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Collision avoidance and road safety applications require highly accurate vehicle localization techniques. Unfortunately, the existing
localization techniques are not suitable for road safety applications as they rely on the error-proneGlobal Positioning System (GPS).
Likewise, cooperative localization techniques that use intervehicle communications experience high errors due to hidden vehicles
and the limited sensing/communication range. Recently, GPS-free localization based on vehicle communication with a low cost
infrastructure installed on the roadsides has emerged as a more accurate alternative. However, existing techniques require the
vehicle to communicate with two roadside units (RSUs) in order to achieve high localization accuracy. In contrast, this paper
presents a GPS-free localization framework that uses two-way time of arrival to locate the vehicles based on communication with
a single RSU. Furthermore, our framework uses the vehicle kinematics information obtained via the vehicle’s onboard inertial
navigation system (INS) to further improve the accuracy of the vehicle location using Kalman filters. Our results show that the
localization error of the proposed framework is as low as 1.8 meters. The resulting localization accuracy is up to 65% and 47.5%
better than GPS-based techniques used without/with INS, respectively. This accuracy gain becomes around 73.3% when compared
to existing RSU-based techniques.

1. Introduction

The growth in motor vehicle crashes and fatalities has
recently caused safety applications for smart roads to receive
significant attention to savemillions of lives. According to the
National Highway Traffic Safety Administration (NHTSA) in
2013, 5.4 million car crashes take place in average every year
out of which 35,244 are fatal crashes. The average number of
people killed on US roads each day is 80 and the estimated
number of people injured in motor vehicle traffic crashes is
2.36 million. It is predicted that road crashes will be the fifth
leading cause of death by 2030. In addition to such huge
fatalities, billions of dollars are also lost every year in such
crashes [1].

In order to develop robust road safety and collision
avoidance systems, highly accurate vehicle localization tech-
niques are needed. Many vehicle localization techniques
have been recently proposed which can be broadly classified
into absolute positioning techniques and relative positioning

techniques. In absolute positioning techniques, each vehicle
has the ability to determine its own absolute location—
without regard to nearby vehicles—based on using either
Global Positioning System (GPS) [2–6] or roadside units
(RSUs) [7–9]. Such positioning techniques are only applicable
for navigation and fleet management application and are
not well suited for collision avoidance applications. This is
because of their low accuracy that can be up to tens of meters
in GPS-based systems, the lack of lane-level positioning, and
the discontinuous availability issues in the case of GPS-based
techniques. On the other hand, relative positioning tech-
niques use intervehicle communication and cooperative posi-
tion approaches to determine the vehicles’ locations relative
to each other [6, 10–18]. However, cooperative localization
techniques—which typically use eithermillimeter wave radar
sensors or vision sensors—suffer not only from the limited
sensing range and high cost of these sensors but also from
the problems of hidden vehicles, slow update rates, and the
multipath effect. Furthermore, lane-level vehicle localization
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techniques which use vision-based lane-recognition systems
suffer severe accuracy degradation in adverse weather condi-
tions or in unclear lane signature situations [16–18].

In this paper, we present a highly accurate—yet low-
cost—GPS-free integrated localization framework for colli-
sion avoidance and intelligent road safety applications.Unlike
related works [7, 8] which typically use 2 roadside units
(RSUs) for localization, our goal is to have each vehicle
determining its location with respect to a single RSU in order
to decrease the required number of RSUs and, consequently,
reduce the cost of the localization system installation. The
constraint of using a single RSU in vehicle localization poses
a significant challenge in locating the vehicles with high
accuracy.Weuse the vehicle kinematics information obtained
through the inertial navigation systems (INS) and the road
constraints broadcasted by RSUs to further improve the
predictability and the accuracy in vehicle localization and
provide lane-level localization accuracy.

The proposed localization framework consists of four
stages: (1) determining the vehicle’s driving direction, (2)
estimating the distance between the vehicle and the RSU
via two-way time of arrival (TOA) ranging to get an initial
estimate of the vehicle location in the road length dimension,
(3) obtaining a highly accurate estimate of the vehicle location
in both the 𝑥- and 𝑦-dimensions by using Kalman filters
to fuse the range obtained in the second stage and the
vehicle kinematics information available through the vehicle’s
inertial navigation system, and (4) ensuring that the vehicle
location in the road width dimension is within the physical
boundaries of the road/lane which significantly improves the
accuracy of the vehicle localization.

Our results show that the accuracy of the proposed
single RSU localization framework significantly outperforms
existing localization using GPS technique as well as existing
RSU-based techniques. More specifically, our results show
that the localization error of the proposed framework is
as low as 1.8 meters. The resulting improvement in the
localization accuracy is up to 65% and 47.5% compared to
GPS-based techniques used without/with INS, respectively.
This accuracy gain becomes around 73.3% when compared
to existing RSU-based techniques.

The rest of the paper is organized as follows. In Section 2,
we review the related literature. We present the systemmodel
in Section 3. In Section 4, we present our GPS-free vehicle
localization framework.Thenwe evaluate the performance of
the proposed framework in Section 5 and conclude the paper
in Section 6.

2. Related Work

In this section, we overview the existing literature of posi-
tioning techniques that can be broadly classified into absolute
positioning techniques and relative positioning techniques.

2.1. Absolute Positioning Techniques

2.1.1. GPS-Based Absolute Positioning. Such positioning
approach uses the Global Positioning System (GPS) to

determine the position of each vehicle. The traditional GPS
localization technique [2] uses GPS receivers to continuously
receive the data being sent by the GPS satellites. The received
data is used to estimate the vehicle’s distance to at least
four known satellites using a technique called time of
arrival (TOA) and then computes the actual position via
trilateration.

GPS-based techniques suffer many challenges. One main
challenge is the low accuracy of GPS systems (10m–30m)
that is not sufficient for vehicle collision warning systems.
Therefore, several modifications of the basic GPS technique
have been proposed to increase the accuracy of GPS-based
localization. An example of such methods is the radio-
frequency-GPS (RF-GPS) [3] that employs a differential GPS
(DGPS) concept to improve the GPS accuracy. DGPS [19] is a
method to improve the positioning of GPS using one ormore
reference stations at known locations, each equipped with at
least one GPS receiver. The reference station(s) calculates the
error and broadcasts it.

Another problem in GPS-based techniques is the exis-
tence of tall buildings which prevent the GPS receivers on
vehicles from receiving strong satellite signals. Assisted-GPS
(A-GPS) has been proposed to enhance the performance of
standard GPS in devices connected to the cellular network
by using an A-GPS server [4]. Although there exist some
enhanced versions of GPS such as the A-GPS and RF-GPS,
they require extra infrastructures and, hence, add cost.

2.1.2. GPS-Free Absolute Positioning. The need for GPS-
free localization techniques comes from the facts that the
accuracy of GPS positioning algorithms (with localization
error between 10m and 30m) are not accurate enough for
collision warning system applications. Thus motivated, new
techniques using roadside units (RSUs) [7–9] have been
proposed to eliminate the need to use GPS techniques. RSUs
are installed on both sideways of the road and all the vehicles
are equipped with onboard unit (OBU) devices that are able
to communicate with the RSUs. Hence, each vehicle has the
ability to estimate its coordinates relative to the RSUs. The
author of [7] assumed that there are two RSUs installed on
both sides of the road and each vehicle estimates its location
relative to those two RSUs using a technique called faulty-
free. The author in [7] also illustrates another scenario, called
faulty, in which one of the RSUs fails such that only one RSU
remains functional.

Alternatively, the proposed approach in [8] depends on
obtaining the initial position using single RSU information
and updates the position all the way using dead reckoning.
Dead reckoning [7] is a technique that is originally used
for localization in the absence of GPS coverage in GPS-
based techniques which is an effective alternative to inter-
vehicle communications techniques [10, 11]. However, the
accumulation of dead reckoning error makes the localization
accuracy of [8] significantly deteriorate with distance as we
shall demonstrate in the simulation results. The localization
approach in [8] does not use any distance-measuring tech-
niques such as time of arrival (TOA) [20], time difference of
arrival (TDOA) [21], and received signal strength (RSS) [11].
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Thus motivated, the authors of [9] proposed to use TOA-
based distance-measuring to significantly reduce the posi-
tioning error and restrict the use of the erroneous dead
reckoning to the close proximity of the RSU.

2.2. Relative Positioning Techniques. All of the above absolute
positioning techniques are not suitable for collision avoid-
ance applications due to their limited accuracy. Furthermore,
such techniques are not capable of determining the lane in
which the vehicle is traveling. Hence, they are not applicable
to collision avoidance systems in which a vehicle has to
accurately know its relative distance with the neighboring
vehicles. Relative positioning techniques have emerged to
improve the positioning accuracy by having the vehicles
exchanging their erroneous location information and jointly
cooperate to reach a more accurate positioning relative to
each other. Such cooperative techniques [10–15] estimate
intervehicle distances using either RSS [11], time of arrival
(TOA) [12], both of RSSI and two-way TOA [10], millimeter
wave radar sensors [13], vision-based sensors [14], or Doppler
shift [15] as an intervehicle ranging technique.

2.2.1. GPS-Based Relative Positioning. Several existing rel-
ative positioning techniques rely on GPS as an input to
the localization process. Examples include the Intervehicle-
Communication-Assisted Localization (IVCAL) which uses
a Kalman filter (KF) to fuse the positioning information
obtained by both GPS and the inertial navigation system
(INS). The KF-fused position and the relative distance esti-
mation, obtained from intervehicle communication, are inte-
grated using least square optimization in order to increase the
accuracy of the localization of every vehicle in the network.
Likewise, the grid-based on-road localization (GOT) system
was developed to use vehicle cooperating to allow vehicles
with blocked GPS signal, for example, when the vehicles
are inside a tunnel or on a road surrounded by high rises,
to accurately calculate their position through the help of at
least three vehicles with good GPS signals using intervehicle
distance estimation.

2.2.2. GPS-Free Relative Positioning. In order to improve the
predictability and the accuracy in vehicle localization, several
works have been carried out to develop GPS-free cooperative
vehicle localization schemes that do not rely on any form
of GPS assistance [10, 11, 14]. For instance, [11] proposed a
three-phase localization technique in which each vehicle ini-
tially estimates the intervehicle distances with its neighbors
using RSSI. After sharing such information with neighboring
vehicles, each vehicle improves its estimation alongside the
vehicle kinematics and road constraints information using
Kalman filter [22]. The process is iterated periodically to
maintain an up-to-date estimate of the vehicle position.
Meanwhile, the authors of [14] proposed a two-phase GPS-
free neighbor-vehiclemapping framework that has each vehi-
cle fetching the neighboring vehicles’ presence/absence status
information from a vision-based environment sensor system
that covers a specific calibrated region in the front, back,
and adjacent left/right lanes of the vehicle using omnivision

camera-based sensor systems. After exchanging this status
information with neighbor vehicles, each vehicle builds a
relative local map that links the neighbors’ information and
their communication addresses, such as Medium Access
Control/Internet Protocol (MAC/IP), with the vehicles’ car-
dinal locations.

GPS-based positioning techniques suffer from many
problems that degrade the localization accuracy including
multipath and signal blockingwith high buildings and during
moving through tunnels. In contrast, our proposed localiza-
tion technique is based on using RSUs for localization to
improve the accuracy and the complexity of the existing node
localization algorithm. We also exploit fusion techniques
developed for relative positioning to further increase the
localization accuracy. However, we only rely on the vehicle’s
own information only without any kind of intervehicle
information.

3. System Model

In our systemmodel, vehicle localization is not based on GPS
receivers. Instead, we assume that all vehicles are equipped
with onboard unit (OBU) devices that are used to determine
the vehicle’s distance to the RSUs using vehicle-to-road (V2R)
communication. We use the dedicated short-range commu-
nications (DSRC 5.9GHz) for intelligent transportation sys-
tems over which the IEEE 802.11p operates. We exploit RSUs
deployed only on one side of the road to locate the vehicles.
TheRSUs broadcast periodic beacons containing the IDof the
road and the location of the RSU. For collision avoidance, we
assume that the neighboring vehicles exchange their locations
using vehicle-to-vehicle (V2V) communication.However, we
do not use V2V communication for the localization process
itself, and, hence, V2V communication falls behind the scope
of the paper.

Each vehicle is equipped with a digital odometer, a
compass, and an inertial navigation system (INS) which are
commonly available devices in modern vehicles. INS is a
navigation technique used to get the current position of an
object relative to a previous position by measuring the veloc-
ity and orientation of the object. The most common sensors
used to get the previous measurements are accelerometers
and gyroscopes that provide the velocity and the direction
information, respectively.

We assume that vehicles move on dual carriageway high-
way separated by a central reservation. The road is straight
all the way and there are multiple entry and multiple exit
points along the road. Such a road model is widely adopted
in the related literature. Each entry point is equipped with
an RSU. We assume that the entry/exit points are interleaved
(i.e., at a given 𝑦-location, we can have only one entry to
the road with an exit on the other side) as the typical case
depicted in Figure 1. The road has shoulders that a vehicle
can use to reverse the driving direction. However, the road
does not have any intersections. We assume that the distance
between the RSU and the vehicle 𝑅 is large and the width of
the road𝑊 is too small compared to its length 𝐿, and, hence,
the curvature is assumed to be nearly linear. The Notations
summarizes the used notations.
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Figure 1: Illustration of the system model.

4. GPS-Free Vehicle Localization Framework
via an INS-Assisted Single RSU

We introduce a GPS-free localization framework that only
uses (1) a single RSU for locating the vehicle along the road
length (𝑦-dimension) and (2) INS information with Kalman
filtering to accurately specify the lane-level location of the
vehicle (𝑥-dimension). The vehicle location is constrained
by the road boundaries broadcasted from the RSU which
contain information about the geometry of the road such
as width of the road and number of lanes. Each vehicle
then shares its computed location information using V2V
communications with nearby vehicles to be used for collision
avoidance systems. However, this paper is only concerned
with determining the location of the individual vehicles.

The proposed framework consists of four main compo-
nents: (1) determining the vehicle’s driving direction which
is either north (N) or south (S), (2) measuring the distance
between the vehicle and the nearest RSU, 𝑅

𝑉,RSU, using two-
way TOA, (3) estimating the vehicle location (𝑥, 𝑦) using
𝑅
𝑉,RSU estimated from the previous component and the INS

information locally provided by the vehicle, and finally (4)
ensuring that the final vehicle location 𝑥

𝑘
is within the

road/lane boundaries obtained from the periodic beacons
broadcasted from the RSUs using a road boundary stage.
Figure 2 summarizes the proposed framework. We next
explain the details of each of the four main components of
the framework.

4.1. Determining the Vehicle Driving Direction. This section
discusses our proposed technique to find the driving direc-
tion. In [7] a technique for determining the driving direction
using two roadside units installed on both sides of the road
has been proposed. A vehicle determines its driving direction
by comparing the angle between its current movement vector

and the north (or south) roadside unit. Meanwhile, the
authors in [8] assume that there are RSUs installed on one
side of the road and each vehicle should receive and evaluate
the position information of 2 consecutive two RSUs to get
the driving direction. Given our system model, the major
challenge here is how to get the driving directionwith the help
of only oneRSU installed on one road direction andminimize
the start-up time.

We propose the following algorithm which is invoked
every time the vehicle enters a new road to decide the
direction the vehicle is traveling. Without loss of generality,
we denote the travel direction as either north (N) or south
(S) to distinguish the two travel possibilities. However, the
absolute travel direction is obtained by interpolating the
RSU well-defined coordinates which are exactly known and
broadcasted to all vehicles. We first assume that there are two
types of roadside units: one type which is at the entry points
of the road. The second type of RSUs is in the middle of the
road between the entry points. We assume that an entry RSU
broadcasts the driving direction either N or S while a middle
RSU has a Null direction field in its beacon. When a vehicle
first enters the road, it will determine its driving direction
based on the direction of the first beacon received from an
entry RSU. As the vehicle moves along the road, it receives
a beacon from a middle RSU which contains the ID and the
location of the RSU. The driving direction is updated to be
either the same or the opposite direction based on the ID of
the new RSU (included in the incoming beacon) and the ID
of the previous RSU (stored on the OBU which is initially set
to Null). Therefore, even if the vehicle make a U-turn using
the shoulder, comparing the new received RSU ID with the
ID stored on the OBU will allow the vehicle to know that the
driving direction has been switched. Algorithm 1 outlines the
proposed algorithm assuming that the RSU ID increases in
the north direction.

It is worth mentioning that Algorithm 1 can be easily
generalized to vehicle localization in intersected roads. In
such a case, the intersection points should be equipped with
RSUs that broadcast all four possible travel directions: the
legacy directions N and S, as well as two perpendicular
directions such as east (E) and west (W). The intersection
RSUs are treated as entry/exit points of the perpendicular
road. When the vehicle receives a beacon from such an
intersection RSU, it checks whether the driving direction is
the same or has been switched to the perpendicular direction.
However, intersected roads fall behind the scope of this paper.

4.2. Estimating the Vehicle Distance to the RSU (Ranging). The
goal of this stage is to estimate the 𝑦-location of the vehicle
based on estimating the distance between the vehicle and
the RSU, 𝑅

𝑉,RSU, using V2R communication. In our proposed
RSU-based localization scheme, each vehicle estimates its
distance to the RSU upon receiving the RSU periodic beacon
messages which contain the ID of the RSU and its 𝑌-
coordinate denoted by 𝐿RSU. As shown in Figure 1 and given
that the RSU is located at location 𝐿RSU, a vehicle𝑉 is located
at

𝑦 = 𝐿RSU ± 𝑅
𝑉,RSU, (1)
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ỹk−1
) (x̃k

ỹk
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Figure 2: The proposed GPS-free integrated framework for vehicle localization using a single RSU and INS information.

(1) Initialization: Driving Direction = NULL
(2) if Receive(Beacon) and Beacon.Direction ̸= NULL then
(3) Driving Direction = Beacon.Direction
(4) Current RSU = Beacon.ID(RSU)
(5) else
(6) if Beacon.ID(RSU) > Current RSU then
(7) Driving Direction = North
(8) else
(9) Driving Direction = South
(10) end if
(11) Current RSU = Beacon.ID(RSU)
(12) end if

Algorithm 1: Algorithm for driving direction determination.

where 𝑅
𝑉,RSU is the distance between the RSU and vehicle 𝑉.

The sign of 𝑅
𝑉,RSU depends on the driving direction obtained

in the previous stage and whether 𝑅
𝑉,RSU tends to increase or

decrease.
It is worth mentioning that (1) is only valid under the

assumption that the distance between theRSUand the vehicle
is large enough and the width of the road is too small
compared to its length, and, hence, the curvature is assumed
to be a line as per our system model. When the vehicle
moves closer to the RSU, this assumption is no longer valid.
Therefore, the proposed ranging technique is used to provide
an estimate of the 𝑦-location of the vehicle to be refined in

the next stage only when 𝑅
𝑉,RSU is greater than a certain

threshold and we will use another technique when 𝑅
𝑉,RSU is

less than that threshold as will be discussed in Section 4.3.
Many techniques are used for range measurements such

as received signal strength (RSS) [11], angle of arrival (AoA)
[23], time difference of arrival (TDOA) [21], and time of
arrival (TOA) [20]. In our proposed technique, we use the
two-way reciprocal time of arrival [24] technique which
is preferred in the presence of multipath interference and
does not need synchronization between the transmitter and
the receiver. Recall that DSRC systems should be resilient
to multipath fading [25]. The proposed two-way reciprocal
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Figure 3: The timeline of the proposed two-way TOA packet
handshake.

time of arrival technique works as follows. When the vehicle
receives a beacon from theRSU, the vehiclewill send a request
to send for two-way TOA (RTS-T) packet at time 𝑡

1
.The RSU

will reply with a clear to send two-way TOA (CTS-T) packet
which contains the delay 𝜏 experienced at the RSU (which
might come from collisions and processing time). The CTS-
T is received at the vehicle at time 𝑡

2
as shown in Figure 3.

The difference between the time the CTS-T is received and
the time the RTS-T is sent is equal to the propagation time of
the RTS-T plus the processing delay(s) within the RSU plus
the propagation time of the CTS-T; that is,

𝑡
2
− 𝑡
1
=

𝑅


𝑉,RSU

𝐶

+ 𝜏 +

𝑅
𝑉,RSU

𝐶

, (2)

where 𝑅


𝑉,RSU/𝐶 and 𝑅
𝑉,RSU/𝐶 are the propagations times of

the RTS-T and CTS-T packets, respectively, and 𝐶 is the free-
space propagation speed. Equation (2) can be rewritten as

(𝑡
2
− 𝑡
1
− 𝜏)𝐶 = 𝑅

𝑉,RSU + 𝑅


𝑉,RSU, (3)

where 𝑅
𝑉,RSU is the distance between the RSU and the vehicle

at instant 𝑡
2
and 𝑅



𝑉,RSU is the distance between the RSU and
the vehicle at instant 𝑡

1
, as shown in Figure 4. Recall that the

𝑥 distance between the vehicle and the road side is negligible
with respect to 𝑅

𝑉,RSU and 𝑅


𝑉,RSU as per the assumed system
model. Hence, the vehicle displacement can be approximated
with an increment/decrement in the 𝑦-direction, depending
on whether the vehicle is moving away/towards the RSU; that
is,

𝑅


𝑉,RSU ≅ 𝑅
𝑉,RSU ± Δ𝑦. (4)

Substituting with 𝑅


𝑉,RSU given in (4) into (3), we get

(𝑡
2
− 𝑡
1
− 𝜏)𝐶 = 2𝑅

𝑉,RSU ± Δ𝑦. (5)

Consequently, the 𝑦-location of the vehicle 𝑦
𝑉
given in (1) is

computed using 𝑅
𝑉,RSU given by

𝑅
𝑉,RSU =

(𝑡
2
− 𝑡
1
− 𝜏)𝐶 + Δ𝑦

2

, Δ𝑅 > 0,

𝑅
𝑉,RSU =

(𝑡
2
− 𝑡
1
− 𝜏)𝐶 − Δ𝑦

2

, Δ𝑅 < 0,

(6)

S

R
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Figure 4: Range estimation using two-way TOA.

where Δ𝑅 = 𝑅
𝑉,RSU(𝑖 + 1) − 𝑅

𝑉,RSU(𝑖) and 𝑅
𝑉,RSU(𝑖) is the

estimated range after receiving the 𝑖th beacon from the RSU,
determining whether the vehicle is approaching or moving
away from theRSU.Theonly unknown in the above equations
is Δ𝑦. A vehicle locally computes Δ𝑦 as Δ𝑦 = (𝑡

2
− 𝑡
1
)V,

where V is the average vehicle speed. Hence, our proposed
ranging technique computes the 𝑦-location of the vehicle
using a single RSU.

4.3. RSU/INS Integration for Vehicle Localization. In the
second stage of the proposed framework, we have only
obtained an estimate 𝑦 of the𝑦-location of the vehicle relative
to the nearest RSU. The goals of this stage of the proposed
framework are to (1) refine the 𝑦-location estimate, 𝑦, outside
the threshold area, (2) estimate the 𝑦-location of the vehicle
within the threshold area, and (3) estimate the 𝑥-location
of the vehicle, 𝑥. In other words, this stage not only is
responsible for significantly improving the accuracy of our
ranging technique but also enables the framework to capture
the lane-level information required for the targeted collision
avoidance applications.

Our approach is to use data fusion techniques such as
Kalman filter that is widely used to enhance the vehicle
location obtained from GPS receivers [11, 26, 27]. Unlike
such techniques which integrate the readings from both GPS
receivers and the vehicle’s inertial navigation system (INS)
to form an estimate of the vehicle location, we use different
types of Kalman filters to either enhance the 𝑦-location
obtained from our single RSU ranging approach, 𝑦, and the
𝑦-location obtained from INS or obtain the 𝑥-location and
the 𝑦-location in the region in which the RSU-based ranging
is not applicable.

For vehicles moving outside the threshold area, the 𝑦-
location, 𝑦, is linearly related to 𝑅

𝑉,RSU, and, hence, it can
be directly fused with the 𝑦-location of the INS. This is not
the case for the 𝑥-location. Unfortunately, we have only one
input for 𝑥-location which is obtained from INS and do
not have other sources for 𝑥-location data that is linearly
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related to 𝑥. Hence, we cannot use two-dimensional Kalman
filter to simultaneously enhance the 𝑦-location and get the 𝑥-
location. Therefore, we use a one-dimensional Kalman filter
to refine the 𝑦-location and rely only on the INS information
to update the 𝑥-location when 𝑅

𝑉,RSU > threshold.
For vehicles moving inside the threshold area around

the RSU, where there is no linear relation between 𝑅
𝑉,RSU

and the vehicle location, we use a nonlinear version of the
Kalman filter (extended Kalman filter) which linearizes the
measurement𝑅

𝑉,RSU around the current estimate. In this case,
the range 𝑅

𝑉,RSU is considered as one input of the extended
Kalman filter instead of 𝑦-location 𝑦 and INS is the other
input of the extended Kalman filter. Note that the perfor-
mance of the extended Kalman filter results in slightly worse
accuracy in the 𝑦-location compared to the one-dimensional
Kalman filter since the Kalman filter is an optimal esti-
mator for linear measurement and process equations [22].
Figure 5 summaries the various localization techniques used
inside and outside threshold area. The threshold—depicted
in Figure 5—is computed using the target localization error
as will be shown in Section 5. We next briefly overview the
fundamentals of Kalman filters and then explain in detail how
they are used in the proposed localization approach.

4.3.1. Kalman and Extended Kalman Filters Preliminaries.
In the proposed localization approach, the Kalman and
extended Kalman filters use a vehicle’s motion model—
obtained from INS—and the sequential measurement—
obtained from RSU-based localization technique—to form
an estimate of the vehicle location that is better than the
estimate obtained by using only onemeasurement (either INS
or the proposed RSU-based localization) alone. The motion
model of the vehicle obtained from INS, also referred to as
the system process model, is expressed as follows:

𝜑
𝑘
= 𝐴𝜑
𝑘−1

+ 𝐵𝑢
𝑘−1

+ 𝑤
𝑘−1

. (7)

N

Xk+1

𝜃

Xk

Ucos𝜃

Figure 6: INS vehicle kinematics.

The process equation in (7) represents the estimation of the
current vehicle location 𝜑

𝑘
based on the previous location

𝜑
𝑘−1

using the INS, where 𝜑
𝑘
is the 2 × 1 vector that represents

the vehicle location (𝑥, 𝑦) at time 𝑡
𝑘
. The process noise 𝑤

𝑘

is a random vector which is modeled as Gaussian random
variable with zero mean and covariance matrices 𝑄; that is,
𝑤 ∼ 𝑁(0, 𝑄). 𝑢

𝑘
is a 2 × 1 vector that represents vehicle

velocity components in the 𝑥- and 𝑦-directions which is
calculated as

𝑢
𝑘
= V[

cos (𝜃)
sin (𝜃)

] , (8)

where V is the vehicle speed and 𝜃 is the angle between the
𝑦-axis and the vehicle motion direction as shown in Figure 6.
The process equation given by (7) applies a state transition
model, reflected by the 𝐴 matrix, to the previous state 𝜑

𝐾−1

and applies a control-input model, reflected by the 𝐵 matrix,
to the control vector 𝑢

𝐾
. The 𝐴 and 𝐵matrices are defined as

follows:

𝐴 = [

1 0

0 1

] ,

𝐵 = [

𝑇 0

0 𝑇

] ,

(9)

where 𝑇 is the time interval.
On the other hand, the measurement model that is

derived from the INS data can be expressed as

𝜑
−

𝑘
= 𝐴𝜑
𝑘−1

+ 𝐵𝑢
𝑘
, (10)

where �̂�
−

𝑘
is the a priori state estimate of the vehicle location

and �̂�
𝑘
is the a posteriori state estimate of the vehicle

location. For the one-dimensional Kalman filter, we use
the second component of �̂�−

𝑘
which represents the vehicle’s
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𝑦-location obtained from INS. On the other hand, for
the two-dimensional extended Kalman filter, we use the two
components of INS �̂�

−

𝑘
which reflect both the 𝑥- and 𝑦-

locations of the vehicle. The Kalman and extended Kalman
filters integrate the system process and measurement models
to result in a more accurate estimate of the vehicle location.

4.3.2. One-Dimensional Kalman Filter for Locating Distant
Vehicles. As explained earlier, we divide the localization of
vehicles into two regions: one in which 𝑅

𝑉,RSU is greater than
a certain threshold and another when 𝑅

𝑉,RSU is below that
threshold. Here, we obtain the vehicle location for distant
vehicles when𝑅

𝑉,RSU is greater than the threshold, and, hence,
𝑦 is linearly related to the actual 𝑦-location of the vehicle.
In order to get an accurate vehicle location that fits collision
warning system applications, the initially obtained𝑦-location
from the second stage of the framework 𝑦 is enhanced using
a one-dimensional Kalman filter, and we only rely on the INS
data to determine the 𝑥-location of the vehicle.

For the process model of the one-dimensional Kalman
filter, the vehicle uses its𝑦-location obtained from INS, which
is the second element of the vector �̂�

−

𝑘
, that is, �̂�−

𝑘
(2, 1). In

addition, the one-dimensional Kalman filter uses the vehicle’s
estimate of its 𝑦-location obtained via the second stage of
the framework 𝑦

𝑘
. However, the estimate 𝑦

𝑘
is prone to

measurement noise resulting from the range-based localiza-
tion technique used in our single RSU-based localization
technique. Such a measurement noise consists of the noise
in the estimation of the range between the vehicle and the
RSU, 𝑛

𝑅
, and the curvature noise 𝜀

𝑘
that reflects the lane-level

ambiguity inherited from approximations assumed in (1).The
curvature error is negligible compared to the noise in the
range distance estimation 𝑛

𝑅
.The effect of the curvature error

is investigated in Section 5. To capture such measurement
noise components, we use

𝑧
𝑘
= 𝑦
𝑘
+ 𝜁
𝑘 (11)

as the other estimate of the vehicle’s 𝑦-location fed to the one-
dimensional Kalman filter, where 𝑦

𝑘
is the estimated vehicle

location using our RSU-based approach at time 𝑡
𝑘
, and 𝜁

𝑘
is a

random vector which is considered to be Gaussian with zero
mean and variance 𝜎

2

𝑟
to model the measurement noise; that

is, 𝜁 ∼ 𝑁(0, 𝜎
2

𝑟
), where

𝜁
𝑘
= 𝑛
𝑟
+ 𝜀
𝑘
. (12)

Two distinct sets of equations describe the operation of
the Kalman filter: time update (prediction) andmeasurement
update (correction) equations. Both equation sets are applied
at the 𝑘th iteration when the vehicle is moving outside the
threshold area where 𝑅

𝑉,RSU > threshold. The time update
(prediction) equations of the proposed one-dimensional
Kalman filter are given by

𝑦
−

𝑘
= �̂�
−

𝑘
(2, 1) ,

𝑝
−

𝑘
= 𝑝
𝑘−1

+ 𝑞.

(13)

Meanwhile, the corresponding measurement update
(correction) equations are given by

𝑔
𝑘
=

𝑝
−

𝑘

𝑝
−

𝑘
+ 𝜎
2

𝑟

,

𝑦
𝑘
= 𝑦
−

𝑘
+ 𝑔
𝑘
(𝑧
𝑘
− 𝑦
−

𝑘
) ,

𝑝
𝑘
= (1 − 𝑔

𝑘
) 𝑝
−

𝑘
,

(14)

where 𝑦
−

𝑘
is the a priori state estimate of the vehicle location,

𝑦
𝑘
is the a priori state estimate of the vehicle location,𝑔

𝑘
is the

Kalman gain, 𝑝
𝑘
is the a posteriori estimate error variance,

and 𝑝
−

𝑘
is the a posteriori estimate error variance. Since the

Kalman filter at hand is one-dimensional, all the entities in
the above model, such as 𝐴 and 𝐵 in (7) and (10), are scalars.

We use INS to get the current 𝑥-location of the vehicle
related to the previous one which is the first component of
𝜑
−

𝑘
, obtained from (10). The final vehicle location outside the

threshold area where 𝑅
𝑉,RSU > threshold is given by

𝜑
𝑘
= [

𝜑
−

𝑘
(1, 1)

𝑦
𝑘

] . (15)

Recall that vehicles always enter the road through entry
points as shown in our system model depicted in Figure 1.
Hence, we set the initial estimate at 𝑘 = 0 of the two
components of 𝜑

0
to the center of the first lane and 0,

respectively, and set 𝑝
0
to 0.

It is worth mentioning that using the inertial navigation
system alone to get 𝑥-location will result in an accumulation
of the positioning error with time. However, this is the only
way we can get information about the 𝑥-location of the
vehicle given that distant vehicle localization in the second
stage of the framework is based on the assumption that the
road width is too small compared to its length.

4.3.3. Two-Dimensional Extended Kalman Filter for Locating
Nearby Vehicles. Next, we estimate the vehicle location using
two-dimensional extended Kalman filter in the region in
which 𝑅

𝑉,RSU is below the threshold where the Kalman filter
can no longer be used due to the nonlinear relationship
between 𝑅

𝑉,RSU and the vehicle location. Similar to the
Kalman filter, the extended Kalman filter integrates measure-
ment and processmodels. Instead of using the linear output 𝑦
in the measurement model given in (11), we use the nonlinear
estimation of the range between vehicle and the RSU, 𝑅

𝑉,RSU,
inside the threshold area. Hence, 𝑧

𝑘
—which represents the

estimated range between the vehicle and roadside unit—is
expressed inside the threshold area as follows:

𝑧
𝑘
= ℎ (𝜑) + 𝑛

𝑟
, (16)

where ℎ(⋅) is a nonlinear function of the two components of
the vehicle locations 𝜑, 𝑥, and 𝑦 that is used to compute the
predicted single-value measurement from the predicted state
𝜑 as

ℎ (𝜑) = √(𝑥 − 𝑥RSU)
2
+ (𝑦 − 𝑦RSU)

2
, (17)
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where (𝑥, 𝑦) is the vehicle location. The measurement noise
𝑛
𝑟

∼ 𝑁(0, 𝜎
2

𝑟
) in (16) comes from the single RSU-based

localization technique proposed in the second stage of the
framework. Unlike the case of 𝑅

𝑉,RSU > threshold, 𝑛
𝑟
here

only represents the noise in the estimation of the range
between the vehicle and the RSU, 𝑅

𝑉,RSU.
Unlike the system process in the one-dimensional

Kalman filter which only uses the second component of
�̂�
−

𝑘
: (�̂�−
𝑘
(2)), we use the two components of �̂�−

𝑘
in the two-

dimensional Kalman to represent the estimation of complete
vehicle location using the INS. The time update (prediction)
and measurement update (correction) equations applied at
the 𝑘th iteration when 𝑅

𝑉,RSU < threshold are given by

𝑃
−

𝑘
= 𝐴𝑃
𝑘−1

𝐴
𝑇
+ 𝑄, (18)

𝑔
𝑘
= 𝑃
−

𝑘
ℎ
𝑇
(ℎ
𝑘
𝑃
−

𝑘
ℎ
𝑇

𝑘
+ 𝜎
2

𝑟
)

−1

, (19)

𝜑
𝑘
= 𝜑
−

𝑘
+ 𝑔
𝑘
(𝑧
𝑘
− ℎ (𝜑

−

𝑘
)) , (20)

𝑃
𝑘
= (𝐼 − 𝑔

𝑘
ℎ
𝑘
)𝑃
−

𝑘
, (21)

respectively, where �̂�−
𝑘
is the 2 × 1 a priori state estimate of the

vehicle location, �̂�
𝑘
is the 2 × 1 a posteriori state estimate of

the vehicle location, 𝑔
𝑘
describes the 2 × 1 Kalman gain, 𝑃

𝑘
is

the 2 × 2 a posteriori estimate error covariance matrix, 𝑃−
𝑘
is

the 2 × 2 a priori estimate error covariance matrix, 𝑄 is the
2 × 2 covariance matrix of the process noise, 𝐼 is the 2 × 2
unit matrix, and ℎ

𝑘
is the 1 × 2 Jacobian vector of the partial

derivatives of ℎ(𝜑)with respect to 𝜑 that is evaluated with the
current predicted state at each iteration 𝑘; that is,

ℎ
𝑘
=

𝜕ℎ (𝜑)

𝜕𝜑











�̂�
−

𝑘

= [

𝜕ℎ (𝜑)

𝜕𝑥

𝜕ℎ (𝜑)

𝜕𝑦

]

�̂�
−

𝑘

. (22)

4.4. Road/Lane Boundary Adjustment Stage. The erroneous
estimate of the vehicle’s 𝑥-location obtained in the above
stage of the framework is prone to fall outside the physical
boundaries of the road. This is unacceptable for the targeted
collision avoidance systems. In order to ensure that the
output 𝑥

𝑘
falls within the road boundaries, the output of the

vehicle localization stage is adjusted according to the road
boundaries stage. This final stage uses the road geometry
information loaded from the periodic beacons broadcasted
by the RSUs. The road boundary adjustment stage fixes the
𝑥-location of each vehicle to be

Δ𝑥
𝑘
≤ 𝑑, (23)

where Δ = [
1

−1
] and 𝑑 depends on the geometry of the

highway. Typically, 𝑑 is set to be equal to [
𝑊

0
], where 𝑊

is the width of the road, such that the 𝑥-location of the
vehicles is limited to the road boundaries that are at 0 and
𝑊. However, this typical value of 𝑑 does not guarantee the
lane-level accuracy required for collision avoidance systems.
Therefore, we set the 𝑑 to the lane boundaries instead of

the road boundaries which significantly improves the accu-
racy in estimating the 𝑥-location of the vehicles as will be
shown in Section 5. Recall that the road geometry informa-
tion broadcasted by the RSU includes the number of lanes
per road as well as the road width, and, hence, the lane width
information is available to the vehicles.

Let 𝐿
𝑖
denote the boundary of the 𝑖th lane and 𝐿

0
is equal

to zero. If the vehicle is moving in the 𝑖th lane, 𝑥
𝑘
must lie

between 𝐿
𝑖−1

and 𝐿
𝑖
; that is,

𝐿
𝑖−1

< 𝑥
𝑘
≤ 𝐿
𝑖
. (24)

Substitutingwith𝐿
𝑖−1

and𝐿
𝑖
for the values of𝑑 in (23), we

obtain a set of inequalities that are considered as an active set
problem where only set of the constraints is active at a time.
We use both moving average and exponentially weighted
moving techniques to estimate the current lane. By knowing
the current lane, the estimated 𝑥-location after applying the
road boundary, 𝑥

𝑘
, is checked against the lane boundary.The

road and lane constraints can be summarized as follows:

𝑥
𝑘
=

{
{
{
{

{
{
{
{

{

0, if 𝑥
𝑘
≤ 0,

𝑊, if 𝑥
𝑘
≥ 𝑊,

𝐿
𝑖−1

≤ 𝑥
𝑘
≤ 𝐿
𝑖
, if current lane = Lane 𝑖.

(25)

In order to determine the current lane at time instant 𝑘,
we first calculate the moving average, MA

𝑘
, of the 𝑀 prior

observations of 𝑥
𝑘
; that is,

MA
𝑘
=

𝑘−1

∑

𝑖=𝑘−𝑀

𝑥
𝑖

𝑀 − 1

. (26)

Second, we use the exponential weighted moving average
to smooth out short-term fluctuations and prevent wrong
lane determination. We calculate the exponential weighted
moving average, EMA

𝑘
, of the 𝑀 prior observations includ-

ing the current observation as follows:

EMA
𝑘
= 𝛼EMA

𝑘−1
+ (1 − 𝛼) 𝑥𝑘

, (27)

where EMA
𝑘−1

is the a priori exponentially weighted moving
average and 0 < 𝛼 ≤ 1 is the weighting factor. Then,
we compare the difference between EMA

𝑘−1
and MA

𝑘
to

a certain value called the change-lane-threshold (CLT) to
decide whether the vehicle has changed its lane or not.

4.5. Framework Integration. By the end of the aforemen-
tioned four stages of the proposed framework, each vehicle
has an accurate estimate of its own location only. In order
to share the vehicle location of neighbor vehicles to be used
for the targeted collision avoidance applications, we assume
that vehicleswill be usingV2Vcommunications to share their
location, travel direction, and speed with the nearby vehicles.
This will allow the collision avoidance system to take the
appropriate action(s) to avoid a large amount of crashes and
provide the vehicle driver with warnings to avoid rear-end,
lane change, and intersection crashes.
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Our proposed framework can be summarized as follows.

Step 1. EachRSUbroadcasts beacons at periodic time instants
which contain the ID of the RSU, the location of the RSU, and
the road geometry information.

Step 2. Each vehicle determines its driving direction which
can be either north (N) or south (S) every time the vehicle
enters a new road, as illustrated by Algorithm 1.

Step 3. Each vehicle determines its range to the RSU 𝑅
𝑉,RSU

using the proposed two-way TOA ranging technique.

Step 4. Each vehicle uses the range 𝑅
𝑉,RSU estimated in Step 3

to get the 𝑦-location 𝑦 when 𝑅
𝑉,RSU > threshold, where there

is a linear relationship between the 𝑦-location and the range
𝑅
𝑉,RSU.

Step 5. Each vehicle uses one-dimensional Kalman filter to
get a refined 𝑦-location 𝑦

𝑘
when the 𝑅

𝑉,RSU > threshold and
uses INS to obtain/update 𝑥-location 𝑥

𝑘
.

Step 6. Each vehicle uses two-dimensional extended Kalman
filter when 𝑅

𝑉,RSU < threshold to get both the 𝑥- and 𝑦-
locations. We reinitialize 𝑥-location in the threshold area
when the vehicle is exactly at the 𝑥-location of the RSU.

Step 7. In order to ensure that the output �̂�
𝑘
from Step 6 is

within the road/lane boundaries, �̂�
𝑘
is adjusted through the

road boundary adjustment stage.

Step 8. Each vehicle broadcasts its position calculated from
Step 7 to its neighbors using V2V communications.

Step 9. Periodically repeat the above steps.

5. Simulation Results

We evaluate the performance of the proposed framework
using MATLAB simulations. We assume that vehicles move
on a dual carriageway highway; each direction has three
lanes, separated by a central reservation. The road is straight
line. The length of the road is 3 km, and 3 RSUs are used;
each has a 500m communication range: south RSU (placed
at 𝑦 = 500m), north RSU (placed at 𝑦 = 1500m), and
middle RSU (placed at 𝑦 = 2500m). The locations of
the RSUs are depicted by the vertical dashed lines in all
figures. The width of each lane is assumed to be 3m. PHY
and MAC layer parameters are configured according to the
IEEE 802.11p protocol [28]. Table 1 summarizes the values
of the used 802.11p parameters and the other simulation
parameters.TheRSU broadcasts periodic beacons containing
the ID of the RSU, the location of the RSU, and the road
geometry every 100msec. To reduce the simulations time,
we assume that the RSUs broadcast periodic beacons every
one second without loss of generality. The mobility model
of the vehicles is based on the modified random waypoint
model [29]. According to the measurements presented in
[24], two-way TOA ranging techniques are susceptible to

Table 1: Summary of simulation parameters.

Communication range of each RSU 500m
Number of lanes per direction 3
Packet size 300 bytes
Bit rate 3Mbps
Beacon broadcast rate 1 per sec
SIFS 32 𝜇sec
AIFS 50𝜇sec
Slot time 9 𝜇sec
(𝐶𝑊min, 𝐶𝑊max) (15, 1023)

errors due to channel fluctuations, hardware, and other
inaccuracies. Hence, we follow [24] and include the two-
way TOAmeasurement noise modeled as an additive normal
distribution with zero mean and 3m standard deviation.
The standard deviation of the different measurement noise
components of the INS system is set to 0.5m as reported
in [12]. The parameters used in determining the lane-level
vehicle location, 𝛼,𝑀, and change-lane-threshold, CLT, were
evaluated to be 0.1, 4, and 1.9, respectively, to get the best
estimation of the lane-level vehicle location.

We use the root-mean-square error (RMSE) as ourmetric
to evaluate the performance of our proposed framework.
RMSE is defined as

RMSE = √

𝑛

∑

𝑖=1

(𝑥actual,𝑖, 𝑦actual,𝑖)
2
+ (𝑥est,𝑖, 𝑦est,𝑖)

2

𝑛

, (28)

where (𝑥actual,𝑖, 𝑦actual,𝑖) is the real vehicle location at time
instant 𝑖, (𝑥est,𝑖, 𝑦est,𝑖) is the estimated vehicle location at time
instant 𝑖, and 𝑛 is the number of time instants. The reported
results are the average RMSE of 1000 simulation runs to get a
stable estimate of the performance.

5.1. Impact of the Curvature Error. In order to investigate
the curvature error 𝜀

𝑘
inherited from the approximations

assumed in (1), we first simulate the single RSU-based
localization technique of the proposed framework given the
curvature error as the only type of error. This allows us to
determine the threshold regions within which the proposed
ranging technique can/cannot be used to get the 𝑦-location
of the vehicle. We consider a single vehicle moving at 20m/s
in the three lanes one at a time. Figure 7 shows that the
localization error is negligible if the vehicle is away from
the RSU and it increases as vehicles move towards the
RSU. Hence, the claim that the curvature error is negligible
compared to the error 𝑛

𝑅
in estimating the range between

vehicles and RSU 𝑅
𝑉,RSU outside the threshold area is valid.

In order to determine the value of the threshold to
be used, we simulate our proposed framework for vehicles
moving at 20m/sec in a road with 3 km length and take
the average RMSE of 20 different mobility patterns. The
simulation results showed that the best threshold in which
we switch from using our ranging technique with Kalman
filter to using extendedKalman filter for only INS data is 70m
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Figure 7: The impact of curvature error.

at each side of the RSU which corresponds to the minimum
RMSE. This threshold value is used for the rest of the paper.

5.2. Localization Accuracy. As we discussed earlier in
Section 2, some localization techniques only obtain the vehi-
cle location along the road length (𝑦-dimension), such as
the one-RSU-based [9] and the RSU-assisted [8] localization
techniques, and others obtain the vehicle location in both
the 𝑥- and 𝑦-dimensions, such as GPS-standalone, faulty-
free [7], and GPS/INS integration techniques. Hence, we
divide our comparisons into two parts: one that evaluates the
accuracy of the vehicle location in the 𝑦-dimension only and
the other that evaluates the vehicle location in both 𝑥- and
𝑦-dimensions.

5.2.1. Localization Accuracy along the Road Length. Here, we
evaluate the localization accuracy of 𝑦

𝑘
obtained from our

proposed RSU/INS integration. We simulate our proposed
framework on a vehicle moving at 20m/sec along the cov-
erage area of only one RSU as shown in Figure 8. We assume
that the standard deviation of the measurement noise 𝑛

𝑟
is

𝜎
𝑟

= 3m, which is consistent with the range measurement
error which varies from 0.5 to 3.0m [11]. We compare the
𝑦-location of our framework against the 𝑦-location obtained
by other techniques such as the one-RSU-based [9] and the
RSU-assisted localization [8] techniques.

Recall that the one-RSU-based localization technique
only uses dead reckoning in a limited distance around the
RSU while RSU-assisted localization uses dead reckoning, all
the way after knowing the initial position, obtained fromV2R
communication and RSU’s location. Hence, the localization
error unboundedly increases with travel distance in the RSU-
assisted localization technique [8] (which uses one RSU and
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Figure 8: Accuracy of 𝑦-location 𝑦
𝑘
of our framework.

uses full dead reckoning all theway).Meanwhile, the localiza-
tion error of the one-RSU-based technique [9] (which uses
one RSU and uses partial dead reckoning) increases when
the vehicles move inside the threshold area around the RSU
which is mainly due to the use of dead reckoning only inside
the threshold area. On the other hand, the localization error
of 𝑦-location 𝑦

𝑘
obtained from our RSU/INS framework

increases when the vehicles move inside the threshold area
around the RSU which is mainly due to the use of extended
Kalman filter inside the threshold area instead of Kalman
filter. As we explained earlier, the linear relationship of the
measurement equation is no longer valid inside the threshold
area. However, the RMSE of the𝑦-location𝑦

𝑘
of the proposed

framework is only 1.2 meters, which is approximately 40%
and 26.67% of the RMSE of the one-RSU-based localization
and the RSU-assisted localization, respectively. Hence, the
localization accuracy improvement of the 𝑦-location of the
proposed framework is 60% and 73.3%, respectively.

5.2.2. Localization Accuracy along Both Road Dimensions. In
order to estimate the localization accuracy of our proposed
framework for the two-dimensions 𝑥 and 𝑦 of the vehicle
location 𝜑

𝑘
, we simulate our proposed framework on a

vehicle moving at 20m/sec. Also, we compare our framework
against techniques that provide a two-dimensional vehicle
location such as the GPS-standalone, GPS/INS integration,
and faulty-free [7] (which uses two RSUs, one on a different
side of the road) techniques. We follow [11] in modeling
the measurement noise of the GPS receiver via a Gaussian
distributionwith zeromean and 6meters’ standard deviation.
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Figure 9: Accuracy of vehicle-location in both 𝑥- and 𝑦-
dimensions.

As shown in Figure 9, the average RMSE of our proposed
framework is 1.82m compared to the average RMSE of
GPS/INS localization and GPS-standalone technique which
are 4m and 6m, respectively. Hence, our proposed frame-
work improves the vehicle location by 54.5% and 69.67%,
respectively. Figure 9 also shows that even though our
approach uses only one RSU for localization, it provides
better accuracy compared to the faulty-free localization tech-
nique which uses two RSUs. More specifically, our proposed
RSU/INS framework improves the vehicle location by 39.33%
compared to RMSE of the faulty-free localization technique.

It should be noted that the accuracy of the proposed
framework depends on the regular deployment of the RSUs
on one side of the road. If one RSU is temporarily not
available, for example, due to failure, the vehicle will use only
INS to update its location. In such a scenario, the achieved
localization accuracy might be not robust enough to be used
for collision avoidance applications but can be used by less
sensitive applications such as routing, Internet access, and
data dissemination protocols.

5.3. Impact of Measurement Errors. Next, we investigate the
impact of the standard deviation of the range measurement
error 𝜎

𝑟
—which typically varies from 0.5 to 3.0m [11]—

on the localization accuracy of our proposed framework.
We simulate our proposed framework on vehicles moving
at various mobility patterns through 3 km road length and
take the average RMSE for all mobility patterns. As shown
in Figure 10, the average RMSE of 𝑦

𝑘
decreases from 1.23m
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Figure 10: The impact of the range measurement error on 𝑦
𝑘
, 𝜑
𝑘
,

and 𝑥
𝑘
.

to 0.51m as 𝜎
𝑟
decreases from 3 to 0.5m. Meanwhile, the

average RMSE of two-dimensional vehicle location𝜑
𝑘
in both

𝑥- and 𝑦-dimensions decreases from 2.13m to 1.68m as 𝜎
𝑅

decreases from 3 to 0.5m. As shown in Figure 10, the accu-
racy of estimating the vehicle’s 𝑦-location of the proposed
framework is significantly better than estimating the vehicle’s
𝑥-location because of the accumulation of error in the INS
measurements. Recall that the proposed framework’s only
source of 𝑥-dimension data is through INS unlike the 𝑦-
location that integrates the range estimate 𝑅

𝑉,RSU obtained in
the second stage of the framework with the INS data.

5.4. Performance under Different Mobility Patterns. Here, we
illustrate the performance of the proposed framework for
different mobility patterns. First, we consider three vehicles
moving on 3 km single carriageway with three-lane highway
with three RSUs installed 1 km apart. Each vehicle stays in
its lane for the entire road without changing lanes. One
vehicle is traveling in the first lane (𝑥 = 1.5), the second
vehicle is traveling in the second lane (𝑥 = 4.5), and
the last vehicle is traveling in the third lane (𝑥 = 7.5).
Figure 11 depicts the estimated trajectory taken by the average
of 𝑥
𝑘
for 𝑥-dimension only. The localization error of 𝑥-

location 𝑥
𝑘
for vehicles moving in the outer lanes slightly

increases as the vehicle keeps traveling in the same lane
due to the accumulation of INS error—unlike the middle
lane for which the error is negligible. This is due to the fact
that the road boundary constraint (used alongside the lane-
level constraints) is symmetric for the middle lane while it
is not symmetric for the outer lanes. Unlike the lane-level
constraints, the road boundary constraint always pulls 𝑥

𝑘

towards the center of the road when estimation errors occur,
regardless of which lane the car is traveling in. Next, we
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Figure 11: Real and estimated trajectories of the 𝑥-location for three
vehicles moving in the first, second, and third lanes after applying
the road and lane boundaries.

consider a more general mobility pattern in which the con-
sidered vehicle changes its lane frequently. Figure 12 shows
the instantaneous performance of the proposed framework
in this scenario. Figure 12(a) depicts the estimated trajectory
of 𝑥
𝑘
alongside the real vehicle location. Our framework

is capable of closely following the vehicle’s real location.
Figures 12(b) and 12(c) show that the localization error of
our framework significantly outperforms all other techniques
which only estimate the 𝑦-location (Figure 12(b)) or esti-
mate the complete vehicle coordinates (Figure 12(c)). More
specifically, the gain in reducing in the localization error of
our approach is 60% and 73.3% compared to the one-RSU-
based and RSU-assisted approaches, respectively. Likewise,
the gain in reducing in the localization error of our approach
is 65% and 47.5% compared to GPS andGPS/INS approaches,
respectively. We considered different other random patterns
and the gains of the proposed framework slightly vary around
the reported result in Figure 12.We omit such results to avoid
redundancies.

5.5. Impact of Traffic Density. Finally, we investigate the
impact of changing the traffic density on our proposed frame-
work. Unlike GPS-based techniques, which use messages
transmitted from GPS-satellites, our proposed framework
uses RTS/CTS handshakemessageswith RSUs to get the vehi-
cles’ locations. These RTS/CTS handshake messages cause
time delay to get the vehicle location after receiving beacons
from the RSU which is mostly caused by the random backoff
mechanism. As the traffic density increases, more vehicles are
to exchange RTS/CTS messages with the RSU, and, hence,
more collisions are to be encountered. Consequently, the
vehicles will wait more time before communicating with the
RSU as the traffic density increases. We measure such an
increase in the experienced localization delay for different
traffic densities. As shown in Figure 13, the average delay
increases almost linearly from 1.4msec to 31msec as the
number of vehicles increases from 1 vehicle/lane/km to 20
vehicles/lane/km. As we mentioned earlier, RSUs broadcast
beacons every 100msec.Hence, all vehicles—even under high

density scenario—can update their locations with a maxi-
mum latency of 100msec. This means that our framework
does not only achieve high localization accuracy but also
satisfies the latency requirement (less than 100ms) in VANET
DSRC safety messages.

6. Conclusions

In this paper, we have proposed a GPS-free vehicle
localization framework that only relies on RSUs deployed
only on one side of the road. Hence, our proposed framework
decreases the required number of RSUs and hence the cost,
compared to existing localization schemeswhich usemultiple
RSUs for vehicle localization. The proposed framework
integrates the RSU-based localization information with the
local inertial navigation system information via different
Kalman filters to significantly improve the accuracy of
vehicle localization. Our simulation results show that the
accuracy of our GPS-free localization framework does not
only significantly outperform the localization accuracy of
GPS-based localization techniques but also outperform the
existing GPS-free localization approaches—despite the use
of a single RSU for localization. Consequently, our proposed
GPS-free localization framework is most suitable for smart
road applications that require high localization accuracy
such as collision avoidance applications.

Notations

𝐴, 𝐵: Control metrics
𝐶: Speed of light
CLT: Change-lane-threshold
EMA
𝐾
: Exponential weighted moving average

𝜀
𝑘
: Curvature noise which reflects the

lane-level ambiguity
𝑔
𝑘
: Kalman gain used in one-dimensional

Kalman filter
𝑔
𝑘
: 2 × 1 Kalman gain used in

two-dimensional extended Kalman filter
ℎ(⋅): A nonlinear function used to compute the

predicted single-value measurement,
𝑅
𝑉,RSU

ℎ
𝑘
: 1 × 2 Jacobian vector of the partial

derivatives of ℎ(𝜑)
𝐿: Length of the road
𝐿RSU: 𝑦-coordinate of the RSU
𝐿
𝑖
and 𝐿

𝑖−1
: The boundaries of lane 𝑖

MA
𝐾
: Moving average

𝑀: Number of prior observations of 𝑥
𝑘

N: North road driving direction
𝑛
𝑟
: Noise coming from range estimation,

𝑅
𝑉,RSU

𝜃: Angle between the 𝑦-axis and the vehicle
motion direction

𝑝
𝑘
: A posteriori estimate error variance

𝑝
−

𝑘
: A priori estimate error variance

𝑃
𝑘
: 2 × 2 a posteriori estimate error

covariance matrix
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(a) Real and estimated trajectory of 𝑥-location

0 500 1000 1500 2000 2500
0

1

2

3

4

5

6

7

8

Lo
ca

liz
at

io
n 

er
ro

r (
m

)
Avg RMSE for RMSE RSU-assisted

Avg RMSE for one-RSU-based
RMSE for RSU/INS
Avg RMSE for RSU/INS

y-axis (m)

RMSE for RSU-assisted (1 RSU + full DR)

RMSE for one-RSU-based (1 RSU + limited DR)

(b) The localization accuracy for 𝑦-dimension only

0 500 1000 1500 2000 2500
0

1

2

3

4

5

6

7

8

9

Lo
ca

liz
at

io
n 

er
ro

r (
m

)

Avg RMSE for GPS only
RMSE for GPS/INS
Avg RMSE for GPS/INS
Avg RMSE for faulty-free (2 RSUs)
RMSE for RSU/INS
Avg RMSE for RSU/INS

Location of the first RSU Location of the third RSU

Location of the second RSU

y-axis (m)

(c) The localization accuracy for both 𝑥- and 𝑦-dimensions

Figure 12: The vehicle localization accuracy of a vehicle moving in a random pattern.
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Figure 13: The impact of traffic density.

𝑃
−

𝑘
: 2 × 2 a priori estimate error covariance

matrix
𝑄: 2 × 2 covariancematrix of the process noise
𝑅
𝑉,RSU: Estimated range between vehicle and RSU

S: South road driving direction
𝑇: Time interval
𝜏: Time delay experienced at the RSU
𝑢
𝑘
: 2 × 1 vector that represents vehicle velocity

components in the 𝑥- and 𝑦-directions
V: Vehicle speed
𝑊: Width of the road
𝑤: Process noise coming from using INS
𝑦
𝑘
: Estimated vehicle location using our one-

RSU-based approach at time 𝑡
𝑘

𝑦
𝑘
: A posteriori state estimate of the vehicle

location in 𝑦-dimension
𝑦
−

𝑘
: A priori state estimate of the vehicle loca-

tion 𝑦-dimension
𝑧
𝑘
: Measurement

𝜁
𝑘
: Measurement noise

𝜑
−

𝑘
: 2 × 1 a priori state estimate of the vehicle

location
𝜑
𝑘
: 2 × 1 a posteriori state estimate of the

vehicle location.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] National Highway Traffic Safety Administration (NHTSA),
http://www.nhtsa.gov/Research/.

[2] H.Wellenhof, H. Lichtenegger, and J. Collins,Global Positioning
System: Theory and Practice, Springer, 5th edition, 2001.

[3] E. K. Lee, S. Yang, S. Y. Oh, and M. Gerla, “RF-GPS: RFID
assisted localization in VANETs,” in Proceedings of the IEEE 6th

International Conference on Mobile Adhoc and Sensor Systems
(MASS ’09), pp. 621–626, Macao, China, October 2009.

[4] G. Djuknic and R. Richton, “Geolocation and assisted GPS,”
Computer, vol. 34, no. 2, pp. 123–125, 2001.

[5] S. Rezaei and R. Sengupta, “Kalman filter-based integration of
DGPS and vehicle sensors for localization,” IEEE Transactions
on Control Systems Technology, vol. 15, no. 6, pp. 1080–1088,
2007.

[6] T. Yan, W. Zhang, G. Wang, and Y. Zhang, “GOT: grid-based
on-road localization through inter-vehicle collaboration,” in
Proceedings of the 8th IEEE International Conference on Mobile
Ad-hoc and Sensor Systems (MASS ’11), pp. 13–18, Valencia,
Spain, October 2011.

[7] C.-H. Ou, “A roadside unit-based localization scheme for vehic-
ular ad hoc networks,” International Journal of Communication
Systems, vol. 27, no. 1, pp. 135–150, 2014.

[8] L. Sun, Y. Wu, J. Xu, and Y. Xu, “An RSU-assisted localization
method in non-GPS highway traffic with dead reckoning and
V2R communications,” in Proceedings of the 2nd International
Conference on Consumer Electronics, Communications and Net-
works (CECNet ’12), pp. 149–152, IEEE, Yichang, China, April
2012.

[9] A. A.Wahab, A. Khattab, and Y. A. Fahmy, “Two-way TOAwith
limited dead reckoning for GPS-free vehicle localization using
single RSU,” in Proceedings of the 13th International Conference
on ITS Telecommunications (ITST ’13), pp. 244–249, Tampere,
Finland, November 2013.

[10] V. Kukshya, H. Krishnan, and C. Kellum, “Design of a system
solution for relative positioning of vehicles using vehicle-to-
vehicle radio communications during GPS outages,” in Proceed-
ings of the IEEEVehicular Technology Conference (VTC-Fall ’05),
Dallas, Tex, USA, September 2005.

[11] R. Parker and S. Valaee, “Vehicular node localization using
received-signal-strength indicator,” IEEETransactions onVehic-
ular Technology, vol. 56, no. 6, pp. 3371–3380, 2007.

[12] N. M. Drawil and O. Basir, “Intervehicle-communication-
assisted localization,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 11, no. 3, pp. 678–691, 2010.

[13] S. Fujii, A. Fujita, T. Umedu et al., “Cooperative vehicle
positioning via V2V communications and onboard sensors,” in
Proceedings of the IEEE 74th Vehicular Technology Conference
(VTC ’11), pp. 1–5, San Francisco, Calif, USA, September 2011.

[14] M. X. Punithan and S.-W. Seo, “King’s graph-based neighbor-
vehicle mapping framework,” IEEE Transactions on Intelligent
Transportation Systems, vol. 14, no. 3, pp. 1313–1330, 2013.

[15] N. Alam, A. Tabatabaei Balaei, and A. G. Dempster, “A DSRC
doppler-based cooperative positioning enhancement for vehic-
ular networks with GPS availability,” IEEE Transactions on
Vehicular Technology, vol. 60, no. 9, pp. 4462–4470, 2011.

[16] Z. Kim, “Robust lane detection and tracking in challenging sce-
narios,” IEEE Transactions on Intelligent Transportation Systems,
vol. 9, no. 1, pp. 16–26, 2008.

[17] H.-Y. Cheng, B.-S. Jeng, P.-T. Tseng, and K.-C. Fan, “Lane
detection with moving vehicles in the traffic scenes,” IEEE
Transactions on Intelligent Transportation Systems, vol. 7, no. 4,
pp. 571–582, 2006.

[18] R. Gopalan, T. Hong, M. Shneier, and R. Chellappa, “A learning
approach towards detection and tracking of lane markings,”
IEEE Transactions on Intelligent Transportation Systems, vol. 12,
no. 3, pp. 1088–1098, 2012.

[19] E. D. Kaplan and C. Hegarty,Understanding GPS: Principles and
Applications, Artech House, 2nd edition, 2005.



16 International Journal of Distributed Sensor Networks

[20] S. Capkun, M. Hamdi, and J.-P. Hubaux, “GPS-free positioning
in mobile ad-hoc networks,” in Proceedings of the 34th Annual
Hawaii International Conference on System Sciences, Hamburg,
Germany, January 2001.

[21] M. S. Alam, S. Alsharif, and N. Haq, “Efficient CDMA wireless
position location system using TDOA method,” International
Journal of Communication Systems, vol. 24, no. 9, pp. 1230–1242,
2011.

[22] H. L. V. Trees, Estimation, and Modulation Theory, John Wiley
& Sons, New York, NY, USA, 1968.

[23] R. Peng and M. L. Sichitiu, “Angle of arrival localization for
wireless sensor networks,” in Proceedings of the 3rd Annual IEEE
Communications Society on Sensor andAdHocCommunications
and Networks (SECON ’06), vol. 1, pp. 374–382, IEEE, Reston,
Va, USA, September 2006.

[24] D. D. McCrady, L. Doyle, H. Forstrom, T. Dempsey, and M.
Martorana, “Mobile ranging using low-accuracy clocks,” IEEE
Transactions on Microwave Theory and Techniques, vol. 48, no.
6, pp. 951–957, 2000.

[25] Y. J. Li, “An overview of the DSRC/WAVE technology,” in
Quality, Reliability, Security and Robustness in Heterogeneous
Networks, vol. 74 of Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineer-
ing, pp. 544–558, Springer, Berlin, Germany, 2012.

[26] H. Qi and J. B. Moore, “Direct Kalman filtering approach
for GPS/INS integration,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 38, no. 2, pp. 687–693, 2002.

[27] M. Fujii, R. Ogawara, H. Hatano, and Y. Watanabe, “A study
on position tracking system for pedestrian navigation using
location and sensor information,” in Proceedings of the 13th
International Conference on ITS Telecommunications (ITST ’13),
pp. 344–349, Tampere, Finland, November 2013.

[28] IEEE Std 802.11-2012 (Revision of IEEE Std 802.11-2007), IEEE
standard for information technology-telecommunications and
information exchange between systems local and metropolitan
area networks–specific requirements part 11: Wireless LAN
medium access control (MAC) and physical layer (PHY) spec-
ifications, 2012.

[29] C. Bettstetter, G. Resta, and P. Santi, “The node distribution
of the random waypoint mobility model for wireless ad hoc
networks,” IEEE Transactions on Mobile Computing, vol. 2, no.
3, pp. 257–269, 2003.



Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mechanical 
Engineering

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Antennas and
Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


