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A B S T R A C T

In this paper, we develop an IoT-based monitoring system for precision agriculture applications such as epidemic
disease control. Such an agricultural monitoring system provides environmental monitoring services that
maintain the crop growing environment in an optimal status and early predicts the conditions that lead to
epidemic disease outbreak. The agricultural monitoring system provides a service to store the environmental and
soil information collected from a wireless sensor network installed in the planted area in a database.
Furthermore, it allows users to monitor the environmental information about the planted crops in real-time
through any Internet-enabled devices. We develop artificial intelligence and prediction algorithms to realize an
expert system that allows the system to emulate the decision-making ability of a human expert regarding the
diseases and issue warning messages to the users before the outbreak of the disease. Field experiments showed
that the proposed system reduces the number of chemical applications, and hence, promotes agriculture pro-
ducts with no (or minimal) chemicals residues and high-quality crops. This platform is designed to be generic
enough to be used with multiple plant diseases where the software architecture can handle different plant
disease models or other precision agriculture applications.

1. Introduction

Precision Agriculture (PA) has recently become the main trend in
global agriculture. PA emerged in the late 1980’s with the matching of
grid-based sampling of soil chemical properties with newly developed
variable-rate application (VRA) equipment for fertilizers (United
Nations International Strategy for Disaster Reduction (UNISDR), 2008;
Rogers and Tsirkunov, 2011; International Federation of Red Cross and
Red Crescent Societies, 2008; Victoria, 2008; Shaw et al., 2008). PA
aims at optimizing the production efficiency and uniformity across the
field, optimizing the quality of the crops, minimizing the environmental
impact, and minimizing the risk both from income and environmental
points of view. One of the main applications of PA that is based on
environmental auditing is epidemic disease control. Epidemic diseases
have severe impacts on the crop production. The key player in epidemic
diseases is the climate changes that occur unexpectedly in time and
space, which make their impact more severe (Trout et al., 1997; Ogalo
et al., 2008). Typically, farmers are not well prepared to react to such
diseases which give the diseases time to spread wider and become more
destructive (Campbell et al., 2007; HFP Futures Group Making Space

for Science - Humanitarian Policy Dialogue, 2011; Intergovernmental
Panel on Climate Change (IPCC), 2011). Furthermore, when the crop is
frequently affected by the same disease, the farmers tend to increase the
doze of the chemical fungicides. Consequently, the level of the chemical
residues in the produced crop increases which not only results in
harmful environmental effects, but also increases the cost due to the use
of large doses of fungicides.

The Internet of Things (IoT) has recently been considered the state-
of-the-art in implementing distributed monitoring and control systems
in various application areas. In this paper, we build an IoT-based
monitoring system that uses Wireless Sensor Network (WSN) tech-
nology and is accessible through the Internet for precision agriculture
applications such as epidemic disease control. Our IoT-based plant
disease management system aims to achieve sustainable agricultural
development. This system is generic enough to be used with multiple
plant diseases where the software architecture can handle different
plant disease models. In addition, the used sensors and developed ex-
pert system software are flexible to be used with different plants in the
monitored fields or other precision agriculture applications. While our
platform is based on a standard wireless communication layer, it
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involves a careful system design, since the platform requirements are
very strict.

Many research works were dedicated to implement complete plat-
forms for precision agriculture using IoT (see (Jawad et al., 2017) and
(Khanna and Kaur, 2019) for detailed literature reviews). Several WSN-
based agriculture monitoring and control systems were proposed in the
literature for either farms (Hwang et al., 2010; Wenting et al., 2014;
Shieh et al., 2011; Navarro-Hellín et al., 2015; Wu et al., 2013; Baggio,
2005) or greenhouses (Liu and Ying, 2003; Zhou et al., 2007; Liu et al.,
2007; Ruiz-Garcia et al., 2008; Morais et al., 2008; Manijeh and Amene,
2012). However, no intelligence nor Internet connectivity were im-
plemented in such systems. As precision farming is nowadays popular
in the industrialized countries, it is progressing in many other countries
and applied research is conducted in countries like India (Gangwar
et al., 2019), Brazil (Maia et al., 2017), Uzbekistan (Muzafarov and
Eshmuradov, 2019) and Thailand (Muangprathub et al., 2019) among
other countries. In (Gangwar et al., 2019), a low-cost agro-ecological
resource management system is presented in the Indian context. On the
other hand, a field trial in Sao Paulo, Brazil was presented in (Maia
et al., 2017) to test a designed real-time, in-situ agricultural IoT device.
The device was designed to monitor the soil and the environment. A
watering agricultural crops system based on IoT was implemented in
Makhamtia District, Suratthani Province, Thailand (Muangprathub
et al., 2019). Furthermore, Many IoT systems were suggested to prevent
plant epidemic diseases while minimizing cost and environment impact
by predicting the required quantity of fungicide to apply based on
weather (Foughali et al., 2018; Hadders, 1996, Jaunatre and Gaucher,
2011; Leonard et al., 2001; Spits et al., 2003; Hossam et al., 2018;
Ibrahim et al., 2019; Khattab et al., 2016).

The main objective of this work is designing, validating and im-
plementing an IoT-based monitoring system with a custom agro-
weather station (hardware and software) optimized for early warning
issuance for plant disease epidemics (especially those encountered by
major crops in Egypt, where this research is conducted). The con-
tributions of the paper are as follows:

• The hardware design and implementation of an agro-weather sta-
tion built as part of the integrated monitoring system for plant
disease forecasting. The developed agro-weather station is equipped
with six sensors to measure the air temperature and humidity, soil
temperature and humidity, leaf wetness, rain rate, wind speed and
direction and solar radiation intensity. The agro-weather station
senses these quantities at a programmable period and sends the
sensors’ readings as an SMS message to programmable mobile
numbers. The agro-weather station is solar-powered and is carefully
designed for low power operation. Even though cost optimization
was not a design objective, our agro-weather station costs about one

third the cost of commercial agro-weather stations.

• The design of a software module that is independent of the types,
numbers, and accuracies of the sensors used in the agro-weather
station. The developed software provides a reasonable estimate of
actual weather conditions, given the sensor data from the agro-
weather station and information about the accuracies of the sensors.
Furthermore, the software is designed to be independent of any
particular disease model. The software module is composed of two
components: An Artificial Intelligence (AI) component and a
Graphical User Interface (GUI) component. The AI component pro-
cesses and analyzes the sensors’ readings and consequently suggests
specific measures that can be taken to protect the crops. Any in-
dividual concerned with the generated decisions by the AI module
(agricultural engineers, farmers, …, etc.) will access the software
module through the GUI web interface.

• We conduct an extensive set of field and laboratory experiments to
develop the disease models and then validate the performance of the
developed IoT system. We target two crops from the Solanaceae
family which are tomato and potato. Our work focuses on three
diseases that represent the major threats facing the target crops.
These diseases are early blight, late blight and powdery mildew.
Each one of these diseases has similar effects on both potato and
tomato. This would also facilitate building the software programs
that will handle different diseases for both crops.

2. Materials and methods

The proposed monitoring system for early plant disease forecast
depicted in Fig. 1 is composed of three main modules: a hardware
module, a software module, and an agriculture module. The hardware
module is mainly responsible for collecting information from the out-
doors environment, then transmitting the collected data using a com-
munication subsystem. The software module has four main functions.
(1) It collects, processes, stores, and presents the data provided by the
sensors of the different weather stations. (2) It provides a user-friendly
interface to the system. (3) It represents and maintains the disease
models provided by the agriculture module. (4) It suggests suitable
preventive actions (applying pesticides, for instance) by analyzing the
collected data in light of the disease models. Finally, the agriculture
module is responsible for developing the disease models in different
weather conditions based on the collected data. Furthermore, it vali-
dates the developed models using extensive field experiments. In this
Section, we discuss the research methods used in the hardware and
software modules. In the next Section, we elaborate on the experiments
conducted within the agriculture module.

The system design follows a layered approach as (Hossam et al.,
2018; Ibrahim et al., 2019; Khattab et al., 2016; Yelamarthi et al.,

Fig. 1. The proposed monitoring system for early plant disease forecast.
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2016). More specifically, the system architecture is composed of 3
layers: a front-end layer, a middle layer, and a back-end layer. The three
modules of the system are mapped to the architecture as follows. The
front-end layer contains the hardware modules represented by the agro-
weather station and the attached sensors and other physical devices
that collect information from the outdoors environment. The middle
layer supports the communications between the front-end and the back-
end layer. Furthermore, the middle layer stores and converts the in-
formation collected from the sensors into a database in the back-end
layer. Meanwhile, the software module and the agriculture module are
implemented in the back-end layer which is a server that resides in our
research lab. The back-end layer contains the developed software and
artificial intelligence tools that predict different diseases based on the
received data and interface the system to the human users.

It is worth mentioning that such a monitoring system is not limited
to disease control but can also be used in other precision agriculture
applications like pest control and greenhouses.

2.1. System design methodology

First, we discuss the design methodology of the different layers of
the proposed system.

2.1.1. Front-end layer design
The front-end layer of our monitoring system is the hardware

module, also called the agro-weather station, which is designed to
collect the measurements of eleven environmental attributes (using six
sensing devices) and send them wirelessly to a remote host (i.e. the
back-end) for analysis. The environmental sensors measure the fol-
lowing physical quantities: air Temperature, air humidity, soil tem-
perature, soil volumetric water content, soil electrical conductivity, soil
relative dielectric permittivity, wind speed, wind direction, rain level,
infra-red and visible solar radiation, and leaf wetness. These physical
attributes are needed for the development of the disease models in the
agriculture module. The environmental sensors are interfaced to a mi-
crocontroller which collects the measurements from sensors and serially
sends them to the cellular transceiver (the middle layer), which in turn
sends them as a single SMS to the back-end host. The station is solar
powered in daytime and battery powered at night. The battery capacity
is chosen such that it can power up the station solely for not less than 2
successive days. This is possible because the system is designed to
consume very low power. The overall block diagram of the proposed
agro-weather station is shown in Fig. 2. The microcontroller also sends
status information about the batteries and sensors health.

The specifications of the developed agro-weather station are divided
into general specifications and environmental sensors specifications.
The general specifications of the agro-weather station cover the power
supply, flexibility, mounting and communication method with the
back-end (which is a component of the middle layer), while the en-
vironmental sensors specifications cover the specifications of the sen-
sors only. The specifications of these environmental sensors are and
summarized in Table 1.

The general specifications of the agro-weather station are sum-
marized as follows:

Power Supply: The station is solar powered. The battery is able to
supply (in the absence of solar energy) the station for at least two
consecutive days.

Flexibility: The station is upgradeable. It should be compatible with
sensors of different interfaces such that it would be easy to replace
current sensors with higher specification ones in the future.

Mounting: Rugged hardware mounting is required (e.g. galvanized
steel tower).

2.1.2. Middle layer design
The middle layer wirelessly transfers the collected sensors’ data to

the back-end layer where it will be stored and processed for decision

making. Wireless transmission reduces and simplifies wiring, allows
deploying the sensors at remote, dangerous, and hazardous location,
easy installation, and integration for extremely low cost, small size and
low power requirement and mobility. Different wireless communication
standards can be used for our system such as Cellular Communications
(GSM/GRPS, 3G or 4G), IEEE 802.11 (WiFi), IEEE 802.15.4 (ZigBee),
and narrow-band IoT (NB-IoT) which are widely used for measurement
and automation applications. Since our system spans a wide agri-
cultural area, we use cellular services due to its relatively long-range
wireless communication and its robust communication links. More
specifically, the communication between the agro-weather station and
the back-end host is accomplished using a SIM card. The agro-weather
station sends the sensors’ measurements and system status information
(such as the batteries and sensors health). It also receives commands
(e.g., control and reset) or controlling actions from the back-end host,
and accordingly takes the appropriate action(s) such as issuing a
warning. A cellular transceiver module is interfaced to the micro-
controller of the agro-weather station to achieve such a bi-directional
communication link.

Another important component of the middle layer is data logging.
The data logging component is the interface between the software
modules implemented on the back-end layer and front-end layer re-
presented by the agro-weather station. Since the agro-weather station
sends the collected sensors’ data wirelessly to a file, the data logging
module only needs to parse that file and extract relevant data.

2.1.3. Back-end layer design
One of the targets of our work is to develop an expert system which is

an intelligent software system that is capable of automatically sug-
gesting whether the farmer should apply fungicide or not, based on
information from the agro-weather station. The system should also be
flexible and scalable to allow for adding new models or new theories
captured from real-life experience. The ability to easily add more
models in the future for more diseases and customizing the system is
emphasized.

The back-end layer hosts the software module that is composed of
software tools that implement the expert system and make it accessible
to authorized humans connected to the Internet. The software design
process is demarcated by the four functions listed at the beginning of
this Section and guided by the following principles:

P1. The design of the software is to be independent of the types,
numbers, and accuracies of the sensors used in the agro-weather
station.
P2. The software is to provide a reasonable estimate of actual
weather conditions, given sensor data from the agro-weather station
and information about the accuracies of the sensors.
P3. The software design is to be independent of any particular dis-
ease model.

Fig. 1 depicts the main components in the design of the software
module. It operates on the data logged by the middle layer. The ap-
plication interface is a graphical user-interface (GUI), through which
users may interact with the system. The GUI allows the users to inspect
sensor data, set system parameters describing the sensors connected to
the system, and inspect and modify the disease models.

The artificial intelligence (AI) module is the heart of the expert
system. It is made up of a GLAIR (Grounded Layered Architecture with
Integrated Reasoning) agent. The GLAIR agent is an intelligent agent
based on the GLAIR cognitive architecture (Shapiro and Ismail, 2003;
Shapiro and Bona, 2010). This agent is responsible for collecting the
sensors’ data from the agro-weather station (through the data logger),
fusing the data over time and space to achieve a reasonable estimate of
the actual weather conditions, and representing said information as
statements of a formal language over which logical reasoning can take
place. With a representation of the disease model in the same formal
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language, the agent reasons about preventive actions to be taken should
the need arises.

We claim that our design fairly meets the three design principles P1,
P2, and P3 listed above. P1 is met by the generic implementation of the
GLAIR agent which only assumes the existence of different sensor types,
with each type instantiated by some number of actual sensors each with
some accuracy. Through the GUI, users may define different assortments
of sensors (stations) which the agent can maintain and reason about
separately. P2 is observed by the GLAIR agent’s employing sensor data
fusion techniques (Khaleghi et al., 2013) to arrive at relatively accurate
information about weather conditions given noisy sensor data trans-
ferred through possibly lossy wireless channels. P3 is met by choosing
to represent all information and disease models declaratively as a set of
logical sentences in the knowledge base of the GLAIR agent. This choice
allows us to painlessly revise the model if needed using the GUI
(Alchourrón et al., 1985). In what follows, we explain the GLAIR cog-
nitive architecture in detail.

GLAIR (Grounded Layered Architecture with Integrated Reasoning)
is a multi-layered cognitive architecture for embodied agents operating

in real, virtual, or simulated environments containing other agents
(Shapiro and Ismail, 2003; Shapiro and Bona, 2010). The highest layer
of the GLAIR architecture is called the Knowledge Layer (KL). The KL
contains the beliefs of the agent, and is responsible for conscious rea-
soning, planning, and acting. At the other end, the lowest layer of the
architecture is the Sensori-Actuator Layer (SAL). The SAL contains all the
controllers for the sensors and actuators of the hardware robot. Be-
tween KL and the SAL, there is an intermediate layer: the Percepto-Motor
Layer (PML). The PML is responsible for all the necessary communica-
tion between the KL and the SAL (see Fig. 3).

The KL is the layer where all conscious reasoning, planning and
action selection takes place. It contains all the beliefs of the agent in-
cluding short– and long–term memory, quantified and conditional be-
liefs used in the reasoning process, plans for executing complex actions
and achieving goals, beliefs about the preconditions and effects of the
different actions, and policies about conditions under which actions
should be performed. The KL is implemented using the Semantic
Network Processing System (SNePS) for representation, reasoning and
acting (Shapiro and Group, 2010).

The PML can be thought of as three sub-layers: (1) PMLa which is
responsible for grounding the KL symbols into perceptual structures and
subconscious actions. It also provides the agent with a sense of situat-
edness (such as the sense of “I”, “You”, and “Now”) by maintaining a set
of deictic registers; (2) PMLb that handles the communication between
PMLa and PMLc; and (3) PMLc that is responsible for abstracting the
hardware sensors and actuators into the basic behaviors of the agent.

The three layers provide mind-body modularity to a GLAIR agent.
The KL can be thought of as the mind of the agent, while the PML and
the SAL layers can be thought of as the body of the agent. The KL and
PMLa layers are generally independent of the body implementation and
can be connected without modification to any hardware or simulated
body.

The Behavior Cycle: A GLAIR agent is either thinking about a
percept or answering some question. The acting module has been added
to a GLAIR agent to perform actions based on the underlying beliefs of
the agent. GLAIR agents essentially execute a sense-reason-act cycle,

Air Temp/RH
CS215-L

Soil Temp/Moisture
CS650-L

Wind Speed/Direction
03002-L

Leaf Wetness
LWS-L

Solar Radiation
CS300

Rain Meter
TE525MM-L

Cellular 
Module

10% to 50% of Vin

ADC

Solar Panel
9W 6V

Signal 
Conditioning

0-5V pulse per tip

Direction: 0-5V proportional to direction

0.2mV to 350mV Signal 
Conditioning

I/Os

5V SDI-12

5V SDI-12

12V

Bandgap
Vref = 5V

Arduino ISP 
Header

3.7V-6V

Zero crossing 
detector

0-5V pulses

Arduino 
Mega

Interrupt

± 12V Boost DC-
DC ConverterBattery Charger

3.7V 7.8Ahr
Li-ion Battery

5V DC-DC 
Converter

-12V

5V

SPI

Speed

UART

Fig. 2. Agro-weather station detailed block diagram.

Table 1
Environmental sensors specifications.

Sensor Range Accuracy Resolution

Air Temperature −10° to 50° ± 1° 1°
Air Humidity 0 – 100% ±2% 0.5%
Soil Temp. −15° – 60° ±2° 1°
Soil Vol. Water Content 5 – 50% ±3% 1%
Electrical Conductivity 0 – 8 dS/m ±5% 0.5%
Relative Permittivity 1 – 81 ±3% <0.02
Wind Speed 5 – 100 Km/h ±2 Km/h 2 Km/h
Wind Direction 0° – 360° ±3° 22.5°
Rain Meter – – 0.2mm
Solar Radiation

(IR+Visible+UV)
360 nm to 1120 nm
Max Irradiance:
1750W/m2

±5% 1W/m2

Leaf Wetness Sensor 0 – 100% – –
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but not necessarily in this strict order. The basic behavior cycle of a
GLAIR agent consists of four main steps:

1. Take an input from the external environment. This input can be a
natural language utterance, an input statement, query, or command.

2. Analyze the input. This process might trigger reasoning causing new
beliefs to be added to the KL.

3. If the input is a statement, then the input proposition is added to the
KL. This operation might trigger belief revision if the input contra-
dicts the current belief state of the agent. If the input is a query, then
backward inference is triggered, and the result of the inference will
be returned. If the input is a command, then the desired act is
performed, and a confirmation proposition is output indicating that
the agent has successfully performed the act.

4. If the input was a natural language utterance, an output utterance
representing the output proposition(s) is generated.

2.2. System implementation

Here, we detail our implementation of the different layers of the
proposed system.

2.2.1. Agro-weather station hardware implementation
In this section, we present the implementation details and the

components selected for our agro-weather station including the sensors,
microcontroller and power supply. We also present the overall in-
tegrated system design.

Sensors: We carried out an in-depth survey of the available off-the-
shelf components in the market. Based on the required specifications of
our agro-weather station listed in Table 1, we selected the sensors
shown in Fig. 2 that achieve our target technical specifications.

Microcontroller: For our agro-weather station design, we used the

Microchip ATmega2560 microcontroller with an open source Arduino
bootloader (Microchip Technology, 2019). The ATmega2560 is an 8-bit
AVR RISC-based microcontroller that combines 256 KB ISP flash
memory with read-while-write capabilities, 4 KB EEPROM, 8 KB SRAM,
16-channel 10-bit Analog-to-Digital converter (ADC), wide variety of I/
O peripherals, and six software selectable power saving modes. The
Arduino bootloader enables us to easily interface the ATmega2560 to
the environmental sensors and to the cellular module by providing an
integrated development environment with a variety of open source li-
braries (Microchip Technology, 2019).

Signal Conditioning Circuits: They are needed to adapt the analog
sensors outputs to the built-in Arduino ADCs. For example, consider our
interface circuit of the solar radiation sensor to the Arduino built-in
ADC depicted in Fig. 4. The ADA4522-1 op-Amp (Analog Devices,
2019) amplifies the sensor output to match it to the Arduino ADC input
range. The AD5204 digitally-controlled potentiometer is used to enable
precise control of the gain of this Op-Amp. We omit the details and
performance evaluation of such a circuit and other signal conditioning
circuits to not disrupt the readability of the paper.

Power Supply: The worst-case power consumption of our system is
only 0.5 Watthours per day. It needs three power supply rails; 5 V,
+12 V and −12 V. The 5 V rail is used by the microcontroller and the
cellular communication module. The±12 V are used by the sensors
and the signal conditioning circuits.

Battery: We use a 7000mAh 3.7 V polymer lithium ion battery.
This battery allows for 50% depth of discharge. It supplies the station
with the needed power for not less than 2 consecutive days without
being charged.

Solar Panel: A 6 V 9W monocrystalline solar panel is used to power
the weather station as well as to charge the battery (Voltaic Systems,
2019).

Battery Charger: Microchip MCP73871 battery charger IC is se-
lected. It is a fully integrated linear solution for system load sharing and
Li-Ion/Li-Polymer battery charge management with ac-dc wall adapter
and USB port power sources selection. It is also capable of autonomous
power source selection between input and battery.

Power Management System: Low power consumption is a very
important design requirement for our agro-weather station. If this re-
quirement is not strongly pursued, the battery size, solar panel size, and
system size and weight will be impacted adversely. The agro-weather
station sends messages quite infrequently. The time to acquire the
sensors readings and wirelessly transmit them is 2 s. This process is
repeated once every 10min. To maintain low power consumption, we
turn most of the system completely off between measurements, rather
than turning them to sleep mode. Only the system parts that are ne-
cessary for system wakeup at the start of the upcoming measurements
are kept active.

Fig. 5 shows our agro-weather station (with a closeup view of its
controller box) deployed in an agriculture field in the Agriculture Re-
search Center in Giza, Egypt.

Fig. 3. The GLAIR Cognitive Architecture.

Fig. 4. Design of the analog conditioning circuit connected to the solar radia-
tion sensor. R1 is implemented via the digitally programmable potentiometer
AD5204 from Analog devices.
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2.2.2. Middle layer implementation
The main component of the middle layer is the wireless commu-

nications mechanism. The SIM900 GSM transceiver from LinkSprite is
selected for establishing the communication between the station and
the host. The SIM900 transceiver supports GSM/GPRS 850/900/1800/
1900MHz voice, SMS, Data and Fax in a small form factor and with low
power consumption (LinkSprite, 2019). It is configured and controlled
via its UART using simple AT commands.

Fig. 6 shows an image of an integrated SMS message sent from our
agro-weather station to the back-end host alongside the abbreviations
used for the reading of each sensor.

2.2.3. Software implementation
Fig. 7 shows the structure of the AI module. Our implementation has

a complete PML, including an implementation of Bayesian multi-sensor
data fusion (Durrant-Whyte and Henderson, 2008). Through a simple
configuration file, the PML gets specifications of one or more agro-
weather stations to which the system is to be connected. (Think of these
as multiple SALs.) Parameters of the configuration file are to be set
through the graphical user interface, and include types and numbers of
sensors, relevant ranges of sensor readings, and the duration of the time
interval separating two consecutive readings. Readings are fused over
time and space, and statements, annotated with confidence degrees, are
sent to the KL indicating likelihoods of different possible weather
conditions (for each sensor type).

The KL component is also implemented. Receiving uncertain data
from the PML (likelihoods of different estimations of various weather
conditions), however, required an extensive revision of the SNePS
system to allow reasoning under uncertainty. The semantics of the re-
sulting reasoning system has been published in (Ismail and Ehab,
2015).1 The need for reasoning under uncertainty may be illustrated by
the following simple example.

Illustrative Example: Consider a GLAIR agent reasoning about the
temperature in the environment. If the temperature is high, then a
disease is more likely, and a warning should be generated. The fol-
lowing represent the initial beliefs of the agent:

1. The temperature is always exactly one of low or high or unknown.
2. If the temperature is high, generate a warning.

The PML fuses the raw readings from the temperature sensors, and
feed the KL with new beliefs as follows:

3. The temperature is high with a confidence level of 0.692 at t1.
4. The temperature is low with a confidence level of 0.154 at t1.
5. The temperature is unknown with a confidence level of 0.154 at t1.

From (3), (4), and (5), the modified SNePS reasoning system derives
the following (Ismail and Ehab, 2015):

6. The temperature is high at t1.
7. The temperature is low at t1.
8. The temperature is unknown at t1.

Together with (1), these sentences are contradictory. To resolve the
inconsistency, the agent will have to disbelieve propositions (7) and (8)
as they have less confidence levels than (6). A warning will be gener-
ated since the agent ends up believing that the temperature is high.

The Plant Disease Forecast Agent: The plant disease forecast
agent is a GLAIR agent which is responsible for collecting the sensors’
data from the agro-weather station (through the data logger), fusing the
data over time and space using Bayes theorem to achieve a reasonable
estimate of the actual weather conditions (Khaleghi et al., 2013), and
representing said information as graded statements of a formal lan-
guage over which logical reasoning can take place. Since the mind of
the GLAIR agent is implemented in GSNePS, all the statements will be
represented in SNePSLOG (Shapiro and Group, 2010). By representing
the disease model in SNePSLOG too, the agent can reason about pre-
ventive actions to be taken should the need arise.

The knowledge level of the GLAIR agent is responsible for conscious
reasoning and action selection. A disease model supplied from the
agriculture module is represented in SNePSLOG and is loaded to the
GLAIR agent as part of the KL once it is selected via the GUI. The
SNePSLOG file containing the disease model is itself generated by the
GUI as will be detailed below. Fig. 8 shows an example of a SNePSLOG
representation of the disease model developed in (Afifi and Zayan,
2009) which is summarized in Fig. 9. Event A is an event which hap-
pens if one of three conditions occur:

(i) The temperature remains low and the RH high for six hours (Line 6
in Fig. 8).

(ii) The temperature remains moderate and the RH high for eight
hours (Line 7 in Fig. 8).

(iii) The temperature remains high and the RH high for ten hours (Line
8 in Fig. 8).

Likewise, “Event B” is defined as the occurrence of one of three
weather conditions (Lines 10 through 15 of Fig. 8). According to (Afifi
and Zayan, 2009), a treatment should be recommended if Event B
happens within twenty-four hours of an occurrence of Event A, pro-
vided that it is not the harvest season and that treatment is not already
underway (see Fig. 9).

Graphical User Interface (GUI): The graphical user interface is
implemented as a web application. The web interface application is

Fig. 5. The agro-weather station installed in an agriculture field.

1 Interested readers are referred to this paper which provides the details of
our reasoning systems.
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structured into four main components/web pages: home page, disease
model definition web page, weather station definition web page, and
statistics and graphs web page. Fig. 10 depicts a sample disease model
definition page of the developed GUI. A dropdown list allows the user
to specify the number of detected events (up to 4). The web page can
have as many panels as needed for the detected events. On each panel,
the user can choose a phenomenon among the following four: tem-
perature, relative humidity, leaf wetness, and global radiation; in ad-
dition to a range and duration for each phenomenon. These phenomena
were specifically chosen according to the availability of the sensors in
the developed hardware.

3. Results and discussion

In our experimental evaluation of the developed system for early
plant disease forecast, we consider two important crops in Egypt: to-
mato and potato. We consider the most common diseases that affect
such crops such as early blight (in potato and tomato), late blight (in
potato and tomato), and powdery mildew (in tomato). First, we use the
developed agro-weather station to collect the environmental data
needed by the agriculture module to develop the different disease

models from ten different Egyptian governorates. Then, we implement
the developed models in the software module to replace the models in
(Afifi and Zayan, 2009) that were used during the initial software de-
velopment phase (depicted in Figs. 8 and 9). Finally, we validate the
disease models through field trials in two governorates.

3.1. Data collection for disease modelling

Samples of the different considered diseases were obtained from
naturally infected tomato and potato plants. These samples were col-
lected from ten different Egyptian governorates (Bani-Swef, Beheira,
Faiyum, Gharbia, Giza, Ismailiya, Kafrelsheikh, Menoufya, Qalyubia
and Sharqia) during different growing seasons. The infected fresh
leaves and fruits (tomato) were transferred from the field to the la-
boratory in transparent polyethylene bags. The obtained samples were
rinsed and washed with tab water to remove dust and incubated in
humid chamber at 17 °C for three days at darkness for enhancement of
sporulation. The diseases were isolated from these samples and used in
both field and growth chamber environments to correlate the disease
development with the environmental attributes. The growth chamber
was used to provide uniform, favorable, repeatable environmental
conditions and permit several cycles of screening per year, thus offering
more reliable results. Growth chamber and field test results were found
to correspond well.

The experimental design used in the current study was a rando-
mized complete block design with three replications. Each replica
consisted of three plots. The first plot was treated by recommended
period fungicides, the second plot was according to forecasting and
early warning information and the last plot was without fungicides for
control (check) purposes. Each plot was one ridge of 6m in length and
1.25m in width, and hence, the plot area was 7.5m2. The distance
between plants was 50 cm, and each plot contained 12 plants (one plant
per hill). Cultural practices, such as fertilization, irrigation, and weed
and insect control were performed whenever they were necessary, as
recommended for commercial potato and tomato production. Plant
diseases were recorded daily (percent blighted foliage per plot)
throughout the 2016 and 2017 growing seasons.

Disease severity was recorded on 100 leaves randomly selected from

Abbrev. Meaning 

DT Date YY/MM/DD 

TM Time HH:MM:SS 

AT Air temp. in °C 

RH Air humidity % 

ST Soil Temp. in °C 

VWC Soil Volumetric Water Content (m3/m3)

EC Soil Electrical Conductivity (dS/m) 

Pr Soil Dielectric Permittivity 

Rn Rain level 

SLR Solar Radiation (W/m2) 

WS Wind Speed (m/s) 

WD Wind Direction (degrees) 

LWS Leaf wetness 

(a)  Actual SMS sample (b)  SMS Measurements Abbreviations 
Fig. 6. Example of the SMS sent by the agro-weather station to the data logger.

Fig. 7. Structure of the AI Module.
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each replication and using the 0–5 rating scale depicted in Table 2. The
disease severity index (DSI) was calculated using the following formula

=

×

×

Disease Severity Index (DSI)
Sum of all individual ratings

No. of examined leaves Maximum disease scale
100

(1)

The field experiments were conducted during 2015, 2016 and 2017

growing seasons. Fig. 11 depicts a sample of the recorded DSI of both
crops in the different fields undertest.

Weekly weather parameters such as the maximum/minimum tem-
perature (oC), morning/evening relative humidity (%), rainfall (mm),
rainy days sunshine hours (hr) and wind speed (km/hr) were studied
and recorded. Fig. 12 shows a sample of the collected data collected
from Beheira governorate. They were correlated to the weekly disease
severity index by calculating the Karl person’s correlation coefficient
(r). The correlation coefficient values were tested individually for their
significance at 5% and 1% probability level to determine the effect of
the weather factors on the disease development. The correlation coef-
ficient r measures the disease development in terms of the apparent
infection rate (unit/day) which is calculated as:

=

−

×
−

−

r
t t

x x
x x

2.3 log (1 )
(1 )2 1

2 1

1 2 (2)

where, r is the apparent infection rate (units/day), and x1 and x2 are the
disease severity indices recorded at times t1 and t2, respectively.

3.2. Disease model development

One of our goals is to design, evaluate and validate 5 disease models
for two crops. Then, we use the AI disease forecasting models developed
in the software module to achieve optimum disease control with
minimum fungicide use by forecasting the date of disease outbreak and
to determine the correct time to begin the fungicide application.

The models were designed based on the collected observations in
lab analyzing the correlation between the input variables of environ-
mental factors such as: temperature, relative humidity, leaf wetness,
precipitation global radiation, wind speed and its effect on the disease
incidence and severity of disease causal agents the pathogens, to be
calculated. A consequent recommendation in the form of a Spray/Don’t
Spray message to guide the fungicides application for perfect disease
control in the appropriate time. Finally, the model recommendations
were compared to disease management by traditional routine spray
schedules. We used the developed agro-weather station to monitor the
microclimate conditions. The models were tested several times under
laboratory conditions before switching to the validation using field
experiments conducted at Beheira and Fayoum governorate throughout

Fig. 8. A disease model in SNePSLOG.

Fig. 9. The disease model of Late Blight according to Egy-blightcast (Afifi and
Zayan, 2009).
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two potato growing seasons. Then, the model was revised and refined
based on the collected findings.

In what follows, we explain the details of each designed model for
each disease. More details of X, Y, and Z as well as the definition of
events A and B are available in (Afifi and Zayan, 2009).

Early blight caused by Alternaria solani: The model evaluation
and validation follow the basic rules of system analysis to identify
events (A and B) for spore germination according to the relative hu-
midity (RH) and leaf wetness (LW), respectively, as presented in
Fig. 13(a). The model is activated at the pre-emergence phase. It tries to
detect events A and B which are defined as: Event A is triggered when
the model detects at least X accumulated dynamic summation hours of
RH > 90% and temperature between Y and Z according to the data
tabulated in Table 3. While event B is triggered when the model detects
at least X accumulated dynamic summation hours leaf wetness > 2.5 U
and/or precipitation > 0.2mm/hour and temperature between Y and
Z according to the data tabulated in Table 4.

Fig. 10. Example disease definition web page with 2 weather events as the case with the considered diseases.

Table 2
Disease rating scale.

Rating Disease Condition

0 Free from infection
1 One or two necrotic spots on a few lower leaves of plant
2 A few isolated spots on leaves, covering nearly 5%–10% of the surface area of the plant
3 Many spots coalesced on the leaves, covering 25% of the surface area of the plant
4 Irregular, blighted leaves and sunken lesions with prominent concentric rings on the stem, petiole, and fruit, covering 40%–50% of the surface area
5 Whole plant infected; leaves and fruits starting to fall

(a) Tomato Crop. 

(b) Potato Crop. 
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Fig. 11. Sample of the recorded DSI for the month of July 2015.

Fig. 12. Sample of the recorded environmental data in Beheira governorate.
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Late blight caused by Phytophthora infestans: Since the pa-
thogen of late blight is the same for potato and tomato, we designed a
model for Phytophthora infestans. The only difference in application is
to consider the age if susceptibility for each crop. The model im-
plementation follows the basic rules of system analysis to identify
events (A and B) according to Fig. 13(b). The model starts after the
emergence phase is activated, and it tries to detect the event A, which is
defined as: Event A is triggered when the model detects at least X ac-
cumulated dynamic summation hours of RH > 90 and temperature
between Y and Z according to the data tabulated in Table 5. Then the
model looks for event B which is continues hours of RH > 90, and leaf
wetness > 2.5 U, and/or precipitation> 0.1mm/hour. The B event
must happen through the 24 h of the A event, but not late than 24 h
after an A event. Moreover, using the model system analysis brings an
extension to the model, which applies the same rules not only to
identify the first critical phase (DIP) of the season, but also to issue
warnings throughout the whole growing season.

Tomato Powdery Mildew caused by Leveillula taurica (Ĺev.):
Fig. 13(b) presents a flowchart of the model which follows the basic
rules of system analysis to identify events (A and B). Similar to the
model of the potato late blight, the model starts after the emergence
phase is activated, and it tries to detect the event A, which is defined as:
Event A is triggered when the model detects at least X accumulated
dynamic summation hours of RH > 60 and temperature between Y
and Z according to the data tabulated in Table 6. Then the model looks
for event B which is continues hours of RH >60. We omit further
details for space limitation.

3.3. Model implementation and field testing

Field experiments with the developed models implemented in the
software module were conducted in big plots at Beheira and Fayoum
governorates throughout potato and tomato growing seasons in 2017
and 2018. All the selected cultivars are susceptible to the considered
diseases. Such experiments were designed as randomized complete
blocks and the area of each plot was 12m2 (3m×4m). Four replicas
were used for each treatment and non-treated plots (sprayed with only
water) served for control purposes.

The following three treatments were tested: (i) a full-schedule fun-
gicide program, in which plants were sprayed every 10 days; (ii) a full-
schedule fungicide program, in which plants were sprayed every 7 days;
(iii) spraying when nominal use of the developed expert system soft-
ware indicated that a spray application was needed and at least 10 days
had elapsed since the previous fungicide application. Weekly inspec-
tions of potato and tomato fields were initiated to ensure clear detection
of the early sign of diseases. Weather data were automatically collected
24 h a day by the developed agro-weather station deployed within the
canopy of potato and tomato field. The data presented in Fig. 14 present
the collected weather data for Fayoum and Beheira governorates for
2017 and 2018 seasons during the model validation experiments. Dis-
ease severity was measured 15 days after the last spray using a rando-
mized sample of one hundred leaves from every plot, control efficacy of
both treatments was recorded.

The results of such investigation demonstrated that the developed
forecast models for the considered potato and tomato diseases are

(a) Potato early blight disease model (b) Potato late blight and tomato powdery 
mildew model  

Fig. 13. Flowcharts of the forecasting models developed for potato and tomato diseases under test.

Table 3
The basic rules of system analysis to identify event A in the potato and tomato early blight forecasting model.

Y=Temp. From: Z=Temp. To: X= 4 h of RH X=6 h of RH X=8 h of RH

27 °C 31 °C Event A detected
23 °C 26 °C Event A detected
18 °C 22 °C Event A detected
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successfully validated in Egypt under tomato and potato open field
conditions. The developed models resulted in the use a fewer amount of
fungicide sprays for effectively management of the selected diseases
compared to a routine full-schedule fungicide program with either 7-
day or 10-day schedule. More specifically, only 3 to 5 sprays were
needed – depending on the crop and disease – while the 7-day and 10-
day schedule result in 22 and 15 sprays, respectively. This implies re-
ductions of the used fungicides that varies between 75% and 86.4%
depending on the crop and disease. In what follows, we detail our main
findings.

Potato Late blight: The recommended treatment was alerted five
times at 5th, 21st of November, and at 1st, 6th, and 23rd of December
2017. Also, it was five times at 9th, 14th of November, and 6th, 17th
and 29st of December 2018, respectively. This resulted in having four
sprays in 2017 and three sprays in 2018, instead of following a full-
schedule fungicide program (routine application) in 2017 and 2018,
respectively.

Potato Early blight: Results showed that the disease model has
determined the alerts for the first application in 2th, 9th, 21st and 23rd
of August 2017. While the recommended treatment was alerted at 4th,
9th and 27th of July; and 6th, 17th, 21st and 26th of August 2018. This
resulted in having four sprays in 2017 and 2018, instead of following a
full-schedule fungicide program (routine application) in both seasons.

Tomato Late blight: The recommended treatment was given five
times at 6th, 11th of Nov., and at 5th, 16th, and 26th of Dec. 2017.
While it was four times at 11th, 20th of Nov., and 6th and 24th of
December 2018, respectively. This resulted in having three sprays in
2017 and four sprays in 2018.

Tomato Early blight: Results showed that the disease model has
accurately determined the correct time for the alerts in 6th, 14th and
23rd of July 2017. The model output daily announcement also suc-
cessfully detected the disease infection potential in 1st, 16th, and 25th
of August 2017. For the second season, the disease infection potential
announces were in 6th, 15th, 20th and 21st July 2018. While, the
disease model alerts were 5th, 17th, and 23rd August 2018. Therefore,
five sprays were applied in the first season and four sprays in the second
of evaluation according to the recommendation of the designed model
for the warning system.

Tomato powdery mildew: Data illustrated that the model suffi-
ciently detected the powdery mildew daily infection potential and the
daily warning announcement for (DIP) was recommended three times

Table 4
The basic rules of system analysis to identify event B in the potato and tomato early blight forecasting model.

Y=Temp. From: Z=Temp. To: X= 2 h of L W X=4 h of LW X=6 h of LW

27 °C 31 °C Event B detected
23 °C 26 °C Event B detected
18 °C 22 °C Event B detected

Table 5
The basic rules of system analysis to identify event A in the potato and tomato late blight forecasting model.

Y=Temp from: Z=Temp to: X=6 h of RH X=8 h of RH X=10 h of RH

20 °C 26 °C Event A detected
13 °C 20 °C Event A Detected
10 °C 13 °C Event A Detected

Table 6
The basic rules of system analysis to identify event A in the tomato powdery mildew forecasting model.

Y=Temp. From: Z=Temp. To: X= 4 h of RH X=6 h of RH X=8 h of RH

25 °C 29 °C Event A detected
20 °C 24 °C Event A detected
15 °C 19 °C Event A detected

(a) December 2017. 

(b) July 2018. 

(c) December 2018. 
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Fig. 14. Sample of the recorded environmental data in during model validation.
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at 4th, 11th, 23rd of October, and at 6th, 11th, and 29th of November
2017. While in 2018 it announced five warning massages at 8th, 20th of
October and 9th, 16th and 23rd of November. This resulted in having
four sprays in both 2017 and 2018 which successfully controlled to-
mato powdery mildew in 2017 and 2018.

4. Conclusions

In this paper, we have presented the design of an IoT-based mon-
itoring system for epidemic disease control: a key precision agriculture
application. The developed system is generic enough to be used with
multiple plant diseases where the software architecture can handle
different plant disease models. In addition, the used sensors and hard-
ware is carefully designed to be flexible enough to be used with dif-
ferent plants in the monitored fields. An artificial intelligence algorithm
has been developed in order to realize an expert system that allows the
proposed system to emulate the decision-making ability of a human
expert regarding the diseases. It is worth mentioning that the proposed
system can be used in future stages to cover the different aspects of
precision agriculture such as precision irrigation and automated ferti-
lizer application. The developed system has been used in developing
disease models specific for the Egyptian potato and tomato crops based
on experiments in order to specify the specific climatic conditions that
causes the epidemic disease infection. Such models have been used to
verify the expert system software developed for the proposed system.
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