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Abstract—In this paper, we develop a mobility and energy
aware data routing protocol for unmanned aerial vehicle-assisted
vehicular ad-hoc networks (UAV-assisted VANETs). One of the
UAV act as a flying roadside Uunit (RSU) collecting data from
ground vehicles, while the other UAVs play the role of relays to
deliver the data to mobility service center (MSC). The UAVs can
adjust their three-dimensional (3D) locations within a predefined
range, if needed, in order to ensure reliable communication links.
The proposed approach aims to minimize the energy consumed
by the UAVs in both data transfer and movement. which ensures
fair distribution of the routing effort across the different UAVs
in the network. This is achieved by taking the residual UAV
energy into account in the routing decision. We formulate such a
routing problem as a mixed integer non-linear program (MINLP)
to determine both the selected route and the locations of the
UAVs participating in the data transfer process. Since such a
problem is non-convex, we proceed with a joint optimization
solution where the route is optimized using an ILP and the UAVs’
3D locations are determined using the meta-heuristic particle
swarm optimization (PSO) algorithm. We present a selected set
of numerical results to illustrate the performance of the proposed
solution for different scenarios and compare it to a meta-heuristic
approach based on swarm intelligence.

Index Terms—Data routing, flying RSU, vehicular ad-hoc
networks, unmanned aerial vehicle.

I. INTRODUCTION

Intelligent transportation systems (ITSs) are major building
blocks of contemporary smart cities. Even though it has
recently witnessed significant development and deployment,
such a technology is continuing to evolve. For instance,
currently, the information and communication technologies
(ICT) infrastructure deployed in ITSs relies on roadside units
(RSUs) statically installed on the sides of the roads. Vehi-
cles are equipped with dedicated short range communications
(DSRC) interfaces that allow for the data transfer between the
vehicles amongst themselves and with the RSUs. The RSUs
in turn relays the vehicles’ data to a remote mobility service
center (MSC) for further processing. The recently emerging
unmanned aerial vehicles (UAVs), a.k.a. drones, are currently
investigated as an enabling technology for flying RSUs [1].
With these low-cost multi-rotor UAVs, better communication
links can be established thanks to their mobility at high
altitude, which allows for higher probability to establish line-
of-sight (LoS) communication links with ground vehicles.
Moreover, their mobility allows for better flexibility in cov-
ering traffic events especially during emergency situations.

However, UAVs suffer from a limited battery issue, which
handicaps their missions and restrains their operations to short-
term periods.

Even though they have been used in military for several
years, UAVs have been recently used in multitude of civilian
applications. Examples include the delivery of merchandize
and services, security and surveillance, and precision agri-
culture [2]. In ITS, UAVs can be used to perform traffic
management tasks and report possible traffic violations [3].
UAVs flying in the vicinity of an accident can be used to
provide basic support or report the situation especially if
equipped with cameras. UAVs can also play the role of a flying
traffic police officer [2]. Alternatively, UAVs can also be used
as flying RSUs that collect data to/from the vehicles and route
it from/to remote destinations such as the mobility service
center. The use of UAVs for such vehicular data collection and
dissemination tasks results in what is known for UAV-assisted
vehicular ad-hoc network (UAV-assisted VANET).

In this paper, we present a multi-objective routing protocol
which aims to minimize a weighted average of the different
energies consumed by the UAVs and well as the residual
energy amiable at the UAVs. Our approach increases the
overall UAV network lifetime and ensures fairness in the
energy consumption of the different UAVs. More specifically,
we consider a UAV-assisted VANET in which some of the
flying RSUs are selected to transfer the data from a vehicle
(acting as the data source) to a remote basestation (action as
a destination). Some UAVs are allowed to slightly change
their locations when the communication link is not good in
order to ensure reliable transmission. We formulate such a
multi-objective routing problem as a mixed integer nonlinear
programming (MILP) problem and solve it using a joint
exploratory search algorithm, which, alternately, searches for
the data route and the three-dimensional (3D) locations of the
UAVs. On the one hand, an ILP is executed to find a data
route given fixed UAVs’ locations. On the other hand, a meta-
heuristic particle swarm optimization (PSO) is implemented
to determine the best 3D locations of the flying relays. The
developed routing algorithm finds the best directions and
distances according to which the UAVs will move within a
pre-defined range to establish seamless links for data routing.
Selected simulation results investigate the performance of the
proposed approach for different metric combinations and show
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how the UAVs behave with respect to the ground vehicle need.

II. RELATED WORK

The UAV-assisted VANET literature mainly investigates the
placement and path planning problems for UAVs [4], [5]. The
main objectives are to achieve better connectivity and ensure
reliable data transfer. Only few works have addressed the
data routing problem in UAV-assisted VANETs [6]–[9]. For
instance, two data routing approaches based on optimized link-
state routing (OLSR) protocol were proposed and experimen-
tally evaluated in [6]. The performance of both algorithms was
assessed in networks with frequent topology changes. Mean-
while, the authors of [7] avoided connectivity loss between
ground vehicles by having the flying UAVs autonomously
positioning themselves to act as relays between the vehicles.
The proposed approach is based on using the Hello messages.
Alternatively, a combined omnidirectional/directional trans-
mission scheme, with dynamic angle adjustment capability,
was proposed in [8]. The objective of such a scheme was
to use the location and trajectory information for performing
unicast and geocast routing. In order to enhance the routing
protocol’s efficiency, prediction mechanisms were used to
determine the UAV’s location and its trajectory. Finally, the
authors of [9] developed a routing algorithm that allows the
flying UAVs to change their location within a certain range to
minimize the packet transmission time and ensure a reliable
communication. However, the focus was to only minimize the
packet transmission time without regard to other factors such
as the available energy at the UAVs and the energy consumed
in communication or movement.

III. SYSTEM MODEL

We consider a VANET operating in an urban area in which
vehicles use the DSRC protocol to communicate with each
other and with the RSUs. Unlike traditional studies which
typically employ static RSUs installed on the road sides, we
consider flying RSUs. Flying RSUs are UAVs equipped with
DSRC interfaces, which can either communicate directly with
ground vehicles or with each other to forward the data to
MSC, as shown in Fig. 1. Let N denotes the number of UAVs
used to cover the area of interest. The initial locations of the
UAVs are predefined by the ITS operator at the geographical
coordinates X0

n = (x0
n, y

0
n, z

0
n), where n ∈ N = {1, . . . , N},

in a 3D space. Once an event, e.g., accident, occurs, a vehicle
generates a packet of length M and transmits it to the flying
RSU network using DSRC technology. The message will
be then routed through the flying RSU network to reach a
remote basestation or access point that serves as gateway
to the MSC that handles the message. Let the coordinates
of the colliding vehicle, i.e. the source node, be located
at X0

s = (x0
s, y

0
s , z

0
s). The coordinates of the basestation

destination are X0
d = (x0

d, y
0
d, z

0
d).

A. Channel Model

In the considered system model, there are two different
channel models. The first one is for the links between a UAV
and a ground node (either a vehicle or a basestation). The

Fig. 1: UAV-assisted vehicular network architecture where UAVs
act as either a flying RSU communication with a ground vehicle or
a flying relay forwarding data to MSC.

second model is for the communication channels amongst the
UAVs.

1) Air-to-Ground Channel Model: A vehicle or a basesation
may have a LoS link to the flying RSU communicating with.
Alternatively, obstacles might exist between the node on the
ground and the UAV resulting in a partial non-LoS (NLoS)
effect. Having a LoS or NLoS link depends on the UAV’s
altitude zn: the higher the UAV’s altitude the higher the chance
of having a LoS link. It was shown in [10] that the probability
that a ground node, denoted by m ∈ {s, d} and a UAV n have
a LoS link given by:

Pr =
1

1 +B exp(−C[θ(hn, dnm)−B])
, (1)

where the constants B and C are dependent on the environ-
ment and θ = 180

π sin−1( zn
dnm

) represents the elevation angle
that depends on the distance separating the two nodes dnm.
Hence, the air-to-ground (A2G) path loss (in dB) is given by:

PLA2G[dB] = Pr PL
LoS + (1− Pr)PLNLoS, (2)

where PLLoS and PLNLoS are the LoS and NLoS path losses
(expressed in dB), respectively.

We adopt the measurement-driven model of DSRC com-
munication in ITS applications presented in [11] to compute
the LoS and NLoS path losses. The model of [11] follows the
log-distance power law. Accordingly, the path loss is expressed
as:
PLX(dnm) = PLX

0 +10γX log10 dnm+SX, dmin ≤ d ≤ dmax,
(3)

where X ∈ {LoS,NLoS} to indicate a LoS or NLoS path
loss, PLX

0 is a path loss constant that relates to the ref-
erence distance, γX is the environment path loss exponent,
and dmin and dmax are the bounds on the distance within
which the model is valid. Such bounds were driven from
measurement campaigns [11]. To model the large-scale fading
of the environment, a zero-mean random normal distribution
with standard deviation σX

S , denoted by SX, is used.
2) Air-to-Air Channel Model: The air-to-air (A2A) channel

model describes the link between the different UAVs. Due to
the lack of obstacles, A2A links are dominated by a free-space
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LoS propagation. The A2A LoS path loss (in dB) between two
UAVs n and m is given as [12]:

PLA2A
nm [dB] = 10η log10

(
4πfdnm
Cl

)
+ LLoS, (4)

where η is the free-space path loss exponent, f is the DSRC
carrier frequency, dnm is the distance between the nth and
the mth UAVs, Cl is the speed of the light, and LLoS is an
attenuation term that is added to the LoS environment.

It is worth noting that, for both the A2G and A2A channel
models, the small scale fading impact is negligible. This is
because we assume that some of the UAVs slightly move from
their original locations. This results in a flying time that is
usually much larger than the coherence time of the channels.
Hence, our work relies on the average statistics of the channel.

B. UAV Energy Model

The energy consumed by the nth UAV to perform a com-
plete data transfer is composed of two components: a motion
energy that is consumed due to the movement of the UAV
to adjust its location for data transfer and a communication
energy component that is used for the data transfer from the
nth UAV to another node.

To compute the motion energy, we adopt the following
accurate mobility power model, presented in [13], that depends
on different parameters including the speed of the UAV Vn:

PMn = P0

(
1 +

3Vn
2

U2
tip

)
+ Pi

√1 +
Vn

4

4v4
0

− Vn
2

2v2
0

 1
2

+
1

2
d0ρsAVn

3, (5)

where P0 and Pi are two power constants representing the
blade profile and the induced power levels in hovering status,
respectively, Utip denotes the tip speed of the rotor blade, v0

is known as the mean rotor induced velocity in hover, d0 and s
are the fuselage drag ratio and rotor solidity, respectively, and ρ
and A denote the air density and rotor disc area, respectively.
When stationary hovering, the speed Vn is set to zero and
hence, the hovering power is equal to Phov = P0 + Pi. The
mobility energy is then expressed as follows:

EMn = PMn T fn , (6)
where T fn denotes the flying time of the UAV n when it adjusts
its position from its initial location an initial location X0

n to
another location Xf

n . We denote the corresponding traveled
distance by ∆n. Hence, the flying time T fn = Dn

Vn
. It should

be noted that UAVs can adjust their locations only within a
predefined region: a circle centered at their initial locations
with a radius ∆̄.

When transmitting data, the UAV n will stationary hover
and then transmit data to another node (another UAV or the
basestation). Hence, we propose that the communication en-
ergy of UAV n is expressed as the sum of the communication
energy and the hovering energy when receiving the message
from a node m′ ∈ {s,N} and retransmitting it to another

node m ∈ {N , d} as follows:
ECn (m′,m) = εm′nPhovT

C
m′(n) + εnm

(
Phov + PCn

)
TCn (m),

(7a)

where PCn = µPn + ν, (7b)
where PCn is the communication interface power of UAV n
that is approximately linearly related to UAV’s transmit power
level Pn as given in [14]. The scaling parameter µ adjusts the
radiated power and the constant power ν models the hardware
circuit processing power. The binary variable εnm equals 1
if the link between n and m is used for transmission and 0
otherwise. Finally, T cn(m) denotes the time needed to transfer
the message from the nth UAV to another node m. The
communication time over the link between the nth UAV and
the mth node is inversely proportional to the corresponding
achievable rate, Rn(m), which is in turn affected by the path
loss effect as follows:

TCn (m) =
M

Rn(m)
. (8)

To compute the data rate, we adopt a truncated Shannon
expression as follows:

Rn(m) =

Rmax, if SINRn(m) ≥ SINRmax,
0, if SINRn(m) ≤ SINRmin,
W log2 (1 + SINRn(m)) , otherwise,

(9)
where Rmax is given by Rmax = W log2(1 + SINRmax). The
parameter W corresponds to the DSRC protocol bandwidth,
while SINRn(m) denotes the signal-to-interference-plus-noise
ratio (SINR) of the link between n and m. The SINRn(m) is
expressed as given below:

SINRn(m) =
PnHn(m)

I +N0
, (10)

where Hn(m) is the corresponding channel power of the link
between m and n and is equal to Hn(m) = 1

PLX
nm

where
X ∈ {A2G,A2A}, I is the average interference power, and
N0 is the additive noise power. Finally, SINRmin and SINRmax

are the SINR thresholds for the discretization of the data rate
in DSRC technology.

Note that, in this paper, we are interested in the UAV energy
only since it is the most critical one. The basestation and the
ground vehicle energy are out of the scope of this paper.

IV. UAV-BASED ROUTING PROBLEM FORMULATION

In this paper, we formulate an optimization problem that
finds the best route in the UAV-assisted VANET composed of
the N flying units to forward the data packet generated by
a source vehicle to the destination basestation. The criterion
of selecting the path in this work is based on minimizing a
multi-objective cost function the reflects the different energies
consumed by the UAVs for the transmission of a message of
size M as well as their residual energies. Hence, the utility
metric U corresponds to a weighted sum of these three energy
metrics and is expressed as follows:

U =
N∑
n=1

πn

(
ω1

(
1− ERn

ĒR

)
+ ω2

ECn
ĒC

+ ω3
EMn
ĒM

)
, (11)
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where the denominators’ parameters ĒR, ĒC , and ĒM are
used to normalize the metrics such that their values will
be between zero and one. For instance, ĒR can be the
maximum battery capacity of all UAVs and ĒC and ĒM

are the maximum possible communication and motion energy
levels, respectively. In (11), ωi with i ∈ {1, 2, 3} denotes
the weights associated to each energy objective. Their values
∈ [0, 1] are chosen by the ITS operator. Finally, πn is an
endogenous binary variable indicating whether the UAV n is
participating to the data transfer or not. It is equal 1 if it is
the case. It can be expressed as a function of εmn as follows:

πn =
∑

m∈{s,N}

εnm, ∀n ∈ {N , d}. (12)

It is worth to note that the value of the residual energy
is ERn is known before the data routing procedure and is
updated every time the transmission is completed, while the
values of the communication and motion energies ECn and
EMn depend on two decision variables: the link selection binary
variable εnm and the continuous UAV location variable Xf

n .
The optimization problem for data routing with relay positions
adjustment for UAV-assisted VANET can be, then, formulated
as follows:

minimize
εnm∈{0,1},Xfn∈R+

∀m∈{s,N},∀n∈{N ,d}

U (13a)

subject to∑
m∈N

εmn −
∑
m∈N

εnm =

1, if n = d,
0, if n ∈ N ,
−1, if n = s,

(13b)

∑
m∈N

εnm ≤ 1, ∀n ∈ N , (13c)

εnm + εmn ≤ 1, ∀n,m ∈ N , (13d)
εnm ≤ δnm, ∀n,m ∈ N , (13e)

ECn + EMn ≤ Ēn, ∀n ∈ N , (13f)

∆n(X0
n, X

f
n) ≤ πn∆̄, ∀n ∈ N . (13g)

Below, we define the different constraints of the UAV-based
data routing problem:
• Constraints (13b) ensure a smooth data flow conservation in
the network and guarantees that the data sent from the source
reaches the destination,
• Constraint (13c) imposes that a UAV can transmit the data
to at maximum one UAV,
• Constraint (13d) the flying network avoids the cyclic trans-
mission within a single link. Together, constraints (13b)-(13d)
are set in order to avoid cyclic data routing such that a UAV
will receive the message only once during the routing.
• Constraint (13e) indicates that the data transfer can only be
possible over seamless links, i.e, δnm = 1 when Rnm > 0
according to (9).
• Constraint (13f) indicates that the total energy consumed by
the UAV during the position adjustment, the data transmission,
and data reception has to be less than the available energy in
its battery.
• Finally, constraint (13g) indicates that, when adjusting its

position, a UAV cannot be shifted with a distance higher
than ∆̄.

The optimization problem formulated in (13) is categorized
as a MINLP whose optimal solution is difficult to obtain.
Therefore, in the next section, we propose a joint iterative
algorithm alternating between the determination of the data
route εnm and the 3D locations of the UAVs Xf

n .

V. PROPOSED JOINT ITERATIVE ALGORITHM

In this section, we devleop the proposed joint iterative
algorithm where the 3D locations of the UAVs are optimized
using the meta-heuristic algorithm. At each iteration of the
PSO, the positions are fixed and an ILP is executed to
determine the corresponding data routing path minimizing the
metric U . This process is repeated till the PSO converges. We
start by discussing the ILP and then, present the full algorithm.

A. Integer Linear Program for Data Routing

In this step, we assume fixed 3D UAV positions, e.g.,
selected randomly within the pre-defined range or can be the
initial locations. In this case, the optimization problem (13)
is converted to an ILP with respect to the variable εnm only.
Solving the ILP can be optimally performed using the branch
and bound algorithm implemented in off the shelf software
such as CPLEX or CVX. It may happen that some of the
links are not seamless SINR ≤ SINRmin which may prevent
the ILP to find a feasible solution given the current locations
of the UAVs. To avoid such a scenario, we propose to relax the
problem and set SINRmin as follows SINRmin = M dB where
M is a very low SINR value such that feasible solutions are
guaranteed although it is not realistic. We proceed with this
relaxation assumption in order to allow the PSO determines
whether it is exploring correct search directions. Once the
PSO, described in Section V-B, converges, the SINRmin is re-
set to each original value and the ILP is re-executed to verify
whether the final solution is feasible or not. Indeed, given the
limited pre-defined regions within which the UAVs can move
or for insufficient available energy, routing cannot be possible
even after adjusting the relay positions.

B. Particle Swarm Optimization for UAV Positionning

The reason behind using the meta-heuristic algorithm PSO
is its effective ability to achieve near optimal solutions for
many engineering problems [15]. Compared to other evolu-
tionary and meta-heuristic approaches, PSO proceeds with
a simple search process, which makes its implementation
easy by manipulating few parameters such as the number
of particles and acceleration factors. In addition, it does not
demand high computational resources to converge.

We denote by X the N × 3 matrix containing the different
3D locations of the N UAVs. To optimize the matrix X ,
PSO forms an initial generation by randomly generating P
particles {Xg=0(p), p = 1, · · · , P} (Line 3). Then, for each
particle p, in other words, for each UAV locations combination,
it solves the ILP described in Section V-A to determine the
corresponding data route εmn(p) and evaluate the associated
product SINRmin × U(p) (Line 6). Next, after recording the
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Algorithm 1 Joint PSO-ILP algorithm for data routing in
UAV-assisted VANET

1: Set g ← 0.
2: Set SINRmin ←M .
3: Generate an initial generation g composed of P random particles

Xg(p).
4: while Not converged do
5: for p := 1, · · · , P do
6: Solve the ILP problem given in (13) given the locations in

Xg(p).
7: Compute the corresponding utility metric SINRmin×Ug(p).
8: end for
9: Find the global particle XG and the local position XL(p) for

each particle p.
10: Adjust the velocities and positions of all particles using

equations (14) and (15).
11: if XG is updated then
12: M ←M + δM .
13: end if
14: g ← g + 1.
15: end while
16: Re-set SINRmin.
17: Solve the ILP problem given in (13) given the locations in XG.

result of each particle, PSO identifies the global particle that
provides the highest utility value, denoted by XG. In addition,
for each particle n, it maintains a record of the position
corresponding to its best performance known as the local
position and denoted by XL(p) (Line 9). Then, PSO computes
a velocity term V g(p) as follows:

V g(p) = ξV g−1(p) + r1g

(
XL(p)−Zg(p)

)
+ r2g

(
XG −Xg(p)

)
, (14)

where ξ is the inertia weight and r1g and r2g are two elements
uniformly generated ∈ [0, 2] for each generation g [15]. Then,
PSO updates each particle Xg(p) as follows:

Xg(p) = [Xg(p) + V g(p)]C , (15)
where [.]C ensures that the new obtained UAV position are
within the circle with radius ∆̄ and centered at X0

n for each
UAV n.

If the global value is updated, then we proceed by increasing
the value of SINRmin to allow PSO looks for more realistic
solutions. The PSO’s particles are updated till convergence is
reached, i.e., when the utility function is no more improving
after a certain number of iterations or when the maximum
number of iterations is attained. The joint ILP-PSO algorithm
is presented in Algorithm 1.

VI. PERFORMANCE EVALUATION

In this section, we present some selected results to investi-
gate the behavior of the proposed joint optimization algorithm.
The simulations are executed in an area of size 1500×600×60
m3. The altitudes of the UAVs are randomly chosen between
20 and 60 meters. The UAVs cannot move more than ∆̄ = 400
meters in all directions. The batteries’ capacities of the UAVs
are linearly decreasing according to their indexes as follows
Ēn = Ē1−n Ē1

N , where Ē1 = 83 Wh. We perform this choice
in order to visualize the data routing when considering the
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Fig. 2: Four data routing scenarios using the proposed algorithm
(black circles: UAVs, Red crosses: source and destination, blue
dashed lines: data route, gray dashed lines: potential communication
link, and red dashed lines: UAV mobility).

residual energy metric only. The source and the destination are
placed at the locations (0, 0, 1) and (1500, 0, 1), respectively,
and aim to exchange a message of size M = 3200 octets.
The frequency carrier of the DSRC protocol is chosen to be
f = 5.9 GHz and, as parameters of the DSRC channels for the
LoS and NLoS links, we select the mean values of the urban
(high density) scenario with a bandwidth W = 10 Mhz [11].
We set SINRmin = −6.37 dB and SINRmax = 7.35 dB. The
UAV mobility power model are obtained from [13]. The UAV
communication power parameters are set as follows: µ = 2.4,
Pn = 23 dBm, ∀n ∈ {s,N , d}, and ν = 5 W. The PSO is
executed for at maximum 200 iterations and P = 8 particles.

In Fig 2, we present four data routing scenarios with N =
15 UAVs randomly located in the area of interest. In Fig 2a and
Fig 2b, we provide the cases where all the UAVs are able to
participate for the data routing and hence, ILP-based solution
is provided since mobility is not required to route the data.
The figures plot the data routes while only minimizing (a) the
communication energy (i.e., ω1 = 0, ω2 = 1, and ω3 = 0
in Fig 2a) and (b) the residual energy metric (i.e., ω1 = 1,
ω2 = 0, and ω3 = 0 in Fig 2b). We can notice, for the first
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Fig. 3: Communication energy versus flying energy for different
weights (ω1 = 0 and ω2 = 1− ω3).

scenario, the ILP chooses the fastest route with highest channel
quality where the UAVs are close to each other, while, for the
second scenario, the ILP selects the UAVs with low indexes
as they posses higher residual energy levels. In both previous
cases, motion energy is zero since the UAVs are stationary
hovering when forwarding the data.

In Figs. 2c and 2d, we visualize the scenarios where some of
the UAVs adjust their locations in order to find 3D locations
at which they can support the ground nodes. To do so, we
force Ē3 = Ē7 = Ē8 = 0 Wh, which divides the network into
two left and right clusters. In Fig. 2c, we provide the obtained
solution using the joint ILP-PSO algorithm for the case where
communication energy only matters for the ITS operator. For
clarity, we plot only the UAVs participating to the data routing.
We can notice that in order to establish a seamless link with
UAV 11, UAV 2 has shifted its location in the direction of
the right cluster by around 44 meters. Finally, in Fig.2c, we
choose the same weight combination as in Fig 2a. We notice
here that the UAVs enjoy complete freedom to move and have
a unique objective: the minimization of the communication
energy, which is equivalent to the maximization of the overall
links’ data rates.

In Fig. 3, we vary the weights of the consumed commu-
nication and flying energy as follows ω2 = 1 − ω3 while
setting ω1 = 0. We can clearly see that when the ω2 → 1,
the consumed energy is minimized to around 1.2 mWh while
the flying energy is maximized to around 3 Wh. Hence, in this
regime, the optimizer will move the UAVs such that maximum
data rate is obtained. In the opposite case, when ω2 → 0.5
(Due to the different magnitude levels, the minimum weight is
0.5. Values lower than 0.5 provide similar results), the flying
energy is minimized where minor position adjustments are
made to ensure minimum data rate (i.e., SINR ≥ SINRmin)
so data can be forwarded to destination. Other values of ω2

achieves a tradeoff between both energy levels, in other words,
mobility versus data throughput.

VII. CONCLUSION

In this paper, we have developed a mobility and energy
aware joint optimization algorithm for data routing in UAV-
assisted VANETs. The UAVs acting as flying RSUs and relays
intercept data from ground vehicles and forward it to the
MSC. Whenever communication links are absent, the UAV
topology is modified given energy and mobility constraints
such that seamless data transfer can be established. Three
energy metrics, namely residual, communication, and flying
energies are simultaneously minimized according to the asso-
ciated weight. A MINLP problem is formulated and solved
using an iterative algorithm alternating between ILP and PSO
to jointly determine the data route and the UAVs’ locations.
As a future work, we will focus on designing a decentralized
approach where UAVs will decide both their locations and to
which node forward the data.
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