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Abstract—Vehicle-to-Everything (V2X) technology plays a 
critical role in maintaining road safety, avoiding accidents and 
controlling traffic flow. As self driving cars are expected to 
take over the roads, this paper discusses the intermediate phase 
in which manned and unmanned cars coexist. A heterogeneous 
network architecture that simultaneously serves manned and 
unmanned cars’ different requirements in a suburban area is 
proposed and simulated using Riverbed Modeler. The 
feasibility of this architecture is examined in three different 
scenarios: Normal operation, congestion in both directions and 
Road Side Units (RSU) failure. In normal operation mode, 
traffic data is sent through Vehicle-to-Vehicle (V2V) and 
Vehicle-to-Infrastructure/Infrastructure-to-Vehicle (V2I/I2V 
or to RSU) using IEEE 802.11p and infotainment information 
is communicated as V2I/I2V using Long Term Evolution 
(LTE). A special case is highlighted and tested, in which 
congestion is in both directions. In such situation, data needs to 
be relayed to the nearest RSU using multi-hop communication. 
A fault-tolerant model is also proposed and analyzed in case of 
failure of RSU. The performance metrics are end-to-end delay, 
LTE response time, handover delay and packet loss ratio. The 
architecture proves its suitability by satisfying traffic control 
real time application requirements. 

Keywords—LTE, IEEE 802.11p, V2V, V2I/I2V, 
Heterogeneous networks, Riverbed Modeler. 

I. INTRODUCTION 
Vehicle-to-Everything communication (V2X) includes 

Vehicle-to-Vehicle (V2V) and Vehicle-to-
Infrastructure/Infrastructure-to-Vehicle (V2I/I2V) 
communications. V2I/I2V is the wireless exchange between 
vehicles and the infrastructure for traffic management and 
avoidance of bottlenecks, whereas V2V is when a vehicle 
communicates to nearby vehicles exchanging messages for 
safety enhancements [1]. The standard protocol for 
vehicular networks is IEEE 802.11p. However, a lot of 
researches advocate the usage of LTE in vehicular networks 
[2-10]. 

In the emerging world of the wireless Internet of Things 
(IoT), where every single object would be connected 
through a network with all its surroundings, the concept of 
V2X communications stands as one of this world’s most 
critical applications. This would enable the automotive 

world into further creativity, where different vehicles would 
be operated autonomously [11]. 

Recently, an emerging computing scheme known as fog 
or edge computing was introduced to decrease latency over 
the communication network [12, 13]. This computation 
model offloads processing happening in the cloud and 
moves it to the network edge [12]. In addition to fog 
computing, dew computing is introduced to further lower 
the traffic load on networks [14]. 

Several proposed architectures introduced and analyzed 
the use of Road Side Units (RSUs) to serve as fog elements 
or as communication points of attachment positioned in 
safety critical locations, and the communication protocols 
used were mainly IEEE 802.11p, Wi-Fi and LTE [4, 15, 16]. 
Usually, applications supported by V2I include traffic safety 
and infotainment services such as video streaming, web 
browsing, e-mail and VoIP [2-11, 15-18]. 

To introduce self driving cars in streets, automotive 
companies have done intensive research in the area of 
autonomous vehicles. Several car manufacturers and 
technology companies, notably Google, Chevrolet, BMW 
and Tesla cars use cameras and sensors in order to gather 
information about its surrounding, to move and avoid 
obstacles on the road [19-23]. 

In this paper, a scenario is proposed where manned and 
unmanned vehicles coexist. This positions the research as a 
step further from what is currently proposed in the literature; 
being the enhancement of driving experience for manned 
cars. A heterogeneous model of communication is proposed 
where V2V and V2I/I2V (RSU) communication use IEEE 
802.11p protocol, while V2I/I2V uses LTE. Fault-Tolerance 
of the system is also studied in case of RSU failure. 
Congestion in both directions is also studied. In such 
scenario, data needs to be communicated to the nearest RSU 
using multi-hop scheme. Secured communication is out of 
scope of this research. 

The rest of this paper is organized as follows. Section II 
describes the related work and explains the technologies 
used and their suitability.  The proposed model architecture 
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is presented in Section III. In Sections IV, V and VI, the 
V2V, V2I/I2V and infotainment using LTE aspects of the 
proposed work are discussed and simulated using Riverbed 
Modeler and the results are shown.  Section VII introduces a 
case study for congested roads between two RSUs. Finally, 
the paper is concluded in Section VIII. 

II. RELATED WORK 
This section highlights previous studies on the 

computational hierarchy including dew, fog and cloud, as 
well as vehicular networking protocols such as LTE and 
IEEE 802.11. 

References [12-14, 18, 24] proposed a hierarchical 
model for computation in vehicular networks. The dew 
computing level that receives raw data, is followed by a fog 
computational level and finally a cloud server [14]. A car 
gathers information about the surrounding from two main 
sources; the sensors embedded in the car [18] and V2V 
communication [25]. The sensors generate a huge volume of 
data that cannot be passed directly to the infrastructure [14, 
24]. Hence, a dew computing level is introduced. The dew 
computing level is a small embedded processor in the car 
that generates reports from the gathered information [14]. 
This data is then passed to the fog level. It is argued that fog 
computing provides low latency for time critical 
applications [13]. Reference [12] proposed that Road Side 
Units (RSUs) could serve as fog elements. Dew is expected 
to be more beneficial than higher computational levels as it 
is closer to the end devices, i.e., the car because the reports 
generated at the dew level reduce the burden on the 
infrastructure [14].  

The current issues of self-driving cars include the range 
of road coverage, which tends to be less than 80m relying on 
camera-based object detection algorithms, and less than 
200m relying on Radars and Lidars [18]. A downside of 
relying solely on sensors and cameras is that the gathered 
information about the road is limited to the vehicle’s 
approach [18]. This implies that there is no information 
shared with other surrounding vehicles. This limits the 
vehicle’s coverage to its line of sight, hindering the idea of 
grasping full information about the road [18]. Hence, some 
obstacles or other vehicles within the road would be left 
hidden or unrecognized within the vehicle's proximity.  

Therefore, the second source of data is V2X 
communications, which is superior to relying on sensors 
only [18]. V2X communication would extend that range of 
coverage to beyond 200m of road detection [18]. In [25], 
DSRC and on-board sensors improve the root mean square 
error (RMSE) in road estimation at 200m from the vehicle 
by about 65% (compared to cameras and sensors). The 
likelihood of the street estimation error to be superior to half 
of a lane width is 98.7% with strategy proposed in [25] 
while it is just 48% with the previously described 
techniques. 

Extensive research evaluated the performance of IEEE 
802.11p as a standard for ad hoc V2V communications [17, 
26]. The evaluation was done on 50 nodes in the streets of 
Paris using Riverbed Modeler [17]. The results support that 
the routing protocol does not make a huge difference. To 
achieve the best performance possible, a maximum of two-
hop routes is maintained [17]. Another research on V2V in 
[26] proposes an intersection management algorithm. The 
algorithm was tested in seven different traffic conditions 
showing around 11% to 26% improvement in the waiting 
time; however, results vary depending on the traffic 
condition [26].  

Another discussed technology for V2V is LTE; however, 
as the network gets easily congested it could not handle 
V2V applications [24]. Similarly, reference [7] emphasizes 
that the high rate of V2V messages, which is typically every 
100ms, cannot be supported by LTE networks. 

To build V2I communication architecture, references 
[15, 16] use IEEE 802.11 communication protocol and 
RSUs. RSUs perform some processing to calculate the 
current traveling time and broadcast messages to other cars 
[16]. When using IEEE 802.11p, simulation results showed 
a general decrease in traveling time and fuel consumption 
[16]. Due to the high cost of deploying RSUs, it is believed 
in [4] that RSUs should be positioned in locations where 
safety is eminent. Whereas in [15], an integrated traffic 
enforcement system is introduced to log traffic tolling and 
report traffic violations via Wi-Fi. Their proposed model 
involves positioning Wi-Fi access points at intersections to 
communicate with equipped vehicles. Simulation results 
proved that all violations were reported promptly [15]. 

Another communication scheme used for V2I/I2V 
communications is LTE. Reference [3] examined the 
performance of such a network, where vehicular and 
infotainment data are transmitted over LTE using different 
scheduling strategies. Results showed that for small 
coverage areas LTE is not efficient. Similarly, reference [5] 
used LTE for V2I/I2V traffic control and infotainment and 
showed the feasibility of this architecture. Reference [4] 
proved that LTE has long coverage range and high 
throughput for infotainment services. 

A comparative study was conducted between IEEE 
802.11p and LTE in [2] in order to evaluate their suitability 
in different vehicular applications. The paper’s primary 
focus was on investigating the performance according to 
metrics such as delay, reliability, scalability and mobility 
support of both communication standards in the context of 
suitability for different vehicular applications. It was 
concluded that LTE is suitable for most vehicular 
applications and satisfies most of the vehicular 
requirements. On the other hand, LTE demonstrated a 
tendency for high delay as the load increases on the 
network. While IEEE 802.11p offers acceptable 
performance for sparse network topologies with limited 
mobility support [2]. 
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