Design and FPGA implementation an accurate real
time 3x4 MIMO channel emulator

Omar A. Nasr and Babak Daneshrad

Abstract — The design and implementation of an accurate and
low complexity MIMO channel emulator is presented in this
paper. A mathematical analysis is used to verify the accuracy of
the emulator over a wide range of SNRs (0 — 35 dBs). The
complexity of the emulator is reduced by preprocessing of the
channels and hardware/software partitioning. All 802.11n
channel models can be emulated on our platform. A 3x4 10MHz
version of the emulator is successfully running on a Virtex-II
XC2V6000-4 FPGA. A 20MHz version was synthesized and
simulated on an XC2V6000-6 FPGA.

1. INTRODUCTION

Testing the hardware implementation of the radio is
important to determine the performance of the system. The
design cycle of a radio has three phases: floating point
simulation, fixed point simulation and hardware
implementation. Using fast prototyping languages like
MATLAB in the floating point and fixed point simulations has
the advantage of flexibility in the design and performance
testing, but its major drawback is its speed; the simulation
speed is very slow compared to lower level languages like C;
which is hard to debug and doesn’t have fast prototyping
capabilities like MATLAB. As a result, most of the
researchers use MATLAB to simulate the performance of the
system in floating point and fixed point domains. After
hardware implementation of the system on an FPGA, the
system needs to be tested and its performance in the real world
needs to be quantified. One way to do that is to make field
trials, where the Device Under Test (DUT) is taken to the filed
and the performance of the system is quantified by sending
data from transmitter and receiving them at the receiver and
finding the PER. The main problem in this approach is that the
field trials are done in a limited number of environments and
under uncontrolled conditions. Channel emulation can solve
this problem. The Tx DUT and the Rx DUT are connected to
the ports of the emulator and the emulator applies a controlled
environment to the Tx signal and adds controlled noise to the
Rx signal.

In this paper, we show the design and implementation of a
3x4 MIMO channel emulator and integrated it with a full
hardware implementation of an 802.11n radio. We have
compared the performance of the channel emulator with the
performance of software in the loop simulation and we have
perfect matching between them. The main contributions of this
work are: (1) A mathematical analysis to verify that the
implementation of the channels on the hardware will give the
same performance as the floating point channels, (2) The

978-1-4244-5827-1/09/$26.00 ©2009 IEEE

764

addition of AWGN with wide range of SNRs and the special
consideration for noise addition to an OFDM signal, and (3)
The fast architecture used to implement the emulator on the
Hardware. In the next sections, we will discuss the system
requirements, and then we will discuss the mathematical
analysis used to reduce the number of mathematical operations
on hardware. We will then discuss the hardware architecture
and the methods used to reduce the number of slices and to
increase the emulator speed to meet the requirements of the
802.11n channel models.

II. SYSTEM REQUIREMENTS

When we designed our channel emulator, our target that it
will be used to test transceivers that are 802.11n compliant [1].
The channel emulator should have the capability to apply the
802.11n channel models [2] to the transmitted signal. Channel
'F' is the most challenging channel because it has the largest
Maximum Delay Spread. Its RMS delay spread is 150 ns and
its maximum delay spread is 1050 ns. The maximum delay
spread of channel F exceeds the guard interval size of the
transmitted packets, which causes Inter Symbol Interference
(ISI). Our design approach was to design the channel emulator
in a way that is independent on the receiver design; that means
any simplifications of the channel models as in [3] will not be
considered. Two testing criteria were used to verify the perfect
matching between the emulated channels and the floating point
standard channels:

1-A mathematical proof that the emulator will work under

the required SNR range.

2-The Packet Error Rate (PER) performance when using the

emulator when have 12 bits inputs and outputs versus the

PER performance the same input and output but when we

apply the standard floating point channel: we need perfect

matching in performance.

The main challenges in the FPGA implementation of the
channel emulator are:
1-The quantization noise because of the use of fixed point
processing inside the FPGA
2-The limited number of multipliers inside the FPGA, and
the limited number of BRAMs and slices
3-The implementation should be on Virtex-II FPGA

III. System DEsioN

A. Top level design

The Emulator top modules are shown in Fig. 1 . The
channel generation block is responsible for generation of the

Asilomar 2009

instantaneous channel coefficients to be convoluted with the
input signal. The channel coefficients should be updated at rate
that is greater than 100f, , where f, is the channel
Doppler frequency. The convolution block makes convolution
between the instantaneous channel coefficients and the input
signal and outputs a signal with rate of 20 MHz. The noise
generation block generates AWGN signal to be added to the
output of the convolution. The SNR adjustment block scales
the convolution output and the AWGN signal and adds them
with the correct SNR.

N

bits input

Channel . SNR Noise 2 bits output

generation Cong/‘(c))lz:on ™ ad| ljustment > addition
Block block block

i

AWGN
generation
block

Fig.1. Basic components of the channel emulator

B. Software/Hardware partitioning

The rates of operation of the different modules are shown in
Table 1.

Table 1: rates of operation of various blocks

Module Rate of operation
Channel Generation block 30kHz
Convolution block 20MHz
Noise Generation block 20MHz
SNR adjustment block 20MHz
Noise addition block 20MHz

The channel generation block is the most flexible block in
the design. According to [2], the channel generation block
should have the following degrees of freedom:

1-It should support a wide range of Doppler frequencies. In

our emulator our goal is to support up to 300 Hz

2-1It should support multiple Doppler spectra

3-It should support any correlation matrix between the

received paths

Fig. 2 shows the components inside the Channel Generation
block. The filtering operations in the Doppler spectrum and
the correlation matrix application will take a large number of
complex multipliers. For example, for a 4x4 system with 18
multipaths between the transmitter and receiver (similar to
channel 'F'"), the correlation matrix size will be 288 x 288 and
will have 2448 non-zero complex numbers. The number of
multiplications required to generate one instant of channel
coefficients in that example is 2448 complex multiplications.
On the other hand, the Doppler filter will also take a lot of

765

resources. Assuming 10 tap FIR filter for Doppler filter, the
number of multiplication in a 4x4 system with 18 multipaths
requires 2880 complex multiplications. Although the number
of multiplications is very big, it is not required to be done with
a high rate. So, the Channel Generation block will be
implemented on the PC, and the channel coefficients will be
transferred through the PCI bus to the FPGA. The rest of the
blocks will be implemented on the FPGA.

| X Hijl'h'. Adiinion

—_— | —_— |'j|'-|];.|.|e|' rhq' —_— —_— ——
— ."' DHHF‘ —— e —
—_ L rlr“. —|. — | —
Lianissian | ! '\I‘Fl'l?' i
1 & .
Maiss | i [.l.:'il':;-lifll'l'l
Lighatainor -
| Doppler filney — S l E—

I"":-. A N-. A N:ln

Fig.2 channel generation block

C. Channel generation block

The output of the 802.11n transmitter has a bandwidth of 20
MHz, so; according to the sampling theory; it’s sufficient to
have a channel model that has paths of a resolution of 50 ns.
The conventional way to emulate the channel in the baseband
is:

1-Generate a channel instance with a resolution of 10 ns

2-Interpolate the samples output from the transmitter to

have a resolution of 10 ns instead of 50 ns using an
interpolation filter

3-Convolve the channel instance with the transmitted signal

4-Downsample the result of the convolution back to have a

resolution of 50ns

The problem with this is that the interpolation step for the
transmitted signal needs a fast processing. To meet the
802.11n system requirements, a 151 FIR interpolation tap is
required to interpolate the samples. The filter needs to run at
100MHz rate, which is the rate of the upsampled input signal.
For a 4x4 system , this will need 240 multiplication in
100MHz rate. Moreover, the convolution between the paths
and the interpolated signal when an 18 paths channel is being
emulated requires about 864 multiplications at 100MHz rate.

Our technique to do it is to use the fact that the transmitted
signal has a bandwidth of 20MHz, so we don’t need to resolve
the paths in a resolution of 10 ns.

The new technique is:
1-Generate a channel instance with a resolution of 10 ns
2-Filter the channel with the FIR Decimation filter
3-Downsample the channel to have a resolution of 50 ns
4-Send the coefficients to the FPGA
5-Convolve the channel with the input signal

The main problem in this technique is that the Decimation
filter should be long enough in the time domain to be flat in

the passband of the transmitted signal in the frequency domain.
The bandwidth of the transmitted 802.11n signal is 18MHz, so
the filter should be flat in the range from -9MHz to 9MHz. To
have a sharp filter, we used a 151 taps decimation filter. The
problem is that after filtering the channel and downsampling,
the number of taps of the result of convolution will be bigger
than the original number of taps. For example, when we use
the 151 taps decimation filter with channel 'F' and then
downsampling will lead to a channel of size = (150+105)/5+1
= 52 coefficients. But the advantage is that the convolution
rate will be at 20MHz, not 100MHz.

Another advantage of the pervious technique is that we can
reduce the number of coefficients more by considering only
the large energy paths. The Power Delay Profile (PDP) of
channel ‘F’ after the passing by the Downsampling filter is
shown in Fig. 3. The power of the paths at the beginning and
the end of the PDP are much lower than the rest of the paths.
But to decide if the paths that will be removed, we need to be
sure that it will not affect the performance of the system.

Power Delay Profile of channel "F" after decimation
02 T T T

0]
Q

005 T B
Q
olecooooonosocna? | T T'vﬁn? 00000000004000000008d00

0 10 20 30 40 50 60

Power Delay Profile of channel "F" after decimation in Log domain

0

40

dB
=
[

60

80 [u B

Fig.3 : power delay profile of channel F

We have developed a mathematical model (shown in Fig. 4)
that will be used to determine the paths that can be neglected
without affecting the performance of the system and will be
used to determine the quantization used for the channel
coefficients.

Where x(n) is the input signal to the channel emulator, A(n) is
the correct channel impulse response, /g, (1) is the channel
that will be used in the emulation process, which is after
rejecting some paths of %(n) and quantization of the rest of the
coefficients. We will call it the approximated channel. %, (n) is
the error between the correct channel and the approximated
channel. y.(n) is the ideal correct output after the convolution
between the input and the channel. y.(n) is the output after the
convolution between the input and the error channel. n(n)

766

noise added to the output of the convolution block with certain
signal to noise ratio and n(n) is the total actual noise as a
result of adding the correct noise to the error signal. To add
the correct value of noise, we need the error output to be
significantly smaller than the AWGN added noise. A factor of
10 is acceptable between the added noise and the error signal
so that the final noise is dominant by the added noise, not the
error due to path removal and quantization. Using our
mathematical model, it can be easily shown that the condition
required to satisfy a factor of 10 between the added noise and
the error signal is:

E, 10

< —_—

E, SNR

Where £, is the total energy of the paths of the error
channel due to quantization and path removal, E, is the
energy of the correct channel and SNR is maximum target
signal to noise ratio that can be applied by the channel
emulator.
The error channel has two components: the quantization noise
component and the small energy paths removal component.
For the quantization noise, the instantaneous channel
coefficients are having a Gaussian distribution, and we want to
determine the number of bits required to encode these
coefficients. Given certain number of bits, we can determine
the energy of the error channel using the rate distortion theory
[4]. The rate distortion theory states that for a Gaussian
Random Variable, we can encode the random variables in R
number of bits, and that will give the following distortion:
D=0:4""
where o, is the power of the random variable and D is the
power of the error signal.

In case of the most challenging channel in the 802.11n channel
models (channel 'F'), we can keep only 33 paths of the
downsampled channel in Fig. 3 and quantize the channel paths
using 15 bits to secure that we can simulate the system to a
signal to noise ratio of up to 35 dBs.

D. Convolution and noise generation blocks

We have designed the convolution block on the FPGA using
dedicated multipliers on the FPGA. It makes convolution
between the input signal and a 33 tap channel passed from the
PC to the FPGA. The convolution block applies the following

equation:
m=32
y(n)= 2, x(m)h(n—m)
m=0
The input and the channel coefficients are complex
numbers. We use only three real multipliers to multiply any
two complex numbers.
y=(x,+ix;)(h,+ih)

y=0x,(h,+ k) =(x,+x;)) +i (x, (h+h)+(x—x,) h,)

For the most efficient use of the dedicated multipliers on the

FPGA, we run them with their full speed on the FPGA and
they can be timeshared with a factor of 11. The input signal
has a 20MHz bandwidth and we can run the multipliers at
220MHz. This way, the total number of multipliers to
implement the convolution between a single Tx-Rx branch will
be only 9 multipliers.

We can only achieve the maximum speed of operations of
multipliers by using the technique used in [5]. We have
constrained the synthesis of the design to put the channel
coefficients in the closest BRAM to the multiplier that will be
used in multiplication; moreover, we have constrained the
accumulation block to be close to the BRAM and the
multiplier. The layout of the basic cell that will be used in the
multiplication is shown in Fig.4 . For our design; the input
signal is quantized to 12 bits, the channel is encoded into 16
bits, so the output of the multiplication will be 28 bits. The
accumulation of 28 bits will be slower than the required
220MHz of the multipliers. To solve that problem, we are
using two accumulators : Acciow and AcChign
The Acci,w accumulate the output of the least significant bits
[b0:b13], and the Accuen accumulates the rest of the bits. After
accumulating the 11 results of multiplication, the accumulated
values are latched to latches AccCiowiach and AcCChighiach and then
added together after shifting the AcCuigniaen by 14 bits to be
aligned with AcCiowLatch

Acc,, latch

Acc,. . latch
A C’C’r w[" cc]"'g}‘ -
'

mEssssemseBn B8 B
Besssssss8a8BeEs 8888 58

EeSsesemassE B

/] \z‘lffulﬁ lier
Hpparg P

Fig.4 Basic cell

Wallace method was used to generate the AWGN, and the
implementation is similar to the implementation in [6]. The
main advantage of the Wallace method compared to Box-
Miller method [7] is in the implementation complexity. The
Wallace method uses no multiplication at all as described in
[6]. For an implementation of an Nx4 system on a Virtex-II
XC2V6000-6 FPGA, 4 samples for the real part and 4 samples
of the imaginary part are needed at a rate of 20MHz. The
overall design needed 2 instants of the AWGN generation
block; one for the real part and one for the imaginary part of
the complex AWGN, each running at speed of 80MHz and

767

generating 4 samples at a rate of 20MHz.

E. MIMO consideration

The basic cell in Fig.4 is used to generate the terms for our
system. The layout of the basic cell that is used for a 1x1 with
33 paths is shown in Fig. 4. It consists of 9 instances of the
basic cell in Fig.3 . For an NxM system, we repeat the same
basic cell NM times.

Fig. 5. Basic 33 paths cell

IV. IMPLEMENTATION RESULTS AND VERIFICATION

The channel emulator has been implemented on hardware on a
Virtex-IT xc2v6000-4, which is a low speed grade Xilinx
FPGA and has been synthesized and simulated on xc2v6000-6
and xc2v8000-5. The resources used to implement the system
in the different FPGAs is shown in Table 2

Table 2. Resources used in the hardware implementation of the
channel emulator

Xc2v 6000-4 6000-6 8000-5
Configuration 3x4 3x4 4x4
Multipliers 108/144 108/144 144/168
Block RAMs 126/144 126/144 162/168
Slices 21k/33k 21k/33k 26k/46k
Max In. Speed 10MHz 20MHz 15MHz

For each basic cell in Fig. 5 we are using 9 BRAMs and 9
Multipliers. Each instance of the AWGN uses 2 BRAMs and
no multipliers. The rest of BRAMs are used for the
communication between the PC and the FPGA. The bandwidth
of the input signal is determined by the speed grade of the
FPGA. The maximum number of TxRx branches is limited by
the BRAM count of the system.

To test and verify our design, we have first verified the
AWGN block. We have transferred 5e5 samples of the
AWGN noise output to the PC and used them as the source of
noise in a BPSK AWGN simulation and compared it with the
results when using floating point AWGN using Box-Miller

method. Fig.6 shows exact matching between both BER
curves. We have also applied the Chi-square test for the
samples and passed the test in [6].

i P Rtk Atid. MALAARL: itk Bt

—5— AWEN from webwe

ATl |

e

|

1
PR

S 1
1
1
1

BER

/

R R T T
i
i

R
i
i

b

1
=|
i |
h
[
b
I
.

gt taial]

Fig.6. BER for AWGN generated using software and hardware

To test the convolution block, we have used sample by sample
matching test. We have sent an OFDM signal on the PC, and
convolve it with the quantized channel on the PC and store the
results, and then we sent the coefficients to the FPGA and
made the convolution there and send the result of the
convolution to the PC. We then compared the results of the
convolution inside the FPGA and on the PC. We have verified
that we got exact matching between the two outputs.

To test the overall system, we have tested the emulator as
hardware in the loop; so the hardware emulator uses quantized
samples of an 802.11n software transmitter as its input, and
sends its output back to PC as an input to the software
receiver. We have tested our in a lot of channels and we got
exact matching each time. For example, in the case of
Rayleigh flat fading channel with MCS6, we got the results in
Fig. 7.

floating point Vs emualtor channel (Rayleigh flat fading)

T T
| —— ideal

! —— Emulator

21 22 23 24 25 26 27 28 29 30 31
SNR

Fig.7 BER using the channel emulator versus using floating
point channel model and noise

768

Another example is testing the channel in a 3 ray channel
model with gains {1,1/2 and 1/4}. We have got the results in
Fig. 7. From the results above, we have an exact matching
between the performance of the channel emulator and the
floating point channel in the SNR under consideration.

ot 4 4 L - - L L
b | 3 24 e x . . | 1]

Fig.7 BER curves in a 3 tap channel

V. CoNCLUSION

A MIMO channel emulator was designed and implemented
on a Virtex-IIl FPGA and integrated with a hardware 802.11n
transmitter and receiver. A mathematical model was used to
verify the matching between the emulated channel models and
the 802.11n channel models. A fast implementation on the
FPGA was used to meet the speed requirements of the 802.11n
standard. A noise generator was used to add AWGN with
different SNRs. We have tested our emulator in a hardware in
the loop setup and we got exact matching between the
emulated system and the floating point system.

VI. REFERENCES

[1] Enhanced Wireless Consortium (EWC), "HT PHY Specification,"
Interoperability PHY Specification v1.01, Oct. 2005

[2]V. Erceg et al., “TGn channel models,” IEEE P802.11, 802.11-
03/940r2, January 2004.

[3] Mehlfuhrer, C.; Rupp, M.; Kaltenberger, F.; Humer, G., ""A scalable
rapid prototyping system for real-time MIMO OFDM transmissions,"
DSPenabledRadio, 2005. The 2nd IEE/EURASIP Conference on (Ref.
No. 2005/11086) , vol., no., pp. 7 pp.-, 19-20 Sept. 2005

[4]Cover, T.M. and Thomas, J.A. 1991. Elements of Information Theory.
John Wiley and Sons

[5] XAPP636 - Optimal Pipelining of the I/O Ports of the Virtex-1I
Multiplier application note

[6] Dong-U Lee; Luk, W.; Villasenor, J.D.; Guanglie Zhang; Leong,
P.H.W., "A hardware Gaussian noise generator using the Wallace
method," Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on , vol.13, no.8, pp. 911-920, Aug. 2005

[7]Lee, D.-U.; Luk, W.; Villasenor, J.D.; Cheung, P.Y.K., "A Gaussian
noise generator for hardware-based simulations," Computers, IEEE
Transactions on , vol.53, no.12, pp. 1523-1534, Dec. 2004

