 g2 00000000
g1 01010000 g1 01000000

zero 10100000 zero 10011110
s1 00000000 s1 00000001
s2 00001111 s2 00000000
s9 00000011 s9 00100000

P 01000010 P 00100001

PLZC 1 PLZC 2

Error 0 Error -1

Effective Subtraction
Example-1 Example-2

A 01012100 A 05000438
B 99992400 B 95099560
R 01004501 R 00100000

LZC 1 LZC 2

A 01012100 A 05000438
B 00007599 B 04900439

g9 00000000 g9 00000000
g2 00000000 g2 00000000
g1 01010000 g1 01000000

zero 10100000 zero 10011110
s1 00000000 s1 00000001
s2 00001111 s2 00000000
s9 00000011 s9 00100000

P 01000010 P 00100001

PLZC 1 PLZC 2

Error 0 Error 0

4.2.5.4 Reduced Datapath of Cases (1, 2, 3 and 4)

In case (2), the two operands are limited within the anticipated width.
Hence, there is no problem in this case at all. However, in the other three
cases, the operands are not limitted to the anticipated (2p+1) width. Yet,
this does not affect the correctness of preliminary anticipation, unless the
preliminary anticipation finds that all digits within the (2p+1) width are ze-
ros.

94

In this case, the actual value of leading zeros may be more than (2p+1)
depending on the digits outside the anticipation width. However, in all
cases, the preferred exponent will be reached with a shift amount smaller
than or equals 2p+1. Hence, there is no need to get the exact value of lead-
ing zeros if they are more than 2p+1.

4.2.6 Intermediate Sign Detection

In case of effective subtraction, the intermediate result is calculated as (Mul-
tiplication Result-Aligned Addend). If (Aligned Addend >Multiplication
Result), the intermediate result will be negative and needs complementing
to get the absoulte value with appropriate sign as the standard specifies.

The intermediate sign is regularly caluclated after addition by detecting
the final carry out. Since effective subtraction is perfromed by adding the
10’s complement of the subtracted number, therefore if Cout f inal = 1, then
the intermediate result is negative or zero. Otherwise, it is positive. How-
ever, there are two main drawbacks of using this simple technique in our
architecture, which are:

1) The intermediate sign is required before the addition/rounding step.
As we will explain later, the combined add/round has to use the intermediate
sign of the result in the precorrection stage, i.e. before actual addition.

2) This technique will not always result in a correct value for the inter-
mediate result sign. This is because, in our architecture, the operands are
shifted before addition so the carry out of the shifted operands is not the
same as the final carry out of operands before shift. For example:

95

Non Aligned Operands Aligned Operands (Shifted left by 3-digits)
A 9899 Aaligned 9000
B 9908 Baligned 1999
B 0091 Aaligned+Baligned 1 0999

A+B 0 9990 A−B)aligned 0 9000
A−B 0009

A−B)aligned 9000

The carry out in case of adding A+B is ’0’ , as expected, to indicate
a negative intermediate result. However, if we aligned the operands before
addition, the carry out is ’1’ . Hence, we can not depend on the carry out in
this case to detect the sign of the intemediate result.

Therefore, we propose a simple sign detection tree that operates in par-
allel to the preliminary anticipation. We use the zeroi and Gri = g1i |g2i sig-
nals to detect the intermediate sign in case of effective subtraction. Where
Gri = 1 indicates that digit Ai is greater than digit Bi. This vector Gr and
the zero vector are used as inputs to the sign detection tree shown in Figure
4.15.

4.2.7 Final Alignment

The two operands are shifted by the preliminary leading zeros, unless the
preferred exponent or the minimum exponent are reached by a smaller value
of shift. Moreover, in some cases the operands may be shifted to the right
to avoid underflow.

The shifting in case of no underflow is always to the left; according to
Equation 4.21.

96

zero(i+1)
Gr(i+1)

Gr(i) zero(i)

Figure 4.15: Intermediate Sign Detector For 16-Digit Operands

Shi f t2nounder f low =


LShi f t = Min{PLZC,ExpDi f f} case(1)

LShi f t = Min{PLZC, p+1} case(2)
LShi f t = PLZC case(3,4)

(4.21)
In case (1) where ExpM > ExpC, the preferred exponent is ExpC. At

the step of the addend alignment, the addend in case (1) is shifted to the
right by the ExpDi f f to have the same exponent as ExpM. Therefore, if
at the final alignment stage, the intermediate result (represented in the two
vetcors resulting from the decimal carry save adder) is shifted back to the
left by the ExpDiff, the preferred exponent is reached and no need for larger
shift.

In cases (2,3,4) where ExpC > ExpM, the preferred exponent is ExpM.
However, the value ExpM = ExpA+ExpB assumes the fractional point at
the right of the least significant digit of the multiplication result. On the

97

other hand, the fractional point of the result has different positions accord-
ing to the selection case. It is at p+1, 2p+1 or 3p+1 for cases (1,2) , (3) or
(4) respectively. This new position of the fractional point results in a reduc-
tion in the exponent with a value equals to the new position. We will refer
to this value as expbias; defined by Equation:

expbias =


p+1 case(1,2)
2p+1 case(3)
3p+1 case(4)

(4.22)

Hence, in cases (2,3,4) the intermediate result must be shifted to the left
by a value corresponding to the bias of the significand in each case in order
to reach a final exponent equals to ExpM which is the preferred exponent.
Therefore, if the PLZC is larger than the Expbias, the operands are shifted
by the bias values only. Yet, in cases(3,4), the PLZC is always smaller than
the bias value.

Also, we should highlight that, in case of wrong anticipation and the
preferred exponent is not reached, the most significant digit will be zero,
hence it requires a final 1-digit left shifter.

However, the underflow case limits the value of final shift or shift the
operands to the right instead. Since, the two operands at this stage of ex-
ponent equals to expM. In order to avoid underflow, the final shift amount
must convey to Equation 4.23.

expM+ expbias±Shi f t2≥ expMin (4.23)

In order to simplify the following equations and expression we define a
value Di f fU whereDi f fU = expM+ expbias− expMin.

98

The Shift2 value is considered negative for left shift and positive for
right shift. The right shift amount can be limitted to (p+2) to avoid affect-
ing the correct round digit value. This (+2) digits takes into consideraton the
round digit position and a possible carry to this position due to the neigh-
bor digit. Hence, Equation 4.23 and Equation 4.21 can be reformulated to
produce a formula for the Shift2 value as in Equation .

Shi f t2=


LShi f t = Min{PLZC,ExpDi f f} case(1)

LShi f t = Min{PLZC, p+1,Di f fU} case(2)
LShi f t = Min{PLZC,Di f fU} case(3,4)

Di f fU ≥ 0

RShi f t = Min(Di f fU, p+2) }Di f fU < 0
(4.24)

In order to do this final alignment, two left shifters having length equals
the maximum required shift, which is equal to (2p+1) digits, are imple-
mented. Also, two right shifter of maximum shift of (p+2) digits are im-
plemented. Each shifter operates speculatively on one of the two vectors
resulting from the decimal carry save adder concatenated with less signifi-
cant p-digits that either contains zeros (case(2)), part of the addend (case(1))
or part of the multiplier tree vectors (case(3,4)). One of the right shifted or
the left shifted version are selected based of the sign of Di f fU . In case of
right shift, a sticky share (StR) is calculated due to the part shifted outside
the 3p width processed later.

These shifter should maintain a correct sign extension. For right shifter,
one of them has to fill the gap to the left with nines to accomodate the
negative operand. Also, in case of effective subtraction, one of the left
shifter has to fill the gap to the right with nines to accomodate for the nine’s
complement of the addend.

99

RndMode
Op1-Rnd

(2p+1-digit)

FShift

R/L Shifter

Op2Ext (3p+1-digit)
Op1Ext (3p+1-digit)

R/L)2

ExpInc

Combined Add Round
eop

PrefExpRchd

Op2-Add

(p-digit)

Op1-Add

(p-digit)
St1CSt1M

GD

RD

St1RShf

Rounding Setup

Gthan3p

eop St1

Figure 4.16: Final Alignment Stage

After this, the most significant p-digits is sent to the combined add/round
module while the least significant 2p+1 digits are sent to the rounding mod-
ule. This is shown at Figure 4.16.

4.2.8 Rounding Set Up

4.2.8.1 Top Level Architecture

Figure 4.17 shows the top level architecture of the rounding set up mod-
ule. The main target of this stage is to calculate, in parallel to the com-
bined add/round module, the guard and the round digits, the sticky bit, and
the possible carry in to the most significant (p-digits) fed to the combined
add/round module. To calculate these signals, the two vectors passed to the
rounding set up has to be added.

In order to maintain only p-digit carry rippling delay at the critical path,
the rounding setup is implemented as a conditional adder. The 2p+1 width
is divided into p and p+1, the most significant p+1 digits are calculated
twice using two carry networks. One of them assumes Cin = 1 to this part
of the adder, while the other assumes Cin = 0. In order to use a Kogge-
Stone binary carry network, a precorrection stage that adds 6 to each digit is

100

Pre-Correction

Carry NetworkCarry Network Carry Network

‘1’
‘0’

Op2-Rnd

(2p+1-digit)
Op1-Rnd

(2p+1-digit)

I0

(p-digit)

I1

(p-digit)

I1

(2p+1:p-digit)

I0

(2p+1:p-digit)

C-Vector2b

Sticky GenerationPost-Corr.

MUX
Cin1

inc1

{SGDt,SRDt}

{SGD,SRD}

C-Vector1

St1R
St1M

St1C

eop

IntSign

Lst

C-Vector2a

C-Vector2b

Figure 4.17: Final Alignment Stage

necessray. The carry out resulting from the least significant p digits selects
the appropriate carry signals out of the two carry networks.

A small post-correction circuitry is used to generate the correct gurad
and round digits. However, the less significant digits contribute only to the
sticky and there is no need for their exact values. Hence, no post correction
is needed, and they are only processed to get their correct sticky share.
The carry out of the most significant carry network is fed to the combined
add/round module.

4.2.8.2 The addend 10’s complement

In case of effective subtraction, the addend is 9’s complemented without
adding the (+1) required for 10’s complement. Hence, we will use the carry
in (Cin) of the least significant carry network to perform the required (+1)
increment.

101

However, if the intermediate result is negative, it will need for another
10’s complementing which requires adding (+1). In order to avoid this, we
use the following property:

10′scomplement(X) = 9′scomplement(X)+1 = 9′scomplement(X−1)
(4.25)

Hence, if the effective operation is subtraction and the intermediate re-
sult is negative no need to add Cin = 1 for the 10’s complement of the addend
and then get the 10’s complement again of the intermediate result. Instead,
it will be sufficient to get the 9’s complement of the intermediate result with
the addend in the 9’s complement format. However, if the intermediate re-
sult is positive, the Cin = 1 must be added, to account for the (+1) required
for the 10’s complement of the addend.

4.2.8.3 Generating Final Carry out (inc1), Guard and Round Digits.

As stated, the guard and round digits are calculated using the correct carry
signals that are selected according to the carry out of the least significant
carry network.

4.2.8.4 Sticky Generation

A portion of the sticky (StC) results from shifting the addend to the right
(case-1) with a shift value larger than p-digits while the shifted digits are
non-zeros. This is determined from the R/L shifter paralell to the multiplier
tree. Another portion (StM) is formed from the least significant p-digits of
the multipliction result in (case-4). This is calculated in the selection stage.
Also, (StR) is another portion of the sticky due to right shifter at the final
alignment stage.

102

The main portion of the sticky is due to the 2p-digits fed to the rounding
set-up stage. A sticky base vector, that represents the zero result, is xored
with the sum, and the carries out of the carry network and the carry save
adder of the precorrection. After the XOR, the resulting vector is Ored to
get the sticky. The sticky base vector takes the form of a trailing nines
precorrected (i.e. represented as 15) in case of effective subtraction with a
negative intermediate result. Also, in case of affective subtraction a zero
result is either a zero that needs post-correction (i.e. represented as 6) or a
zero that does not need post-correction (i.e. represented as zero). The post-
correction is needed for any digit if there is no carry out from this digit.

4.2.9 Combined Add/Round

This stage performs both BCD addition and rounding. The combined
add/round technique is selected to be used in our FMA. Since it achieves the
best performance among the three algorithms discussed in Chapter 3. More-
over, it fits better than the rounding by injection algorithm, since rounding
by injection requires injecting guard and round digits in the operand with
initial larger exponent because it has empty slots at these positions. How-
ever, this is not the case in the FMA, where both operands, contribute to
the guard and the round. Therefore, the combined add/round solution is
better because it allows computing the guard, round and sticky digits in the
rounding set-up modules in parallel to the compound addition of the two
operands.

However, the proposed combined add/round module dicussed in Chap-
ter 3 is implmented for floating point adders [9]. This design needs some
changes and modification to fit in our FMA. We, first, list the main dif-
ferences between the floating point fused multiply-add operation and the

103

floating point addition operation when using combined add/round at this
stage.

1- As stated in the last paragrah, the guard and the round digits are not
ready and they have to be computed in the rounding set up module in par-
allel to the compound addition.

2- Moreover, in case of effective subtraction, the subtracted operand is
already complemented at this stage of the FMA.

3- Also in case of intermediate negative result, rounding may be re-
quired, however, no rounding is required for negative intermediate result in
case of floating-point addition.

4- Finally, as explained in Section 4.2.6, the intermediate sign can not
be detected from the final carry out since operands are already aligned by
all or part of the leading zeros.

These differences require different modifications in the design to handle
them without delay or area overheads.

4.2.9.1 General Algorithm

Combined Add/Round In order to simplify the explanation of the algo-
rithm, we will use at this section a new set of symbols that are independent
on the symbols used before. The meaning of each symbol is explained once
it is mentioned.

Figure 4.18 (a) explains the regular steps for the addition and round-
ing of two operands A and B. The most significant (4p-3)-bits of the two
operands ,AHand BH , are fed to the combined add/round module. This is
equivelent to the most significant p-digits except the least significant bit.
The AH

lsb,B
H
lsb are the least significant bits in the most significant p-digits

of A,B respectively. While, the least significant 2p+1 digits of the two
operands ALand BL are fed to the rounding set up stage. The signal inc1

104

is a possible increment signal due to carry propagation of the lower signif-
icant portion (AL and BL). Finally, inc2 is a possible increment due to a
rounding decision.

Before addition, a pre-correction by a chain of 6’s is performed to
prepare the operands for a binary Kogge-Stone carry network. The two
operands AH , BH and the correction vector are added using a carry save ad-
dition producing two vectors SH and C. The two bits AH

lsb , BH
lsb produces a

sum bit SH
lsb and a possible carry to the bit at the next significant position

in the carry vector C. The final two vectors SH and C are added using an
adder with a binary prefix network. The carry in to this adder is inc1. The
result of addition is the vector{Sum,Sumlsb} . In case of negative result, it
has to be complemented to result in a new vector {R,Rlsb}. The two vectors
inside the curly braces are concatenated. Finally, the rounding decision is
decided based on the guard and round digits calculated at the rounding set
up module from (AL,BL) and the least significant bit of the complemented
result (Rlsb). This requires another adder to perfrom the incrementation, in
case of rounding. The rounded result is then post-correct to produce a final
result {Result,Resultlsb}.

However, we want to avoid the two successive addition steps. There-
fore, we compute all the possible results due to different possible carries
in parallel. Finally, we complement the intermediate result if necessary.
Figure 4.18 (b) shows this modified algorithm. As shown, possible carries
are ’1’ , ’0’ or ’-1’. The first two possibilities are very common, howerver,
in a certain case we will need the ’-1’ carry. This is the case of having
the intermediate result negative, inc1⊕SH

lsb = Sumlsb = 0 and inc2 = 1. In
the regular algorithm, the Sumlsb will be complemented (Rlsb = 1) and will
produce a carry in to the complement of the most significant part R = Sum

105

(i.e. Result = R+ 1 = Sum+ 1 = (SH +C) + 1). However, the comple-
mentation is the last step in the modified algorithm, so in order to pro-
duce a correct result a carry in equals ’-1’ has to be added to SH and C (i.e.
Result = (SH +C−1) = (SH +C)+1).

In summery, the three sums (SUM − 1 , SUM , SUM + 1) are pos-
sible outputs for the most significant part of the result before com-
plementation, where SUM = AH + BH)pre−corrected . The final result
(after complementation) is selected accroding to the following signals:
Slsb, cmp(IntermediateSign), inc1 and inc2. The cmp signal is produced
before the combined add/round. It is generated using the intermediate sign
detection block that works in parallel to the leading zero anticipator. The
Slsbis ready immediately after the precorrection stage. However, the inc1
and inc2 are produced relatively later than this stage. The inc1 signal is
produced from carry network of the rounding set-up stage and the inc2 sig-
nal is produced based on the rounding decision.

This can be used to constrain the poossible results in two paris: either
(SUM− 1 or SUM) in case Slsb.cmp = 1, or (SUM orSUM + 1) in case
Slsb.cmp = 0. The correct value of each pair will be selected according to
inc1 and inc2. This fact will be used to reduce the area and to avoid un-
necessary logic, as we will explain at the precorrection stage. The detailed
analysis of the different cases is dicussed in Section 4.2.9.6.

Rounding Position As discussed previously, the rounding position is not
exactly determined. It has an uncertainty of one digit due to the uncertainty
of the preliminary anticipation of leading zeros. Figure 4.19 shows the un-
rounded result supposed to be produced from the two operands fed to the
combined add/round module with three different cases in which the round-
ing position has two possibilities: either the least significant digit (LSD), or
the temporary gurad digit (GD) produced from the rounding set-up stage.

106

AH

BH

AH
lsb

BH
lsb

inc1

SH
lsbSH

Correction Vector (Chain of 6’s) 0

C 0

inc1

inc2

C 0

Sum Sumlsb

R Rlsb

cmp

Result Resultlsb

Post-correction

AH

BH

AH
lsb

BH
lsb

Correction Vector (Chain of 6’s) 0

inc1

inc21 or 0 or -1

Result Resultlsb

SH
lsbSH

C 0

Sum Sumlsb

cmp &

Post-correction

Figure 4.18: Addition and Rounding Steps (a)Regular (b)Proposed

In the figure, (RD), (Lst) refers to the temporary round digit and sticky digit
produced from the rounding set-up stage.

Hence, the rounding signal inc2, fed to the most significant highlighted
p-digits, must be calculated correctly according to the current case. This
requires detecting the MSD of the unrounded result to determine whether it
is zero or not, besides using the signal that indicates if preferred exponent is
reached or the minimum exponent has reached. Both signals are generated
from the final alignment module. To remove any ambiguity, it is important
to highlight that; if the preferred exponent is reached the result will be exact
and no rounding is required.

Figure 4.20 shows a top-level block diagram for the combined add/round
module. In the following, we explain each block in this diagram in details.
The symbols on the Figure and in the rest of this section are the same as the
discussed before

107

0
Unrounded

Result

Case-1 Wrong anticipation for leading zeros and

the preferred exponent is not reached.

GD

Rounding

Position

p-digits

Case-2 Either the preferred exponent or the

minimum exponent are reached .

p-digits

RDLSD Lst

X
Unrounded

Result
GD

Rounding

Position

LSD

Unrounded

Result

Case-3

GD

Rounding

Position

p-digits

LSD

Correct anticipation for leading zeros and

the preferred exponent is not reached.

RD

RD

Lst

Lst

Figure 4.19: Rounding Position

PreCorrection

Binary Compound

Addition

AH

cmp

CSH

Slsb

Rounding Logic

GD SRD

SMSDt

SlMSDt

cmp

Lst

inc1

Slsb

PrefExpRchd

MinExpRchd

BH

SumtSumltSumlMSDt

Suml Sum ¬(Sumt)

inc1

inc2

Post-Correction

Selection

cmp
IntSign

eop

SumMSDt

SGDi SRDiLstiinc2

Figure 4.20: Combined/Add Round Module

108

4.2.9.2 Pre-Correction

To allow the use of a fast binary adder that uses a Kogge Stone carry net-
work, the p-digit BCD operands {AH ,AH

lsb} and {BH ,BH
lsb} are first pre-

corrected. The precorrection is done by adding (+6) to each digit using a
4p-bit binary 3:2 CSA, obtaining the 4p-bit sum and carry operands S and
Cint . The carry vector Cint is an intermediate carry vector that will be cor-
rected again as we will see later to produce the final carry vector C.

Each +6 bias, coded in BCD as (0, 1, 1, 0), is connected to an input of
a 4-bit binary 3:2 CSA. The p-digit BCD operands A and B are fed to the
other two inputs.

However, this stage can be also used to prepare for the computation
of the SUM − 1 required in case of Slsb.cmp = 1 where SUM = AH +

BH)pre−corrected = AH +BH + {6,6, · · · ,6}. This is done by replacing the
least significant digit of the correction vector by ’5’ instead of ’6’ in this
case; which implements ’-1’ decrementation without needing any extra
logic.

The rest of pre-correction unit is the same as the one proposed in [76]. In
order to simplify the post-correction stage, the sum resulting from the com-
pound adder is forced to be in excess-6 representation in all cases. hence,
for any two digits at the position ’i’ with sum greater than 9 (i.e. Gi = 1),
adding (+6) is not sufficient to produce a correct decimal sum in the excess-
6 representation. Hence, if Gi equals to ’1’, another (+6) must be added to
the result. The (+6) is added to the intermediate carry vector Cint digitwisely
producing the final carry vector C.

In case of having the digit sum equals 9 and the decimal carry in equals
’1’, the result of addition will be a zero that is not represented in excess-6
representation. To calculate the result in excess-6, a slight modification in
the xor sum cells of the binary adder is performed [76].

109

{p-1{6}}

{6} {5}

IntSign

Slsb

Op2Add

(p-digit)
Op2Add

(p-digit)

Binary Carry Save Adder

+6Gi

Cout1 C

Cint S

SH Slsb

Figure 4.21: Pre-Correction Block

4.2.9.3 Compound Adder

We use the same compound adder proposed in [76], shown in Figure 4.22.
This adder computes Sumt = S+C and Sumlt = S+C+ 1. The Sumt and
Sumlt are pre-corrected. However, we should remember that in case of
Slsb.cmp = 1, S +C = AH +BH − 1)pr−corrected = SUM− 1. Hence, the
compound adder produces either (SUM−1,SUM) pair or (SUM,SUM+1)
pair according to Table 4.2.9.3.

Condition (Slsb.cmp) Sumt Sumtl

0 SUM−1 SUM
1 SUM SUM+1

Table 4.7: Outputs of the Compound Adder

The binary carry recurrence ck+1 = gk |ak.ck is implemented in a prefix
Kogge Stone carry tree, where gk and ak are the binary carry generate and
carry OR-propagate functions for bit number k. The decimal carries C2di

110

Prefix Carry

Netwok

Group Alive

Generate

Generate (g,p,a)

a p g

C1 SH

Generate Late

Carries

Sum Cells Sum Cells

Suml Sum

Figure 4.22: Compound Adder

are the binary carries ck at decimal positions (1 out of 4), where ’i’ is the
index of the decimal digit. Also the carriesC1di at the decimal positions
of the carry vector C1 are decimal carries. Therefore, the decimal carries
between digits are Cdi = C1di |C2di. The 4-bit binary sum Si +Ci +C2di

represents the BCD excess-6 sum digit Sumti .
On the other hand, the length of the decimal carry propagation due

to a late +1 ulp increment equals the trailing chain of 1’s in the precor-
rected sum (sum). In other words, a carry due to a +1 ulp increment
of Sum is propagated to bit k if the binary carry OR-propagate group
ak−1:1 = ak−1.ak−2 · · ·a1 is true. The binary carries of Sumlt are obtained
as lck = ck .ak−1:1. The digits Sumlti are obtained from the binary XOR-
propagates pi, j and the binary carries lci, j (k = 4i+ j) using a 4-bit sum
cell similar to the one described before.

111

Rounding

Conditions

+1

Half

Adder

Slsb inc1

{SGDt,

SRDt} Lst

SumlMSDt IntSign

SGDt

Conditions

MSD>0

MUX

MUX

SGD

inc2

SumMSDt

PrefExpRchd

RndMd

Figure 4.23: Rounding Stage

4.2.9.4 Rounding Stage

In parallel to the binary sum, the decimal rounding unit computes the incre-
ment signal inc2 and the guard digit of the result. Apart from the rounding
mode, the rounding decision depends on the intermediate sign, the guard,
the round and the sticky digits computed in the rounding set-up stage, the
sum least significant bit (Slsb) and the rounding position. The rounding
position depends on the unrounded result MSD and the two signals that
indicate if the preferred exponent is reached or the minmum exponent is
reached. The MSD of the unrounded result can be anticipated using the
MSD of Sumt, Sumlt, Slsb and inc1.

Rounding Logic As shown in Figure 4.23, it uses a combinational logic
to implement directly a rounding condition for each decimal rounding
mode. Moreover, different conditions must be applied on the two possi-
ble rounding positions.

112

In other words, the rounding is performed speculatively on the two
possible rounding positions. The rounding conditions block produce two
rounding decisions for each possible position. The signal inc2 is either due
to a rounding decision at the least significant digit (i.e. (case-1) in Figure
4.19) or a rounding decision at the guard digit (i.e. (case-2,3) in Figure
4.19) and carry propagation through the gurad. The final multiplexer se-
lects the correct inc2 signal according to the correct rounding position. The
correct rounding position is calculated using the MSD of the unrounded re-
sult and the two signals that indicate if the preferred exponent is reached or
the minmum exponent is reached

The following logic determines whether the most significant digit of the
unrounded result is zero or not.

F = cmp .(inc1 |(inc1 .Slsb)) | cmp .(inc1 .Slsb) (4.26)

The signal F equals to ’1’ in all the cases in which the unrounded result
is the ’Sumt’ and equals to ’0’ in all the cases in which the unrounded result
is the ’Sumlt’.

MSDGZ =

{
SMSDGZ F = 1

SLMSDGZ F = 0
(4.27)

where: SMSDGZ equals to ’1’ when the ’Sumt’ MSD (’SMSD’) is not
zero and SLMSDGZ equals to ’1’ when the ’Sumlt’ MSD (’SLMSD’) is not
zero. These signals are computed as follows: (it takes into cosideration that
they are precorrected and may be complemented)

SMSDGZ = cmp .(SMSD[0] |SMSD[3])
| cmp .(SMSD[3] |SMSD[2] |SMSD[1] |SMSD[0])

(4.28)

; similarily for SLMSDGZ.

113

Rounding Conditions In addition to the five IEEE 754-2008 decimal
rounding modes [18], we implement two additional rounding modes [25]:
round to nearest down and away from zero. The conditions for each deci-
mal rounding mode are summarized in Table 4.2.9.4. Refer to Figure 4.19
to understand the meaning of the symbols in this table. The logical opera-
tor ‘||’ refers to logical OR and the logical operator ‘&&’ refers to logical
AND.

114

Rounding Rounding ActionMode Position

Round Ties to Even

GD

if(RD>5 || RD=5 && Lst=1)
round to nearst up
else if (RD=5 && Lst=0 && GD⇒ odd)
round to nearst up
else if (RD=5 && Lst=0 && GD⇒ even)
truncate

LSD

if(GD>5 || GD=5 && (RD>0 || Lst=1))
round to nearst up
else if (GD=5 && RD=0 && Lst=0 && LSD⇒ odd)
round up
else if (GD=5 && RD=0 && Lst=0 && LSD⇒ even)
truncate

Round Ties To Away
GD if(GD≥5) round up

else truncate

LSD if(RD≥5) round up
else truncate

Round Ties to Zero
GD if(RD>5 || RD=5 && Lst=1) round up

else truncate

LSD if(GD>5 || GD=5 &&(RD>0|| Lst=1)) round up
else truncate

Round Toward Zero GD Truncate
LSD Truncate

Round To Away
GD if(RD>0 || Lst=1) round up

else truncate

LSD if (GD>0 || RD>0 || Lst=1) round up
else truncate

Round Toward Positive
GD If (IntSign=0 && (RD>0|| Lst=1)) round up

else truncate

LSD If (IntSign=0 && (GD>0 || RD>0|| Lst=1)) round up
else truncate

Round Toward Negative
GD If (IntSign=1 && (RD>0|| Lst=1)) round up

else truncate

LSD If (IntSign=1 && (GD>0 || RD>0|| Lst=1)) round up
else truncate

Table 4.8: Different Rounding Conditions

115

4.2.9.5 Post-Correction and Selection

The post-correction stage is very simple. In case of positive intermediate
result, a ’+10’ is added digitisely to both Sumt and Sumlt to produce post-
corrected sums: Sum and Suml. It is equivelent to subtracting ’6’ from each
digit.

If the intermediate result is negative and the result will be complemnted,
it does not need post-correction. Hence, inverting of an excess-6 BCD num-
ber is equivelent to getting the 9’s complement of an 8421 BCD number.

The selection stage selects the correct output out of Sum, Suml, inverted
version of Sumt or Sumlt. Table 4.2.9.5 shows all possible cases with the
selected final result in each case.

We have to remeber that in cases (9,11,13,15) where Slsb.cmp = 1; the
(Sum, Suml) pair represents (SUM-1,SUM).

116

case # cmp inc1 inc2 Slsb Selected Signal
1 0 0 0 0 {Sum,0}
2 0 0 0 1 {Sum,1}
3 0 0 1 0 {Sum,1}
4 0 0 1 1 {Suml,0}
5 0 1 0 0 {Sum,1}
6 0 1 0 1 {Suml,0}
7 0 1 1 0 {Suml,0}
8 0 1 1 1 {Suml,0}
9 1 0 0 0 {Sumlt,1}

10 1 0 0 1 {Sumt,0}
11 1 0 1 0 {Sumt,0}
12 1 0 1 1 {Sumt,1}
13 1 1 0 0 {Sumlt,0}
14 1 1 0 1 {Sumlt,1}
15 1 1 1 0 {Sumlt,1}
16 1 1 1 1 {Sumt,0}

Table 4.9: Selected Final Result

Finally, the result may be shifted to the right or to the left by one digit.
If the MSD after rounding is zero and neither the preferred exponent nor
the minimum exponent are reached, then the result is shifted to the left by
1-digit. On the other hand, if a final carry out due to rounding is propagated
through all precision digits, then the result is shifted to the right by 1-digit.
The sticky value is updated in both cases.

4.2.10 Encoding the result

The result is again encoded in the 64-bit DPD format. The logic derived
in Section 4.2.1 is inverted to encode the decimal floating point number
again. The special signals discussed in Section 4.6 are inputs to this enoding
circuit.

117

4.3 Default Exponent Datapath

The exponent is calculated as follows:

expt1 = expM−Shi f t2 (4.29)

expt2 = expt1−dec+ inc (4.30)

, where dec=1 if the preferred exponent is not reached and the most signif-
icant digit of the rounded result is zero and inc=1 if a carry out at the final
digit is detected due to rounding in case of effective addition.

expt3 = expt2+ expbias (4.31)

expR =

{
expMax expt3 > expMax
expt3 expt3≤ expMax

(4.32)

There are some exceptions that are discussed later.

4.4 Default Sign Logic

The sign is calculated as follows:

SignR1 = SignIR .signM |signIR .signCe f f (4.33)

where SignIR : is the intermediate result sign.
and SignCe f f = eop⊕ signC is the effective sign of the addend.
and SignM = signA⊕ signB is the multiplication result sign.

118

The intermediate result equals to M±C; therefore, if the intermediate
result is negative this means that C > M and the final result will follow the
addend effective sign (eop⊕ signC). If M > C then the intermediate sign
will be positive and the final result will follow the multiplication result sign.
In case of having M = C with the intermediate result being zero, then the
final sign will be zero in all cases unless the rounding mode in rounding
to negative infinity. this is defined by equation 4.34. Equation 4.35 gives
the final sign of the result. Again, there are some exceptions that will be
discussed in Section 4.7.

signR2 = (RndMode == RM) (4.34)

signR =

{
signR1 ExactIntResult 6= 0
signR2 ExactIntResult = 0

(4.35)

4.5 Flag Generation

4.5.1 Inexact Flag

The inexact flag is raised if the result is rounded. It is detected from the
sticky, gurad and round digits.

4.5.2 Invalid Falg

The invalid flag is generated in either of these cases:
- One of the operands is sNaN.
- In case of FMA(0,±∞,c) or FMA(±∞,0,c); where c is any DFP num-

ber including special numbers (NaNs, infnities).

119

The stadard in this case states that it is optional to raise the invalid flag
if the third operand in qNaN. In our implementation we activate the invalid
flag even if the third operand in qNaN.

- In case of FMA(|c|,+∞,−∞) or FMA(|c|,−∞,+∞); where c is a DFP
number that is not a NaN.

4.5.3 Overflow Flag

The overflow is detected after rounding. It is signaled if the final exponent
exceeds the maximum exponent in the standard. If an overflow is detected,
the result is rounded either to infinity or to the largest representable number
according to the rounding mode and the final sign.

4.5.4 Underflow Flag

If the intermediate result is a non-zero floating point number with mag-
nitude less than the magnitude of that format’s smallest normal number
(1× 10−383, in case of 64-bit format), an underflow is detected. However,
the underflow flag is not raised unless the result is inexact.

In our design, the underflow is detected in the final alignment module
controller. Referring to Equation 4.24, the result is underflowed in case
of right shift decision or in case of left shift decision constrained by the
value of Di f fU . In other words, the minimum exponent is reached while
the preferred exponent is not reached and there are still leading zeros. In
case of PLZC = Di f fU , the underflow exception is not raised unless the
preliminary anticipation is wrong and the MSD of the unrounded result is
zero.

120

4.6 Special Signals Generation

4.6.1 Infinity

The result is infinity either due to rounding decision in case of overflow or
due to a mathematical operation that invloves infinities such as the opera-
tions discussed in chapter 2.

4.6.2 Not a Number (NaN)

Regular operation does not produce signaling NaN (sNaN) result. While,
the result is quite NaN (qNaN) in three different cases. . First, the result
is qNaN due to invalid multiplication such as FMA(0,±∞, c) or FMA(±∞,
0, c). Second, the result is qNaN due to an invalid final addition step. For
example, FMA(+|c|,+∞,−∞), FMA(+|c|,−∞,+∞) or any combination that
leads to (|∞| − |∞|). In the last example, c is any representable floating
point number and is not quiet NaN. Finally, the result is qNaN if any of the
three operands is either sNaN or qNaN. In all these cases, the default result
of the operation shall be a quiet NaN that may provide some diagnostic
information.

4.7 Exceptional Datapath

4.7.1 Zero Addend

This case is detected from the signal iszeroC that results from decoding of
the addend. If the addend is zero, the default datapath will not produce a
correct result in all cases. If the addend is shifted at the preparation stage
by a large amount, the multiplication result may be totally or partially con-
sidered in the sticky only; which is not the correct answer. Hence, in this

121

case, the addend is not shifted. The selection signals only indicate either
preferred exponent equals to ExpC or to ExpM.

The final shift amount is determined separately. Since the multiplication
result is added to zero. It is only required to either shift the multiplication
result to the left to reach or to approach the preferred exponent (ExpA+

ExpB) or to the right to overcome underflow. The different control blocks
are reconfigured to handle this exceptional case. The sign and exponent
calculation are also modified to produce a correct result in this case.

4.7.2 Zero Multiplier Result

This case is detected from the signal iszeroM = iszeroA|iszeroB. In this
case, the result should equal to the addend unless the preferred exponent
is the exponent of the multiplication result. If so, the addend has to be
shifted to the left to reach or approach the preferred exponent. There is no
underflow in this case.

The different control blocks are configured to handle this exceptional
case. Also, the sign and exponent calculation are modified to produce a
correct result in this case.

4.7.3 ExpC > ExpM+3p+1 and ExpC < ExpM−2p

In case of ExpC > ExpM + 3p + 1, the left shift amount of the addend
is limitted to 3p+ 1 only. The multiplication result is Ored in the sticky.
While, in case of ExpC < ExpM−2p, the right shift amount of the addend
in limitted to 2p and the addend is Ored in the sticky. Small modifications
in the control blocks are needed to handle these cases.

The different combinations of these three exceptional cases are handled
to produce a corect result.

122

4.8 Improvements in the architecture

4.8.1 Reducing the width of the decimal carry save adder

One of the defects in the proposed architecture is that the decimal carry save
adder is wider than necessary. The width of the decimal carry save adder
is 3p; however, in the worst case only 2p width needs to be reduced. The
main problem was to correctly handle the sign extension of the addend and
the sum vector resulting from the multiplication result.

Figure 4.24 shows the layout of the three operands (Sum and carry of
the multiplier tree and the shifted addend). The two vectors representing
the multiplication result are fixed at this position with the sign of the first
vector is sign extended to the left with trailing nines (it is always negative).
The addend position is variable according to its shift amount. The addend
is extended by trailing 9s to the left (as sign extension) and to the right
(for a correct 9’s complement format) in case of effective subtraction. As
shown in the figure, only the width from 3p down to p requires adding three
operands. While, to the right and to the left of this width a maximum of two
operands have to be added.

Therefore, the decimal carry save adder is reduced to a width of only 2p
digits. It is fed by the operands from 3p down to p. However, there is a
problem that occurs due to a possible carry out at the MSD of the selected
part (i.e. at the digit position 3p). If the carry save adder produces a carry
out (Coutmsd) at this position, it has to be taken in consideration. Thus, the
if a carry out is detected, it flips the nines sign extension of the first vector
resulting from the multiplier tree to zeros.

However, the LZA operates based on the fact that one of the operand in
positive and the other in negative (10’s complemented in case of effective
addition and 9’s complemented in case of effective subtraction). Besides

123

Legend :Legend :

Multiplication Result

Negative Sign Extension (Trailing 9s)

Sign Extension (Trailing 9s for eop=1 and zeros for eop=0)

Extension for nine’s complement

(Trailing 9s for eop=1 and zeros for eop=0)

Zeros

Each two successive lines bounds p-digits width

Shifted addend (the position is according to the shift value)

Figure 4.24: Layout of the three operands prior to the decimal carry save
adder

that, the resulting two vectors out of the carry save adder without prior re-
duction for the most significant part (5p down to 3p) may be both negative
(eop = 1 and Coutmsd = 0) or both positive (eop = 0 and Coutmsd = 1).
Therefore, an appropriate sign extension digit is added at the most signifi-
cant position of the selected part in the selection stage. This sign extension
forces one of the operand to first operand to be negative and the second
to be positive without changing the correct value. For example, if the two
operands are positive they are sign extended as (9) and (1). While, if they
are negative they are sign extended as (8) and (1).

4.8.2 R/L shifter in parallel to the LZA

One of the disadvantages of the propsed design is that the LZA is in the
critical path. Moreover, it is followed by a control unit that determines the

124

final alignment based on the resulting anticipation, the preferred exponent
and the minumum exponent as discussed in section 4.2.7. After the final
shift is determined the operands are shifted, hence, the shifter delay is at the
critical path as well.

In order to avoid this, the final stage of the LZA that detects the leading
zeros in the binary string P (refer to section 4.2.5) is modified such that
the most significant bits in the PLZC value are known earlier and compared
bitwisely with the other possible value of shift. This allows the shifter to
work in parallel with the final stage of the LZA. This final stage consumes
the larger delay portion in the LZA since it has a logarithmic delay that
depends on the width of the operand while the previous stages work on
each digit in parallel. Therefore, it is very important to hide its latency.

Moreover, it is important to highlight that, the right shift amount does
not depend on the PLZC of the intermediate result. Hence, there is no prob-
lem for it to work in parallel with the LZA. The left shift amount depends
on the PLZC. The left shift value is the minimum of the PLZC , the Di f fU
which is the shift value that bring the intermediate result to the minimum
representable exponent and the ExpDi f f in case (1) or p+ 1 in case (2)
which bring the intermediate result to the preferred exponent in either cases.
The values of the Di f fU , ExpDi f f and the selection control signals are al-
ready known prior to the LZA. Hence, we can determine the other possible
value of shift that must be compared to the PLZC once anticipated. We will
call this value of shift as Sh f t1, that will be of width 11-bits (the same as
the exponent width in the 64-bit format). The problem now is to get the
Min(PLZC,Sh f t1).

First, in order to compute the PLZC most significant bits as early as
possible, a modified version of the LZD that was presented in [?] is used.
As shown in Figure 4.25, the LZD composes of an OR network muxes.
NOR gates are used to detemine if there is some 1 in different goups of the

125

… …
Bit 31:0 Bit 31:24

…
Bit 15:8

…
Bit 31:16 Bit 31:28

…
Bit 15:12

…
Bit 23:20

…
Bit 7:4

…

. . .

PLZC[5]

0 1

Mux 2:1

PLZC[3]

PLZC[4]

0 1

Mux 2:1

0 1

Mux 2:1

0 1

Mux 2:1

PLZC[2]

. . .

Figure 4.25: Modified Leading Zero Detector Circuitry

string: goups of 32 bits for PLZC[5], of 16 bits of PLZC[4], of 8 bits for
PLZC[3] , etc. The groups are selected by the set of multiplexers with an
increasing number of inputs. Note that muxes of more than 2 inputs are
organized as a tree, in such a way that bit PLZC[i] is used as control signal
for a 2:1 mux (the last level in the tree) to obtain PLZC[i+1]. In this way,
the shift is calculated starting from the most significant bit. After an initial
delay, due to the wide NOR gate where the first bit PLZC[4] of the PLZC is
determined, each bit is obtained with the delay corresponding to a 2-input
mux.

In order to perform bit by bit comparison, the resulting PLZC is fed to
a comparator circuit that performs the following logic in Equations 4.36 to
4.38.

Gi = Gi+1 |(Sh f t1[i] .PLZC[i] .Si+1) (4.36)

Ei = Ei+1 .(Sh f t1[i] ⊕ PLZC[i]) (4.37)

126

Si = Gi |Si (4.38)

where:
Gi : indicates that Sh f t1[10 : i]> PLZC[5 : i]
Si : indicates that Sh f t1[10 : i]< PLZC[5 : i]
Ei : indicates that Sh f t1[10 : i] = PLZC[5 : i]
i : is the bit index where i <= 5

The initial values G6, E6 and S6 are given by Equations 4.39 to 4.41:

G6 = Sh f t[10] | · · · |Sh f t[6] (4.39)

E6 = Sh f t[10] . · · · .Sh f t[6] (4.40)

S6 = 0 (4.41)

Finally, the final shift amount is given by Equation 4.42:

Shi f t2[i] = (Gi .Sh f t1[i]) |(Si .PLZC[i]) |(Sh f t1[i] ⊕ PLZC[i]) (4.42)

If the designer want to remove the comparator delay, the operands can
be shifted speculatively by both PLZC and Sh f t1[5 : 0]. The comparator in
this case works in parallel to the shifter. The correct shifted value is selected
according to the signal G0. If G0 = 1, then the correct shift is Sh f t1[5 : 0]
else the correct shift is PLZC.

127

4.8.3 Proposed enhancements

There are other ideas that can be applied to enhance the performance of the
design. For example, to hide the latency of the first part of the LZA, the
LZA may start anticipating in parallel to the decimal carry save adder. This
needs the LZA to work on three operands. A 3-operand LZA is proposed
for binary in [65]. This work may be extended to decimal.

Alternatively, a part of the compound adder in the combined add/round
unit may be advanced to fill the gap of the first stage of the LZA. This will
be a decimal extension for the work presented by Lang and Buruguera in
their binary FMA [60].

In this chapter, we presented our proposal for the decimal fused
multiply-add module. The propsal targets high performance and use many
of the ideas of binary FMAs such as the ideas discussed in chapter 2. It also
uses modified decimal blocks among the ones discussed in chapter 3. In the
next chapter, we extend the FMA unit to an arithmetic unit that performs
floating-point addition and multiplication as well as fused multiply-add.

128

Chapter 5

Pipelined Decimal Floating-Point
Arithmetic Unit

In this chapter, we extend our proposed FMA design to a decimal arithmetic
unit that performs decimal floating-point addition, multiplication and fused
multiply-add. The unit is pipelined to enhance the throughput where the
pipelined versions of the design can handle different operations at different
cycles.

5.1 Addition

The FMA unit perofrms A×B±C. If we need to perform A±C, it can
be easily done by setting B = 1×100. No other modifications are required
in the design. However, this leaves some unnecessary delay in case of ad-
dition; such as the multiplier tree and the decimal carry save adder. This
effect can be reduced by a pipelined version of the FMA that bypasses the
unused stages in case of addition; as we will discuss later.

129

5.2 Multiplication

In order to perform floating-point multiplication using our proposed FMA,
the addend must be set to zero. Also, the exponent of addend must be set to
the maximum exponent in order to gurantee that the resulting exponent is
that of the multiplication result. Hence, the addend is set to C = 0×10Emax.
Also, for a correct sign calculation , a signal that indicates a multiply oper-
ation should be high; this avoids the effect of the addend sign on the final
sign.

There are also some blocks that are not required in case of multiplica-
tions such as the leading zero anticipator and the decimal carry save adder.
These blocks can be bypassed in case of multiplication.

5.3 Fixed Latency Pipelining

The number of pipeline stages are chosen to balance the delay of each stage
and to minimize the required number of flip-flops. In this section, all oper-
ations take the same number of clock cycles (i.e. stages).

5.3.1 3-Stages Pipeline

As shown in Figure 5.1, the design in pipelined in three stages. At this depth
of pipelining, the multiplier tree can fit in one stage. This reduces the latch-
ing overhead required to latch the internal signals in the carry save adder
tree. The second stage contains the decimal carry save adder, the leading
zero anticipator and the R/L Shifter. Finally, the combined add/round and
the rounding set-up modules are in the third stage.

130

Registers

Registers

Multiplier Tree
Addend

Preparation

Selection and DCSA

LZA

R/L Shifter

Registers

Combined

Add/Round

Rounding

SetUp

Registers

Figure 5.1: 3-Stages Pipeline

5.3.2 6-Stages Pipeline

In order to enhance the throuput, the depth of the pipeline is extended to 6
stages; as shown in Figure 5.2. At this depth, the multiplier tree has to be di-
vided. It is divided such that the partial product generation and the decimal
counters used at the beginning of the reduction are placed at the first stage.
Then, the carry save adder tree which reduces the partial products is placed
at the second stage with the addend preparation. This avoids the complexity
of partitioning the carry save adder tree; since it is very hard to balance the
delay in the different branches and also it requires large latching overhead.
Moreover, partitioning after the decimal counters reduces the latching over-
head compared to partitioning after the partial product generation directly.

131

The addend is not processed at the first stage; this gives an advantage
for the microprocessor of only two read ports. Hence, it can read the ad-
dend after once cycle of reading the multiplier and the multiplicand without
needing to wait for the addend to start the operation. In other words, the la-
tency of reading the third operand is hided by the first stage of the multiplier
at the first cycle.

Other blocks are partitioned to balance the delay between the different
stages of the pipeline.

Registers

Registers

Multiplier Tree-1
(PPs Generation &
Decimal Counters)

Selection and DCSA

LZA

Multiplier Tree-2

(CSA Trees)

Addend

Preparation

Registers

LZA

Registers

Registers

R/L Shifter

Combined
Add/Round-1 Rounding Set-Up

Registers

Combined
Add/Round-2

Registers

Figure 5.2: 6-Stages Pipeline

132

5.4 Variable Latency Pipelining

5.4.1 6-Stages Pipeline

In this pipeline, the fused multiply-add operation takes 6 cycles; however,
the addition and multiplication operations take only 5 cycles. The addition
bypasses the first stage and the multiplication bypasses the third stage. At
the end of the second stage, a mux selects between the multiplication result
of the multiplier tree in case of FMA and multiplication operations, and the
operand B in case of addition operation. Also, the multiplication leading
zero count is anticipated at the first stage using the leading zero count of
both the multiplier and the multiplicand. This allows the multiplication
operation to bypass the third stage that contains the leading zero anticipator.

Registers

Registers

Multiplier Tree-1
(PPs Generation &
Decimal Counters)

Selection and DCSA

LZA

Multiplier Tree-2
(CSA Trees)

Addend
Preparation

Registers

Add

LZA

Registers

Registers

R/L Shifter

Combined Add/Round-
1 Rounding Set-Up

Registers

Combined Add/Round-
2

Registers

Mul

Figure 5.3: 6-Stages Variable Latency Pipeline

133

In this chapter, we extend our proposed FMA module to an arithmetic
unit that perform floating point addition, multiplication and fused multiply-
add operations. The arithmetic unit is pipelined into variable depths to en-
hance its throughput. The testing and synthesis results are presented in the
next chapter.

134

Chapter 6

Results and Future Work

In this chapter, we present the testing and the synthesis results of the pro-
posed implementations. At the end of this chapter, we suggest some points
as a future work to extend or enhance our proposal in this thesis.

6.1 Verification

The verification of floating-point designs is very challenging due to the
large test space and the numerous corner cases. The test space for the three
operands’ operation with 64 bit precision is about 23∗(64)+4 including the
rounding modes (3-bits) and the operation (1-bit). Two main techniques are
adopted to verify the designs of FP operations; these are: formal verifica-
tion technique to verify the IEEE compliance of gate level designs [78], and
the simulation verification technique based on coverage models[79].

The verification is performed using the simulation based coverage mod-
els proposed by Sayed-Ahmed [79]. They developed three separate engines
to solve fused multiply add models, addition-subtraction models and multi-
plication models for 64-bit decimal format. and generate test vectors con-
sistent with these models.

135

Operation Number of Test Vectors
Fused Multiply Add 502066

Addition 136340
Multiplication 96845

Total 735251

Table 6.1: Number of test vectors applied for each operation

The generated test vectors are used to verify the corner cases of the three
operations in different designs. The test vectors were efficient in discover-
ing bugs in tested designs of IBM [26], Intel[27], SillMinds[39, 37, 21] and
other Cairo University reaseach designs [32].

Table 6.1 shows the number of test vectors applied to the design for each
operation. The design passes all these test vectors correctly.

6.2 Synthesis Results

The designs were synthesized using Design Compiler tool on a 65nm tech-
nology low power kit (TSMC65LP). The tool is allowed to flatten the design
and the target of optimization was the delay.

6.2.1 Combinational FMA

The synthesis results in the area-delay curve shown in Figure . Since we
mainly target a high performance architecture, the selected point is that of
minimum delay. Hence, the delay of the FMA is 5.4ns with an area equals
to 155099.881932 µm2.

Figure
6.1 shows the percentage of the delay in each block on the critical path.

While, Figure 6.2 shows the area profiling of the FMA.

136

20.00%

25.00%

30.00%

35.00%

40.00%

P
e

rc
e

n
ta

g
e

 o
f

th
e

 b
lo

ck
 d

e
la

y

o
n

 t
h

e
 c

ri
ti

ca
l

p
a

th

0.00%

5.00%

10.00%

15.00%

20.00%

Decode Stage Multiplier Tree Decimal CSA Leading Zero

Anticipator

Final Alignment

Left Shifter

Rounding |Set-

Up Stage

selection Stage

(Combined

Add/Round)

Encode Stage

P
e

rc
e

n
ta

g
e

 o
f

th
e

 b
lo

ck
 d

e
la

y

o
n

 t
h

e
 c

ri
ti

ca
l

p
a

th

Blocks at the critical path

Figure 6.1: Delay of Each Block on the Critical Path

Comined Add/Round

5%

Decimal CSA

4%

Leading Zero

Anticipator

4%

Rounding Set-Up

11%

Control Blocks

& Others

11%

Area Profile

Multiplier Tree

45%

Shifters

20%

Figure 6.2: Area Profile for the Building Blocks of the FMA

137

3

4

5

6

C
y

cl
e

 T
im

e
 i

n
 (

n
s)

0

1

2

3

1-Stage 3-Stages Fixed

latency

6-Stages Variable

Latency

6-Stages Fixed

Latency

C
y

cl
e

 T
im

e
 i

n
 (

n
s)

Pipeline depth

Figure 6.3: Area

6.2.2 Pipelined Arithmetic Unit

The single stage pipeline can operate on a frequency 182 MHz. The fixed
latency 3-stage pipeline can have a minimum cycle time of 2.3 ns. The
bottleneck is the first stage which contains the multiplier tree. The fixed
latency 6-stage pipeline can operate up to 625 MHz. It is also constrained
by the carry save adder trees in the reductionb part of the multiplier tree.
It is placed at the second stage. The variable latency 6-stage pipleine can
reach to 600 MHz with the addition and multiplication perfomed on 5 cycles
only. Figure 6.3 shows the cycle time of each pipeline depth.

6.3 Comparison

6.3.1 FMA

Table 6.3.1 compares the availabe decimal FMA implementation with the
one proposed. Although, both designs have a shortage in a complete and
correct functionality, our propsal gives the best performance. It gives 17%
improvement in the delay of the proposal in [39] and 7% improvement rel-
ative to [24].

138

Design Normalized Normalized FunctionalityDelay Area
Decimal FMA [24] 1.08 4.47 (Binary & Decimal) Incomplete

Decimal FMA [39] 1.2 0.8 ~30% error in test vectors
of [79]

Proposed FMA 1 1 Passed all test vectors

Table 6.2: Comparison of Different FMA designs

6.4 Future Work

Our future work will be focused on the following issues:
- Increading the pipeline depth to operate at higher frequencies suitable

for general purpose processors.
- Extending the FMA and the floating-point arithmetic unit to work on

128-bit precision.
- Extending the functionality of the floating-point arithmetic unit to in-

clude all the decimal floating point operations in the standard.
- Including the floating-point arithmetic unit in the CU-Ultra SPARC

Processor (Cairo University Ultra-Spac).

139

Bibliography

[1] T. Dantzig, Number, the Language of Science. The Macmillan Corpo-
ration, 1930.

[2] P. E. Ceruzzi, A History of Modern Computing. The MIT Press, 2003.

[3] M. ibn Musa Al-Khawarizmi, The Keys of Knowledge. around 830
C.E.

[4] A. G. Bromley, “Charles Babbage’s analytical engine, 1838,” Annals
of the History of Computing, vol. 4, pp. 196 –217, july-sept. 1982.

[5] H. Goldstine and A. Goldstine, “The electronic numerical integrator
and computer (eniac),” Annals of the History of Computing, IEEE,
vol. 18, pp. 10 –16, spring 1996.

[6] A. W. Burks, H. H. Goldstine, and J. von Neumann, “Preliminary dis-
cussion of the logical design of an electronic computing instrument,”
tech. rep., Institution for Advanced Study, Princeton, 1946.

[7] W. Bouchholz, “Fingers or fists ? (the choice of decimal or binary
representation),” Communications of the ACM, vol. 2, pp. 3–11, 1959.

[8] M. Cowlishaw, “Decimal floating-point: algorism for computers,” in
Computer Arithmetic, 2003. ARITH-16 2003. 16th IEEE Symposium
on, pp. 104 – 111, june 2003.

140

[9] A. Vazquez, High Performance Decimal Floating Point Units. PhD
thesis, Universidade de Santiago de Compostela, 2009.

[10] C. Baugh and B. Wooley, “A two’s complement parallel array mul-
tiplication algorithm,” Computers, IEEE Transactions on, vol. C-22,
pp. 1045 – 1047, dec. 1973.

[11] L. Dadda, “Some schemes for parallel multipliers,” Alta Frequenza,
vol. 34, pp. 349–456, 1965.

[12] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient
solution of a general class of recurrence equations,” Computers, IEEE
Transactions on, vol. C-22, pp. 786 –793, aug. 1973.

[13] R. H. Larson, “High-speed multiply using fused input carry-save
adder,” IBM technology Disclosure Bulletin, vol. 16, pp. 2053–2054,
1973.

[14] L. Rubinfield, “A proof of the modified Booth’s algorithm for multi-
plication,” Computers, IEEE Transactions on, vol. C-24, pp. 1014 –
1015, oct. 1975.

[15] INTEL, 8080/8085 Floating-Point Arithmetic Library User’s Manual.
Intel Corporation, 1979.

[16] A. Heninger, “Zilog’s Z8070 floating point processor,” Mini Micro
Systems, vol. 40, pp. 1–7, 1983.

[17] “IEEE standard for radix-independent floating-point arithmetic,”
ANSI/IEEE Std 854-1987, pp. 0–1, 1987.

[18] “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2008,
pp. 1–58, 29 2008.

141

[19] “Telco Benchmark for a telephone company billing application.”

[20] L.-K. Wang, C. Tsen, M. Schulte, and D. Jhalani, “Benchmarks and
performance analysis of decimal floating-point applications,” in Com-
puter Design, 2007. ICCD-25 2007. 25th International Conference on,
pp. 164 –170, oct. 2007.

[21] H. Fahmy, R. Raafat, A. Abdel-Majeed, R. Samy, T. ElDeeb, and
Y. Farouk, “Energy and delay improvement via decimal floating point
units,” in Computer Arithmetic, 2009. ARITH-19 2009. 19th IEEE
Symposium on, pp. 221 –224, june 2009.

[22] C. Webb, “IBM z10: The next-generation mainframe microprocessor,”
Micro, IEEE, vol. 28, pp. 19 –29, march-april 2008.

[23] E. Schwarz and S. Carlough, “Power6 decimal divide,” in Application
-specific Systems, Architectures and Processors, 2007. ASAP. IEEE
International Conf. on, pp. 128 –133, july 2007.

[24] P. K. Monsson, “Combined binary and decimal floating-point unit,”
Master’s thesis, Technical University of Denmark, 2008.

[25] Sun MicroSystems, “Sun BigDecimal Library.”

[26] “IBM decnumber Library.”

[27] “Intel decimal floating-point math library.”

[28] J. Thompson, N. Karra, and M. Schulte, “A 64-bit decimal floating-
point adder,” in VLSI, 2004. Proceedings. IEEE Computer society An-
nual Symposium on, pp. 297 – 298, feb. 2004.

[29] L.-K. Wang and M. Schulte, “Decimal floating-point adder and multi-
function unit with injection-based rounding,” in Computer Arithmetic,

142

2007. ARITH-18 2007. 18th IEEE Symposium on, pp. 56 –68, june
2007.

[30] L.-K. Wang and M. Schulte, “A decimal floating-point adder with de-
coded operands and a decimal leading-zero anticipator,” in Computer
Arithmetic, 2009. ARITH-19 2009. 19th IEEE Symposium on, pp. 125
–134, june 2009.

[31] A. Vazquez and E. Antelo, “Conditional speculative decimal addition,”
in the 7th Conference of Real Numbers Comput., 2006.

[32] K. Yehia, H. Fahmy, and M. Hassan, “A redundant decimal floating-
point adder,” in Signals, Systems and Computers, 2010. ASOLIMAR-
44 2010. 44th Asilomr Conference on, pp. 1144 –1147, nov. 2010.

[33] A. Vazquez, E. Antelo, and P. Montuschi, “A new family of
high.performance parallel decimal multipliers,” in Computer Arith-
metic, 2007. ARITH-18 2007. 18th IEEE Symposium on, pp. 195 –204,
june 2007.

[34] G. Jaberipur and A. Kaivani, “Improving the speed of parallel decimal
multiplication,” Computers, IEEE Transactions on, vol. 58, pp. 1539
–1552, nov. 2009.

[35] M. Erle, M. Schulte, and B. Hickmann, “Decimal floating-point mul-
tiplication via carry-save addition,” in Computer Arithmetic, 2007.
ARITH-18 2007. 18th IEEE Symposium on, pp. 46 –55, june 2007.

[36] B. Hickmann, A. Krioukov, M. Schulte, and M. Erle, “A parallel IEEE
p754 decimal floating-point multiplier,” in Computer Design, 2007.
ICCD-25 2007. 25th International Conference on, pp. 296 –303, oct.
2007.

143

[37] R. Raafat, A. Abdel-Majeed, R. Samy, T. ElDeeb, Y. Farouk,
M. Elkhouly, and H. Fahmy, “A decimal fully parallel and pipelined
floating point multiplier,” in Signals, Systems and Computers, 2008
42nd Asilomar Conference on, pp. 1800 –1804, oct. 2008.

[38] A. Vazquez, E. Antelo, and P. Montuschi, “Improved design of high-
performance parallel decimal multipliers,” Computers, IEEE Transac-
tions on, vol. 59, pp. 679 –693, may 2010.

[39] R. Samy, H. Fahmy, R. Raafat, A. Mohamed, T. ElDeeb, and
Y. Farouk, “A decimal floating-point fused-multiply-add unit,” in Cir-
cuits and Systems (MWSCAS), 2010 53rd IEEE International Midwest
Symposium on, pp. 529 –532, aug. 2010.

[40] L.-K. Wang and M. Schulte, “Decimal floating-point division using
Newton-Raphson iteration,” in Application-Specific Systems, Archi-
tectures and Processors, 2004. Proceedings. 15th IEEE International
Conference on, pp. 84 – 95, sept. 2004.

[41] H. Nikmehr, B. Phillips, and C.-C. Lim, “Fast decimal floating-point
division,” Very Large Scale Integration (VLSI) Systems, IEEE Trans-
actions on, vol. 14, pp. 951 –961, sept. 2006.

[42] A. Vazquez, E. Antelo, and P. Montuschi, “A radix-10 SRT divider
based on alternative bcd codings,” in Computer Design, 2007. ICCD-
25 2007. 25th International Conference on, pp. 280 –287, oct. 2007.

[43] H. Suzuki, H. Morinaka, H. Makino, Y. Nakase, K. Mashiko,
and T. Sumi, “Leading-zero anticipatory logic for high-speed float-
ing point addition,” Solid-State Circuits, IEEE Journal of, vol. 31,
pp. 1157 –1164, aug 1996.

144

[44] A. Vazquez, J. Villalba, and E. Antelo, “Computation of decimal
transcendental functions using the CORDIC algorithm,” in Computer
Arithmetic, 2009. ARITH-19 2009. 19th IEEE Symposium on, pp. 179
–186, june 2009.

[45] J. Harrison, “Decimal transcendentals via binary,” in Computer Arith-
metic, 2009. ARITH 2009. 19th IEEE Symposium on, pp. 187 –194,
june 2009.

[46] D. Chen, Y. Zhang, Y. Choi, M. H. Lee, and S.-B. Ko, “A 32-bit dec-
imal floating-point logarithmic converter,” in Computer Arithmetic,
2009. ARITH-19 2009. 19th IEEE Symposium on, pp. 195 –203, june
2009.

[47] R. Tajallipour, D. Teng, S.-B. Ko, and K. Wahid, “On the fast compu-
tation of decimal logarithm,” in Computers and Information Technol-
ogy, 2009. ICCIT ’09. 12th International Conference on, pp. 32 –36,
dec. 2009.

[48] A. Y. Duale, M. H. Decker, H.-G. Zipperer, M. Aharoni, and T. J.
Bohizic, “Decimal floating-point in z9: An implementation and test-
ing perspective,” Research and Development, IBM Journal of, vol. 51,
pp. 217 –227, jan. 2007.

[49] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q. Nguyen,
B. J. Ronchetti, W. M. Sauer, E. M. Schwarz, and M. T. Vaden, “IBM
POWER6 microarchitecture,” Research and Development, IBM Jour-
nal of, vol. 51, pp. 639 –662, nov. 2007.

145

[50] J. Friedrich, B. McCredie, N. James, B. Huott, B. Curran, E. Fluhr,
G. Mittal, E. Chan, Y. Chan, D. Plass, S. Chu, H. Le, L. Clark, J. Rip-
ley, S. Taylor, J. Dilullo, and M. Lanzerotti, “Design of the Power6 mi-
croprocessor,” in Solid-State Circuits Conference, 2007. ISSCC 2007.
Digest of Technical Papers. IEEE International, pp. 96 –97, feb. 2007.

[51] S. Oberman and M. Flynn, “Design issues in division and other
floating-point operations,” Computers, IEEE Transactions on, vol. 46,
pp. 154 –161, feb 1997.

[52] R. Jessani and M. Putrino, “Comparison of single- and dual-pass
multiply-add fused floating-point units,” Computers, IEEE Transac-
tions on, vol. 47, pp. 927 –937, sep 1998.

[53] C. Hinds, “An enhanced floating point coprocessor for embedded sig-
nal processing and graphics applications,” in Signals, Systems and
Computers, 1999. ASOLIMAR-33 1999. 33rd Asilomr Conference on,
vol. 1, pp. 147 –151 vol.1, 1999.

[54] Y. Voronenko and M. Puschel, “Automatic generation of imple-
mentations for dsp transforms on fused multiply-add architectures,”
in Acoustics, Speech, and Signal Processing, 2004. Proceedings.
ICASSP 2004. IEEE International Conference on, vol. 5, pp. V – 101–
4 vol.5, may 2004.

[55] E. Linzer and E. Feig, “Implementation of efficient FFT algorithms on
fused multiply- add architectures,” Signal Processing, IEEE Transac-
tions on, vol. 41, p. 93, jan 1993.

[56] A. Robison, “N-bit unsigned division via n-bit multiply-add,” in Com-
puter Arithmetic, 2005. ARITH-17 2005. 17th IEEE Symposium on,
pp. 131 – 139, june 2005.

146

[57] E. Hokenek, R. Montoye, and P. Cook, “Second-generation RISC
floating point with multiply-add fused,” Solid-State Circuits, IEEE
Journal of, vol. 25, pp. 1207 –1213, oct 1990.

[58] R. K. Montoye, E. Hokenek, and S. L. Runyon, “Design of the IBM
RISC System/6000 floating-point execution unit,” Research and De-
velopment, IBM Journal of, vol. 34, pp. 59 –70, jan. 1990.

[59] F. P. O’Connell and S. W. White, “POWER3: The next generation of
PowerPC processors,” Research and Development, IBM Journal of,
vol. 44, pp. 873 –884, nov. 2000.

[60] T. Lang and J. Bruguera, “Floating-point fused multiply-add with re-
duced latency,” in Computer Design: VLSI in Computers and Pro-
cessors, 2002. Proceedings. 2002 IEEE International Conference on,
pp. 145 – 150, 2002.

[61] G. Even and P.-M. Seidel, “A comparison of three rounding algorithms
for IEEE floating-point multiplication,” Computers, IEEE Transac-
tions on, vol. 49, pp. 638 –650, jul 2000.

[62] S. Oberman, H. Al-Twaijry, and M. Flynn, “The SNAP project: de-
sign of floating point arithmetic units,” in Computer Arithmetic, 1997.
Proceedings., 13th IEEE Symposium on, pp. 156 –165, jul 1997.

[63] M. Santoro, G. Bewick, and M. Horowitz, “Rounding algorithms for
IEEE multipliers,” in Computer Arithmetic, 1989., Proceedings of 9th
Symposium on, pp. 176 –183, sep 1989.

[64] J. Bruguera and T. Lang, “Floating-point fused multiply-add: reduced
latency for floating-point addition,” in Computer Arithmetic, 2005.
ARITH-17 2005. 17th IEEE Symposium on, pp. 42 – 51, june 2005.

147

[65] M. Xiao-Lu, “Leading zero anticipation for latency improvement in
floating-point fused multiply-add units,” in ASIC, 2005. ASICON-6
2005. 6th International Conference On, vol. 1, pp. 53 – 56, oct. 2005.

[66] G. Li and Z. Li, “Design of a fully pipelined single-precision multiply-
add-fused unit,” in VLSI Design, 2007. Held jointly with 6th Interna-
tional Conference on Embedded Systems., 20th International Confer-
ence on, pp. 318 –323, jan. 2007.

[67] L. Huang, L. Shen, K. Dai, and Z. Wang, “A new architecture for
multiple-precision floating-point multiply-add fused unit design,” in
Computer Arithmetic, 2007. ARITH-18. 18th IEEE Symposium on,
pp. 69 –76, june 2007.

[68] Z. Qi, Q. Guo, G. Zhang, X. Li, and W. Hu, “Design of low-cost high-
performance floating-point fused multiply-add with reduced power,”
in VLSI Design, 2010. VLSID ’10. 23rd International Conference on,
pp. 206 –211, jan. 2010.

[69] H. He, Z. Li, and Y. Sun, “Multiply-add fused float point unit with on-
fly denormalized number processing,” in Circuits and Systems, 2005.
48th Midwest Symposium on, pp. 1466 –1468 Vol. 2, aug. 2005.

[70] M. Erle and M. Schulte, “Decimal multiplication via carry-save addi-
tion,” in Application-Specific Systems, Architectures, and Processors,
2003. Proceedings. IEEE International Conference on, pp. 348 – 358,
june 2003.

[71] M. A. Erle, E. M. Schwarz, and M. J. Schulte, “Decimal multiplica-
tion with efficient partial product generation,” in Computer Arithmetic,
2005. ARITH-17 2005. 17th IEEE Symposium on, pp. 21 – 28, june
2005.

148

[72] R. Kenney and M. Schulte, “High-speed multioperand decimal
adders,” Computers, IEEE Transactions on, vol. 54, pp. 953 – 963,
aug 2005.

[73] T. Lang and A. Nannarelli, “A radix-10 combinational multiplier,”
in Signals, Systems and Computers, 2006. Conference Record of the
Fourteens Asilomar Conference on, pp. 313 – 317, 28 - november 1,
2006.

[74] I. D. Castellanos and J. E. Stine, “Decimal partial product generation
architectures,” in Circuits and Systems, 2008. 51st Midwest Sympo-
sium on, pp. 962 –965 Vol. 2, aug. 2008.

[75] J. Bruguera and T. Lang, “Leading-one prediction with concurrent po-
sition correction,” Computers, IEEE Transactions on, vol. 48, pp. 1083
–1097, oct 1999.

[76] A. Vazquez and E. Antelo, “A high-performance significand BCD
adder with IEEE 754-2008 decimal,” in Computer Arithmetic, 2009.
ARITH-19 2009. 19th IEEE Symposium on, pp. 135 – 144, june 2009.

[77] V. G. Oklobdzija, “An algorithmic and novel design of a leading zero
detector circuit: Comparison with logic synthesis,” Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, vol. 2, pp. 124 –
128, march 1994.

[78] O. Leary, X. Zhao, R. Gerth, C. Johan, and H. Seger, “Formally veri-
fying IEEE compliance of floating-point hardware,” Intel Technology
Journal, vol. 40, pp. 200–200, Jan 1999.

[79] A. Sayed-Ahmed, H. Fahmy, and M. Hassan, “Three engines to solve
verification constraints of decimal floating-point operation,” in Sig-
nals, Systems and Computers (ASILOMAR), 2010 Conference Record

149

of the Forty Fourth Asilomar Conference on, pp. 1153 –1157, nov.
2010.

[80] M. Aharoni, S. Asaf, R. Maharik, I. Nehama, I. Nikulshin, and A. Ziv,
“Solving constraints on the invisible bits of the intermediate result for
floating-point verification,” in Computer Arithmetic, 2005. ARITH-17
2005. 17th IEEE Symposium on, pp. 76 – 83, june 2005.

[81] M. Aharoni, R. Maharik, and A. Ziv, “Solving constraints on the in-
termediate result of decimal floating-point operations,” in Computer
Arithmetic, 2007. ARITH-18 2007. 18th IEEE Symposium on, pp. 38
–45, june 2007.

[82] B. Fu, A. Saini, and P. Gelsinger, “Performance and microarchitecture
of the i486 processor,” in Computer Design: VLSI in Computers and
Processors, 1989. ICCD ’89. Proceedings., 1989 IEEE International
Conference on, pp. 182 –187, oct 1989.

[83] G. Gerwig, H. Wetter, E. M. Schwarz, J. Haess, C. A. Krygowski,
B. M. Fleischer, and M. Kroener, “The IBM eServer z990 floating-
point unit,” Research and Development, IBM Journal of, vol. 48,
pp. 311 –322, may 2004.

[84] C. Hinds and D. Lutz, “A small and fast leading one predictor correc-
tor circuit,” in Signals, Systems and Computers, 2005. ASOLIMAR-39
2005. 39th Asilomr Conference on, pp. 1181 – 1185, 28 - november 1,
2005.

[85] E. Hokenek and R. K. Montoye, “Leading-zero anticipator (LZA) in
the IBM RISC System/6000 floating-point execution unit,” Research
and Development, IBM Journal of, vol. 34, pp. 71 –77, jan. 1990.

150

[86] T. R. S. J. J. J. Bradley, B. L. Stoffers and M. Widen, “Apparatus
for performing simplified decimal multiplication by stripping leading
zeroes,” 1986.

[87] D. Jacobsohn, “A suggestion for a fast multiplier,” Electronic Comput-
ers, IEEE Transactions on, vol. EC-13, p. 754, dec. 1964.

[88] R. Kenney and M. Schulte, “Multioperand decimal addition,” in VLSI,
2004. Proceedings. IEEE Computer society Annual Symposium on,
pp. 251 – 253, feb. 2004.

[89] V. S. Negi and S. A. Tague, “Data processor having units carry and
tens carry apparatus supporting a decimal multiply operation,” 1984.

[90] N. Quach and M. Flynn, “Leading one prediction : Implementation,
generalization, and application,” tech. rep., Stanford University, 1991.

[91] R. Rogenmoser and L. O. Donnell, “Method and apparatus to correct
leading one prediction,” 2002.

[92] J.-L. Sanchez, H. Mora, J. Mora, F. J. Ferrandez, and A. Jimeno, “An
iterative method for improving decimal calculations on computers,”
Mathematical and Computer Modeling, vol. 50, pp. 869–878, 2009.

[93] M. Schmookler and K. Nowka, “Leading zero anticipation and
detection-a comparison of methods,” in Computer Arithmetic, 2001.
Proceedings. 15th IEEE Symposium on, pp. 7 –12, 2001.

[94] E. M. Schwarz, J. S. Kapernick, and M. F. Cowlishaw, “Decimal
floating-point support on the IBM System z10 processor,” Research
and Development, IBM Journal of, vol. 53, pp. 4:1 –4:10, jan. 2009.

[95] L.-K. Wang, Processor Support for Decimal Floating Point Arith-
metic. PhD thesis, Univ. Wisconsin Madison, 2007.

151

[96] L.-K. Wang, M. Schulte, J. Thompson, and N. Jairam, “Hardware de-
signs for decimal floating-point addition and related operations,” Com-
puters, IEEE Transactions on, vol. 58, pp. 322 –335, march 2009.

[97] “IBM test suit-FPgen.”

[98] The iAPX 286 Programmer’s Reference Manual. Intel Corporation,
1985.

152

	Abstract
	Decimal Floating Point Arithmetic
	Decimal Arithmetic in Computers
	Importance of Decimal Floating Point Arithmetic
	IEEE Decimal Floating-Point Standard
	Decimal Formats
	Operations
	Rounding
	Special numbers and Exceptions

	Standard Compliant Hardware Implementations of DFP Operations
	IEEE 754-2008 DFP Support in Microprocessors

	Fused Multiply-Add Operation
	Multiply-Add Operation Importance
	Fused Multiply-Add (FMA) standard specifications
	Binary FMAs
	Basic Architecture
	Parallel Architecture
	Other Variants

	Decimal FMAs
	Monsson’s Architecture
	SillMinds' Architecture

	Fused Multiply-Add Building Blocks
	Multiplier Tree
	Background
	Literature Review

	Leading Zero Anticipator
	Background
	Literature Review

	Significand BCD Addition and Rounding
	Background
	Literature Review

	Proposed Fused Multiply Add
	Quick Overview
	Default Significand Datapath
	Decoding the Operands
	Multiplication
	SD-Radix 5 Architecture
	Partial Product Generation
	Partial Product Array
	Partial Product Reduction

	Addend Preparation
	Selection and Decimal Carry Save Adder
	Leading Zero Anticipator
	Inputs to the LZA
	Effective Subtraction Case
	Effective Addition Case
	Reduced Datapath of Cases (1, 2, 3 and 4)

	Intermediate Sign Detection
	Final Alignment
	Rounding Set Up
	Top Level Architecture
	The addend 10's complement
	Generating Final Carry out (inc1), Guard and Round Digits.
	Sticky Generation

	Combined Add/Round
	General Algorithm
	Pre-Correction
	Compound Adder
	Rounding Stage
	Post-Correction and Selection

	Encoding the result

	Default Exponent Datapath
	Default Sign Logic
	Flag Generation
	Inexact Flag
	Invalid Falg
	Overflow Flag
	Underflow Flag

	Special Signals Generation
	Infinity
	Not a Number (NaN)

	Exceptional Datapath
	Zero Addend
	Zero Multiplier Result
	ExpC>ExpM+3p+1 and ExpC<ExpM-2p

	Improvements in the architecture
	Reducing the width of the decimal carry save adder
	R/L shifter in parallel to the LZA
	Proposed enhancements

	Pipelined Decimal Floating-Point Arithmetic Unit
	Addition
	Multiplication
	Fixed Latency Pipelining
	3-Stages Pipeline
	6-Stages Pipeline

	Variable Latency Pipelining
	6-Stages Pipeline

	Results and Future Work
	Verification
	Synthesis Results
	Combinational FMA
	Pipelined Arithmetic Unit

	Comparison
	FMA

	Future Work

	Bibliography

