
A Low-Power Parallel Architecture for Finite Galois Field

GF(2m) Arithmetic Operations for Elliptic Curve Cryptography

Esmaeil Amini*, Zahra Jeddi, Ahmed Khattab, and Magdy Bayoumi

The Center for Advanced Computer Studies, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
{ exa2685, zxj4791, akk6481, mab}@cacs.louisiana.edu

* Corresponding author: Esmaeil Amini

Address:

University of Louisiana at Lafayette

The Center for Advanced Computer Studies

PO Box 44330

Lafayette, LA 70504, USA

Office : (337) 482-6338

Fax : (337) 482-5791

Email : exa2685@cacs.louisiana.edu

A Low-Power Parallel Architecture for Finite Galois Field

GF(2m) Arithmetic Operations for Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab and Magdy Bayoumi

Abstract —In this paper, a parallel, power-efficient and scalable word-based crypto architecture is

proposed that performs the operations required for scalar point multiplication including add,

multiplication and inversion operations on GF(2m) operands. The proposed architecture

distinguishes itself from exiting architectures, including our prior architecture, by the fact that its

resource usage and power-consumption is based on the input data. Hence, such architecture might

be used for various operand sizes without modifying or reconfiguring the underlying hardware. The

architecture has also the ability to perform several different operations in parallel when each

operation requires a small key size which significantly increases the overall performance and

throughput of the system. In the absence of parallel requests, the remaining unused modules will be

turned off in order to save power. The experimental results show significant improvement in the

timing, throughput and energy performances with a slight overhead in the circuit area.

Keywords — ECC, Public Key Encryption, Parallel Architecture, GF(2m), Field Arithmetic, Modular

Multiplication, Modular Inversion

1 INTRODUCTION

Public key encryption systems such as Rivest-Shamir-Adleman (RSA) [1] and Elliptic Curve

Cryptography (ECC) [2, 3] play a vital role in contemporary secure systems as they ensure the

privacy, message integrity, authenticity, and non-repudiation requirements of secure communications.

The security strength of any encryption algorithm depends on its key size [4]. ECC is becoming

increasingly the promising public-key method because it uses shorter keys at a security level

equivalent to other public-key algorithms like RSA [4].

For real-time applications such as SSL server connections, a software implementation of an ECC

scheme may not provide the desired performance level and hardware implementations are needed as

they better meet the performance requirements. There are many factors which must be considered in

the hardware implementation of ECC system designs such as:

• Power consumption as it is becoming the main design constraint by the advent of portable and
contactless devices.

• Flexibility as the device is neither tied to a certain ECC curve nor needs a specific type of
irreducible polynomial.

• Scalability as the device can provide various levels of security without changing the
underlying hardware. For instance, the system supports different operand sizes to
accommodate different levels of security. Otherwise, the system will become outdated within a
short period of time.

• Throughput of the system is a very important factor in cases the system likely need to handle
thousands of operations per second like servers, router gateways, etc.

The operation that dictates the execution time of an elliptic curve cryptographic protocol is the

point multiplication of the Galois Fields (GF) operands, and its hardware implementation would have

a significant impact on the system performance [4].

One of the other crucial parameters in the implementation of ECC architectures is the type of the

underlying finite field upon which the elliptic curve operations are based. ECC implementations

could either use prime fields GF(p) of binary finite fields GF(2m) in which field elements are usually

represented as binary polynomials. The latter ones are often chosen for hardware realizations as they

require smaller hardware circuits for implementation [5].

1.1 Related Work

Due to the increased significance of cryptography, several public key cryptographic hardware for

GF(2m) have been proposed in the literature. The authors of [6] have targeted a compact architecture

that performs three different cryptographic algorithms: RSA, ECC and paring-based cryptography.

They have tried to improve the time/area metrics by designing reusable functional units which can be

shared among different modules. They have used the similarity of these three cryptographic

algorithms for their basic arithmetic operations such that it allows diverse utilizations of the

functional units in the design. However, they have not reported any results to show how much their

design improved these metrics. The authors of [7] proposed an architecture that supports arbitrary

operand sizes and provides multiplication, modular squaring and inversion operations. However, the

computation time for the modular inversion of that architecture is in the order of O(m2). In contrast,

our proposed architecture performs the inversion operation in the order of O(m). Meanwhile, the

architecture proposed in [8] performs multiplication in GF(2m) for any value of m less than 256. Such

architecture offers the flexibility in selecting the field size at the expense of being limited to only few

fixed irreducible polynomials. Furthermore, the proposed architecture does not support the inversion

operation. In [9] a reconfigurable design has been presented which supports variable operand sizes.

The advantage of this architecture is its support for both GF(2m) and GF(p). However, it is restricted

to specific types of elliptical curves. An architectures for implementing LSD multipliers for binary

fields GF(2m) is presented in [10]. In this architecture, internal accumulators have been deployed for

storing intermediate results and then, these extra accumulators were used to increase the maximum

operating frequency by reducing the critical path delay of the multipliers. However, no hardware

implementation report has been given in [10] and just analytical area and timing reports have been

presented. Alternative modular designs have been proposed in [10, 11] based on offline

reconfiguration. For instance, [10] presents a modular Field Programmable Gate Array (FPGA) based

architecture that uses very simple hardware components. However, it does not perform the inversion

operation. Meanwhile, the architecture presented in [11] supports both binary and polynomial field

multiplication but only considers a specific type of irreducible polynomials and reconfiguration is

offline. Hence, it can only be used for modular multiplications and does not support other important

crucial operations in ECC, such as inversion and addition. In [12], the authors have proposed a

reordered normal bias multiplier which gives the designer the ability to set a trade-off between the

area and speed performance and have implemented their architecture on a 780-pin FPGA circuit.

Another reconfigurable design was proposed in [13] to support various operand sizes for both binary

and prime fields. This design implements RSA operations as well. It also supports power-gating

approach to reduce the power wastage. However, it requires the data to be aligned before being

exchanged with the outside world which complicates the design and increases the delay. A Graphics

Processing Units (GPU) implementation is proposed in [14]. In this work, Least Significant Bit (LSB)

invariant scalar point multiplication for binary elliptic curves is implemented on NVidia graphics

cards by implementing parallel algorithms for GPU. Hardware/Software Co-Design implementations

are also presented in the literature. For instance, the authors of [15] have proposed

Hardware/Software Co-Design of ECC operations on an 8051 Microcontroller. They have tried to

minimize the communication overhead due to operand transfers by the integration of a small DMA

unit and inclusion of an additional I/O register into the hardware accelerator. Their design supports

operations over binary fields of degree up to 192.

1.2 Paper Contributions and Organization

Based on the above discussion of the related literature, only few of the proposed architectures support

key size selection feature and also save power for smaller key applications. In our previous work

[17], a modular architecture has been proposed which is not only area efficient but also offers these

features. However, when a small key size is used, the proposed architecture sets the other unutilized

modules deactivated even if there are other requests to the system, as the case with the

aforementioned related architectures. Such a common deficiency makes the system inefficient in

terms of throughput and performance when there are many concurrent requests to the system which is

a typical feature of secure server systems.

In contrast, this paper alleviates such performance deficiencies by presenting a new parallel

architecture that has the unutilized modules simultaneously operating to handle other requests in

order to use the system more efficiently and increase the performance and throughput of the system.

The main contributions and characteristics of the proposed architecture that distinguish it from the

existing literature are summarized as follows:

• The architecture is neither tied to a certain ECC curve nor need a specific type of irreducible
polynomial.

• The proposed design deactivates the unused modules by power and/or clock gating and saves
power when small key size operations are performed and there is no other requested
operation.

• The proposed design handles multiple different operations in parallel in order to increase the
overall performance and throughput of the system.

• The proposed architecture handles different key sizes per each operation running in the
system.

The organization of the rest of this paper is as follows: the necessary background discuss of

multiplication and inversion algorithms in GF(2m) is given in Section 2. Then, the base architecture to

be used in this paper is briefly discussed in section 3. The new parallel architecture is discussed in

Section 4. Simulation setup and results are analyzed in Section 5 and Section 6 concludes the paper.

2 MULTIPLICATION AND INVERSION OPERATIONS IN GF(2M)

Elliptic curve cryptography (ECC) is a public-key cryptography algorithm which is based on the

algebraic structure of elliptic curves over finite fields. Point addition/subtraction, point doubling, and

scalar point multiplication are geometrically-defined operations for elliptic curves. Two

implementation alternatives, namely, prime field GF(p) and binary field GF(2m) are used for ECC

systems. We only discuss the GF(2m) arithmetic as our proposed architecture is based on it. Equation

(1) represents an elliptic curve on binary field GF(2m):

�� + �� = �� + ��� + � (1)

where x, y, a, b are m-bit binary numbers and b is non-zero. More details about the underlying theory

behind of ECC operations can be found in [4].

The creation of public key in ECC requires scalar point multiplication on the base point, P. Scalar

point multiplication could be done by repetitively performing point doubling and point addition. The

basic operations for scalar point multiplication boil down to modular addition, subtraction,

multiplication, and division on GF(2m) operands [4]. Addition and subtraction are trivial operations

which are simply done by bit-wise XOR operation on operands. Division operation is more

complicated than multiplication and inversion and therefore, it is normally substituted with an

inversion of divisor followed by a multiplication [4]. In the following subsections, implementing

multiplication and inversion operations are briefly discussed.

2.1 Modular Multiplication in GF(2m)

A modular multiplication in GF(2m) can be denoted by: C = A×B mod F, where A, B and C are m-bit

binary polynomials in GF(2m) and F is an (m+1)-bit irreducible binary polynomial for the

corresponding GF(2m). Table I shows the pseudo-code of the algorithm presented in [11] which is the

basis of our proposed architecture too. More details about this algorithm could be found in [11]. In

this paper, a modified version of this algorithm is used in order to support selectable operand size.

2.2 Modular Inversion in GF(2m)

A modular inversion operation in GF(2m) finds a multiplicative inverse, A-1 of field element, A such

that 	 × 	�� = 1	���	�, where, F is the irreducible polynomial of corresponding GF(2m). In [17],

we have presented an architecture that uses the algorithm presented in [18] as it can be easily

modified to achieve selectable key size architecture. The pseudo-code of the algorithm is given in

Table II. Both multiplication and inversion algorithms, depend on very simple operations such as

shift right, shift left, addition and XOR. Using this feature, a hardware component has been designed

that performs both multiplication and inversion operations which saves the system in terms of area

and power consumption.

3 OVERVIEW OF BASIC ARCHITECTURE

In our prior work [17], a modular multiplier had been designed which implements all the necessary

arithmetic operations over GF(2m) required to do ECC computations. In this architecture, users can

select the operand size according to their security needs. Let us assume that we want to design an

m-bit multiplier, where m is the maximum operand size that would be needed in the foreseeable

future. In this architecture, the m-bit binary operands are split into k smaller n-bit words (m = k × N)

as follows:

A=A1 + 2nA2 + … + 2(k-2)nAk-1 + 2(k-1)nAk, where ∑
−

=
= 1

0
2

n

j

j
iji aA , and aij are binary bits of multiplicand A

B=B1 + 2nB2 + … + 2(k-2)nBk-1 + 2(k-1)nBk, where ∑
−

=
= 1

0
2

n

j

j
iji bB , and bij are binary bits of multiplier B

F=F1 + 2nF2 + … + 2(k-2)nFk-1 + 2(k-1)nFk, where ∑
−

=
= 1

0
2

n

j

j
iji fF , and fij are binary bits of modulus F

Regarding above discussions, the basic multiplier architecture is composed of k modules each has

n-bit size as shown in Figure 1. Each of the modules [0 - k-1] is responsible for operating on one

n-bit word of the operand. In this architecture two design parameters must be defined: (i) number of

words k, and (ii) word-width n. Suppose that k=8 and n=8. If a 24-bit computation is required, then,

the first three modules will be activated by controller and remaining modules will remain inactive.

Referring to the multiplication and inversion algorithms (Table I and Table II), a mechanism is

required for selecting the appropriate MSBs of operands which is one of the tasks of controller

module. For example, if a three word computation is needed, then the MSBs coming from the third

module will be used for the calculation.

Inside each module, there are four shift registers to hold four input/output words of the operands.

The MSBs of each register are also connected to the controller, which selects the appropriate MSBs

for operands. Besides, each module has an ALU that is responsible for performing various operations

such as, XOR, shifting, etc. The controller unit generates appropriate signals to coordinate the

operations performed inside this ALU. The block diagram of the controller unit is presented in

Figure 2. The controller has three sub-blocks:

• Load/Store, which is used during the operations of the input and output loops. It keeps a
counter, WordCount, to count how many modules are required for a particular computation. It
also turns on and off modules by generating appropriate module select signal for each module.
During input cycle, the controller also gets “Instruction” signal, which tells the arithmetic
processor which operation among add, multiplication, and inversion is requested.

• MSB Selector, which is composed of four multiplexers for A, B, F, and C operands.
Multiplexers are connected to the MSBs coming from k modules. This module selects the
appropriate MSBs based on the value of WordCount register.

• Finite State Machine, which controls the operation of the proposed architecture. The
controller implements a finite state machine and generates control signals for various sub
tasks, such as XOR, shift left, shift right, etc. It should also be noted that during the
computation loop, the module select signal selects just the needed modules and keeps the rest
turned off in order to save power.

Choosing n=32 and k=8, the design was synthesized by 45nm technology cells with clock

frequency adjusted to 1GHz. The main goal in this design was introducing a low-power and

area-efficient design. As Figure 3, the power consumption is directly proportional to number of used

modules. Hence, the design saves power when a smaller key size operation is requested.

4 PROPOSED MODULAR PARALLEL ARCHITECTURE

In our previous work [17], the power consumption was reduced by making relation between selected

operand size and power consumption. However, that system could not deal with new requests even if

there are free unutilized modules which can perform new tasks. In other words, it did not efficiently

use the available hardware resources. Thus motivated, we propose a parallel architecture in this paper

that increases the overall performance and throughput of the system by grant all requests as long as

there are idle modules which can handle new requests. There are two scenarios for making the system

operate in parallel. One solution is handling multiple same operations in parallel, i.e. handling

multiple multiplication operations. Since high level scalar ECC operations are composed of different

operations, this parallelism will not be effective. For instance, a point doubling operation is consisted

of multiplication, inversion, and addition operations. This way, if two point doubling requests do not

enter at the same time, the second request must wait for the first operation to be completed. Therefore,

the system should handle multiple different operations to run in parallel. In our developed parallel

architecture, the system handles different operations with different operand sizes concurrently. For

instance, both multiplication and inversion are required to be simultaneously handled.

The block diagram of the parallel architecture is depicted in Figure 4. Comparing Figure 1 and

Figure 4, the parallel architecture has module separators between consecutive modules. These module

separators are used to dynamically partition the modules where each partition is responsible for one

task. The module separator is a simple multiplexer which selects either zero or previous module’s

output as the input of the next module. This partitioning is online and its control signals come from

Module-Assigner that will be discussed later.

The Controller unit shown in Figure 5 generates appropriate signals to coordinate operations

performed in the system. This Controller has three sub-blocks: i) Module Assigner, ii) Task

Controllers, and iii) Correlator which will be discussed in the following sub sections.

4.1 Module-Assigner:

Module-Assigner connects the system to outside environment. It receives requests from outside and

replies to them. Each new request states how many modules it requires (word-count) and also the

instruction type that must be performed such as multiplication, division, or addition/subtraction. In

response, the Module-Assigner will check (i) if there is a free Task-Controller to take care of this

particular task and (ii) if there are enough free consecutive modules to handle this task. If one of these

conditions fails, then Module-Assigner will reply to the requesting part that it cannot accept this task

by putting zero on grant signal. Otherwise, the grant signal will be one.

Each Task-Controller has a busy tag which is used for this purpose. To check the second condition,

the Module-Assigner starts from the first module and check if it can find word-count free modules in

a row. For example, if the task requires three modules, it will start with checking modules 0, 1 and 2.

If module 0 is taken, then it will check modules 1, 2 and 3. This process continues until it finds three

consecutive free modules and after that it gives a task-number to that particular task in order to make

a distinction between tasks. Otherwise, it refuses the new task. This search procedure is implemented

by a look up table. The size and complexity of this lookup table is proportional to the number of

modules in the system.

After accepting the new request, the Module-Assigner will follow these steps:

1. The Module-Assigner sets the corresponding modules’ I/O signals to load the inputs (A, B

and F). The I/O signals define the type of I/O operation based on instruction type. It also

triggers modules’ mselect-load signals one after another to enable them to execute the I/O

operation.

2. After the load phase, the Module-Assigner will start the following actions concurrently.

(a) It will inform the corresponding Task-Controller to start its work by triggering its

load-complete signal.

(b) It enables all dedicated modules for the computation phase by triggering their

mselect-op signals.

(c) The Module-Assigner also generates mux-select signals which are used for

separating this task’s modules from other tasks’ modules.

(d) It triggers module-state and task-wordcount signals to correlate Task-Controllers

with their assigned modules. Since Module-Assigner is the only part who knows

the relation among tasks, modules, and Task-Controllers, it generates these signals

dynamically to make this correlation.

3. When the result of the task at hand becomes ready, the corresponding Task-Controller

raises its done-signal. Then, Module-Assigner puts the task number on outtask-number line

to notify the outside parts that the results on the output bus belong to this specific task

number. Similar to the loading phase, the modules will send their results to the output bus

one by one.

4. Eventually, the corresponding Task-Controller and all assigned modules will become free.

Furthermore, suppose that task A arrives while task B is ready to send its results. Module-Assigner

gives the priority to task B and rejects task A. This way, there are more free modules for new tasks

and more importantly, it prevents the deadlock.

4.2 Task-Controllers

The block diagram of Task-Controllers part is shown in Figure 6. This part has t independent units

where each unit is the Finite-State-Machine in the basic architecture shown in Figure 2. Each of these

units generates the appropriate signals to coordinate operations performed inside modules. These

units are connected to Module-Assigner and Correlator. The Module-Assigner informs each unit

when it is its turn to start computation by load-complete signal. At the end of computation of each

task, the corresponding unit will inform it to Module-Assigner by raising its done-signal.

4.3 Correlator:

The Correlator creates a channel between Task-Controller units and their corresponding modules as

shown in Figure 7. The Correlator sends the generated op-codes by Task-Controller to modules and

in the opposite side, it sends the MSB of operands inside modules to their respective Task-Controller.

Per each Task-Controller unit, there is an MSB-Selector circuit inside Correlator. These

MSB-Selectors are exactly as the MSB-Selector circuit in the basic architecture. The appropriate

MBS bits selected by these circuits will be forwarded to the corresponding Task-Controller units.

In the basic architecture [17], there was only one Finite-State-Machine and one MSB-Selector

circuit. In the new parallel architecture, there are many of these units. Besides, the Load/Store module

in the basic design is replaced by a more complex Module-Assigner unit, which handles the task

assignment in addition to controlling the load and store operations.

Figure 8 demonstrates a sample operation of the proposed architecture. Let us assume a 256-bit

architecture, composed of eight 32-bit word modules. In this Figure, the thick-border means that the

module is busy with input/output operation. The gray and black rectangles mean that the module is

busy with multiplication or inversion operation respectively. Whenever the modules are presented in

multiple lines, it means that there are parallel operations in process. Initially, the system is in power

save mode, only the Controller is active and all the modules are turned off using power-gating signals.

Now suppose that a 96-bit multiplication request arrives and accordingly modules 1, 2, and 3 will be

activated and will load the input data in cycle 2. In the next cycle, all the input data are read into

modules’ registers and they will perform the multiplication operation. In cycle 4, a 128-bit inversion

request arrives which requires four modules. At this cycle, modules 4, 5, 6 and 7 will load the

corresponding input data where modules 1, 2 and 3 are busy with multiplication operation. The

modules are presented in separate lines in cycle 4 to indicate the parallel behavior of the system. At

cycle 5, modules 1, 2 and 3 are still busy with multiplication operation and modules 4, 5, 6 and 7 are

busy with inversion operation. In the next cycle, the multiplication process computation is over and

corresponding modules will send their result. Eventually in cycle 8, the inversion process is over and

modules 4, 5, 6 and 7 will send their results as well and afterwards, the processor enters idle state

again.

5 EXPERIMENTAL RESULTS

Based on the proposed architectures, a 1024-bit multiplier is designed in three different modes:

• 16-64 Mode: 16 modules each one is 64-bit wide.

• 32-32 Mode: 32 modules each one is 32-bit wide.

• 64-16 Mode: 64 modules each one is 16-bit wide.

The designs are synthesized by Synopsys Design Compiler in the 45 nm technology mode and the

FreePDK45 Process Design Kit (PDK). The clock frequency is set to 1 GHz. The operating

conditions are set to typical, the supply voltage is fixed at 1.1V, and the temperature is set to 27°C.

For place and route, the Cadence SOC Encounter tool in 45nm technology mode is used. Post-layout

analysis is used for power and area estimation. Static timing verification method is used for

evaluating the design for set up and holds time violations. For timing estimation, a software tool is

also developed for generating random data vectors in the test bench codes and these test bench codes

are simulated by ModelSim tool.

5.1 Area

Table III summarizes the reported area figures from post-layout die area for 1024-bit implementation.

As Table III presents, the basic design is more efficient in terms of area overhead when the number of

modules increases as expected. In the new parallel design, the Module-Assigner part has a lookup

table to keep track of the idle modules. The size of the lookup table grows with increasing the number

of modules and clearly its area will increase accordingly. In the basic design, the complexity of the

controller is much less relevant to the number of modules. Increasing the number of modules, the

number of I/O pins also decreases, but, the load input and store output phases will increase as well.

We compare our designs’ area in 32-32 mode with three other 1024-bit designs which is presented

in Table IV. It must be noted that our architectures use newer technology compared to other designs

which has considerable effect in area as well.

5.2 Timing

Each operation is done in four phases, namely, check availability, load operands, computation and

store result. The check availability phase does not exist in the basic design since it was designed to

handle just one task at a given time. The duration of check-availability phase is fixed and it is always

4 clock cycles regardless of the granularity of the system and the number of controllers. The

durations of the load and store phases depend on the number of required modules for that particular

operation. The addition operation always needs one clock cycle and the multiplication always needs

twice the operand size number of cycles. The operation cycle of the inversion operation depends on

the input data bit-pattern. We perform a large number of simulations by changing bit patterns of

input vectors to figure out the average number of clock cycles needed to perform an inversion

operation. The average number is 5.5 times the operand size. Changing the module-size and keeping

the maximum operand size the same, only the durations of load and store phases will change which is

negligible. Consequently, the main computation cycle is proportional to the operand width O(m) and

is irrespective of the size of module. This discussion is summarized in Table V.

The main improvement in our parallel architecture is the throughput performance of the system. To

evaluate our claim, we simulate both systems in 32-32 mode and generate 100,000 point doubling

operations where each operation requires limited random number of modules for completion. This is

a typical situation for today secure systems as they likely must handle hundreds of ECC operations

per second. Point doubling operation is a good candidate for testing the utilization and throughput of

the system because it has all basic operations. Each scalar point multiplication is composed of a

series of point doubling and additions. Considering the involved basic operations, point doubling is

very similar to point addition and therefore, it is a good approximation for scalar point multiplication

as well. Each point doubling operation is composed of seven additions, three multiplications and one

inversion. Each point doubling operation has random field-size between 160-bit and 256-bit. In 32-32

mode these operations will require between 5 to 8 modules. 160-bit ECC is secure today and most of

typical applications use this scheme and 256 bit ECC in secure until 2030 [19]. So this way, a wide

range of secure applications’ data will be injected to the system.

Table VI presents the differences between the results of the two architectures. As the results in

Table VI shows, the new architecture completes the task almost 3.47 times faster than the basic

architecture. Hence, the throughput of parallel architecture is 3.47 times more than throughput of

basic design.

Where the change in key size is limited, the system response time and controller area overhead

deteriorates by increasing the granularity of the system as Table VII shows. Making the modules

smaller, the response time is increasing because the load and store operations take more time.

Therefore, it is better to choose granularity low in typical cases where the change in the key size is

limited. However, the flexibility of the system in terms of supporting different key sizes will be low

as it does not support keys that are not submultiples of module size when the granularity of the

system is low. This implies the existence of a trade-off between the flexibility and area, performance

similar to other existing parallel systems.

5.3 Power and Energy

Similar to the area evaluation, our designs’ power consumption in 32-32 mode are being compared

with three other 1024-bit designs which is presented in Table VIII. The proposed architecture in [7]

does not report any actual power figures and has reported just analytical results. Our proposed

designs offer very low-power compared to two other designs because of i) implementing power

and/or clock gating techniques and ii) use of simple components.

Although, the power consumption in parallel architecture is more than the basic design, it requires

less energy to accomplish tasks when there are several concurrent tasks. To illustrate the difference,

assume that there are 100,000 point doubling tasks like what was assumed in timing evaluation. As

Table IX presents, the basic design consumes less power than the parallel design because in average

only 25% of its modules are active whereas 95% of the modules are active in parallel design.

However, the parallel design completes the tasks in much less time and requires 9% less energy

compared to basic architecture.

6 CONCLUSIONS

In this paper, a high-performance parallel arithmetic processor architecture for GF(2m) has been

proposed which supports all essential ECC operations. The architecture is modular, supports arbitrary

operand sizes and is scalable for very large operand sizes. When a small key size operation is

requested, the system deactivates the remaining modules to reduce the power consumption if there is

no parallel request to the system. Otherwise, it handles new requests by the remaining unutilized

modules in parallel with other modules. The new request to the system could be different operations

with different operand sizes that let the system to use its resources very efficiently which

considerably increases the overall performance and throughput of the system. Adding other

operations such as point addition and point doubling to our architecture is our future work in our

ultimate goal to design a complete ECC processor.

REFERENCES
[1] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-

key cryptosystems,” Communications of the ACM (1978), Vol. 21(2), pp. 120-126.

[2] V. Miller, “Uses of elliptic curves in cryptography,” Proceedings of the Advances in

Cryptography (1986), Vol. 218, pp. 417-426.

[3] N. Kobilitz, “Elliptic curve cryptosystems,” Mathematics of Computation (1987), Vol. 48, pp.

203-209.

[4] D. Hankerson, A. J. Menezes, and S. Vanstone. “Guide to elliptic curve cryptography,”

Springer-Verlag, pp. 259 – 260, (2004)

[5] P. K. Meher, “On Efficient Implementation of Accumulation in Finite Field Over GF(2m) and

its Applications”, IEEE Transactions on VLSI Systems (2009), Vol. 17, No° 4, pp. 541-550.

[6] E. Savas¸ and Ç. K. Koç “Finite Field Arithmetic for Cryptography”, IEEE Circuits and

Systems Magazine (2010), pp. 40-56.

[7] M. Hasan and M. Ebtedaei, “Efficient architectures for computations over variable

dimensional Galois Field,” IEEE Transactions on Circuits Systems – I: Fundamental Theory

and Applications (1998), Vol. 45, N° 11, pp. 1205-1211.

[8] N. Gura, et al., “An end-to-end systems approach to elliptic curve cryptography,”

Cryptographic Hardware and Embedded Systems, pp. 349-365 (2002)

[9] J. Goodman, and A. Chandrakasan , “An energy-Efficient reconfigurable public-key

cryptography processor,” IEEE Journal of Solid-State Circuits (2001), Vol. 36, N° 11, pp.

1808-1820.

[10] S. Kumar, T. Wollinger, and C. Paar, "Optimum Digit Serial GF(2m) Multipliers for Curve-

Based Cryptography", IEEE Transactions on Computers (2006), Vol. 55, No° 10, pp.

1306-1311.

[11] P. Kitsos, G. Theodoridis, and O. Koufopavlou, “An efficient reconfigurable, multiplier

architecture for Galois Field GF(2m),” Elsevier Microelectronics Journal (2003), Vol. 34, pp.

975-980.

[12] C. Chiou, C. Lee, J. Lin, “Unified dual-field multiplier in GF(p) and GF(2k),” Institute of

Engineering and Technology (IET) Information Security (2009), Vol. 3, N° 2, pp. 45-52.

[13] A. H. Namin, H. Wu and M. Ahmadi "Comb architectures for finite field multiplication in

IF2
m", IEEE Transactions on Computers (2007), Vol. 56, pp. 909-916.

[14] A. E. Cohen, K. K. Parhi, “GPU Accelerated Elliptic Curve Cryptography in GF(2m)”,

Proceedings of IEEE International Midwest Symposium on Circuits and Systems (2010),

pp. 57-60.

[15] M. Koschuch , J. Lechner J, A. Weitzer A, et al. “Hardware/software co-design of elliptic

curve cryptography on an 8051 microcontroller”, Proceeding of Workshop of Cryptographic

Hardware and Embedded System (2006), pp. 430-444.

[16] J. Chen, M. Shieh, "A high-performance unified-field reconfigurable cryptographic processor",

IEEE Transaction on Very Large Scale Integration (VLSI) Systems (2010), Vol. 18, N° 8,

pp. 1145-1158.

[17] Md. I. Faisal, Z. Jeddi, E. Amini and M. Bayoumi, “A Power-Aware Selectable Operand-Size

Modular Multiplication Architecture for GF(2m)“, Journal of Low Power Electronics (2011),

Vol. 7, N° 3, pp. 314-327.

[18] H. Brunner, A. Curiger, and M. Hofstetter, “On computing multiplicative inverses in GF(2m),”

IEEE Transactions on Computers (1993), Vol. 42, N° 8, pp.1010–1015.

[19] V. Gupta, D. Stebila, and S. Chang, “Integrating elliptic curve cryptography (ECC) into the

web’s security infrastructure”, Proceedings of International World Wide Web Conference on

Alternate Track Papers and Posters (2004), pp. 402–403.

FIGURES AND TABLES

A Low-Power Parallel Architecture for Finite Galois Field

GF(2m) Arithmetic Operations for Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and Magdy Bayoumi

Figure 1. Block diagram of basic multiplier architecture

A Low-Power Parallel Architecture for Finite Galois Field

GF(2m) Arithmetic Operations for Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and Magdy Bayoumi

Figure 2. Block diagram of Controller in basic architecture.

A Low-Power Parallel Architecture for Finite Galois Field

GF(2m) Arithmetic Operations for Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and Magdy Bayoumi

Figure 3. The relation between power consumption and operand size.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0 32 64 96 128 160 192 224 256

P
o

w
e

r
(m

W
)

Width (bits)

Leakage

Dynamic

Total

A Low-Power Parallel Architecture for Finite Galois Field GF(2m)

Arithmetic Operations for Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and Magdy Bayoumi

Figure 4. Block diagram of our parallel multiplier architecture

M
o
d
u
le

S
e
p
a
ra
to
r

M
o
d
u
le

S
e
p
a
ra
to
r

A Low-Power Parallel Architecture for Finite Galois Field

GF(2m) Arithmetic Operations for Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and Magdy Bayoumi

Figure 5. Block diagram of Controller in our parallel architecture

A Low-Power Parallel Architecture for Finite Galois Field

GF(2m) Arithmetic Operations for Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and Magdy Bayoumi

Figure 6. Block diagram of Task-Controllers in the proposed parallel architecture

A Low-Power Parallel Architecture for Finite Galois Field

GF(2m) Arithmetic Operations for Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and Magdy Bayoumi

Figure 7. The relation between the Corelator, Tasks and Task-Controllers

A Low-Power Parallel Architecture for Finite Galois Field

GF(2m) Arithmetic Operations for Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and Magdy Bayoumi

Figure 8. An example of the operation of our proposed parallel architecture

A Low-Power Parallel Architecture for Finite Galois Field

GF(2m) Arithmetic Operations for Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and Magdy Bayoumi

TABLE I

 MODULAR MULTIPLICATION ALGORITHM

(ADAPTED FROM [11])

/*This algorithm reads m-bit operands and then
performs the computation in m iteration and
finally outputs the m-bit output.*/

Inputs:

A: m-bit input // multiplicand

B: m-bit input // multiplier

F: m-bit input // modulus; although it is an

 // (m+1)binary number, the MSB

 // is always 1, hence not

 // needed for this algorithm

Output

C: m-bit output // the result

Read A, B, and F;

C := 0; MSB_C := 0;

for i = m-1 down to 0 with step 1 begin

 if (B[m-1] = 1)

 C : = C XOR A;

 if (i > 0) begin

 MSB_C := C[m-1];

 C := C << 1; // Shift left once

 if (MSB_C = 1)

 C := C XOR F;

 endif

 B := B << 1; // Shift left once

endfor

Output C as the result;

A Low-Power Parallel Architecture for Finite Galois Field

GF(2m) Arithmetic Operations for Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and Magdy Bayoumi

TABLE II

 MODULAR INVERSION ALGORITHM (ADAPTED FROM [18])

/*This algorithm reads m-bit operands and then

performs the computation in 2m iteration and finally

outputs the m-bit output.*/

Inputs:

A: m-bit input // operand to be inverted

F: m-bit input // modulus; although it is an (m+1)

 // binary number, the MSB is always 1,

 // hence not needed for this algorithm

Output

C: m-bit output // the result

Read A and F;

B := 0, C := 1 and Deg := 0;

Am := 0, Bm := 0, Cm := 0, Fm := 1; //Initialize MS Bs

for i = 1 to 2m with step 1 begin

 if (Am = 0) then begin

 {Am, A} := {Am, A} << 1; // Shift left once

 {Cm, C}: = {Cm, C} << 1; // Shift left once

 Deg := Deg + 1;

 endif

 else begin

 if (Fm = 1) begin

 {Fm, F} := {Fm, F} XOR {Am, A};

 {Bm, B} := {Bm, B} XOR {Cm, C};

 endif

 {Fm, F} := {Fm, F} << 1; Shift left once

 if (Deg = 0) begin

 Swap({Am, A}, {Fm, F});

 Swap(({Bm, B} << 1), {Cm,C}) // left shift, swap

 Deg := 1;

 else begin

 {Cm, C} : = {Cm, C} >> 1; // right shift once

 Deg := Deg – 1;

 endif

 endif

endfor

Output C as the result

A Low-Power Parallel Architecture for Finite Galois Field

GF(2m) Arithmetic Operations for Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and Magdy Bayoumi

TABLE III
GRANULARITY VERSUS CONTROLLER AREA OVERHEAD

 Design mode # of I/O pins Total die area
(um2)

Controller
overhead

Basic
Design

16-64 265 195,000 3.5%

32-32 137 201,000 4%

64-16 73 214,000 4.7%

Parallel
Architecture

16-64 275 211,000 11%

32-32 148 230,000 17%

64-16 85 282,000 25%

A Low-Power Parallel Architecture for Finite Galois Field

GF(2m) Arithmetic Operations for Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and Magdy Bayoumi

TABLE IV

AREA COMPARISON WITH OTHER WORKS

Design Area (mm2) Comments

[9] 4.608 mm2 0.25 um Technology

[16] 2.34 mm2 0.13 um Technology

[7] O (1024) Analytic result

Basic Architecture 0.2 45 nm Technology

Parallel Architecture 0.23 45 nm Technology

A Low-Power Parallel Architecture for Finite Galois Field

GF(2m) Arithmetic Operations for Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and Magdy Bayoumi

TABLE V
OF CYCLES PER OPERATION VS OPERAND SIZE

 Check-Availability Load/Store Inversion Multiplication Addition

Basic design - RM* 5.5m** 2m** 1

Parallel Design 4 RM* 5.5m** 2m** 1

** m : Operand Size * RM : Number of Required Modules

A Low-Power Parallel Architecture for Finite Galois Field GF(2m)

Arithmetic Operations for Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and Magdy Bayoumi

TABLE VI
COMPARISON OF THROUGHPUT BETWEEN BASIC AND PARALLEL DESIGNS

 # of tasks Completion
Time

Basic
Architecture

100,000 1.22 s

Parallel

Architecture
100,000 0.357 s

A Low-Power Parallel Architecture for Finite Galois Field

GF(2m) Arithmetic Operations for Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and Magdy Bayoumi

TABLE VII

RELATION BETWEEN GRANULARITY AND PERFORMANCE

Design mode Response
time (cycle)

Controller
Area Overhead

16-64 0.347 s 11%

32-32 0.357 s 17%

64-16 0.37 s 25%

A Low-Power Parallel Architecture for Finite Galois Field

GF(2m) Arithmetic Operations for Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and Magdy Bayoumi

TABLE VIII

POWER COMPARISON WITH OTHER WORKS

Design Power
consumption

Comments

[9] 75 mW Moderate power

[16] 455 mW High power

[7] n/a Analytic result

Basic Architecture 23 mW Low Power

Parallel Architecture 28 mW Low Power

A Low-Power Parallel Architecture for Finite Galois Field

GF(2m) Arithmetic Operations for Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and Magdy Bayoumi

TABLE IX

ENERGY COMPARISON CONSIDERING CONCURRENT TASKS

Design Completion
time

Power
consumption

Energy Comment

Basic
Architecture

1.22 s 9.17 mW 11.19 mJ
~25% of modules

are active

Parallel
Architecture

0.357 s 27 mW 9.64 mJ
~95% of modules

are active

BIOGRAPHIES

Esmaeil Amini received his BS degree from Sharif University of Technology and MS degree from

Amirkabir University of Technology both in Computer Engineering. He is currently a Ph. D. student

at the Center for Advanced Computer Studies (CACS) at the University of Louisiana at Lafayette.

His research interests include computer architecture, security and low power design. He is a member

of the IEEE.

Zahra Jeddi received her BS degree in electrical engineering from Iran University of Science and

Technology and her MS degree in Computer Engineering from Amirkabir University of Technology.

She is currently a Ph. D. student at the Center for Advanced Computer Studies (CACS) at the

University of Louisiana at Lafayette. Her research interests include low power design, computer

architecture and security. She is a member of the IEEE.

Ahmed Khattab received his B.Sc. and M.Sc. in Electronics and Communications Engineering from

Cairo University, Egypt, in 2002 and 2004, respectively. He received an M.EE. degree from Rice

University, USA, in 2009. He received his Ph.D. in Computer Engineering degree from the

University of Louisiana at Lafayette, USA, in 2011. His research interests are the design and

implementation of cross layer PHY-MAC protocols and radio resource management for high

performance wireless networks. He won the best student paper award of the ULL IEEE Computer

Society in 2010 and was finalist in the IEEE ICCCN 2008 best paper contest.

Magdy Bayoumi received the B.Sc. and M.Sc. degrees in electrical engineering from Cairo

University, Egypt. He received the M.Sc. degree in computer engineering from Washington

University, St. Louis, MO, and the Ph.D. degree in electrical engineering from the University of

Windsor, ON, Canada.

He is currently Director of the Center for Advanced Computer Studies (CACS) and Department

Head of the Computer Science Department, University of Louisiana, Lafayette. He is also the

Edmiston Professor of Computer Engineering and Lamson Professor of Computer Science at the

Center for Advanced Computer Studies, University of Louisiana at Lafayette, where he has been a

faculty member since 1985. He is editor or coeditor of three books in the area of VLSI Signal

Processing. His research interests include VLSI design methods and architectures, low-power circuits,

and systems, digital signal processing architectures, parallel algorithm design, computer arithmetic,

image and video signal processing neural networks, and wideband network architectures.

Dr. Bayoumi was Vice President for the technical activities of the IEEE Circuits and Systems

Society. Currently, he is Chairman of the Technical Committee (TC) on Circuits and Systems for

Communication and the TC on Signal Processing Design and Implementation. He was a founding

member and Chairman of the VLSI Systems and Applications Technical Committee. He is also a

member of the Neural Network and the Multimedia Technology Technical Committees. He has been

on the technical program committee for ISCAS for several years, and he was the publication chair for

ISCAS’99. He was the General Chairman of the 1994 MWSCAS and is a member of the Steering

Committee of this symposium. He was an Associate Editor of the IEEE CIRCUITS AND DEVICES

MAGAZINE, IEEE TRANSACTION ON VERY LARGE SCALE INTEGRATION (VLSI)

SYSTEMS, IEEE TRANSACTIONS ON NEURAL NETWORKS, and IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS II. He was the cochairman of the Workshop on Computer Architecture

for Machine Perception in 1993 and is a member of the Steering Committee of this workshop. He

was general chairman for the 8th Great Lake Symposium on VLSI in 1998, and general chairman of

the 2000 Workshop on Signal Processing Design and Implementation. He is an Associate Editor of

the VLSI Journal INTEGRATION, and the Journal of VLSI Signal Processing Systems. He is a

regional editor for the VLSI Design Journal and on the Advisory Board of the Journal on

Microelectronics Systems Integration. He served on the Distinguished Visitors Program for the IEEE

Computer Society from 1991 to 1994 and is currently on the Distinguished Lecture program of the

Circuits and Systems Society. He won the UL Lafayette 1988 Researcher of the Year Award and the

1993 Distinguished Professor Award at UL Lafayette.

