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Abstract
While various frameworks for iris recognition have been proposed, most lack efficiency
and high speed. A new framework for iris recognition is presented that is both efficient
and fast. Feature extraction is performed by extracting Gabor features and then applying
supervised locality‐preserving projections with heat kernel weights, which improves the
recognition rate in comparison with the results from unsupervised dimensionality
reduction techniques such as principal component analysis, locality‐preserving pro-
jections, and random projections. Afterwards, a classification is performed using the
recently proposed sparse representation‐based classification (SRC). To considerably
improve classification performance, SRC is proposed, using a greedy compressed‐sensing
recovery algorithm, as opposed to employing the traditional computationally expensive
ℓ1 minimisation. The proposed framework achieves a recognition rate of about 99.5%
using two iris databases, with a significant improvement in speed over related frameworks.

1 | INTRODUCTION

Over the last 2 decades, interest in biometric personal recog-
nition has significantly increased. The human iris is a very useful
biometric feature for personal identification. Compared with
other biometric features, the iris has various advantages in
personal identification: it is unique, stable over the time, and
does not change with age. It has a complex pattern containing
many distinctive features exhibiting enormous variability among
different persons [1, 2]. Consequently, iris recognition is applied
in many areas including border and access control, banking,
mobile authentication and national identification programs [3].

A typical iris recognition system consists of image pre-
processing, feature extraction and classification. Preprocessing
of the iris image targets the extraction of the location of the iris
and converts the annular region of the iris from polar to
rectangular coordinates. Discriminative features are then
extracted from the iris. Dimensionality reduction typically
follows, and is applied to remove redundancy and improve
efficiency, by projecting either the iris image or the extracted
features from a higher‐dimensional space to a lower‐
dimensional subspace or submanifold. Subsequently, the iris
image is classified according to some classification technique.

Various dimensionality reduction techniques have been
applied in iris recognition systems. Examples include principal
component analysis (PCA) [4, 5], Fisher's linear discriminant
(FLD) [6], and locality‐preserving projections (LPPs) [7]. PCA
preserves the overall global structure of the iris image space. FLD
targets preservation of the discriminating information between
the images of different persons. However, both PCA and FLD
fail to discover the underlying structure when iris images lie on a
nonlinear submanifold hidden in the iris image space. On the
other hand, LPPs target preservation of the local neighbour-
hood information of the image space, by projecting closer
images onto closer projections. However, most iris recognition
systems that employ LPPs are based on unsupervised LPP. The
unsupervised version of LPP merely projects closer images
onto closer projections irrespective of the classes. Conse-
quently, the recognition rates obtained are not sufficiently high.

Dimensionality reduction techniques can be applied
directly to the iris image, or more commonly, to features
extracted from the iris image. Such features include discrete
wavelet transform (DWT) coefficients and Gabor coefficients,
with the latter being most commonly used.

The classification stage follows feature extraction. Various
classification techniques have been utilised for iris recognition,
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including nearest neighbour, nearest subspace, support vector
machines (SVMs) and neural networks. However, a recently
developed classification technique termed sparse representa-
tion‐based classification (SRC) has given promising results by
outperforming other traditional techniques [8, 9]. SRC is based
on the theory of compressed sensing (CS) [10, 11], which targets
the reconstruction of sparse data from sub‐Nyquist measure-
ments. The SRC technique is based on the assumption that a test
sample can be represented as a linear combination of training
samples. This results in a sparse representation because the only
significant coefficients are those corresponding to the class of
the test sample. Subsequently, CS recovery algorithms are uti-
lised to obtain the sparse representation and thereby find the
target class. Traditionally, ℓ1 minimisation has been used for CS
recovery and for SRC. However, it is computationally expensive
and results in reconstruction delays that may not be tolerable in
most real‐time applications. Other greedy recovery algorithms
have been proposed to reduce the computational complexity of
ℓ1 minimisation. However, most of these result in a significant
loss in reconstruction accuracy, such as orthogonal matching
pursuit (OMP) [12], which reduces complexity to some extent.

In this paper, we propose an efficient and fast iris recog-
nition framework. The main contributions of this work are as
follows:

� Supervised locality‐preserving projections (SLPPs) with heat
kernel weights are used for dimensionality reduction and
applied to extracted Gabor features. Such a technique is
used for manifold learning, where closer images in the iris
space are mapped to closer points in the low‐dimensional
space and vice versa. Furthermore, using the supervised
version, which accounts for the different classes, enhances
classification performance. This is in contrast to other un-
supervised techniques that are traditionally used, such as
PCA, LPP and random projections.

� SRC is performed using our adaptive reduced‐set matching
pursuit (ARMP) algorithm [13]. Other frameworks that
employ SRC typically perform CS reconstruction using the
computationally expensive ℓ1 minimisation such as those in
[9, 14]. In contrast, ARMP is an efficient CS reconstruction
algorithm that significantly improves the speed of SRC while
it maintains the same accuracy.

Therefore, combining the two ideas results in an iris recog-
nition framework that is both fast and accurate. Using simula-
tions, we have analysed in detail the impact of each of the above
two components and compared each of them with the corre-
sponding components used in other iris recognition frameworks.

The feature extraction stage of our proposed framework
proceeds as follows. Iris images are preprocessed using circular
Hough transform to extract the iris region, which is then
converted into rectangular coordinates. Gabor features are
extracted. Then, we perform dimensionality reduction using
SLPP. Such a technique significantly improves the recognition
rate. In the classification stage, we utilise SRC using the ARMP
algorithm. This results in a very accurate and efficient frame-
work that is suitable for real‐time applications.

The rest of this paper is organised as follows. Section 2
discusses some related works. We present the preprocessing and
feature extraction stages of our proposed framework in Sec-
tion 3 and the classification stage in Section 4. Experimental
results are presented in Section 5. Section 6 concludes the paper.

2 | RELATED WORK

Various iris recognition systems have been developed over the
past few decades. The vast majority employ dimensionality
reduction techniques. For example, an iris recognition system
based on PCA is developed in [15]. Then, a nearest neighbour
classifier is used for classification. Linear discriminant analysis
(LDA) is employed in [16] and is applied to DWT coefficients
extracted from the iris image. This is followed by a probabi-
listic neural network classifier. Two‐dimensional versions of
the aforementioned techniques (2D‐PCA and 2D‐LDA) are
utilised in [17]. Classification is performed using a nearest
neighbour classifier. Independent component analysis is used
in [18] followed by a nearest neighbour classifier.

Other works employ LPPs for dimensionality reduction.
For instance, [19] utilised LPP to perform manifold learning.
Subsequently, an SVM classifier is utilised to find and establish
the optimal classification hyperplane in low‐dimensional space.
Moreover, [20] combined LPP with random permutations to
generate an encrypted biometric template. Then, nearest
neighbour classification was performed. However, both works
utilise the unsupervised version of LPP, which does not ac-
count for class information.

While dimensionality reduction techniques can be applied
directly to image pixels, other works apply such techniques to
features extracted from the iris images. For example, [21] applies
DWT to a histogram‐equalised iris image. Then, the extracted
DWT coefficients are input into the PCA algorithm for dimen-
sionality reduction. Subsequently, K‐nearest neighbours (KNN),
random forest, and SVM classifiers are utilised and compared.
Alternatively, many works extract Gabor features from iris im-
ages and then apply dimensionality reduction techniques to the
extracted features. For instance, [19] applies LPP to extracted
Gabor features at five scales and eight orientations.

Some works introduce other features for use in iris
recognition. For example, [22] uses a combination of scattering
and textural features. Scattering features provide rich
descriptors for complex structures because they retain high‐
frequency information. Dimensionality reduction using PCA is
applied to the extracted features and a minimum distance
classifier utilised.

As the theory of CS found application in many fields, a
novel classification technique based on it was developed by
Wright et al. [8]. This technique was termed sparse represen-
tation‐based classification and was applied successfully to face
recognition [8, 23]. Based on SRC, an iris recognition system
was developed in [9]. Gabor features are extracted and
dimensionality reduction is performed through random pro-
jections. The iris image is then divided into different sectors
that are recognized separately using SRC. The results of
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different sectors are combined based on quality through a
Bayesian fusion framework. Random projections have the
benefit of enhanced privacy and security. Another system
based on SRC is developed in [14]. Again, the iris image is
divided into sectors and SRC is applied to each sector. Three
classifiers are then utilised: KNN, sector‐based classifier and
cumulative sparse concentration index. A genetic algorithm is
then used to learn the weight of each classifier. However, both
of the aforementioned works utilise ℓ1 minimisation for CS
recovery during SRC. Such a technique is computationally
expensive and limits recognition speed.

Over the past few years, with progress in deep learning,
deep convolutional neural networks have been utilised for iris
recognition systems [24]. Such systems do not need hand-
crafted features, because they utilise a convolutional neural
network (CNN) to learn the features. However, a massive
amount of training data, training time, memory, storage, and
processing power is required to obtain acceptable results. A
deep learning–based method termed DeepIrisNet is proposed
in [25]. It integrates the most popular components from more
recent successful CNNs, such as dropout learning, small filter
size, very deep architecture, rectified linear non‐linearity, and
batch normalisation. On the other hand, [26] explores the
performance of state‐of‐the‐art pretrained CNNs on iris
recognition. A deep learning method based on capsule network
architecture is proposed in [27]. Such a network increases the
robustness of the model.

In [28], a pretrained AlexNet CNN is utilised for feature
extraction. The output of the first fully connected layer is then
used for the features, which are input into a multi‐class SVM
algorithm to perform classification. In [29], a VGGNet CNN
is utilised for feature extraction. PCA is used for dimensionality
reduction followed by an SVM classifier. In [30], a pretrained
ResNet of 50 layers is used for learning features and classifi-
cation. In [31], a pretrained ResNet18 is used in which the last
fully connected layer is replaced with a layer that has the
required number of output classes.

Furthermore, deep learning has been used for iris seg-
mentation and recognition. For example, [32] proposes a two‐
stage iris segmentation scheme based on CNN that is capable
of accurate segmentation in noisy environments by visible light
camera sensor. The first stage includes filtering, noise removal,
Canny edge detector, contrast enhancement, and modified
Hough transform to segment and approximate the iris
boundary. The second stage includes a deep CNN to fit the
true iris boundary.

3 | PREPROCESSING AND PROPOSED
FEATURE EXTRACTION

In this paper, we propose a fast and efficient framework for iris
recognition. In this section, we describe the preprocessing and
feature extraction stages of our proposed framework. First, we
locate the iris region and convert it into rectangular co-
ordinates. Then, we extract Gabor features from iris images
and augment the resulting features into a column vector.

Finally, we apply SLPPs using heat kernel weights to the
resulting vectors. Our proposed approach achieves higher
recognition rates than other approaches that employ other
dimensionality reduction techniques.

3.1 | Preprocessing

Preprocessing targets the extraction of the iris region from the
eye image and its conversion into a form suitable for further
processing. Iris images are preprocessed using circular Hough
transform [33] to find the inner and outer boundaries of the
iris. Consequently, the iris region is located. Then, the iris re-
gion is converted from polar to rectangular coordinates using
Daugman's rubber sheet model [1]. This is more convenient
for subsequent stages.

3.2 | Gabor features

Gabor wavelets are widely used to extract local features for
pattern recognition [34]. This is due to their ability to provide
optimised resolution in both spatial and frequency domains
[35, 36]. After preprocessing, we use Gabor wavelets of five
scales and eight orientations [37]. Gabor features are extracted
by taking the magnitudes of the two‐dimensional convolution
of the iris images with the family of Gabor wavelets. Extracted
features are then downsampled. They are then normalized to
zero mean and unit variance. The resultant features are then
converted into a single column vector representing the input
image.

3.3 | Supervised locality‐preserving
projections

We then apply dimensionality reduction to the extracted Gabor
features. This reduces computational complexity and improves
the recognition rate [38]. Some works suggest the application
of any dimensionality reduction technique, even very simple
random projections [8, 9]. They argue that such a technique
eventually achieves a high recognition rate when the number of
features extracts becomes sufficiently high. However, we sug-
gest that employing a dimensionality reduction technique that
requires the least number of features for a given recognition
rate results in the best performance. This is because using
fewer features results in faster recognition and therefore im-
proves algorithm speed. This will be demonstrated using
simulations.

3.3.1 | Manifold learning

In contrast to PCA, which targets preservation of the global
structure of the iris space, manifold learning techniques target
preservation of the local structure of the iris space [39]. This
means that closer points in the higher‐dimensional iris space
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are mapped to closer points in the low‐dimensional space and
vice versa.

Our framework uses SLPPs for manifold learning. In
contrast to other algorithms that are based on unsupervised
LPP, we propose using supervised LPP, which performs
dimensionality reduction while accounting for the classes of
the samples.

The manifold structure is modelled by an adjacency graph
that captures the local structure of the iris space [39]. Each
training sample is represented by a node. In unsupervised LPP,
a nearest neighbour graph is formed in which two nodes are
connected if either one lies in the k nearest neighbours of the
other. In contrast, the adjacency graph used in supervised LPP
takes the classes into account. This is accomplished by con-
necting any two nodes if they belong to the same class. This
results in a projection with improved classification ability.
Moreover, the weights of the graph that we form are the heat
kernels, which improve the learning process and accordingly
improve the recognition rate. The weight of the edge con-
necting nodes xi and xj is e−‖xi−xj‖2=t [40], where t 2 R de-
termines the rate of decay. Thus, the graph weights are given by

Sij ¼
e−‖xi−xj‖2=t; if xi and xj belongtothesameclass
0; otherwise

(

ð1Þ

Subsequently, we proceed as in the Laplacianfaces algo-
rithm [39].

4 | ADAPTIVE REDUCED‐SET
MATCHING PURSUIT‐BASED
CLASSIFICATION

In this section, we present the classification stage of our pro-
posed framework. We use the SRC algorithm proposed in [8].
However, rather than using ℓ1 minimisation for CS recovery,
we use our ARMP algorithm. This results in a significant
improvement in speed with a very high recognition rate. SRC is
based on the theory of CS. We first review the theory of CS
and then describe SRC. Finally, we show how we use ARMP
for classification.

4.1 | Compressed sensing review

Consider a sparse signal, x 2 Rn, of sparsity k. A measurement
system that acquires m ≪ n linear measurements is repre-
sented as

y¼Φx; ð2Þ

where Φ 2 Rm�n is the sensing or measurement matrix, and
y 2 Rm is the measured vector or the samples. The original
signal x can be reconstructed from measurement vector y,

given that the sensing matrix satisfies the restricted isometry
property [41]. Such a condition is satisfied with high proba-
bility by matrices of entries that are independent and identically
distributed and follow a Gaussian, Bernoulli or sub‐Gaussian
distribution. ℓ1 minimisation was originally suggested for
reconstructing the sparse signal as follows [11]:

bx ¼ arg min
z

‖z‖1 subject to y¼Φz ð3Þ

4.2 | Sparse representation‐based
classification overview

Based on CS theory, SRC has been proposed [8]. Such a
classification technique is found to outperform other tradi-
tional classifiers such as nearest neighbour in terms of recog-
nition rate. Here, we review the SRC algorithm (Algorithm 1).

Consider a set of training samples belonging to n subjects.
Consider a test sample y. Classifying the test sample is
required, assuming that it can be approximated as a linear
combination of some or all of the training samples from the
corresponding class. Now let matrix Ai contain columns that
are the training samples of class i. Now, form augmented
matrix A as

A¼ ½A1;A2;…;An� ð4Þ

Assume that vector x contains the weights required to
approximate test sample y as a linear combination of the
training samples. Therefore, y can be expressed as

y¼ Ax¼ ½A1;A2;…;An�x ð5Þ

The elements of larger magnitude in vector x are at indices
corresponding to the class of the test sample. Other elements
are of negligible value. Consequently, vector x is sparse and can
be obtained using CS recovery techniques. Figure 1 illustrates
such a representation. Denote the reconstructed vector by bx; y

F I GURE 1 Sparse representation‐based classification [8]
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is then reconstructed from linear combinations of the columns
of A using elements of bx associated with each subject indi-
vidually. Subsequently, the test sample is classified as belonging
to the subject that corresponds to the least reconstruction
error.

Algorithm 1 Sparse Representation‐Based
Classification

Input: A matrix of training samples A¼ ½A1;A2;
…;Anc� 2 Rk�n for nc classes, a test sample
y 2 Rk.
1. Normalise the columns of A to have unit ℓ2-
norm.
2. Solve y = Ax using ARMP (given in the
following section).
3. Compute the residuals riðyÞ ¼ ky − AδiðbxÞk2
for i = 1, …, nc, where δiðbxÞ is a new vector
whose only nonzero entries are the entries
in bx corresponding to class i.
Output: Identity.ðyÞ ¼ arg minriðyÞ

i

4.3 | Proposed adaptive reduced‐set
matching pursuit

ARMP is a fast and accurate greedy recovery algorithm for CS
[13]. It iteratively recovers a sparse signal x from a few sub‐
Nyquist measurements y. To do so, it identifies the support of
the sparse signal x (its nonzero indices) by correlating y with
the columns of the sensing matrix Φ. To use ARMP for SRC,
the sensing matrix Φ will be taken as the matrix A given by (4).
In each iteration, ARMP identifies an estimate of the support
of the sparse signal. This is performed by adaptively selecting
the top‐magnitude elements from a reduced set of the corre-
lation values. The sparse signal is then estimated based on the
estimated support by least square minimisation. Subsequently,
ARMP excludes the incorrectly selected elements, a process
referred to as pruning. Then, a residual is calculated and the
aforementioned steps are repeated until a stopping condition is
satisfied. The components of ARMP are explained in the
following.

4.3.1 | Support identification

The vector y is correlated with the columns of the sensing
matrix Φ. Then, a group of the top‐magnitude correlation
values is selected based on a double‐thresholding technique.
First, a reduced set containing the top‐magnitude β.k corre-
lation values is formed. Then, elements of magnitude larger
than fraction α of the top‐magnitude element are selected, and
their indices are merged with the already identified support set.

The choice of α and β is discussed in [42]. The utilization of
the two thresholds targets the selection of an optimum number

of elements per iteration. We have shown, using exhaustive
simulation, that moderate values of α 2 [0.5, 0.7] and β 2 [0.15,
0.75] achieve the best performance because they result in a
number of selected elements per iteration that is neither too
large nor too small. Furthermore, the simulation results indicate
that the reconstruction accuracy and speed of the algorithm are
not sensitive to the particular values of α and β as long as they
are in the previously mentioned optimum range.

4.3.2 | Signal estimation

The second stage of the algorithm involves estimation of the
sparse signal based on the identified support set from the
previous stage. A signal estimate bx is obtained using least
square minimisation, where we find the signal bx that minimises
∥y − Φbx∥2. Such minimisation is performed by multiplication
by the pseudo‐inverse given by

Φ†
T ¼ ðΦ

T
TΦT Þ

−1
ΦT

T ; ð6Þ

where ΦT is a matrix containing the columns of Φ at indices from
the identified support set T. We note here that calculation of the
pseudo‐inverse involves the inversion of a matrix of dimension
equal to the number of indices in the identified support set.
Because ARMP targets the selection of an optimum number of
elements per iteration, much smaller than that selected by other
related algorithms, the size of the matrix ΦT is smaller, and
reconstruction is faster. Furthermore, the sparsity of bx is
approximately equal to the number of training samples per class,
which is typically small. Therefore, this operation is quite fast.

4.3.3 | Pruning

The estimated signal is refined, or pruned, by excluding
incorrectly selected elements. This is done by retaining only the
top k magnitude components of the estimated signal and
setting the rest to zero. In other words, the support set is
refined by excluding elements that account for the least con-
tributions to the estimated signal. The rationale behind pruning
is that during support identification, one or more elements of
indices that do not belong to the support set of the original
target signal are inevitably selected. Pruning aims to remove
such incorrectly selected elements, which improves recon-
struction accuracy and speed. Otherwise, such elements would
remain in the signal estimate during subsequent iterations,
resulting in estimation of a signal of incorrect support and in
turn reducing the recognition rate when applying SRC.

4.3.4 | Residual calculation

ARMP then calculates a residual by subtracting the contribu-
tion of the pruned estimated signal from y. The residual is
given by:
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r ¼ y − Φbx ð7Þ

This allows us to keep pursuing the remaining part of the
signal x that is not yet estimated. ARMP then correlates the
residual with the columns of the sensing matrix. The afore-
mentioned steps are repeated until a stopping criterion is satis-
fied. ARMP terminates if the size of the residual becomes
sufficiently small or if the change in the size of the residual in two
successive iterations becomes sufficiently small, whichever oc-
curs first. Otherwise, a maximum of k iterations are performed.

We summarise the proposed algorithm in Algorithm 2. The
operator Lk(⋅) returns the indices of the k largest magnitudes
of its argument. The hard thresholding operator Hk(⋅) retains
only the k largest magnitude elements and sets the rest to zero.

Algorithm 2 Adaptive Reduced‐Set Matching
Pursuit

Input: Sensing matrix Φ (matrix that
contains the training samples), measurement
vector y (sample to be classified), sparsity
level k (number of samples per class),
parameters α and β.
Initialise: bx ½0� ¼ 0;r½0� ¼ y;T½0� ¼∅.
for i = 1; i :¼ i + 1 until the stopping
criterion is satisfied do

g [i] ←Φ*r[i−1] {Form correlation vector}
J ← Lβk(g

[i]) {Indices of βk elements of
largest magnitude in g}

W ← fj : jg½i�j j ≥ α maxl
jg½i�l j;j 2 Jg {Indices of

elements in J of larger magnitude than the
threshold}

T ← W [ suppðbx ½i−1�Þ {Support merging}
bjT ← Φ

†
Ty; bjTc ← 0 {Signal estimation}

bx ½i� ← HkðbÞ {Pruning}

r ← y − Φbx ½i� {Residual update}
end for
Output: Reconstructed signal bx

4.3.5 | Extending the algorithm to perform
authentication

While SRC is typically used for recognition, it can be
modified to perform authentication as well. In this problem,
some of the test samples to be classified do not belong to the
training set, and we are required to determine which ones do
not belong.

In SRC, when the test sample belongs to one of the
training classes, the reconstruction error for the correct class is
much smaller than for the others. However, if the test sample
does not belong to any of the training classes, none of the
classes exhibit significantly less error than the others. There-
fore, a simple comparison between the minimum error and
next minimum value is a very powerful indicator as to whether
the test sample belongs to the training set.

More specifically, the difference between the smallest error
and the next smallest is compared with a threshold. If the
difference is larger than a threshold, say 20% of the maximum
error value, we deduce that the test sample belongs to the
training set and is classified as belonging to the class with the
minimum error. Otherwise, we deduce that the test sample
does not belong to the training set.

5 | EXPERIMENTAL RESULTS

We first introduce the databases that we use to evaluate our
proposed framework. Then, we describe the simulation setup.
Finally, we present the simulation results.

5.1 | Databases used

5.1.1 | CASIA database

The CASIA Iris Image version 1.0 database (CASIA‐IrisV1)
[43] includes 756 iris images from 108 eyes. For each eye, seven
images are captured in two sessions. All images have a reso-
lution of 320 � 280.

5.1.2 | IIT Delhi Iris database

The IIT Delhi Iris database [44] consists of the iris images of
224 persons. For each person, five iris images are available. The
resolution of the images is 320 � 240. We use the normalized
version consisting of 1120 images for the 224 persons and with
five images per person.

5.2 | Simulation setup

We use a cross‐validation scheme [45] to evaluate performance.
All experiments are repeated for five iterations. In each itera-
tion, we randomly select four iris images for training and use
the rest for testing. The results presented are the average of the
five iterations. We use Gabor wavelets of five scales and eight
orientations [37]. The features are then downsampled by a
factor ρ = 64. Dimensionality reduction is applied to the
downsampled features, and then classification is performed
using the SRC algorithm. For the ARMP algorithm, we take
α = 0.7 and β = 0.2. The interested reader is referred to [42],
although as explained therein, the accuracy of the algorithm is
not sensitive to the exact values of α and β.

5.3 | Simulation results

In this section, we present detailed simulation results. Our
proposed algorithm has two main contributions: (i) dimen-
sionality reduction using SLPP with heat kernels and (ii)
ARMP for SRC. First, we compare the performance of our
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proposed framework against the performance of related
frameworks. Then, to evaluate the benefit of each component
of our framework, we fix other stages of the framework and
compare the performance of the particular component with
the corresponding components in the related frameworks.
Thus, we perform three experiments. First, we test different
dimensionality reduction techniques while performing classi-
fication using ARMP‐based SRC. Then, we test different
classifiers, fixing the SLPP technique. Finally, we fix SLPP and
test SRC using ℓ1 minimisation and ARMP. We then compare
our framework with frameworks based on other features
including deep learning. Finally, we evaluate the performance
of our algorithm for authentication, that is, when some test
samples do not belong to the training samples.

5.3.1 | Comparison with related algorithms

To evaluate the contribution of our proposed algorithm, we
compare it with related algorithms. One of these utilises un-
supervised LPP [19], and the other utilises SRC [9]. In [9],
Gabor features are extracted from the iris region. Dimen-
sionality reduction is performed using random projections.
Then, sector‐based SRC is performed, where each iris image is
divided into different sectors and each is recognized separately
using SRC. The results of different sectors are combined based
on their quality through a Bayesian fusion framework. Random
projections have the benefit of enhanced privacy and security.
However, because ℓ1 minimisation is utilised for CS recovery,
reconstruction speed is limited.

In [19], Gabor features are extracted from iris regions.
Dimensionality reduction is performed using unsupervised
LPP. Classification is then performed using an SVM classifier.

In our proposed framework, we extract Gabor features and
then apply SLPP for dimensionality reduction. For classifica-
tion, we apply SRC and use ARMP for CS recovery.

Figures 2 and 3 depict the recognition rate and time,
respectively, for the CASIA database. As expected, increasing
the number of features improves the recognition rate to a
certain extent, while recognition time generally increases. Our
algorithm (SLPP + SRC) gives the highest recognition rate, of
about 99.5% at 100 features, while taking the lowest time of
about 5 ms. Unsupervised LPP with SVM (LPP + SVM) [19]
gives a significantly lower recognition rate, 84.2% at 120 fea-
tures, while taking 30 ms. Finally, the random projections with
sector‐based SRC (Rand + SSRC) [9] method gives a recon-
struction rate of 93% at 120 features while taking 410 ms.

Combining the accurate manifold learning by supervised
LPP and the accurate and efficient ARMP‐based SRC, our
proposed algorithm outperforms the two related algorithms in
terms of both accuracy and speed. The recognition rate of
unsupervised LPP is significantly less because it ignores in-
formation about the classes. On the other hand, in attempting
to alleviate the computational complexity of ℓ1 minimisation,
the algorithm of [9] uses sector‐based SRC, which partially
reduces the reconstruction time at the expense of a reduced
recognition rate.

Figures 4 and 5 depict the recognition rate and time,
respectively, for the IIT Delhi database. Again, our proposed
algorithm shows superior performance in terms of accuracy
and speed compared with the other two algorithms. We obtain
a recognition rate of 99.6% at 30 features in 5 ms. LPP + SVM
gives a recognition rate of 97.6% at 60 features in 49 ms, while
the random projections with sector‐based SRC (Rand + SSRC)
[9] method gives a reconstruction rate of 97.6% at 50 features
in 363 ms.

5.3.2 | Comparison of dimensionality reduction
techniques

In the following experiment, we compare the performance of
different dimensionality reduction techniques. To perform a
fair comparison, we fix the other stages of the algorithm, we
perform the following classification using ARMP‐based SRC.
Figure 6 depicts the recognition rate using different dimen-
sionality reduction techniques that are applied to Gabor fea-
tures extracted from the images. SLPP gives the highest
recognition rate of 99.5% using 100 features. Next comes LPP
at 97.2% and 120 features, followed by random projections at
90.3% and 120 features. This shows the benefit of SLPP in

F I GURE 3 Recognition time for the CASIA database

F I GURE 2 Recognition rate for the CASIA database
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efficient manifold learning, as opposed to the two unsuper-
vised techniques that do not take class information into ac-
count. Different dimensionality reduction techniques do not
have a significant impact on reconstruction time, and therefore
we do not show the reconstruction time graph for this
experiment.

5.3.3 | Comparison of different classifiers

In the following experiment, we demonstrate the benefit of
using SRC over other classifiers (sector‐based SRC and SVM)
while fixing the SLPP dimensionality reduction technique.
Figures 7 and 8 illustrate the recognition rate and time,
respectively, for different classifiers using the CASIA database.
At lower feature dimensions, SRC gives higher recognition
rates. At feature dimensions of 30 and higher, SRC and SSRC
are very close at about 99.5% and 100 features. However, SRC
is significantly faster, at 5 ms, as opposed to 0.4 s for sector‐

based SRC. This is because CS reconstruction is performed
only once for the whole iris image rather than for each sector
separately. On the other hand, SVM only gives a recognition
rate of 85.9%. This shows the benefit of using SRC compared
with other classifiers, as it achieves very high classification
accuracy and speed.

5.3.4 | Comparison of compressed sensing
recovery techniques used for sparse representation‐
based classification

Finally, we fix the dimensionality reduction part using SLPP
and perform classification using SRC; however, we test our
ARMP algorithm against ℓ1 minimisation for SRC. Figures 9
and 10 show the recognition rates and times, respectively, for
such experiments. At 30 and higher features, both algorithms
result in a high and close reconstruction rate of 99.5% at 100
features. However, the benefit of ARMP becomes obvious
when the reconstruction time is compared. ℓ1 minimisation
takes about 80 ms, while ARMP takes about 5 ms, or an

F I GURE 4 Recognition rate for the IIT Delhi database. LPP, locality
preserving projections; SLPP, supervised locality preserving projection;
SRC, sparse representation‐based classification; SVM, support vector
machine

F I GURE 5 Recognition time for the IIT Delhi database. LPP, locality
preserving projections; SLPP, supervised locality preserving projection; SRC,
sparse representation‐based classification; SVM, support vector machine

F I GURE 6 Recognition rate using different dimensionality reduction
techniques. LPP, locality preserving projections; SLPP, supervised locality
preserving projection

F I GURE 7 Recognition rate using different classifiers. SLPP,
supervised locality preserving projection; SRC, sparse representation‐based
classification; SVM, support vector machine
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improvement of more than an order of magnitude in
reconstruction speed. Therefore, ARMP significantly reduces
the computational complexity of ℓ1 minimisation without
affecting reconstruction accuracy. Furthermore, the speed‐up

that results from applying ARMP as opposed to ℓ1 mini-
misation renders sector division for sector‐based SRC
unnecessary.

5.3.5 | Comparison with frameworks based on
other features and deep learning

In this section, we compare the performance of our proposed
framework against frameworks based on other feature extrac-
tion techniques and deep learning. First, we compare our
framework with that proposed in [22], which uses a combi-
nation of scattering and textural features, followed by dimen-
sionality reduction using PCA and a minimum distance
classifier. Next, we compare our framework with three recent
deep learning–based frameworks. Such frameworks do not
need handcrafted features because they utilise CNNs to learn
features. The first of these is based on a pretrained AlexNet
CNN, followed by a multi‐class SVM classifier [28]. The sec-
ond is based on a VGGNet CNN [29]. PCA is then used for
dimensionality reduction followed by an SVM classifier. The
third uses a pretrained ResNet of 50 layers [30]. Table 1 shows
a comparison of the recognition rates obtained by our pro-
posed framework and those obtained by other frameworks
using the IIT Delhi database.

In [22], 99.2% accuracy is achieved. PCA does not capture
the underlying structure of the iris image space when they lie
on a nonlinear submanifold hidden in the iris image space.
Furthermore, it is an unsupervised technique. On the other
hand, SLPP is a supervised manifold learning technique that is
better suited for classification problems, especially when im-
ages lie on a nonlinear submanifold. Furthermore, the mini-
mum distance classifier is not as accurate as SRC [8], which
agrees with our simulations.

In [28], the AlexNet framework achieves 98.33% accuracy.
This value is reported after normalisation of the iris images
using the rubber sheet model. While higher values are reported
without normalisation, they are based on using the whole
segmented square region of the eye containing the iris and the
pupil as inputs to the neural network. This results in an unfair
comparison with methods based on merely comparing the iris
region.

The accuracy of frameworks based on VGGNet and
DeepIris [29, 30] shows some improvement compared with
[28]; however, the accuracy is still limited compared with our

F I GURE 8 Recognition time using different classifiers. SLPP,
supervised locality preserving projection; SRC, sparse representation‐based
classification; SVM, support vector machine

F I GURE 9 Recognition rate using different compressed sensing
recovery algorithms. ARMP, adaptive reduced‐set matching pursuit

F I GURE 1 0 Recognition time using different compressed sensing
recovery algorithms. ARMP, adaptive reduced‐set matching pursuit

TABLE 1 Comparison of frameworks based on features and deep
learning

Method Recognition rate (%)

Scattering transform and textural features [22] 99.2

AlexNet [28] 98.33

VGGNet [29] 99.4

DeepIris [30] 95.5

Our proposed framework 99.6
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proposed framework with 99.6% accuracy. Such deep
learning–based techniques require a huge amount of training
data, training time, memory, storage, and processing power to
obtain acceptable results.

Compared with deep learning–based frameworks, our
proposed work requires less training data, training time,
complexity, processing power, storage, and memory. Further-
more, our work achieves a higher recognition rate.

5.4 | Recognition and authentication

In this section, we perform an experiment to evaluate the
performance of our proposed work for authentication as well
as recognition. In this experiment, it is not known a priori
whether the test sample belongs to the training classes. We will
first perform authentication to determine whether it belongs to
the training classes. If it is authenticated, recognition will be
performed. In this experiment, we will use a subset of the
CASIA‐V1 database containing 90 training classes. For testing,
we will use iris images from 10 classes that belong to the
training classes and 10 classes that do not. We will perform
SLPP using 100 features. SRC is performed as described in
Section 4.3.5. The experiment is repeated five times, and the
reported accuracy is the mean of the five trials. We repeat the
experiment using four, five, and six training images per class.
The accuracy reported represents correct authentication and
correct recognition if the test sample is authenticated. That is,
incorrect authentication or recognition reduces the accuracy.
Table 2 lists the results of this experiment.

6 | CONCLUSIONS

In this paper, we have proposed a CS‐based framework for iris
recognition that is both fast and efficient. For feature extrac-
tion, we proposed extracting Gabor features and then applying
SLPPs with heat kernel weights. This provides very efficient
class‐based manifold learning compared with other dimen-
sionality reduction techniques. For classification, we proposed
using ARMP for SRC. This significantly improves the speed
and efficiency of our framework compared with that of related
algorithms. A recognition rate of about 99.5% is achieved using
two benchmark iris databases, and at faster reconstruction
times than those of related algorithms. We assessed the
contribution of each component of our proposed framework
by comparing its performance to the similar components of
other frameworks. Among different dimensionality reduction

techniques, SLPP with heat kernel gives the highest recognition
rate. Combining the power of SRC with the speed and effi-
ciency of ARMP proves to be a faster and more efficient
classifier than other classifiers.
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