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Abstract— Progress in wireless communications has led to an increas-
ing number of standards such as WIMAX, 3GPP-LTE, DVB-T, DVB-H
and more. This work presents a reconfigurable channel estimation engine
for OFDM systems. The engine can support multiple channel estimation
algorithms for many wireless standards. It can also support both 1D and
2D channel estimation algorithms. This is important because the large
performance gain of 2D over 1D channel estimation algorithms, which
can be up to 5dBs. Moreover, 1D algorithms are less complex than 2D
algorithms and they are the best choice when there is a need to reduce
the receiver processing power. The engine does not use any dividers for
least square pilots estimation, and hence, the least square pilot estimator
engine is less complex than other engines. Although the engine was
designed and optimized for channel estimation algorithms, it can also
be configured as an FFT engine, FIR engine and many more. The engine
was synthesized on Altera Startix III EP3SC150 FPGA and performs the
estimation process in 94 µsecond for the worst case parameters in all
supported standards.

I. INTRODUCTION

The diversity of QoS requirements in different applications has
lead to the development of a large number of wireless standards.
Today, WIMAX, LTE and Wi-Fi are samples of the existing wireless
standards in the market. Although different and diverse committees
lead the efforts in the development process of these standards,
they have all selected Orthogonal Frequency Division Multiplexing
(OFDM) as their modulation technology. Unlike single carrier sys-
tems, OFDM does not need complex time domain equalization and
the required FFT/IFFT operations for OFDM can be done easily
using today’s signal processing technology. To be able to work
in different environments, some standards like WIMAX and LTE
supports different FFT sizes. For example, 802.16m can support 512,
1024 and 2048 FFT sizes.

On the implementation side, ASIP is an Application Specific
Instruction set Processor. ASIP is mainly designed to maintain the
flexibility in a certain application domain without sacrificing the
other factors like power, area, and performance. Nowadays, it is
common that mobile phones support more than one communication
technology at the same time. In this paper, wireless communication
is our application domain. We took the channel estimation as our
case study.

Several efforts had been made in the field of channel estimation
engines. In [1], the authors presented two ASIC receivers to
implement wireless transmitter and receiver required for a high-
speed wireless OFDM systems. Paper [2] presents an Application
Specific Instruction-Set Processor (ASIP) capable of supporting a set
of customized hardware modules suited for wireless processing. On
the other hand, paper [3] presents a dedicated hardware to perform
channel estimation task on many wireless standards using specific
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channel estimation algorithm. In [4], an FFT processor is extended
to support all data processing operations required by an OFDM
channel estimation algorithm.

Although the literature is rich with different implementations of
wireless communications engines, there are only few efforts that
investigate the reconfigurability dimension in the implementation
of wireless receivers. in [5], the author presents an energy efficient
reconfigurable baseband processor that supports all the operations
required by wireless transceivers. In [6], the authors presented a
configurable processor to support channel estimation and other
functionalities in OFDM system.

Unlike previous efforts in this field, our processor can support
2-D channel estimation algorithms and does not have any dividers.
The authors in [6] introduced a reconfigurable channel estimation
engine that supports only 1D channel estimation algorithms. 2-D
channel estimation algorithms outperform 1D algorithms by more
than 5Bs in high SNR. Moreover, we use a division free hardware
engine that is based on our previous work in [3]. Thus, the least
square estimation part in our engine is less complex than previous
reconfigurable engines.

This paper is organized as follows: Section II presents the basic
operations used in the channel estimation algorithms. Section III
discusses the reconfigurability dimensions in the proposed processor.
Section IV presents the processor architecture. Section V presents
the results and performance evaluation of the processor. In section
VI, an implementation scenario is discussed using one of the channel
estimation algorithms. Finally, the paper is concluded in VII

II. BASIC OPERATIONS IN CHANNEL ESTIMATION

Channel estimation algorithms are classified as decision-directed
and pilot-aided channel estimation. Pilot-aided estimation provides
better performance than the decision-directed, especially for systems
with large Doppler frequencies [7]. Our processor is concerned only
with pilot-aided channel estimation algorithms as many standards
use pilots to facilitate the channel estimation and synchronization
tasks at the receiver.

Least Squares (LS) process, interpolation and filtering are common
operations that will be used in all channel estimation algorithms under
consideration.

A. LS process

The LS process is divided into two tasks: LS separation and
estimation. The separation process separates the pilots from the data
subcarriers in an OFDM symbol and stores them in separate RAMs.



The separation can be performed using a reconfigurable shift register.
By circularly shifting the register, we get serial output that enables
the data or pilots RAM. The LS Separator is designed to be fully
configurable to work for all the FFT sizes and standards.
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Fig. 1. LS Estimator block diagram

Fig.1 shows a block diagram for the LS separator. The different
inputs are used to define the mode of operation of the LS separator.
For instance, the pattern input is used to define the sequence of
repetition of the pilots in the OFDM symbol. To illustrate this,
consider a cluster of 802.16m standard. It has 14 subcarriers with
2 pilots in them. Thus, the pattern for the even symbol would be
‘00001000100000’. The ‘1’ represents a pilot and the ’0’ represents
a data subcarrier.

The second task is the LS estimation. The LS estimation estimates
the channel response at pilot positions by dividing the received pilots
by their actual transmitted values as shown in Eq.(1). In [3], the
author avoided the division by multiplying the received pilots by the
conjugate of their actual transmitted values and the division by |Xp|2
is embedded in the filter coefficients. The problem of this solution
is the complexity of implementing the algorithms that don’t have
filtering process. Thus, we chose to multiply directly the received
pilots by the inverse of their actual transmitted values. This removes
the division process and makes the engine more configurable. The
channel response at pilot positions can be estimated as:

H̆p = Yp/Xp = Yp ∗ (1/Xp) (1)

Where:
H̆p is the channel estimate at the pilot position
Xp is the value of the transmitted pilot
Yp is the received pilot

The reason for separating the two tasks is that both the channel
estimation and synchronization processors need a separation of the
pilots from the data. Thus, the LS separator is provided as a separate
engine.

B. Interpolation

Linear interpolation is used in our engine because it performs better
than all other interpolation methods in terms of performance [8]. The
function of the interpolation process is to interpolate the channel
estimates of the pilots in order to get a channel estimate in between,
either in time or in frequency direction. Two pilots will be multiplied
by constants and products are added. The middle symbols are inter-
polated using Eq.(2). For the first and last symbols, an extrapolation
operation is used as in (3).

Y (x) = Yk−1 + (x− xk−1) ∗ (Yk − Yk−1)/(xk − xk−1) (2)

Where:
x is the subcarrier index between xk−1 and xk
Y is the channel estimate calculated by interpolation

Y1 = 3/2 ∗ Y2 − 1/2 ∗ Y4 (3)

C. Filtering

A method of estimation is Minimum Mean Square Error (MMSE)
robust estimation, which is the optimum algorithm for minimizing the
mean square error of the estimation [9], [10]. The MMSE estimation
is based on Wiener Filtering approach, where channel subcarriers
are estimated through a filtering process between coefficients and
the nearest Ntap pilots to that subcarrier. Equation (4) explains the
filtering process, where H̆ is the channel estimate matrix, C is the
coefficient matrix and H is the channel after the LS process. The
coefficients are calculated by knowing the channel correlation matrix.
Equation (5) explains how we calculate the filter coefficients, where
RH̆ is the correlation matrix between different LS pilot estimates
and rH is the correlation vector of the channel frequency response
between data location and different pilot locations.

H̆ = C ∗H (4)

C = RH̆
−1 ∗ rH (5)

III. RECONFIGURABILITY

The reconfigurability in the proposed processor spans three di-
mensions: OFDM standards, FFT sizes and channel estimation algo-
rithms. This section describes the reconfigurability dimensions and
the different operations in the system.

A. FFT sizes and standards

To meet the reconfigurability target, the system supports all the
modulation schemes (up to 256 QAM) and up to 32k FFT points.
Table I shows the different FFT sizes for the supported OFDM
standards.

TABLE I
FFT SIZES FOR SOME OFDM STANDARDS

Standard FFT sizes
WIMAX 802.16m 512, 1024, 2048
3GPP-LTE 128, 256, 512, 1024, 2048
DVB-T 2048, 8192
DVB-H 2048, 4096, 8192
WIFI 64

B. Channel estimation algorithms

The channel estimation algorithms that can be supported are:
1) 1-D frequency filtering: this algorithm performs the channel

estimation on each individual OFDM symbol. After the LS
estimation, a filtering operation is done on all subcarriers in
the frequency direction to estimate the channel in the received
symbol [11].



2) 1-D cascaded interpolation: this algorithm uses the
interpolation operation to find the channel in the time direction,
then in the frequency direction. For instance, Fig.2 shows the pilot
pattern for 802.16m, the interpolation is done first in time domain
between channel estimates of pilots (shown in dark circles) to get
the channel in the remaining subcarriers (shown in white circles).
And then, another interpolation is done in the frequency direction to
get the remaining channel estimates [8].
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Fig. 2. Pilot pattern in WIMAX 802.16m

3) 2-D filtering on two consecutive OFDM symbols: this algorithm
performs the filtering operation on two consecutive symbols by
Ntap pilots from the current and next OFDM symbols [11]. In our
simulations we used 16 tap filter, 8 taps for the current symbol and
8 taps for the next symbol. This number of taps can be changed
in both simulation and the ASIP by changing the program used to
configure the engine.

4) 2-D filtering on three consecutive OFDM symbols: this
algorithm performs the filtering on three consecutive symbols by
Ntap LS pilots from the current, previous and next symbols [11]. In
our simulations we used 15 tap filter, 6 for the previous symbol, 5
for both the current next symbols.

5) Time interpolation frequency filtering: this algorithm is an
enhancement on the cascaded algorithm. Interpolation is performed
in time domain first and then a filtering is performed in frequency
domain. The main advantage of this method is that it has very little
latency compared to the cascaded filtering operation and much less
complexity than the two dimensional filtering method [3].

In [6], all estimation algorithms were one dimensional estimation,
where the cubic spline interpolation algorithm provides the best
performance. Fig.3 shows a simulation comparison between different
channel estimation algorithms on 802.16m standard. The cascaded
interpolation algorithm performs better performance in low SNRs.
The better performance of the two dimensional algorithms will come
on the price of more computations as shown in Table II.

The third and fourth algorithms in Table II have the same
complexity as they perform the filtering process on the same number
of pilots, thus having the same number of real multiplications and
additions. The presented processor can support all these channel
estimation algorithms.

Fixed point simulations of 1024-point FFT in 802.16m system and
time interpolation frequency filtering algorithm revealed that a 28 bit
complex word length is sufficient to keep difference of less than
0.1dB at 10−4 Bit Error Rate (BER) between the fixed and floating
point curves.
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Fig. 3. Performance comparison between the different channel estimation
algorithms on 802.16m standard

TABLE II
NUMBER OF PERFORMED OPERATIONS ON 1024-FFT POINTS PER OFDM

SYMBOL FOR DIFFERENT CHANNEL ESTIMATION ALGORITHMS

Algorithm Real Mul. Real Add
1-D Filtering 43200 43200
1-D Cascaded interpolation 2880 1440
2-D Filtering on 2 consecutive OFDM Symbols 46080 46080
2-D Filtering on 3 consecutive OFDM Symbols 46080 46080
Time Interpolation Frequency Filtering 36480 36240
Cubic Spline Interpolation 7200 4320

IV. PROCESSOR ARCHITECTURE

The processor presented in this section is responsible for
performing the different arithmetic operations of the channel
estimation algorithms. It can also support other communication
tasks like FFT and FIR. The architecture is designed to support
the reconfigurability dimensions. The choice of specific algorithm
is performed according to the channel parameters. The sizes of the
different elements in the system are calculated for 2k-FFT points. A
generalization for N-FFT points is also considered.

Fig.4 shows the processor architecture. The processor includes one
computational core, one control unit and a memory unit of five banks
for storing the data and the intermediate results.
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A. Computational core

The computational core contains two Reconfigurable Multiply
Accumulate units (R-MAC), one register file of 16 registers, 16
bits each and one complex multiplier. Fig.5 shows the R-MAC
unit. The R-MAC has four real multipliers, two adders and two
adder/subtractors and is configured by the control unit through 9
bits control word. It can perform interpolation, filtering, complex
multiplication, real multiplication, complex addition and real addition
on 14 bits data. The complex multiplier is designed using three real
multipliers and performs the complex multiplication on 14 bits data.
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The use of two R-MAC units is to satisfy the timing requirements
of the different standards for each of the algorithms. Fig.6 shows the
symbol time in OFDM standards. To define the required frequency
of operation and hence the number of R-MAC units, we need to
satisfy the timing requirements for the most complex algorithm. The
2-D filtering on two consecutive symbols takes the longest time. The
algorithm begins after having two symbols stored and must finish
within the symbol time. For 802.16m standards, we find that the
required frequency is 240 MHz. Thus, by using two MAC units, the
required frequency can be 125 MHz.
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B. Control unit

The control unit includes an instruction memory, program counter
(PC), instruction register (IR) and controller. The program counter
size is 9 bits. Thus, the instruction memory size will be 512 word,
where the word is 77 bits. The controller performs the fetch, decode,
execute and write back stages.

C. Data memory unit

The memory unit includes five memory banks for storing the data
and the intermediate results. The banks are dual read/write ports
(i.e. The two ports may be used as read or write). The total memory
size is 27kword, where the word size is 26 bits with the lowest 13
bits as the real and the highest 13 bits as the imaginary. For N-FFT
points, the memory size would be 14N words.

D. Instruction set

There are three types of instructions: data transfer, data manip-
ulation and control instructions. Table III shows a subset of the
instructions used in the processor. The data transfer instructions are
used to transfer the different data between memory banks and register
file. For instance, the load instruction is used to load a value from the
memory into a register in the register file. The control instructions
are used to control the flow of the processor. For instance, the WAIT
instruction is used to wait until a valid signal comes from the LS
separator. Finally, the data manipulation instructions are used to
perform the different computations in the system.

TABLE III
INSTRUCTION SET AND THEIR MEANING

Instruction Description
WAIT Wait for a valid signal from the LS separator
INC Increment register content
DEC Decrement register content

LOAD Load value into register
ADD.N Adds N values in two memory banks
MUL.N Multiply N values in two memory banks

STORE.N Store N values from LS separator in a certain
memory bank

COPY.N Copy N values from memory to memory
INTERP.N Interp N values in two memories and store

the result in another memory
FILTER.t Filter N values with filter taps t
MAC.N Multiply accumulate N values

The processor includes two types of instructions: Scalar and Vector
instructions. The vector instructions are used to perform the operation
on an array of data. For instance, the INTERP.N instruction is used
to perform an interpolation operation on N values from two memory
banks and puts the result in a memory bank.

To support a flexible programming, the addressing has two modes:
auto-increment and direct addressing. The auto-increment mode is
used with the vector instructions, where the specified operation is
performed on an array of data that exists in memory banks and the
result is put on a different memory bank. This mode was chosen for
speed requirements. On the other hand, the direct addressing is used
with the scalar instructions like load. Note that the vector instruction
can be used as a scalar instruction through assigning a value of 1 to
the N parameter in the vector instruction.

V. PERFORMANCE EVALUATION

The whole system has been coded by Verilog HDL which is
compatible with Synopsys Design Compiler. Functional verification
was carried out using Altera tools and Mentor-Graphics Modelsim.
The processor was implemented in a 0.18 µm CMOS process at a
voltage of 1.8V. The engine occupies 1mm2 without memories and
consumes 7.4 mWatt at 140 MHz. These results are summarized in
table IV.



TABLE IV
SYNTHESIS RESULTS (WITHOUT MEMORIES)

Technology TSMC 180 nm CMOS technology
Volt 1.8 V
# of cells 2825
Area 1 mm2

Power 4.8 mW at 100 MHZ
Fmax 140 MHZ

The system also is synthesized on Altera Stratix III FPGA. The
synthesis report of the system has been summarized in Table V.

TABLE V
SYNTHESIS RESULTS

Device Family Stratix III
FPGA EP3SC150 FPGA
Adaptive look-up tables 113600 ALUTs
Embedded Block RAM 5499 Kb
Logic utilization < 1%(561 ALUTs)
Memory utilization 9%(505,856)
DSP Blocks 18 x 18 22

Power comparisons between the proposed processor and other
architectures is shown in table VI. The powers of the stated engines
are scaled (technology & frequency scaling) to match the proposed
processor. The power is considered without the memory power except
for [12].

TABLE VI
POWER COMPARISON BETWEEN THE PROCESSOR AND OTHER

ARCHITECTURES

Architecture Type Power
[5] Total receiver 59.5 mW
[6] Reconfigurable channel estimator 11.3 mW
[12] DSP 80.18 mW
Proposed processor ASIP 7.4 mW

VI. IMPLEMENTATION SCENARIO

This section discusses an implementation scenario for time
interpolation frequency filtering algorithm in 802.16m standard
case. The system begins by waiting four valid signals from the LS
separator engine. A valid signal comes from the LS separator after
it separates one OFDM symbol, removing the guard subcarriers
from it. The LS separator separates the pilots from the data into two
different memory banks. The processor receives one OFDM symbol
after each of the four valid signals. From Fig.2, we note that each
symbol needs two other symbols around it for performing the time
interpolation to get the in between subcarriers, thus we need to store
four symbols for the time interpolation. This would be 8 symbols in
case of 3GPP-LTE or DVB systems.

On receiving the four symbols from the LS separator, an LS
estimation process is performed by multiplying the pilots by the
inverse of the actual transmitted pilot. Thus, storing each of the
pilots and data in separate memories.

The interpolation and filtering processes are performed in sequence
using the R-MAC units and the results of each process are stored
in a memory bank. Finally, a phase correction process is performed

by multiplying the data by the conjugate of the estimated channel.
This process can be performed by a complex multiplier. The sources
and destinations are defined by the instructions and this process
is not controlled by specific modes of operation. Thus, it allows
a great flexibility in performing different tasks other than channel
estimation. This algorithm performs the channel estimation in 94
microsecond at 140 MHz clock speed.

VII. CONCLUSION

In this paper, we presented a novel ASIP architecture of a recon-
figurable processor. The reconfigurability dimensions are investigated
and the channel estimation algorithms are presented and compared
in terms of performance and computation complexity. The compar-
ison poses the vision of altering the channel estimation algorithm
according to the channel parameters. Thus, illuminating the goal
of supporting many channel estimation algorithms in our processor.
Furthermore, the system is not only limited to the channel estimation
operations, but also can support other communication tasks like FFT
and FIR operations. The architecture was presented and the different
instructions were explored. A processing element is embedded in
the computational core so as to support different operations in
communication systems.
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