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Abstract: Joint sparse recovery aims to recover a number of sparse signals having joint sparsity from multiple compressed
measurements. Such a problem is finding increasing applications in wireless sensor networks (WSN) and Internet of Things
(IoT) where multiple sensors collect measurements. However, existing algorithms lack both reconstruction accuracy and speed
at the same time. In this study, the authors propose a joint sparse recovery algorithm, simultaneous fast matching pursuit
(SFMP), which exploits some of the concepts developed for the fast matching pursuit (FMP) algorithm. SFMP achieves
significant improvement in reconstruction time and speed compared to other related existing algorithms. In contrast to related
algorithms, support selection is performed efficiently as the number of selected atoms is adapted from an iteration to another.
Furthermore, signal estimation is performed avoiding large matrix inversion as in related algorithms. Moreover, simultaneously
pruning the estimated signals, results in removing incorrectly selected ones. Due to the efficient selection strategy and the
simultaneous pruning operation, the algorithm shows significant improvement in reconstruction accuracy from noisy
measurements. SFMP achieves significant speed improvement over simultaneous orthogonal matching pursuit, and significant
accuracy improvement over simultaneous compressive sampling matching pursuit, requiring a much smaller number of
measurements.

1 Introduction
Compressed sensing (CS) is a recently developed sampling
technique that is capable of acquiring a signal from samples
collected at a much lower rate than the Nyquist rate [1, 2]. This
technique is applicable to sparse and compressible signals. Signals
can be reconstructed from their sub-Nyquist rate samples using ℓ1
norm minimisation. However, since ℓ1 norm minimisation is
computationally expensive, various greedy recovery algorithms
have been proposed for CS reconstruction, aiming to reduce
reconstruction complexity without affecting reconstruction
accuracy. Greedy algorithms include orthogonal matching pursuit
(OMP) [3], compressive sampling matching pursuit (CoSaMP) [4],
adaptive reduced-set matching pursuit (ARMP) [5] and fast
matching pursuit (FMP) [6]. Such algorithms iteratively find the
support of the sparse vector, and then estimate the vector based on
this support.

Such traditional algorithms target the acquisition of a signal
from compressed samples collected at a single node. Therefore,
they are referred to as single measurement vector (SMV) setting.
On the other hand, it has been shown that collecting compressed
samples at multiple nodes (sensors) can significantly improve
performance [7, 8]. Such a setting is referred to as multiple
measurement vector (MMV) setting. Performance improvement
can be noticed in an increase in the accuracy for the same number
of measurements, or in a decrease in the number of required
samples. In such a setting, each node obtains a compressed
measurement from a sparse signal, where all sparse signals have
joint sparsity. Such a framework has increasingly found
applications in wireless sensor networks (WSN) and Internet of
Things (IoT) [9, 10]. Some joint sparse recovery algorithms have
been proposed to address such a setting. Such algorithms
iteratively estimate the support of MMVs according to some
sparsity model, and based on such support the sparse vectors are
estimated. Such algorithms include simultaneous OMP (SOMP)
[11, 12], simultaneous CoSaMP (SCoSaMP) and simultaneous
hard thresholding pursuit (SHTP) [8].

However, existing joint recovery algorithms lack reconstruction
accuracy and speed at the same time. This is attributed to two main

factors. First, the selection strategy during support estimation is not
efficient, since a fixed number of atoms (columns of the sensing
matrix) is selected in each iteration. Secondly, signal estimation
involves the calculation of the pseudo-inverse of the sensing
matrix, which requires large matrix inversion. Accordingly, some
algorithms may have high reconstruction accuracy, however, this
comes at the expense of reconstruction speed, a penalty that may
not be tolerable in many real-time applications. On the other hand,
others are able to improve the reconstruction speed at the expense
of accuracy.

In this paper, we propose a joint sparse recovery algorithm,
called simultaneous FMP (SFMP), which exploits some of the
concepts developed for the FMP algorithm [6]. The FMP algorithm
is developed for the SMV setting and is not applicable to MMV
settings since signal acquisition in SMV problems is based on
measurements at a signal node. In contrast, in MMV problems
multiple signals are simultaneously acquired. Our proposed
algorithm is capable of joint sparse recovery of signals at
significantly high accuracy and speed at the same time, compared
to other related algorithms. SFMP is based on two main ideas.
First, in contrast to fixed selection in other algorithms, the number
of selected atoms in SFMP is variable from an iteration to the
other, according to the distribution of the correlation values. This is
done using a double thresholding strategy, where a reduced set of
the correlation values is formed, and then values higher than a
fraction of the maximum correlation value are selected. This results
in improvements in both reconstruction accuracy and speed.
Accuracy improvement is attributed to the optimum selection since
fewer incorrect atoms are selected. Nonetheless, the support set is
pruned in each iteration in order to exclude incorrectly selected
atoms. Speed improvement is attributed to the significantly reduced
number of iterations required.

Secondly, signal estimation in SFMP is performed in a more
efficient way. While other algorithms directly obtain the pseudo-
inverse of the sensing matrix, an operation involving the inversion
of large matrices, SFMP obtains the pseudo-inverse in an iterative
manner. In each iteration, such an inverse is obtained from data in
the previous iteration. This results in a significant speed
improvement.
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The rest of the paper is organised as follows. Section 2 presents
an overview of the related literature. Section 3 presents the system
model and problem statement. We propose our SFMP algorithm in
Section 4, and evaluate its performance in Section 5. We present
our conclusions in Section 6.

2 Related work
The most basic joint sparse recovery algorithm is SOMP [11].
SOMP is an extension of the OMP algorithm [3]. In each iteration,
the atom which contributes the most energy to as many of the input
signals as possible is selected. This is done by maximising the sum
of absolute correlations. However, this results in an excessively
high reconstruction time, since the number of iterations required is
equal to the sparsity (number of non-zero elements). Signal
estimation is based on least square minimisation obtained using
direct pseudo-inverse, which is computationally expensive.
Furthermore, no pruning is performed for the estimated support set,
so an incorrectly selected atom cannot be removed from the signal
support, and will eventually degrade the performance of the
algorithm.

Extensions to other CS recovery algorithms were proposed in
the literature. For example, a simultaneous version of the CoSaMP
algorithm, termed SCoSaMP is proposed in [8]. In each iteration,
the 2k atoms of maximum contribution are selected, where k is the
signal sparsity. Again, the selection here is fixed. Signal estimation
is performed through the inefficient direct calculation of the
pseudo-inverse of the sensing matrix. The estimated support set is
pruned at the end of each iteration. However, the fixed selection
strategy usually results in the selection of incorrect atoms, which
may result in performance degradation if they are not pruned.
Furthermore, the same work provides extensions to other greedy
recovery algorithms: Iterative hard thresholding (IHT), normalised
IHT, HTP, and normalised HTP (NHTP).

Generalised subspace pursuit (GSP) [13] is an extension for the
subspace pursuit (SP) algorithm, proposed for joint sparse
recovery. Instead of selecting a number of atoms that is equal to k,
as in the original SP algorithm, GSP selects a number that is a
function of k and of the spark of the sensing matrix which is the
minimum number of linearly dependent columns. However, such
selection is still fixed and suffers from the same drawback as in the
previously mentioned algorithms. Furthermore, signal estimation is
performed through the inefficient direct calculation of the pseudo-
inverse of the sensing matrix.

A new joint sparsity model is presented in [14] and is named
mixed support-set model. Such a model is a generalisation over
previously existing models. In this model, the support consists of
two parts. One is common for all vectors, while the other is private
for each individual vector. Based on the proposed model, two
algorithms are proposed, joint OMP and joint SP. However, both
algorithms suffer from the same drawbacks of fixed selection and
inefficient signal estimation.

Other algorithms are based on extensions of the MUltiple
SIgnal Classification (MUSIC) algorithm [15]. Such algorithms
interpret the joint sparse recovery problem as a binary
classification problem with respect to atoms. Among such
algorithms is subspace-augmented MUSIC, which improves on
MUSIC so that the support is reliably recovered under
unfavourable conditions such as rank-defect and ill-conditioning
[16]. Another extension to the MUSIC algorithm is semi-
supervised MUSIC [17], in which labelled MMVs and some
reliable unlabelled atoms are iteratively exploited for classifier
construction. Other algorithms are based on 2D signal CS recovery
[18, 19].

The aforementioned algorithms are based on a centralised
setting, in which multiple nodes acquire different measurements
and forward them to a fusion centre (FC), which in turn, performs
joint recovery. Other algorithms are based on decentralised setting,
in which no FC is required. In such a setting, a node exchanges
information with its neighbours and arrives at a local estimation of
the sparse signal. However, since a single node is limited in
memory and processing capability, neighbouring nodes cooperate
with each other to compensate for such limitations and achieve

satisfactory performance [20]. Nonetheless, cooperation results in
increased communication among nodes, which can be expensive. A
distributed SP algorithm as a decentralised version of the JSP
algorithm is proposed in [21]. Distributed iterative thresholding
algorithms addressing the issues of the low complexity and
memory limitations of nodes are proposed in [22]. A distributed
parallel pursuit algorithm is presented in [23], which is based on
the exchange of information about estimated support sets between
nodes. Distributed compressive sensing methods that exploit time
correlation of measurements as well as space correlation in IoT
applications are proposed in [10].

Various works have proposed the acquisition of compressed
data in real-world WSN and IoT applications. For example, in [24]
audio sensors (microphones) collect compressed samples in order
to reduce the transmitted data over the wireless channel to the FC.
In [25, 26], compressed samples of temperature, humidity, light
and wind speed sensors are collected and transmitted in order to
save energy and prolong the network lifetime. In [27],
electrocardiogram and electroencephalogram signals are acquired
in a wireless body area network in order to reduce the number of
measurements and minimise the energy consumption of the sensor
nodes. In [28, 29], greenhouse monitoring systems based on
compressive measurements of temperature and humidity are
proposed. Furthermore, such data can have a sparse representation
in a certain basis. For example, audio signals are sparse in DCT
and DWT domains [30].

3 System model and problem statement
While our algorithm is applicable to any sparsity model, we follow
the common support joint sparse model JSM-2 presented in [31],
which is widely considered for sensor networks [32] and the
references therein. Such model can represent practical scenarios in
which multiple sensors acquire the same signal but with different
phase shifts and attenuations caused by signal propagation.
Applications of JSM-2 include IoT, WSN [25], MIMO radar [33],
source localisation, neuromagnetic imaging, and equalisation of
sparse communication channels [34]. In this model, all sparse
signals acquired at different nodes share a common support, i.e.
same indices for non-zero elements. However, the corresponding
values can be different in general. Therefore, the sparse vectors of
length n are expressed as

xj = Ψθ j, j ∈ {1, 2, …, J} (1)

where all θ j have common support Ω ⊂ {1, 2, …, n}, Ω = k, and
Ψ is an n × n dictionary matrix. Hence, all signals are k-sparse and
are constructed from the same k elements of the dictionary Ψ but
with different coefficients.

The set consists of a number of L nodes or sensors, each
acquiring a compressed measurement of the corresponding sparse
vector given by

yl = Φxl, l ∈ {1, 2, …, L} (2)

where yl is the compressed measurement at the node l and Φ is the
sensing matrix.

WSN nodes typically have limited computational power that is
not suitable for the relatively high computational complexity of CS
recovery algorithms. Therefore, we consider a centralised setting in
which measurements are forwarded by the nodes to a FC, which
performs the joint recovery, i.e. estimate the sparse signals {xl}l = 1

L

given the compressed measurements {yl}l = 1
L . This has the benefit of

the reduction in the required complexity of the nodes. Moreover,
there is no need for communication among nodes [20].

3.1 Application in real-life WSN and IoT systems

Even though CS might seem computationally complex for
application in the resource-limited WSN and IoT systems, CS is
counter-intuitively suitable for such networks [35]. This is
attributed to two reasons. First, CS sampling captures only few
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measurements of the signal that are linearly independent. These
few samples are enough to reconstruct the signal as long as it is
sparse in a certain domain. This makes CS compression agnostic of
the other properties of the signal, and hence, applicable to various
applications as long as the measured attribute is sparse in one or
more domains. Secondly, CS reduces the energy spent in
communicating the measurements to where the signal is accurately
reconstructed as only a small number of measurements need to be
transmitted. The signal reconstruction is implemented on a gateway
or a FC which typically has high computational power and does not
have the same energy limitations of the sensor nodes.

A detailed analysis of the potential of applying CS on the
resource-limited WSN and IoT platforms for low-complexity and
energy-efficient data acquisition is presented in [25]. We assume
the system hardware model used in [25] since both our greedy
reconstruction algorithm and the greedy reconstruction algorithm
presented in [25] consider similar problem formulations that are
based on the common support joint sparse model JSM-2. More
specifically, data from seven different weather stations deployed
near Monterey, CA were collected in [25]. The seven wireless
sensor nodes are deployed in an IEEE 802.15.4 star network
topology in which the sensor nodes send their measurements to a
FC that reconstructs the signal using the few collected samples.
Each weather station is equipped with three different kinds of
sensors: temperature, relative humidity (highly correlated signals)
and wind speed (less correlated signal). The wireless sensor node
hardware and the FC are built using the ST microelectronics
(STM32W108) fully-integrated system-on-chip solution. The
STM32W108 platform has a 32-bit 24 MHz ARM Cortex-M3
microprocessor with a built-in 2.4 GHz IEEE 802.15.4-compliant
transceiver, 128 KB Flash memory and 8 KB of RAM memory.
The Sensirion SHT21 temperature and relative humidity sensor and
the wind sensor are interfaced to the STM32W108 board to build a
sensor node. This hardware setup has been used to evaluate several
greedy algorithms in [25] in real-life and can be used to evaluate
our algorithm. However, we defer the hardware implementation
and real-life evaluation to a sequel paper to keep the focus on the
proposed reconstruction approach.

4 Simultaneous fast matching pursuit
In this section, we present our proposed algorithm, SFMP. SFMP
exploits some of the concepts developed for FMP [6]. The FMP
algorithm is developed for the SMV setting, and hence, is not
applicable to MMV problems, since signal acquisition in SMV
problems is based on measurements at a signal node. The main
goal of SFMP is to perform joint sparse recovery (simultaneous CS
reconstruction) as accurately and efficiently as possible. In other
words, SFMP addresses the MMV problem, in which MMVs are
available through CS at multiple nodes. Each measurement vector
corresponds to a different unknown sparse vector, where all sparse
vectors share the same support.

SFMP is a greedy iterative algorithm which consists of the
following components: (1) simultaneous selection; (2) signal
estimation; (3) simultaneous pruning; and (4) total residual
calculation. First, we give a brief description of its components.

1. Simultaneous selection: In contrast to related algorithms,
SFMP targets the selection of an optimum number of atoms
per iteration. The atoms with the highest correlation to all
measurement vectors are selected. We adopt a selection
strategy similar to the one developed in [5, 36] to adaptively
select elements from a reduced set of the correlation values,
adding them to the identified support set.

2. Signal estimation: Based on the identified support set, least-
square minimisation is performed to estimate the sparse signal
corresponding to each measurement vector. However, in
contrast to related algorithms, this step is done iteratively
avoiding large matrix inversion, which significantly improves
the speed of the algorithm.

3. Simultaneous pruning: The identified support set is
simultaneously pruned, removing the elements with the least
contribution to all measurement vectors. This results in a

cleaner support set since incorrectly selected elements are
removed in each iteration.

4. Total residual calculation: The residual is calculated and
summed over all reconstructed signals.

4.1 SFMP algorithm

In this section, we explain in detail the components of the SFMP
algorithm. The main idea of a greedy recovery algorithm is to
identify the support of the sparse signal(s), and then estimate the
signal(s) with non-zero elements based on such support, while
minimising the reconstruction error in the least square sense. Such
steps are performed iteratively.

Given a measurement matrix Y = [y1, y2, …, yL], it is required to
estimate the sparse vectors’ matrix X = [x1, x2, …, xL] . Initially, an
empty identified support set is created. This set will be updated in
each iteration with the estimated common support of the sparse
signals. The residual matrix R is initially set to the measurement
matrix Y. The following operations are performed in each iteration.

4.1.1 Simultaneous support identification: In SMV problems, in
which signals are to be estimated from a single measurement
vector, the measurement vector is correlated with all columns of
the sensing matrix. Indices of columns corresponding to the top
correlation magnitudes are expected to belong to the support of the
original sparse signal. According to some selection strategy, a
number of the top magnitude correlation values are selected, and
their indices are added to the identified support set. The first source
of improvement in recovery algorithms targeting MMV problems,
compared to those targeting SMV problems, is performing
correlation over all measurement vectors, finding the columns that
are most correlated to all measurement vectors. This results in
finding the columns with the most contribution to all vectors. This
is done by multiplication of the conjugate transpose of the sensing
matrix by the residual matrix, which is initially set to the
measurement matrix

G = Φ*R (3)

The norm of each row of G is a measure of the correlation of the
corresponding column of Φ to all measurement vectors, and
accordingly, a measure of its contribution. Consequently, a number
of indices corresponding to the top magnitude norms is selected
and added to the identified common support set. Our selection
strategy is based on the one previously develop in [5, 36]. Selection
is performed in two steps. First, the elements of the correlation
norm vector are reduced to a set containing the βk top magnitude
elements, where β is a parameter and k is the common sparsity of
the signals. Then, we select from the reduced set elements of
magnitude larger than a fraction α of the maximum value of the
norm vector, where α is another parameter.

The proper selection of α and β leads to the selection of an
optimum number of elements per iteration. It was shown in [36]
that for such a selection strategy, moderate values of both
α ∈ [0.5, 0.7] and β ∈ [0.15, 0.75] result in the best performance.
Furthermore, the performance of such a selection approach is not
sensitive to the specific values of α and β, as long as they are
selected in the aforementioned moderate range.

In this way, we avoid common selection problems in related
algorithms. Namely, we avoid the selection of too few elements of
the norm vector, which leads to an excessively large number of
iterations, which in turn significantly increases the reconstruction
time. We also avoid the selection of too many elements, which
results in selecting more incorrect elements not belonging to the
support set, which in turn reduces the reconstruction accuracy.

4.1.2 Signal estimation: Based on the identified common support
set, sparse signals are estimated for each measurement vector
separately. This is done by minimising the least square error
between the estimated sparse signal x^l and the corresponding
measurement vector yl, given by ∥ yl − Φx^l ∥2

2.
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Most related algorithms perform such minimisation using
multiplication with the pseudo-inverse of the sensing matrix, given
by ΦT

† = (ΦT
TΦT)−1ΦT

T, where ΦT is a matrix containing columns of
the sensing matrix Φ at indices from the support set T, which is
updated in each iteration. This requires inversion of large matrices,
which increases the complexity of the algorithm. In contrast, SFMP
obtains the pseudo-inverse iteratively, where it is calculated in each
iteration using data from the previous iteration. This is done by
updating the inverse of the Gram matrix (ΦT

TΦT)−1 in each iteration
by adding to ΦT the newly selected columns in that iteration.

In order to perform such update without recalculating the
inverse in each iteration, we make use of the Schur–Banachiewicz
inverse formula [37]. Let Q be a matrix containing the newly added
columns corresponding to the newly selected indices. And let Φi
denote the matrix containing columns of the sensing matrix at
indices T in the ith iteration, where we drop the subscript T for
notation clarity. Thus, the updated sensing matrix in iteration i is
given by Φi = Φi − 1 Q . Then, we get the inverse (Φi

TΦi)−1 using
data from the previous iteration applying the Schur–Banachiewicz
inverse formula as follows:

(Φi
TΦi)

−1 =
B−1 + B−1CSc

−1DB−1 −B−1CSc
−1

−Sc
−1DB−1 Sc

−1 (4)

where B = Φi − 1
T Φi − 1, C = Φi − 1

T Q, D = QTΦi − 1, E = QTQ, and
Sc = E − DB−1C. Here B−1 = (Φi − 1

T Φi − 1)−1 is available from the
last iteration and is only calculated directly in the first iteration.
The complete details are presented in [6].

4.1.3 Simultaneous pruning: Through successive iterations,
some erroneous indices (not belonging to the support of the sparse
signals) are inevitably selected. The ability of SFMP to identify
and exclude such elements contributes to its high reconstruction
accuracy, as well as to its noise robustness. In an SMV problem,
the idea of pruning is to exclude the indices of the atoms with the
least contribution to the estimated signal. However, in an MMV
problem, in order to make use of the multiple measurements that
we collect, we exclude atoms with the least contribution to all the
estimated signals. The ℓ1 norms of the rows of the matrix X^

 are
calculated. Indices corresponding to the top magnitude k rows are
retained, while the rest are removed from the signals support,
setting their contribution to zero.

Since the matrix (ΦT
TΦT)−1 is required for the following

iterations, it is updated as well, but this time removing pruned
columns from ΦT. Again, this is done iteratively without
recalculating the new inverse. We apply the Schur–Banachiewicz
formula but in a reverse manner compared to the signal estimation
stage. Given the inverse (ΦT

TΦT)−1, we seek to update it by
removing from ΦT the pruned columns.

4.1.4 Total residual calculation: In an SMV problem, the
residual is calculated by subtracting the contribution of the pruned
estimated signal from the measurement vector. Here, in an MMV
problem, the contribution of all pruned estimated vectors (columns
of X^

) is subtracted from the corresponding measurement vectors
(matrix Y) obtaining the residual matrix R.

The residual matrix is obtained as follows:

R = Y − ΦX^ (5)

Then the total residual norm is obtained by summing the norms of
the residuals for all the vectors. The ℓ2 norm of each column of R
is obtained and then they are summed.

In successive iterations, the residual matrix is used in the
simultaneous support identification stage as previously explained.
The algorithm is repeated until any of the following conditions is
satisfied:

(i) the norm of the total residual is less than ϵ1;
(ii) the difference between the total residuals in two successive
iterations is less than ϵ2; or
(iii) the total residual in an iteration is larger than that in the
previous iteration.

We summarise the proposed algorithm in Algorithm 1. The
operator Lk( ⋅ ) returns the index set of the k largest absolute values
of the elements of its argument vector. The hard thresholding
operator Hk( ⋅ ) retains only the k elements with the largest absolute
values and sets the rest to zero. Algorithms 2–4 list functions used
in SFMP for simultaneous support selection, Gram matrix
inversion, and simultaneous pruning, respectively. Fig. 1 illustrates
a block diagram of the algorithm (See Figs. 2–5). 

4.2 Complexity analysis

We perform the complexity analysis for the SFMP algorithm. First,
we analyse the complexity of each stage of the algorithm, then we
find the overall complexity.

Fig. 1  Block diagram of the algorithm
 

Fig. 2  Algorithm 1 Simultaneous fast matching pursuit
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4.2.1 Simultaneous support identification: The complexity of
this stage is dominated by the matrix–matrix multiplication
Φ*R[i − 1], which is O(Lmn). Sorting is performed using quicksort or
mergesort in O(nlog2 n). Support merging can be performed in
O(k). The overall complexity of this step is O(Lmn).

4.2.2 Signal estimation and pruning: SFMP avoids large matrix
inversion which is used in related algorithms. We denote the
average number of elements selected per iteration by p. This value
is much smaller than the sparsity k of the signal. The complexity of
this step is dominated by the iterative calculation of the inverse of
B. Since B is symmetric, B−1 is symmetric as well. We also have
D = CT. Thus, we first compute DB−1 and transpose it to obtain
B−1C. The rest of matrices products used for signal estimation and
pruning are easily calculated using the aforementioned matrices in
O(kmp). Inverting small matrices of size p is O(p3). This is a very
small cost paid for avoiding the inversion of much larger matrices.
The pruning step keeps the top magnitude k elements, which is
done by sorting the vector in O(klog2 k). Therefore, the overall
complexity of this stage is given by O(kmp + p3). Empirically, we
take p = k. Thus, the complexity of this stage is O(k1.5m) per
node. The total complexity is O(Lk1.5m).

4.2.3 Residual calculation: The complexity of this step is
dominated by the matrix–matrix multiplication given by O(Lmk).

4.2.4 Overall complexity: The overall complexity per iteration is
O(Lmn + Lk1.5m). It should be noted here that k is much smaller
than n. Furthermore, SFMP requires a much smaller number of
iterations compared to SOMP as illustrated by simulation results.

5 Simulation results
5.1 Simulation setup

In this section, we compare the performance of our proposed
algorithm, SFMP, against other main greedy matching pursuit
algorithms, SOMP [7, 11] and SCoSaMP [8]. Such algorithms are
the counterparts of two of the most well-known and cited SMV
algorithms [3, 4].

For each algorithm, the reported results are the average of the
metrics evaluated for ten independent trials. In each trial, we
generate a random sparse signal of length n = 1000. For SFMP, we
take α = 0.7 and β = 0.25 [36].

5.2 Performance metrics

The performance metrics that we use to compare our proposed
SFMP algorithm against other related algorithms are as follows:

• The reconstruction time t in seconds, which is the average time
required to reconstruct the sparse vectors from the measurement
vectors.

• The total reconstruction error which is the average
reconstruction error relative to the ℓ2 norm of the vector defined
as ∑l = 1

L ∥ xl − x^l ∥2 / ∥ xl ∥2.

5.3 Simulation results

We perform three sets of experiments to evaluate the performance
of the algorithms. In the first two experiments, we use noiseless
measurements. First, we vary the number of measurements at each
sensor, fixing the number of sensors used. This illustrates the
reconstruction capability of the algorithm, since a good recovery
algorithm is capable of achieving high performance using a smaller
number of measurements. Then, we vary the number of sensors
fixing the number of measurements. This shows the improvement
achieved by using multiple measurements. Finally, in our third
experiment, we examine the effect of noisy measurements, varying
the signal-to-noise ratio (SNR), while fixing the number of
measurements and sensors.

5.3.1 Impact of the number of measurements: In our first
experiment, we examine the reconstruction capability of the
simulation algorithms in terms of accuracy and speed. We compare
the performance of the algorithms against the number of
measurements taken at each sensor. Measurements are collected by
L = 20 sensors, each taking compressed measurements of the
corresponding sparse vector, and forwarding them to an FC. The
sparse vectors have common support, according to the JSM-2
model, and their common sparsity is s = 200, i.e. each having 200
non-zero elements. The number of measurements m taken at each
node is varied from 100 to 500 at steps of 50.

Figs. 6 and 7 show the reconstruction error and time,
respectively, against the number of measurements for the simulated
algorithms. Tables 1 and 2 list the corresponding values. SFMP
achieves less reconstruction error compared to SOMP and
SCoSaMP. At a number of measurements m = 200, both SFMP
and SOMP achieve perfect reconstruction. However, our SFMP
achieves remarkably less reconstruction error compared to SOMP
when the measurements are <200. SCoSaMP, on the other hand,
requires a much larger number of measurements m = 450 to
achieve perfect reconstruction. Both optimum simultaneous
selection and simultaneous pruning contribute to the superior
accuracy of SFMP.

Examining the reconstruction time of the algorithms, we notice
the significant speed improvement that SFMP achieves compared
to SOMP. While both algorithms achieve perfect reconstruction at
m = 200, SFMP takes only 0.03 s, while SOMP takes a much
larger time of 1.1 s. This is due to the selection strategy of SFMP,
which aims to select an optimum number of elements per iteration.
On the other hand, SOMP selects only one element per iteration,
which results in a much larger number of iterations. Furthermore,
avoiding large matrix inversion contributes to the improved speed
of SFMP. It is noted that SCoSaMP achieves close reconstruction
time to SFMP, however, its reconstruction accuracy is poor, and it
requires a much larger number of measurements to achieve the
same accuracy as SFMP. This shows that the speed improvement of
SFMP does not come at the expense of its accuracy.

Fig. 3  Algorithm 2 SelectSupport function
 

Fig. 4  Algorithm 3 GramInverse function
 

Fig. 5  Algorithm 4 PruneGramInverse function
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The number of iterations required by the algorithms is shown in
Fig. 8. Since SOMP selects a single element per iteration, it
requires a much larger number of iterations compared to SCoSaMP
and SFMP. This accounts for the significant increase in the
reconstruction time of SOMP. On average, the number of iterations
required by SOMP is 168, compared to 2 for SCoSaMP and 6 for
SFMP. SFMP performs slightly more iterations than SCoSaMP.
However, this is due to the adaptive selection strategy of SFMP,
which results in fewer erroneously selected indices and better
reconstruction accuracy.

5.3.2 Impact of the number of sensors: In the next experiment,
we illustrate the benefit from using multiple sensors to reconstruct
the signals as opposed to using a single sensor. Figs. 9 and 10
illustrate the reconstruction time and error, respectively, against the

number of sensors. The signals have a common sparsity s = 200
and the number of measurements m = 200. The number of sensors
is varied from 1 to 20. Using a single sensor, none of the simulated
algorithms are able to reconstruct the sparse signal using the
number of measurements m = 200. However, as the number of
sensors reaches 15, the signals are perfectly reconstructed by
SFMP and SOMP with zero error. SFMP requires a significantly
smaller reconstruction time of 0.03 s, while SOMP takes 1.12 s. On
the other hand, SCoSaMP is not able to reconstruct the sparse
signals using m = 200 measurements even as the number of
sensors is increased beyond 20. This shows that the reconstruction
capability of SFMP is superior to that of SCoSaMP. This is mainly
attributed to the selection strategy of SFMP which selects an
optimum number of elements per iteration. SCoSaMP, on the other
hand, selects a fixed number of elements per iteration. Such fixed

Fig. 6  Reconstruction error versus number of measurements
 

Fig. 7  Reconstruction time versus number of measurements
 

Table 1 Reconstruction error
Measurements 100 150 200 250 300 350 400 450 500
SOMP 9.98 9.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SCoSaMP 2.07 2.28 2.36 2.31 2.30 2.12 0.23 0.00 0.00
SFMP 1.93 1.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 

Table 2 Reconstruction time in seconds
Measurements 100 150 200 250 300 350 400 450 500
SOMP 0.11 0.70 1.10 1.32 1.45 1.64 1.80 1.99 2.12
SCoSaMP 0.01 0.02 0.02 0.03 0.04 0.04 0.04 0.03 0.03
SFMP 0.00 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03
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selection results in selection of too many elements per iteration,
which results in selecting too many incorrect elements.

5.3.3 Impact of SNR: Next, we turn to the case in which the
measurements are contaminated with additive white Gaussian
noise. In this experiment, we plot the reconstruction error for the
simulated algorithms against the SNR. We take a number of
measurements m = 200 and a number of sensors L = 20. The
sparsity of all signals s = 200.

Figs. 11 and 12 depict the reconstruction error and time,
respectively, against SNR. The proposed algorithm SFMP achieves
the least reconstruction error among the simulated algorithms. At
an SNR of 10 dB, SFMP gives an error of 0.038, while SOMP
gives 0.2. Again for SCoSaMP, the number of measurements
m = 200 is not enough to achieve accurate reconstruction and the
error is 2.3. SFMP achieves the least reconstruction time of 0.03 s,
which is significantly faster than SOMP which takes 1.2 s.

The superior noise robustness of SFMP is attributed to its
optimum simultaneous selection (which prevents too many
incorrect elements from being selected), and to simultaneous
pruning (which excludes the few incorrectly selected elements).

6 Conclusion
In this paper, we have proposed SFMP, which is a fast and efficient
joint sparse recovery algorithm. SFMP achieves significant
improvement in reconstruction accuracy due to selecting an
optimum number of elements per iteration, and due to the
simultaneous pruning of the support set in each iteration.
Furthermore, SFMP achieves significant speed improvement due to
avoiding larger matrix inversion in the signal estimation, and due
to its optimum selection strategy, which results in fewer iterations.
Compared to related algorithms, SFMP achieves significant speed
improvement over SOMP (0.03 as opposed to 1.1 s). SFMP also
achieves significant accuracy improvement over SCoSaMP,
requiring a much smaller number of measurements (200 as
opposed to 450 measurements) to achieve the same reconstruction
accuracy.

Fig. 8  Iterations versus number of measurements
 

Fig. 9  Reconstruction error versus number of sensors
 

Fig. 10  Reconstruction time versus number of sensors
 

Fig. 11  Reconstruction error versus SNR
 

Fig. 12  Reconstruction time versus SNR
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