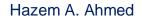
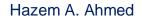


Challenges in RFID

Presented by: Hazem A. Ahmed hazem.a.elsaid@fau.de

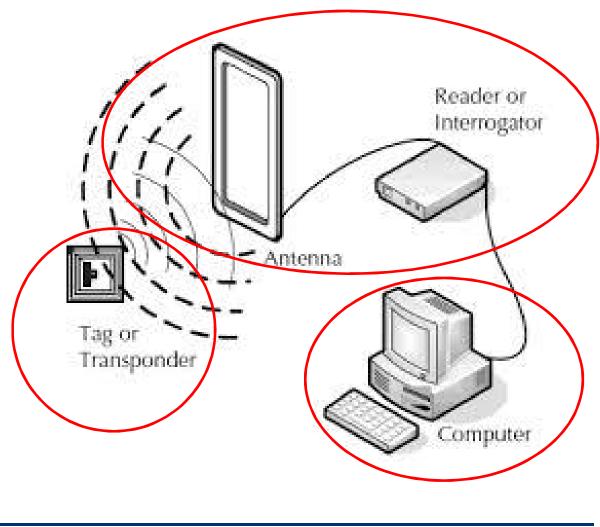


- Introduction
- > RFID Applications
- Collision Problem
- Challenges in RFID

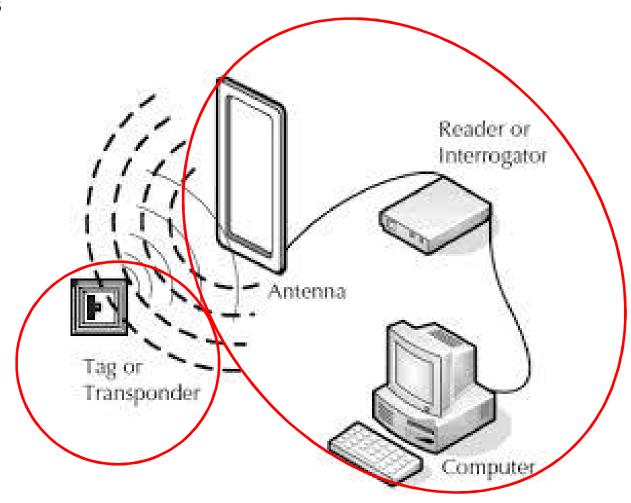


- Introduction
- > RFID Applications
- Collision Problem
- Challenges in RFID

<u>Radio Frequency Identification (RFID)</u> is a wireless data capture technology that can be used to electronically identify and track objects


> RFID versus Barcodes:

	Barcodes	RFID	
	6583 3254		
Advantages	 Smaller Cheaper than RFID Higher accurecy (today) 	 Large reading distance. Non-LOS technology. Automatic reading process. More secure (kill, password) Reusable. Higher reading rate. 	
Disadvantages	 isadvantages Indvidual scanned. Easily damaged Tag collision (dense networks) Reader collision. 		


> RFID Components

RFID Components

> RFID operating frequencies and its specifications

	Low Frequency (LF)	High Frequency (HF)	Ultra High Frequency (UHF)	Microwave
Frequency Range	126-134 KHz	13.56 MHz	860-960 MHz	2.45-5.8 GHz
Read Range	10cm	1m	2-10m	5-100m
Coupling	Magnetic	Magnetic	Electro magnetic	Electro magnetic
Existing standards	11784/85, 14223	18000-3.1, 15693,14443 A, B, and C	EPC C0, C1, C1G2, 18000-6	18000-4

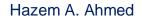
> Operating Frequencies and its Specifications

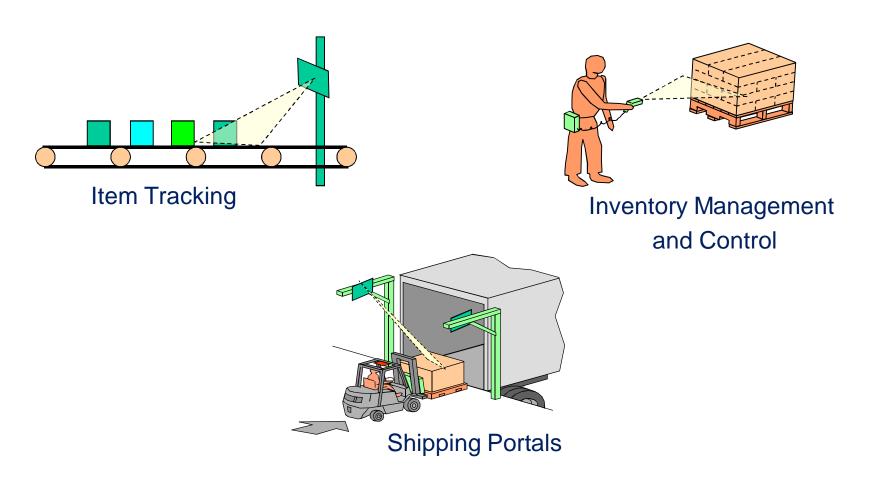
	Low Frequency (LF)	High Frequency (HF)	Ultra High Frequency (UHF)	Microwave
Frequency Range	126-134 KHz	13.56 MHz	860-960 MHz	2.45-5.8 GHz
Read Range	10cm	1m	2-10m	5-100m
Coupling	Magnetic	Magnetic	Electro magnetic	Electro magnetic
Existing standards	11784/85, 14223	18000-3.1, 15693,14443 A, B, and C	EPC C0, C1, C1G2, 18000-6	18000-4

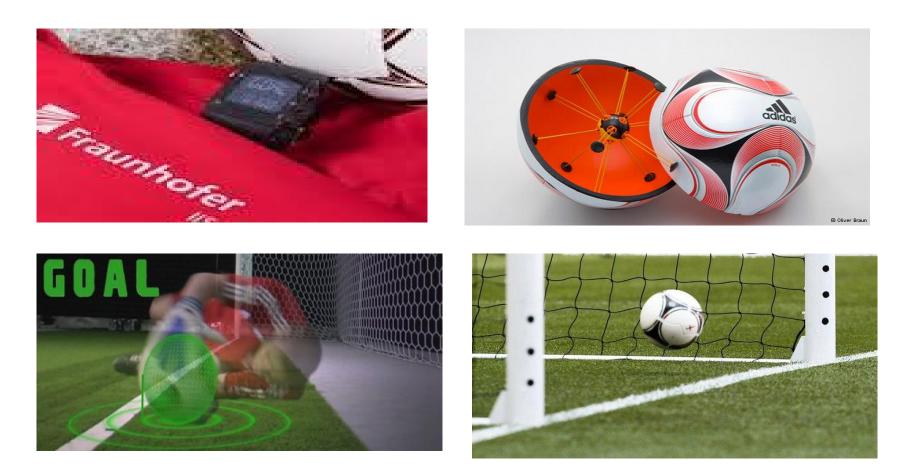
> Types of tags in RFID Systems

	Active Tags	Passive Tags
Tag Power Source	Internal to the tag	Transferred from reader using RF signal
Tag Battery	Yes	No
Avilability of Power	Continious	In reading range
Required Signal strength	Very low	Very high
Reading range	Up to 100 m	Up to 10 m

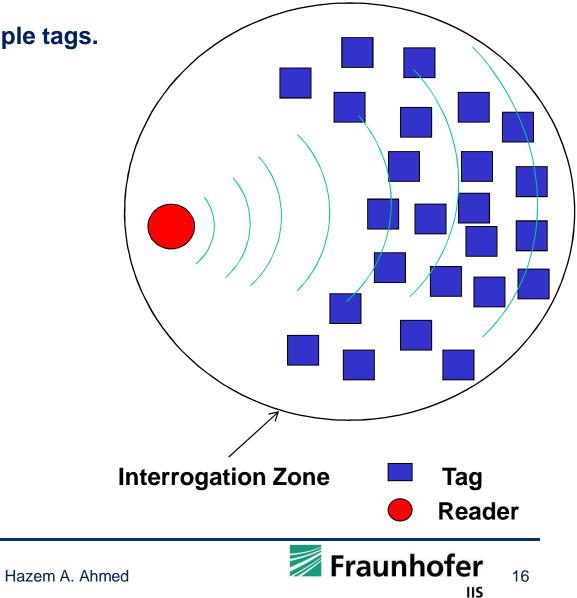
> Types of tags in RFID Systems

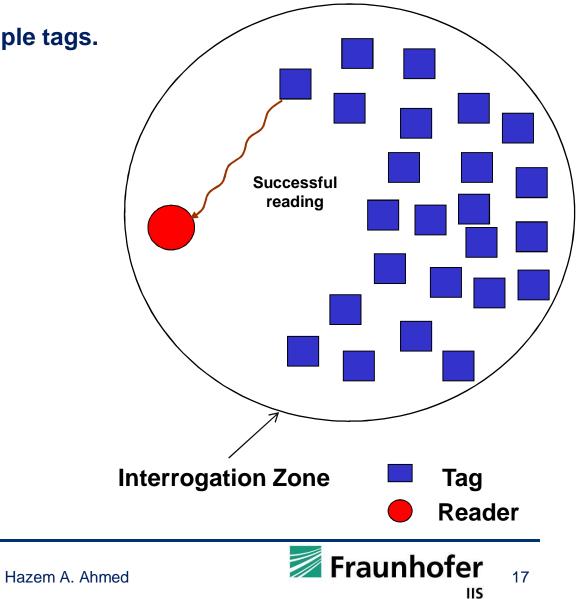

	Active Tags	Passive Tags
Tag Power Source	Internal to the tag	Transferred from reader using RF signal
Tag Battery	Yes	No
Avilability of Power	Continious	In reading range
Required Signal strength	Very low	Very high
Reading range	Up to 100 m	Up to 10 m


- ✓ Introduction
- **RFID Applications**
- Collision Problem
- Challenges in RFID

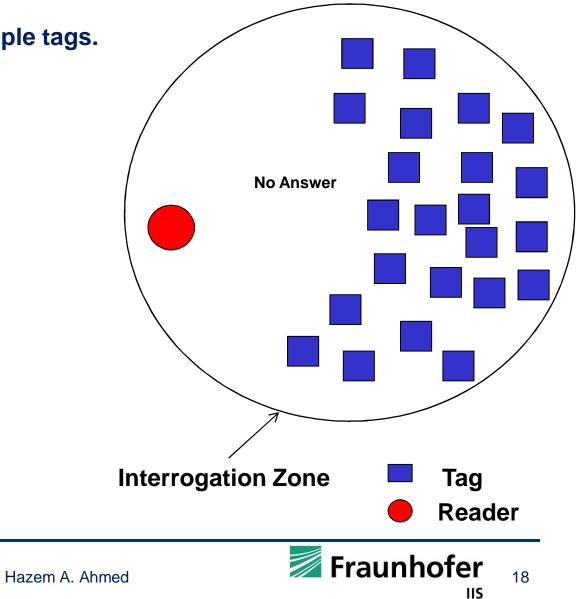

Passive RFID applications

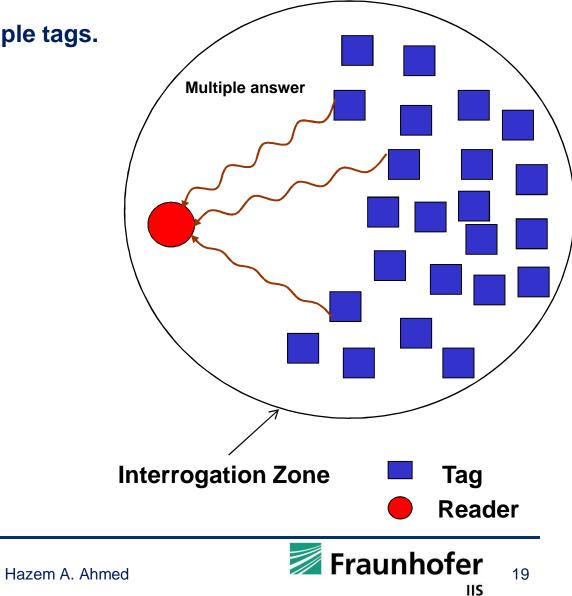
> Active RFID applications


- ✓ Introduction
- ✓ RFID Applications
- Collision Problem
- Challenges in RFID


> Single Reader Vs. multiple tags.

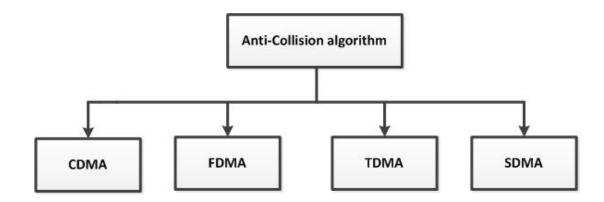
Lehrstuhl für Informationstechnik Schwerpunkt KommunikationsElektronik


> Single Reader Vs. multiple tags.


Ξ

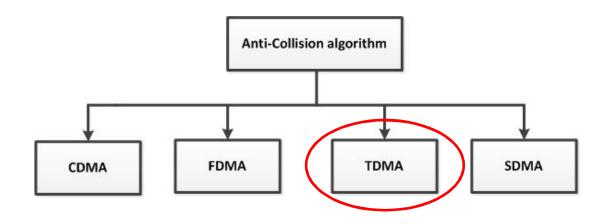
Lehrstuhl für Informationstechnik Schwerpunkt KommunikationsElektronik

> Single Reader Vs. multiple tags.

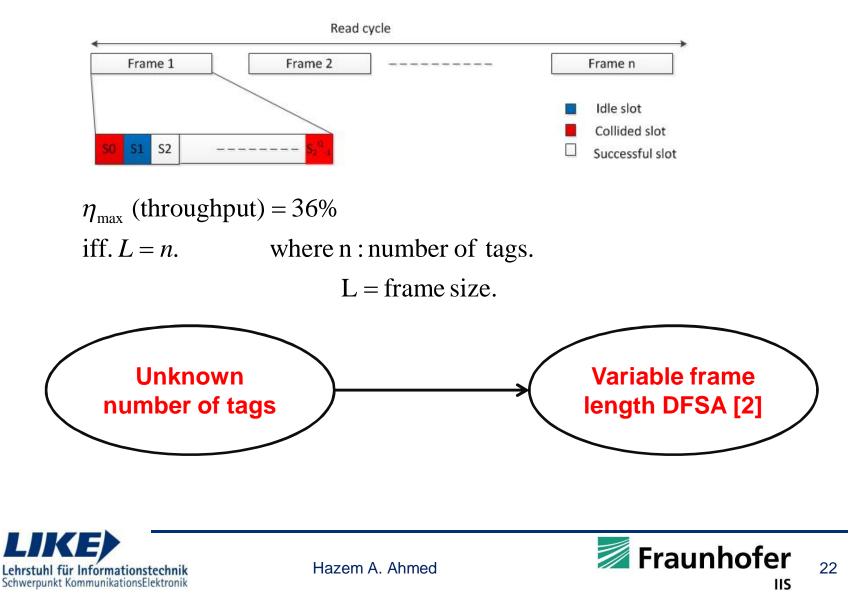

- > Single Reader Vs. multiple tags.
- **Collision Problem.**

Possible Solutions

- <u>Code Division Multiple Access (CDMA)</u>
 - Not used due to its complexity
- <u>Frequency Division Multiple Access (FDMA)</u>
 - Not used due to its complexity
- Space Division Multiple Access (SDMA)
 - Multiple transmit and receive antennas are combined together to form an array that can sense the presence of tags in different locations.
- <u>Time Division Multiple Access (TDMA)</u>.

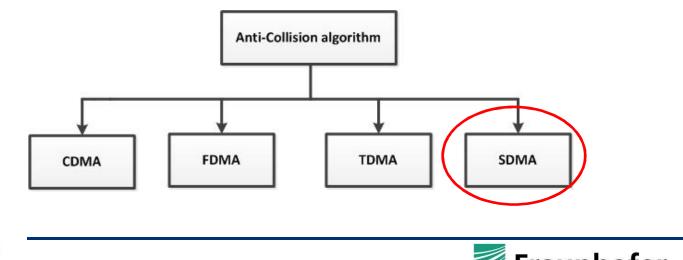


Possible Solutions \succ


- <u>Code Division Multiple Access (CDMA)</u>
 - Not used due to its complexity
- <u>Frequency Division Multiple Access (FDMA)</u>
 - Not used due to its complexity
- Space Division Multiple Access (SDMA) \bullet
 - Multiple transmit and receive antennas are combined together to form an array that can sense the presence of tags in different locations.
- <u>Time Division Multiple Access (TDMA).</u>

> TDMA Solution (Frame Slotted ALOHA [1] "FSA")

> Optimizing Frame length

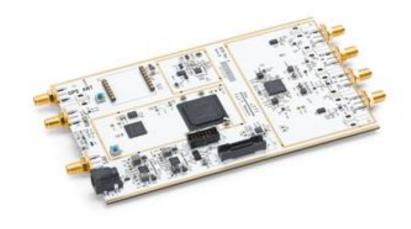

	Without tag estimation	With tag estimation	
Idea	Adjust the frame length by counting the number of collided and idle slots then modify the Q parameter. $Q_{i+1}=Q_i+C(n_c-n_i)$ $L_{i+1}=2^{Qi+1}$	Estimate the number of tags first then calculate the optimum frame length for the next frame. L=2 ^{round(log₂ n_{est})}	
Advantages	Simple.Save the estimation time.	More accurate.Better channel efficiency.	
Disadvantages	Limited Performance.Lower channel efficiency.	 Time consuming. Complex (needs high performance processing). 	
Example algorithms			

Possible Solutions

- <u>Code Division Multiple Access (CDMA)</u>
 - Not used due to its complexity
- <u>Frequency Division Multiple Access (FDMA)</u>
 - Not used due to its complexity
- Space Division Multiple Access (SDMA)
 - Multiple transmit and receive antennas are
 combined together to form an array that can sense
 the presence of tags in different locations.
- <u>Time Division Multiple Access (TDMA)</u>.

> SDMA using Multi-Antennas (MIMO- techniques):

	Maximum Ratio Combining MRC	Equal Gain Combining <mark>EGC</mark>	Selection Combining SC
Idea	 Weight the received branches based on SNR. The output is a weighted sum of all branches 	 Assume equal amplitude from each branch. Just estimate the phase of each branch. 	• Choose the branch with the highest SNR. Start with random branch above threshold, when it is below choose another one.
Adv.	Maximum possible Coding gain	Simpler channel estimation	The coherent sum of all branches is not needed. Simple
Disadv.	Requires knowledge of the time-varying SNR on each branch	Limited in practice to coherent modulations with equal energy symbols	Lower performance


Current Stage

• Design the complete reader on USRP B210 (Single Antenna). https://www.ettus.com/product/details/UB210-KIT

• Scan the channel using IZT R3301 recording system.

http://www.iztlabs.de/uploads/tx_cnizt/Product_Information_IZT_RecPlay_V1 .0_02.pdf

Current Stage

Current Stage

- ✓ Introduction
- ✓ RFID Applications
- ✓ Collision Problem
- Challenges in RFID

Challenges in RFID

Reading accuracy for 3000 tags upto (99.95%).

- Increase tag estimation accuracy.

Resolve tag collision using MIMO techniques:

- Maximum Ratio Combining (MRC).
- Equal Gain Combining (EGC).
- Selection Combining (SC).
- Decrease the price of the tags. \geq
- Model the capture effect in the RFID environment. \succ

- ✓ Introduction
- ✓ RFID Applications
- ✓ Collision Problem
- ✓ Challenges in RFID

Thanks for your attention

References

[1] Z. Bin, M. Kobayashi, and M. Shimizu, "Framed ALOHA for Multiple RFID Objects Identification," in IEICE, vol. E88-B: Oxford University Press, Bunkyo, Tokyo, 113-0023, Japan, 2005, pp. 991-999.

[2] C. Floerkemeier and M. Wille, "Comparison of transmission schemes for framed ALOHA based RFID protocols," presented at IEEE, Symposium on Applications and the Internet Phoenix, AZ, United States, 2005.

[3] EPC Global, "EPC® radio-frequency protocols class-1 generation-2 UHF RFID protocol for communications at 860 MHz–960 MHz version 1.1.0," 2006.

[4] Lee, D., Kim, K., Lee, W., "Q+- Algorithm: An Enhanced RFID Tag Collision Arbitration Algorithm". In Proc. of Ubiquitous Intelligence and Computing. LNCS, vol. 4611, pp. 23-32, 2007.

[5] Daneshmand, M., Wang, C., Sohraby, K., "A New-Count Selection Algorithm for RFID protocol", 2nd International Conference on CHINACOM, pp. 926-930, 2007.

[6] Joe, I., Lee, J., "A Novel Anti-collision Algorithm with Optimal Frame Size for RFID System". In Proc. of 5th International Conference on Software Engineering Research, Management and Applications, pp. 424-428, 2007.

[7] H. Vogt, "Efficient Object Identification with Passive RFID Tags," in Pervasive Computing : First International Conference, vol. Volume 2414/2002. Switzerland: Springer Berlin / Heidelberg, 2002, pp. 98.

[8] Knerr, B.Holzer, M., Angerer, C., Rup. M, "Slot-by-slot Minimum Squared error estimator for tags populations in FSA protocols". In Proc.

of 2nd Int. EURASIP Workshop on RFID, pp. 1-13, Budapest, 2008.

[9] Chen, W-T., "An Accurate Tag Estimate Method for Improving the Performance of an RFID Anti-collision Algorithm Based on Dynamic Frame Length ALOHA", IEEE Trans. on Automation Science and Engineering, 2008.

