#### ROUTING PROTOCOLS

Dr. Ahmed Khattab

EECE Department
Cairo University
Fall 2012

ELC 659/ELC724

#### Routing

 Network-wide process the determine the end to end paths that packets take from a source to a destination

- Analogies:
  - Travel from Cairo to Houston City (No direct flight)
  - Sending a postcard (has only sender and receiver addresses)
- Routing Protocol:
  - The algorithm that <u>adaptively</u> computes these paths (routing tables)
    - Each packet has a field to indicate the distention ID (e.g. address, or prefix)
- Manual route configuration is unrealistic
  - Error-prone (human factor), slow, non-adaptive, ......

#### Aspect of Routing

- Measurement
  - Determines the cost of links (distance, delay, energy, ...)
- Protocol
  - How to distribute information (e.g., distance)
- Algorithm
  - How to calculate the route (e.g., shortest path, least cost, min energy)

#### Routing Requirements

- Given:
  - Network Graph: G = (V, E)
  - Each edge e in E has a cost
- Required:
  - Fast lookups (i.e., small tables)



- Minimal control messages
- Robust (avoid loops, oscillations)
- Use optimal paths (based on a target cost function)

#### **Basic Routing Approaches**

#### Link State

• Computes shortest distance path using **global and complete** knowledge about the network

#### Distance Vector

 Computes shortest paths in an <u>iterative and distributed</u> way based only on the knowledge of the distance to <u>immediate</u> nodes

#### Link State Routing

 Each node broadcast link state packets to all nodes in the network (flooding)

Node Neighbor Cost

- Each node collects <u>all</u> these packets
  - Hence, each node knows the entire topology
- Each node <u>locally</u> computes the shortest path itself
  - Dijkestra's Algorithm
    - Has a set P (permanent) of nodes which shortest path is known (have distance D<sub>a</sub><sup>x</sup>)
    - Add set T (temporary) that contains nodes directly reachable (1-hop) by P
    - Pick closest node(s) that minimize min (d<sub>ij</sub> + D<sub>a</sub><sup>x</sup>) for all i in P and j in T and add it to P
    - Repeat until P contains all nodes

#### Distance Vector Routing (Bellman-Ford)

- Initialize distance vectors (DV)
- Exchange DV's with nearest neighbors ONLY
- Update DV
- Go to step 2 unless convergence is reached

### Distance Vector Routing



#### Distance Vector Routing



#### Distance Vector Routing











#### Distance Vector Routing (Broken Link)



#### Distance Vector Routing (Loops)



### Distance Vector Routing (Loops)



### Distance Vector Routing (Loops)



#### Distance Vector Routing (Count to infinity)



#### MANET Challenges

- Lack of a centralized entity
- Network topology changes frequently and unpredictably
- Routing and Mobility Management
- Channel access/Bandwidth availability
- Hidden/Exposed station problem
- Asymmetrical links
- Power limitation

#### MANET Routing Protocols

#### Proactive Protocols

- Table driven
- Continuously evaluate routes
- Low latency in route discovery
- Large capacity to keep network information current
- A lot of routing information may never be used!

#### Reactive Protocols

- On Demand
- Route discovery by some global search
- Bottleneck due to latency of route discovery
- May not be appropriate for realtime communication
- Scalability

#### MANET Routing Protocols



## Destination Sequence Distance Vector Routing

- Keep the simplicity of Distance Vector
- Guarantee Loop Free
  - New Table Entry for Destination Sequence Number
- Allow fast reaction to topology changes
  - Make immediate route advertisement on significant changes in routing table
  - but wait with advertising of unstable routes (damping fluctuations)

#### **DSDV**

- Advertise to each neighbor own routing information
  - Destination Address
  - Metric = Number of Hops to Destination
  - Destination Sequence Number
  - Other info
- Rules to set sequence number information
  - On each advertisement, the node increases own destination sequence number by 2 (use only even numbers)
  - If a node is no more reachable (timeout) increase sequence number of this node by 1 (odd sequence number) and set metric = ∞.

### DSDV (no loops, no count to infinity)



#### DSDV (no loops, no count to infinity)



#### DSDV (no loops, no count to infinity)



- The nodes don't maintain routing table
- When node S wants to send a packet to node D, but does not know a route to D, node S initiates a route discovery
- Source node S floods Route Request (RREQ)
  - Sender Address
  - Receiver Address
  - Request id, determined by sender
  - Each intermediate node appends own identifier when forwarding RREQ













### Dynamic Source Routing (DSR)



Slide courtesy of Dr. Hongyi Wu.

### Dynamic Source Routing (DSR)



Slide courtesy of Dr. Hongyi Wu.















### Ad hoc On-demand Distance



