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A Unique Beamforming-Based Equilibrium in
Multi-User Random Access SIMO Networks

Omar A. Nasr, Mihaela van der Schaar, and Babak Daneshrad

Abstract—In this letter, we tackle the problem of competitive
single antenna transmitters accessing a multiple antenna access
point using a random access protocol. We show that the access
point can help the system to reach a unique Stackelberg equi-
librium and prevent network collapse due to the selfish nature
of the transmitters.

Index Terms—Stackelberg equilibrium, SIMO networks,
beamforming.

I. INTRODUCTION

WHEN the MAC layer of the WLAN standard was first
designed, both the access point (AP) and the transmit-

ters were assumed to follow the standard’s rules. However, if a
selfish transmitter violates these rules, it will increase its utility
(e.g. network bandwidth) with respect to the other users. A
game theoretic analysis for the problem has been introduced
in several papers. An equilibrium can be reached if the AP
can force a pricing technique upon the transmitters [1] or if
different selfish transmitters can bargain to reach an agreement
[2]. The drawbacks of these techniques are described in [3],
where both Nash equilibrium and Stackelberg equilibrium
have been studied. In Nash equilibrium, no user can gain
by changing his own strategy unilaterally. In Stackelberg
equilibrium, unlike the Nash equilibrium, one player leads
the game. The leader makes a move first and then the rest
of the players (which are referred to as the followers) try to
reach a Nash equilibrium based on the leader’s move. In [3],
a network manager acts as a game leader, which enables the
selfish users to reach a Stackelberg equilibrium. There are
three major drawbacks to this technique: (1) the game leader
will punish the whole network if any transmitter floods the
network with his packets, (2) the Stackelberg equilibrium is
not unique, and (3) the manager cannot force the users to
reach the required equilibrium if they have large deviations.
In all previous techniques, the AP and the transmitters are
assumed to be single antenna devices. Although several papers
have considered the multiple access problem when the AP has
multiple antennas (e.g [4]), none of them has addressed the
practical case of contention based protocols, where the AP
can receive only one packet at a time. That is important since
the new generation of WLANs will be based on the 802.11n
multiple antenna standard. The new standard’s MAC protocol
will be a contention based protocol and its multiple antennas
capability allows directional signal transmission and reception
through beamforming.
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Fig. 1. Basic system setup. (i) AP punishes one transmitter, (ii) AP enables
reception from both transmitters.

In this letter, we use game theory to show the existence
and uniqueness of a Stackelberg equilibrium when different
selfish single antenna transmitters access the same multiple
antenna AP. A simple contention based multiple access pro-
tocol similar to the one used in [3] is used in this letter.
Each transmitter tries to maximize his own utility, which is
a weighted difference between his achievable throughput and
the cost of a successful transmission. Meanwhile, the AP tries
to force the transmitters to access the channel with certain
probabilities that maximize the social welfare of the network.
The AP is the game leader, but unlike [3], it only punishes the
deviating transmitters by using its multiple antennas to block
reception from these transmitters for some time. This setup is
the major contribution in this letter, since it enables the game
to reach a unique Stackelberg equilibrium, in contrast with the
multiple equilibrium points reached in [3]. The simplicity of
this algorithm makes it easy to implement in practice. Without
loss of generality, we will consider two transmitters that try
to access one AP. However, the methodology followed in this
letter can be followed for more than two transmitters.

II. PROBLEM FORMULATION

The system considered in our work is shown in Fig. 1. Two
transmitters access the same AP in a time slotted channel.
Similar to [3], transmitters are sending their packets during
time slots of the same duration. Each transmitter will retrans-
mit his packet until it is correctly received at the receiver. We
will consider two scenarios:

A. Passive AP

In this scenario, the receiver does not use its multiple
antenna capability and enables reception of all packets from
all users all the time. A packet is received successfully if
and only if only one user transmits his packet while the
other user does not transmit. The transmitters are competitive;
they try to maximize their own utilities in a non-cooperative
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fashion. The system is modeled as a non-cooperative game
⟨𝐾,𝑃𝑖, 𝑢𝑖⟩, where 𝐾 = 1, 2 is the set of players. The strategy
of transmitter 𝑖 is 𝑝𝑖, is the probability that transmitter 𝑖
transmits his packet during a time slot. 𝑃𝑖 = [0, 1] is the
strategy space for transmitter 𝑖 . The utility of transmitter 𝑖 is
defined as

𝑢𝑖(p) = 𝛼𝑖𝑟𝑖𝑝𝑖(1− 𝑝−𝑖)+(1−𝛼𝑖) (− (1/(1− 𝑝−𝑖))) 𝑟𝑖, (1)

where p = [𝑝1 𝑝2], 𝑝−𝑖 is the probability of transmission of
the other transmitter. The first part of the utility function is
proportional to the achievable throughput when the transmit-
ters play the game given certain strategy profile. Transmitter
𝑖 can achieve, on average, 𝑝𝑖(1 − 𝑝−𝑖) packets per time slot.
𝑟𝑖 is the number of bits per packet for transmitter 𝑖, which
is proportional to its physical layer throughput and the time
slot duration. The second part of the utility function is the
cost of a successfully received packet for transmitter 𝑖. The
cost of a packet transmission is proportional to the number
of bits per packet 𝑟𝑖. We will assume a unit cost per bit.
Consequently, the cost of a packet transmission is 𝑟𝑖. The
probability of a successful packet transmission for transmitter
𝑖 when he transmits his packets is (1 − 𝑝−𝑖). Therefore, the
average number of transmissions necessary for a packet to be
successfully received at the receiver is 1/(1 − 𝑝−𝑖) [5]. The
cost of a successful transmission will be between 𝑟𝑖, when
the other user does not send at all; and ∞ when the other
user is sending all the time. To minimize the cost, we need to
minimize 1/(1 − 𝑝−𝑖) , which corresponds to the maximum
of −1/(1 − 𝑝−𝑖). The two parts of the utility function are
linearly combined using 𝛼𝑖. The parameter 𝛼𝑖 is used to scale
the relative importance of throughput maximization and the
cost of a successfully received packet, 0 < 𝛼𝑖 < 1. When
𝛼𝑖 → 1, the utilities will be similar to [3]; while if 𝛼𝑖 → 0,
the transmitters will try to minimize the cost of successful
packet transmissions.

B. Active AP

In this scenario, the AP changes its radiation pattern by
changing its antenna weights with time to enable reception
from any transmitter or block him. We assume perfect knowl-
edge of the channel vectors between the transmitters and the
AP (𝒉1,𝒉2). Fig. 1 shows two possible radiation patterns
during certain time slot. The radiation pattern in Fig. 1(i) has a
null in the direction of the first transmitter to block him, and a
peak at the direction of the second one to receive his packets.
This happens when the AP adjusts its antenna weights vector
𝒘𝑨𝑷 to have 𝒘𝑨𝑷𝒉𝑇

1 = 0 and 𝒘𝑨𝑷𝒉𝑇
2 = 1, where 𝒉𝑇

𝒊

is the transposition of 𝒉𝒊 [7].This will be a punishment for
the first transmitter if he tries to flood the network with his
packets. This setup has been used in multiple antenna MAC
protocols [7]. Given this, we will prove in section IV that the
AP can play a game with the transmitters and force them to
reach target transmission probabilities that maximizes some
social welfare criteria for 0 < 𝑝𝑖 < 1. At each time slot, the
AP can block reception from transmitter 𝑖 with probability 𝑔𝑖.
The AP will enable reception from both transmitters if they
transmit with 𝒑 = 𝒑, as in Fig. 1 (ii). In this case, the AP
adjusts 𝒘𝑨𝑷 to have 𝒘𝑨𝑷𝒉𝑇

1 = 1 and 𝒘𝑨𝑷𝒉𝑇
2 = 1. The

receiver successfully receives a packet from transmitter 𝑖 if all
the following three conditions are satisfied: (1) the transmitter
transmits his packet, (2) the AP’s radiation pattern is adjusted
to receive that packet, and (3) the AP disables reception from
the other transmitter or the other transmitter does not transmit
any packet. Transmitter 𝑖’s utility is

𝑢𝑖(𝑔𝑖, 𝑔−𝑖, p) = 𝛼𝑖𝑟𝑖 ((1− 𝑔𝑖)𝑝𝑖(1 − (1− 𝑔−𝑖)𝑝−𝑖))

−
(

(1− 𝛼𝑖)𝑟𝑖
(1− 𝑔𝑖)(1− (1− 𝑔−𝑖)𝑝−𝑖)

)
(2)

The AP’s utility function has a maximum at 𝒑 = 𝒑 and any
deviation from the target probabilities decreases it. The AP’s
utility function is:

𝑢𝐴𝑃 (𝐺, p) = − (
(𝑝1 − 𝑝1)

2 + (𝑝2 − 𝑝2)
2
)
. (3)

Note that the transmission probabilities 𝒑 depend on the
blocking probability vector 𝐺 = [𝑔1 𝑔2], as will be shown in
section IV.

III. NASH EQUILIBRIUM

When the AP takes a passive role, the system reaches
Nash equilibrium. We will prove that the players will face
the tragedy of commons.

Proposition 1: A strategy profile 𝒑 is a Nash equilibrium
when at least one 𝑝𝑖 = 1.

Proof : The utility of user 𝑖 when the AP is passive is shown
in (1). First, we consider the case where the probability of
transmission of the other user is 𝑝−𝑖 < 1 → (1−𝑝−𝑖) > 0. The
first part of (1) will be proportional to user 𝑖’s transmission
probability. The second part of (1) will not depend on 𝑝𝑖. As
a result, the utility is maximized when 𝑝𝑖 = 1. Second, when
𝑝−𝑖 = 1 → (1 − 𝑝−𝑖) = 0, the utility function of user 𝑖 will
be −∞ for any value of 𝑝𝑖. So the transmission probability
for user 𝑖 is indifferent between [0,1]. Therefore, at least one
of p the elements of has to be equal to 1 to have a Nash
equilibrium.

The most probable Nash equilibrium to be played is 𝑝𝑖 = 1
for both transmitters because it maximizes the utility for user
𝑖 for any value of 𝑝−𝑖 . This is expected because the users
are selfish and there is neither coordination nor an external
manager to the network.

IV. STACKELBERG EQUILIBRIUM

A Stackelberg equilibrium can be reached when the AP
uses its multi-antenna capability. We will first define the
relative deviation of user 𝑖 from the target probability as:

ℎ𝑖 =
𝑝𝑖
𝑝𝑖

− 1. (4)

The values of the blocking probabilities will be determined
by the relative deviations of the individual users from 𝒑

𝑔𝑖 = min{max(ℎ𝑖, 0), 1}. (5)

When user 𝑖 sends his packets with 𝑝𝑖 , the AP will not block
any of his packets because ℎ𝑖 = 0. Then, it becomes in the
self-interest of the user to transmit with the target probabilities
of the AP, as will be shown in Proposition 2.
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Fig. 2. Users’ feasible utilities for the passive and active AP cases.

Proposition 2: The new multiple access game with the AP
as a game leader has a unique Stackelberg equilibrium at 𝒑.

Proof : First, we will prove that 𝒑 = 𝒑 is a Stackelberg
equilibrium strategy. At the Stackelberg equilibrium, the users
should not have any incentive for individual deviation from
the equilibrium point. At equilibrium, 𝑝−𝑖 = ˜𝑝−𝑖, and conse-
quently, from (4) and (5), 𝑔−𝑖 = 0. For ease of notation, we
set 𝑎𝑖 = 𝛼𝑖𝑟𝑖 and 𝑏𝑖 = (1 − 𝛼𝑖)𝑟𝑖. Equation (2) is simplified
to

𝑢𝑖(𝑔𝑖, 𝑝𝑖) = 𝑎𝑖𝑝𝑖(1− 𝑔𝑖)(1− ˜𝑝−𝑖)− 𝑏𝑖/ ((1− 𝑔𝑖)(1 − ˜𝑝−𝑖)) .
(6)

Three ranges are possible for user 𝑖’s transmission probability:
1) 𝑝𝑖 ≥ 2𝑝𝑖: when transmitter 𝑖 sends with very high

transmission probability, his relative deviation will be
greater than 1. The AP will block him by setting 𝑔𝑖 = 1,
and from (6), his utility will be −∞.

2) 𝑝𝑖 ≤ 𝑝𝑖: when transmitter 𝑖 sends with probability less
than the target probability, his relative deviation will
be less than 0. The AP will enable reception from him
all the time by setting 𝑔𝑖 = 0. The utility of user 𝑖 will be

𝑢𝑖(𝑝𝑖) = 𝑎𝑖𝑝𝑖(1− ˜𝑝−𝑖)− 𝑏𝑖/(1− ˜𝑝−𝑖). (7)

Thus, independent of the value of the target transmission
probability of the other user, user 𝑖 will always try to
increase his transmission probability in that range. The
maximum value of 𝑝𝑖 in this range is 𝑝𝑖.

3) 𝑝𝑖 ≤ 𝑝𝑖 ≤ 2𝑝𝑖 : when the transmitter slightly increases
his transmission probability, the AP blocks some of
his packets to force him to decrease his transmission
probability. In this range, his relative deviation will be
0 ≤ ℎ𝑖 ≤ 1, which will lead to 𝑔𝑖 = ℎ𝑖 = (𝑝𝑖/𝑝𝑖) − 1.
Equation (6) can be written as

𝑢𝑖(𝑝𝑖) = 𝑎𝑖(2−𝑝𝑖
𝑝𝑖
)𝑝𝑖(1− ˜𝑝−𝑖)+

( −𝑏𝑖
(2 − 𝑝𝑖/𝑝𝑖)(1 − ˜𝑝−𝑖)

)
.

(8)
The first term is a concave function in 𝑝𝑖 with a peak
at 𝑝𝑖, and the second term is a decreasing function of
𝑝𝑖 in the range between 𝑝𝑖 and 2𝑝𝑖. Its maximum value
is also at 𝑝𝑖.

From the previous discussion, user 𝑖 has no incentive to
deviate from 𝑝𝑖 which proves the existence of an equilibrium

at 𝒑. To prove the uniqueness of the equilibrium, we can
write (2) as

𝑢𝑖(𝑔𝑖, 𝑝𝑖) = 𝑎𝑖𝑝𝑖(1− 𝑔𝑖)𝛽−𝑖 +

( −𝑏𝑖
((1− 𝑔𝑖)𝛽−𝑖)

)
, (9)

where 𝛽−𝑖 = 1−(1−𝑔−𝑖)𝑝−𝑖 is a factor that does not depend
on the response of user 𝑖 or the AP blocking probability for
user 𝑖. Equation (9) has the same form as (6), if we change
𝛽−𝑖 to (2 − ˜𝑝−𝑖). Note that 0 < 𝛽−𝑖 ≤ 1 for 0 < ˜𝑝−𝑖 < 1
and any value of 0 ≤ 𝑝−𝑖 ≤ 1. Following the same procedure
as in the first part of the proof, we find that the maximum of
(6) is only at 𝑝𝑖 = 𝑝𝑖 for all values of 0 < 𝛽−𝑖 ≤ 1. This
completes the proof.

Fig. 2 shows the utilities of two 802.11a single antenna
transmitters when they access an 802.11n multiple antenna AP
in the legacy mode [6]. MCS0, which has 6 Mbps throughput,
is transmitted from both transmitters and the time slot duration
is 1 ms. Therefore, the number of bits per time slot 𝑟𝑖 = 6000.
A higher preference is assumed for user throughput over the
cost per successful transmission (𝛼𝑖 = 0.95). Without the AP
as a game leader, at least the utility of one of the transmitters
will be −∞ and the most probable Nash equilibrium will
have −∞ utility for both transmitters. At this point, no packet
is received correctly by the AP. When the AP acts as a
game leader, the possible values of utilities will span a larger
space, as shown in Fig. 2. As an example of the Stackelberg
equilibrium, when the AP sets the target probabilities to be
𝒑=(0.45,0.38), the transmitters reach a Stackelberg equilibrium
by sending with 𝒑 = 𝒑. In this case, the transmitters’ payoffs
will be 𝒖=(185.5,106.6), which is on the Pareto boundary as
shown in Fig. 2.

V. CONCLUSION

We have introduced a novel game theoretic framework to
analyze the interaction between wireless transmitters and a
multiple antenna access point. We have introduced a blocking
probability vector to punish deviating users. This allows the
system to reach a unique Stackelberg equilibrium at a certain
target transmission probabilities set by the access point.
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