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tempt to iteratively identify the support of the signal (its

nonzero indices). This is done by correlating it with the sens-

ing matrix columns and selecting the top magnitude values.

Although such algorithms result in faster reconstruction time

than �1 minimization, the reconstruction time and accuracy are

still not suitable for real-time CRN applications.

In this paper, we present the Wavelet Packet Adaptive

Reduced-set Matching Pursuit (WP-ARMP) for compressed

wideband spectrum sensing in CRNs. The WP-ARMP con-

trasts with the existing compressed spectrum sensing tech-

niques, which are either based on the impractical �1 mini-

mization, or use greedy algorithms that are not fast and ac-

curate enough. The WP-ARMP approach applies our adaptive

reduced-set matching pursuit proposed in [8], [9] aiming to

perform reconstruction of random signals as fast and accu-

rately as possible. While most existing recovery algorithms

select values from the whole correlation vector, WP-ARMP

performs the selection from a reduced set of such vector,

therefore achieving a significant speedup in the reconstruc-

tion process. Furthermore, the number of selected values is

adapted from an iteration to another, based on the distribution

of the correlation values. This contrasts with most of the

existing algorithms which select a fixed number of elements

per iteration, which usually results in selecting either too

many or too few elements. After performing selection and

support merging, WP-ARMP estimates the signal based on the

identified support, and prunes it to exclude incorrectly selected

elements.

Unlike most existing compressed wideband sensing tech-

niques which exploit the sparsity of the spectrum in the

frequency domain, WP-ARMP exploits the sparsity of the

spectrum in the wavelet packet domain. This is due to the

fact that the wavelet packet domain is capable of selecting the

basis in which the signal is sparsest [10], thus improving per-

formance. Combining ARMP with the wavelet packet domain,

we introduce a fast and accurate spectrum sensing technique,

the WP-ARMP, which is suitable for application in CRN.

The rest of this paper is organized as follows. Section

II presents related work and reviews the fundamentals of

compressed sensing. Section III presents the system model

and the proposed technique. We evaluate the performance of

our proposed technique in Section IV. Section V concludes

the paper.

Abstract—One of the unsolved challenges in cognitive radio
networks (CRNs) is the inability to sense a wideband spectrum
in real-time. Traditional techniques require the use of analog-to-
digital converters (ADCs) of very high sampling rate, given by
the Nyquist theorem. Recently, compressed sensing has presented
itself as an efficient solution for spectrum sensing aiming to
reduce such requirement. However, the complexity and speed
of traditional compressed sensing recovery algorithms not par-
ticularly developed for CRNs prevented such an application. In
this paper, we present the Wavelet Packet Adaptive Reduced-set
Matching Pursuit (WP-ARMP) approach for compressed wide-
band spectrum sensing. WP-ARMP is a fast and accurate greedy
recovery algorithm for compressed sensing, which is suitable for
real-time CRN applications. Furthermore, we exploit the sparsity
of the spectrum in the wavelet packet domain. Simulation results
show that our technique can reconstruct spectrum signals from
samples collected at 1/4 the Nyquist sampling rate. The proposed
scheme is not only much faster than other related techniques, but
also results in over 99% probability of detection and a probability
of false alarm below 1%.

Index Terms—Cognitive Radio Networks; Spectrum Sensing;
Compressed Sensing; Matching Pursuit

I. INTRODUCTION

In order to allow Cognitive Radio Networks (CRNs) to

efficiently utilize the spectrum, it is necessary to perform

spectrum sensing over a wideband spectrum, in the order of

several GHz. Unfortunately, existing hardware technologies

are incapable of fulfilling such a requirement without scari-

fying the sensing time or accuracy.

Compressed sensing [1]–[3] is a recently developed sam-

pling technique that senses many types of signals at a rate that

is much lower than the Nyquist rate. Therefore, it was applied

to spectrum sensing aiming to alleviate the high sampling rate

requirements as in traditional techniques. Compressed sensing

is applicable to either sparse signals or compressible signals,

which only have a few significant coefficients in a suitable

basis (e.g. Fourier, wavelets, . . . , etc.). Examples of such

signals include natural images, videos, magnetic resonance

imaging (MRI), radar, and radio spectrum signals [4]. The

original signal can be recovered either by convex optimization

or greedy recovery algorithms.

While �1 minimization provides an optimal solution for

compressed sensing recovery, it is computationally expensive

and not suitable for most real-time applications. Therefore,

several greedy recovery algorithms have been developed for

signal reconstruction [5]–[7]. Greedy recovery algorithms at-
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II. RELATED WORK AND BACKGROUND

A. Related Work

Various narrowband spectrum sensing techniques are widely

known in the literature including matched filtering, energy

detection, and cyclostationary feature detection [11]. Other

techniques were also proposed to enable wideband spectrum

sensing. Examples include multi-band joint detection [12] and

wavelet-based spectrum sensing [13]. However, such tech-

niques require ADCs that operate at a very high sampling rate,

given by the Nyquist theorem, which is either too expensive

or impossible to implement with contemporary hardware tech-

nologies. To reduce such high sampling rate requirement, some

techniques employ several bandpass filters [14], transferring

the problem of wideband spectrum sensing into multiple prob-

lems of narrowband spectrum sensing. However, this comes

at the expense of excessive hardware requirements. Other

techniques employ a tunable bandpass filter that sequentially

performs spectrum sensing by sweeping the frequency range

[15]. However, this comes at the expense of a larger sensing

time, which is not suitable for most CRN applications.

Alternatively, [16] were the first to propose the use of

compressed sensing to solve the spectrum sensing problem in

CRNs. The spectrum signal is reconstructed using the TOMP

algorithm [7]. Then, the boundaries between spectrum bands

are estimated using a wavelet-based edge detector [13]. The

Power Spectral Density (PSD) within each band is estimated.

A two-step compressed sensing scheme is proposed in [17],

which first obtains the signal sparsity, and then adjusts the

number of collected samples. Alternatively, [18] adaptively

adjusts the number of measurements without obtaining sparsity

estimation in advance. In these two algorithms, the sparse

domain utilized is the frequency domain, while the recovery

algorithm is the �1 minimization. Cyclic feature detection

is used in [19] in which the cyclic spectrum is obtained

from the time-varying cross-correlation of the compressed

measurements. The used recovery method was the optimal

�1 minimization. In [20] �1 minimization was also used for

signal reconstruction. However, the sensed spectrum was first

transferred to a more spare domain using the Fourier-Haar

wavelet packet domain. Then the same techniques were used

for boundary and PSD estimation as in [16].

We use [16] and [20] techniques as our benchmarks for

performance evaluation of our proposed approach as they

represent the more accurate and the fastest existing techniques.

B. Compressed Sensing Fundamentals

Consider a sparse signal x ∈ R
n, of sparsity level k. A

measurement system that samples this signal to acquire m
linear measurements is modeled as:

y = Φx, (1)

where Φ ∈ R
m×n is the sensing matrix, and y ∈ R

m is the

measurement vector.

Alternatively, the signal x may not be itself sparse, but it

may be sparse in a certain basis Ψ, i.e. x = Ψs, where s is a

sparse vector. In this case, (1) is rewritten as:

y = ΦΨs = As, (2)

where Ψ is an n × n matrix whose columns form a basis in

which x is sparse, and A = ΦΨ is an m × n matrix, where

m� n.

It was shown that the original signal x can be recovered

from the measurement vector y, provided that the sensing

matrix satisfies the Restricted Isometry Property (RIP) [1], [2].

Random matrices whose elements follow Gaussian, Bernoulli

or sub-Gaussian distributions satisfy the RIP with high prob-

ability [21].

For signal recovery, �1 minimization was originally sug-

gested as follows [22]:

x̂ = argmin
z
‖z‖1 subject to y = Φz (3)

While �1 minimization is a powerful solution for the sparse

problem, it is computationally expensive [1].

III. WP-ARMP WIDEBAND SPECTRUM SENSING

In this section, we present the Wavelet Packet Adap-

tive Reduced-set Matching Pursuit (WP-ARMP) approach for

compressed spectrum sensing. WP-ARMP applies ARMP to

the wideband spectrum in the wavelet packet domain. WP-

ARMP is a greedy compressed sensing reconstruction algo-

rithm. WP-ARMP targets the selection of an optimum number

of elements of the correlation vector per iteration, which

results in a high reconstruction accuracy at a low complexity.

Not only does such technique result in a significant reduction

in the required sampling rate, but it is also capable of fast

and accurate spectrum sensing, which is suitable for real-time

CRN applications.

A. System Model and Problem Statement

We consider the generic spectrum sensing model adopted

in [13], [16], [20]. A wideband wireless radio environment, in

which multiple primary users (PUs) and secondary users (SUs)

coexist, is assumed. The spectrum to be sensed is divided into

N non-overlapping bands in the range of [f0 to fN ] Hz, each

of equal bandwidth. In case the bandwidths are not equal or

unknown by the SUs, an extra step for boundary detection

is required, which can be simply performed using a wavelet-

based edge detector. The bands are denoted by Bn, and their

boundaries are denoted by f0 < f1 < . . . < fN . Only a

number K out of the total number of bands, N , are occupied

by PUs, while the rest of the bands are free. The SUs sense

the spectrum aiming to find the free bands. The SUs need to

identify the PSD of the N bands. The signal received by a SU

is given by

r(t) =

N∑
n=1

hnpn(t) + w(t) (4)

and is of PSD given by [23]
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Sr(f) = lim
T→∞

E

[
1

T

∣∣∣ ∫ T

0

r(t)e−j2πftdt
∣∣∣2
]

(5)

which leads to

Sr(f) =

N∑
n=1

h2
nSn(f) + Sw(f),f ∈ [f0, fN ] (6)

where h2
n is the PSD in the nth band, w(t) is additive white

Gaussian noise with PSD Sw(f), and pn(t) is a time-domain

signal whose PSD is

Sn(f) =

{
1 f ∈ Bn

0 f /∈ Bn

(7)

The spectrum sensing problem is stated as follows: Given
the received signal r(t) at a SU, it is required to estimate the
PSD in each band {h2

n}Nn=1 as fast and accurately as possible.

B. Wavelet Packet Spectrum Sensing

Let the vector rt ∈ R
M denotes the samples of the received

signal r(t) collected at the Nyquist rate. The vector xt ∈ C
K

that represents the samples that are collected sparsely and

randomly from rt can be represented as:

xt = Srt (8)

where S is a K × M projection (or sampling) matrix. If

S is taken to be the unit matrix, Nyquist rate sampling is

performed. However, the target is to perform sub-Nyquist

sampling. Therefore, we will have K < M .

The sample vector rt obtained at the Nyquist rate corre-

sponds to the vector rf in the frequency domain. We seek

to obtain rf , which represents the samples of the spectrum,

which can be expressed as:

rf = FMrt (9)

where FM is the M -point Discrete Fourier Transform (DFT)

matrix. Substituting in (8), we obtain:

xt = SF−1
M rf (10)

Denote the Haar wavelet packet matrix by Wp. Thus, we

have

s = Wprf (11)

and

rf = W−1
p s (12)

where s is the wavelet transform of rf . Using compressed

sensing techniques, the spectrum can be estimated as follows:

r̂f = argmin
rf
‖rf‖1, s.t.Arf = xt (13)

where A = SF−1
M W−1

p . The PSD within each band is then

estimated by averaging the samples in each band.

C. Adaptive Reduced-set Matching Pursuit

The adaptive reduced-set matching pursuit greedy recovery

algorithm is capable of spectrum reconstruction with high

accuracy at a low complexity. The main idea is the improved

selection strategy, in which the element selection process

is adaptive. Furthermore, the selection is performed from a

reduced set of the correlation values. This contrasts with most

of the related existing algorithms in which the selection is

performed from the whole correlation vector and is performed

in a non-adaptive manner.

Initially, the spectrum estimate is set to zero and the residual

to the measurement vector. In each iteration, the following

steps are performed:

1) Correlation: The support of the sparse wavelet packet

spectrum signal is iteratively identified. This is done by

correlating the residual with the sensing matrix columns

obtaining a vector g.

2) Selection and Support Merging: First, a reduced set

of correlation values is formed by taking the βk largest

magnitude elements. Then, those elements of magni-

tudes larger than or equal to a fraction 0 < α < 1 of

the top magnitude value are selected. The indices of the

selected elements are merged with the already identified

support set.

3) Signal estimation: An estimate of the spectrum signal

is formed by least square minimization. This is done

via multiplication by the pseudo-inverse of the sensing

matrix.

4) Pruning: The estimated spectrum signal is pruned by

only keeping the k largest magnitude components and

setting the rest to zero. This removes the incorrectly

selected elements from the support set, and prevents

them from degrading the performance in the subsequent

iterations.

5) Residual Calculation: The new residual is calculated by

subtracting the contribution of the estimated signal from

the measurement vector. This residual is then correlated

with the sensing matrix columns for the successive

iterations.

Algorithm 1 summarizes how the ARMP algorithm is

applied to the spectrum sensing problem. The WP-ARMP

algorithm steps are repeated until a stopping criterion is met.

The operator Lk(·) returns the index set of the k largest mag-

nitude elements of its argument vector. The hard thresholding

operator Hk(·) retains only the k elements with the largest

magnitudes and sets the rest to zero. AT is a matrix that

contains the columns of A at indices from the set T .

The values of α and β affect the performance of the

proposed approach. Too high and too low values of α and

β slow down the performance and reduce the reconstruction

accuracy as the case with related works which perform se-

lection from the entire set. However, we have shown in [9]

that the performance of the algorithm is not sensitive to the

α and β values as long as they are in a moderate region of

α ∈ [0.5, 0.7] and β ∈ [0.15, 0.75]. This is due to the fact
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Algorithm 1 WP-ARMP Algorithm
Input: Matrix A = SF−1

M W−1
p , sparsely collected samples

xt, sparsity level k, parameters α and β.

Initialize: r̂f
[0] = 0, residual[0] = xt, T [0] = ∅.

for i = 1; i := i+ 1 until the stopping criterion is met do
g[i] ← A∗ × resdiual[i−1] {Correlation vector}

J ← Lβk(g
[i]) {Indices of the βk largest magnitude

elements in g}

W ← {j : |g[i]j | ≥ α max
l
|g[i]l |, j ∈ J} {Indices

of elements in J of magnitudes larger than or equal to

α max
l
|g[i]l |}

T ←W ∪ supp(r̂f
[i−1]) {Support merging}

b|T ← A†Txt, b|T c ← 0 {Signal estimation}

r̂f
[i] ← Hk(b) {Prune approximation}

resdiual← xt −Ar̂f
[i] {Update residual}

end for
Output: Reconstructed spectrum samples r̂f

that the number of selected elements per iteration becomes

neither too large nor too small in this region. This in turn

results in a high reconstruction accuracy at a low complexity.

The selection of α and β is discussed in detail in [9].

IV. PERFORMANCE EVALUATION

A. Simulation Setup

In this section, we compare the performance of WP-ARMP

for compressed wideband spectrum sensing, against �1 mini-

mization in the wavelet packet domain [20] and TOMP [16].

Since our test signals are spectrum signals (in the frequency

domain), the application of �1minimization in the wavelet

packet domain corresponds to the Fourier-Haar wavelet packet

domain proposed in [20]. WP-ARMP is utilized in the Haar

wavelet packet domain. 4-level Haar wavelet packet decom-

position is performed. The best basis algorithm [10] is used

to select the best basis in which the spectrum has the sparsest

representation.

For each algorithm, the reported results are the average of

the metrics evaluated for 50 independent trials. In each trial,

we generate a random sparse signal of length n = 1000,

corresponding to the Nyquist-rate spectrum samples. The total

bandwidth is divided into 100 equal channels, each consisting

of 10 samples. For TOMP, we take the relaxing coefficient

α = 0.9 and the downward extending coefficient l = 2 levels

[7]. For ARMP, we take α = 0.7 and β = 0.25 [9].

B. Performance Metrics

The performance metrics that we use to compare our

WP-ARMP algorithm against other related algorithms are as

follows:

• The reconstruction time in seconds, the time required by

the algorithm to reconstruct the spectrum signal from the

measurement signal.

• Probability of detection, the percentage of occupied bands

detected by the algorithm.

Occupied Bands
10 20 30 40 50 60 70

T
im

e 
(s

ec
)

0

20

40

60

80

100
L1 Norm WP
TOMP W
WP-ARMP

10 20 30 40 50 60 70
0

0.5

1

1.5

Figure 1. Reconstruction time (sec) for different number of occupied
channels.

• Probability of false alarm, the percentage of free bands

erroneously classified by the algorithm as occupied bands.

C. Simulation Results

1) Performance against number of occupied bands: We

compare the algorithms against the number of occupied bands.

The number of occupied bands is varied from 10 to 70 at

steps of 10, corresponding to spectrum occupancy from 10%

to 70%, respectively. The amplitudes of the bands are uni-

formly distributed from 0 to 100. We take 400 measurements,

corresponding to a compression ratio of 40%. In the following

figures, W stands for wavelet domain and WP stands for

wavelet packet domain.

Figure 1 depicts the reconstruction time required by the

algorithms. As expected, �1 minimization takes the longest

time, from about 20 to 100 seconds, according to the channel

occupancy. Such excessive time is not appropriate for cognitive

radio applications. Then, TOMP takes up to about 1.4 seconds.

TOMP is slow due to the excessive number of projections

performed by algorithm for selecting the best subtrees. WP-

ARMP achieves the lowest time ranging from 0.035 to 0.45

seconds for low and high channel occupancies respectively.

Such significant speedup is due to the adaptive selection of

correlation values from a reduced set.

Figure 2 illustrates the probability of detection. For lower

channel occupancy, �1 minimization and WP-ARMP give

100% probability of detection. In this range, TOMP gives

lower detection of about 95%. For higher occupancy, the

algorithms are very close at about 97%.

The probability of false alarm is shown in Figure 3. For

lower occupancy up to about 40%, �1 minimization and ARMP

give about 0% probability of false alarm. In this range, TOMP

gives a significantly higher probability of false alarm. For

higher occupancies, �1 minimization gives the lowest value,

followed by WP-ARMP and TOMP. It should be noted that

the lower probability false alarm of �1 minimization comes at
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Figure 2. Probability of detection for different number of occupied channels.
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Figure 3. Probability of false alarm for different number of occupied
channels.

the expense of excessively high reconstruction time, which is

not appropriate for cognitive radio applications.

The previous results show that WP-ARMP achieves an enor-

mous complexity reduction compared to �1 minimization with

close reconstruction capability. WP-ARMP also achieves an

enormous improvement in reconstruction accuracy compared

to TOMP at a considerably lower complexity.

2) Performance against number of measurements: We next

compare the performance of the algorithms against the number

of measurements taken, which indicates the reduction in

sampling rate achieved through the use of compressed sensing.

The sparsity of the signal is 20% (i.e. it has 200 nonzero

samples). This corresponds to a spectrum occupancy of 20%.

The nonzero points are evenly divided into 20 channels, each

consisting of 10 samples. The amplitudes of the channels

are uniformly distributed from 0 to 100. To evaluate the
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Figure 4. Reconstruction time (sec) for different number of measurements.

benefit from compressed sensing, we use a fewer number of

measurements than n. We plot the performance metrics against

the number of measurements, ranging from 100 to 400 with

steps of 20 samples, corresponding to compression ratios from

10% to 40%.

Figure 4 depicts the reconstruction time required by the

algorithms. Again, �1 minimization takes the longest time, in

the range of 20-55 seconds. Such excessive time is not appro-

priate for cognitive radio applications. Then, TOMP takes up

to about 1.3 seconds. Next is our WP-ARMP algorithm, at a

significantly lower time of about 0.09 seconds.

Figure 5 illustrates the probability of detection. Comparing

the algorithms in the region where the probability of detection

is almost 100% and probability of false alarm is about 0%,

i.e. for a number of measurements of above 250, we see that

WP-ARMP gives about 99.2% probability of detection at 260

and about 100% at 280 measurements. �1 minimization gives a

lower value of about 96.2%. In the same region, TOMP gives

a lower probability of detection of about 94%.

The probability of false alarm is shown in Figure 6. In

the same region, �1 minimization and WP-ARMP give the

lowest probability of false alarm at about 1%. TOMP shows

a considerably higher probability of false alarm compared to

the rest of the algorithms of about 35% to 55%. While �1
minimization gives slightly lower probability of false alarm,

this comes at the expense of a lower probability of detection,

which is dangerous, since it may result in interference with

PUs.

The previous results show that using WP-ARMP, a com-

pression ratio of about 25% can be achieved, with over

99% probability of detection and below 1% probability of

false alarm. An enormous complexity reduction is achieved

compared to �1 minimization (from more than 45 seconds

to 0.09 seconds) at very close probability of false alarm and

even higher probability of detection. Moreover, an enormous

improvement in reconstruction accuracy is achieved compared
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Figure 5. Probability of detection for different number of measurements.
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Figure 6. Probability of false alarm for different number of measurements.

to TOMP (from 95% to 99.2% probability of detection and

from 40% to about 1% probability of false alarm) at a

considerably lower complexity (from 0.85 to 0.09 seconds).

V. CONCLUSION

In this paper, we have presented a practical technique

for wideband spectrum sensing in cognitive radio networks.

The proposed WP-ARMP applies the adaptive reduced-set

matching pursuit approach in Haar wavelet packet domain

of the wideband sensed spectrum. WP-ARMP is a fast and

accurate compressed sensing recovery algorithm that exploits

the sparsity of the spectrum signals in the Haar wavelet packet

domain. We have demonstrated that our technique is capable

of reconstructing spectrum signals from samples collected at

a rate of about 1/4 the Nyquist rate, significantly faster than

other related algorithms. The probability of detection is over

99% and the probability of false alarm is below 1%.
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