A Low-Power Parallel Architecturefor Finite Galois Field

GF(2™) Arithmetic Operationsfor Elliptic Curve Cryptography

Esmaeil Amini*, Zahra Jeddi, Ahmed Khattab, and fagayoumi

The Center for Advanced Computer Studies, Univerditouisiana at Lafayette, Lafayette, LA 70505A)
{exa2685zxj4791, akk6481, mal@cacs.louisiana.edu

* Corresponding author: Esmaeil Amini

Address:

University of Louisiana at Lafayette

The Center for Advanced Computer Studies
PO Box 44330

Lafayette, LA 70504, USA

Office :(337) 482-6338
Fax : (337) 482-5791
Email : exa2685@cacs.louisiana.edu

A Low-Power Parallel Architecturefor Finite Galois Field

GF(2™) Arithmetic Operationsfor Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab and MaBdyoumi

Abstract —In this paper, a parallel, power-efficient and lstde word-based crypto architecture is
proposed that performs the operations required $oalar point multiplication including add,
multiplication and inversion operations on GFJ2 operands. The proposed architecture
distinguishes itself from exiting architecturescliding our prior architecture, by the fact thas it
resource usage and power-consumption is based emput data. Hence, such architecture might
be used for various operand sizes without modifgingeconfiguring the underlying hardware. The
architecture has also the ability to perform seVed#ferent operations in parallel when each
operation requires a small key size which signiftba increases the overall performance and
throughput of the system. In the absence of pdraiguests, the remaining unused modules will be
turned off in order to save power. The experimemsults show significant improvement in the

timing, throughput and energy performances withighs overhead in the circuit area.

Keywords — ECC, Public Key Encryption, Parallel Archite@uGF(2"), Field Arithmetic, Modular

Multiplication, Modular Inversion

1 INTRODUCTION
Public key encryption systems such as Rivest-Shadieman (RSA) [1] and Elliptic Curve
Cryptography (ECC) [2, 3] play a vital role in centporary secure systems as they ensure the
privacy, message integrity, authenticity, and ngpudiation requirements of secure communications.
The security strength of any encryption algorithepehds on its key size [4]. ECC is becoming
increasingly the promising public-key method beeaits uses shorter keys at a security level

equivalent to other public-key algorithms like RBA

For real-time applications such as SSL server odiores, a software implementation of an ECC
scheme may not provide the desired performancé dacehardware implementations are needed as
they better meet the performance requirements.eTéer many factors which must be considered in

the hardware implementation of ECC system desigol as:

* Power consumption as it is becoming the main desogistraint by the advent of portable and
contactless devices.

» Flexibility as the device is neither tied to a @@t ECC curve nor needs a specific type of
irreducible polynomial.

» Scalability as the device can provide various Isvef security without changing the
underlying hardware. For instance, the system sugpdalifferent operand sizes to
accommodate different levels of security. Otherwtise system will become outdated within a
short period of time.

* Throughput of the system is a very important fagtotases the system likely need to handle
thousands of operations per second like serverggrgateways, etc.

The operation that dictates the execution time rofbiptic curve cryptographic protocol is the
point multiplication of the Galois Fields (GF) opads, and its hardware implementation would have

a significant impact on the system performance [4].

One of the other crucial parameters in the impleaten of ECC architectures is the type of the
underlying finite field upon which the elliptic ot operations are based. ECC implementations

could either use prime fields GF(p) of binary finftelds GF(2") in which field elements are usually

represented as binary polynomials. The latter @neften chosen for hardware realizations as they

require smaller hardware circuits for implementats).

1.1 Related Work

Due to the increased significance of cryptograpg®yeral public key cryptographic hardware for
GF(2") have been proposed in the literature. The authi}8] have targeted a compact architecture
that performs three different cryptographic aldoris: RSA, ECC and paring-based cryptography.
They have tried to improve the time/area metricslésigning reusable functional units which can be
shared among different modules. They have usedsitmgarity of these three cryptographic
algorithms for their basic arithmetic operationsctsuthat it allows diverse utilizations of the
functional units in the design. However, they hawe¢ reported any results to show how much their
design improved these metrics. The authors of f@ppsed an architecture that supports arbitrary
operand sizes and provides multiplication, modatararing and inversion operations. However, the
computation time for the modular inversion of thathitecture is in the order @(nf). In contrast,
our proposed architecture performs the inversioeramon in the order o©(m) Meanwhile, the
architecture proposed in [8] performs multiplicatio GF(2") for any value ofn less than 256. Such
architecture offers the flexibility in selectingetifield size at the expense of being limited toydaiv
fixed irreducible polynomials. Furthermore, the pweed architecture does not support the inversion
operation. In [9] a reconfigurable design has bpessented which supports variable operand sizes.
The advantage of this architecture is its suppmrbbth GF(2) and GF(p). However, it is restricted
to specific types of elliptical curves. An archiiees for implementing LSD multipliers for binary
fields GF(2") is presented in [10]. In this architecture, inmraccumulators have been deployed for
storing intermediate results and then, these edcamulators were used to increase the maximum
operating frequency by reducing the critical pa#tagl of the multipliers. However, no hardware
implementation report has been given in [10] arst analytical area and timing reports have been

presented. Alternative modular designs have beempoged in [10, 11] based on offline

reconfiguration. For instance, [10] presents a nerdtield Programmable Gate Array (FPGA) based
architecture that uses very simple hardware commenélowever, it does not perform the inversion
operation. Meanwhile, the architecture presented 1p supports both binary and polynomial field
multiplication but only considers a specific typeiweducible polynomials and reconfiguration is
offline. Hence, it can only be used for modular tiplications and does not support other important
crucial operations in ECC, such as inversion anditiaeh. In [12], the authors have proposed a
reordered normal bias multiplier which gives thaigeer the ability to set a trade-off between the
area and speed performance and have implementegdathbbitecture on a 780-pin FPGA circuit.
Another reconfigurable design was proposed in f@3upport various operand sizes for both binary
and prime fields. This design implements RSA openat as well. It also supports power-gating
approach to reduce the power wastage. Howeveeditires the data to be aligned before being
exchanged with the outside world which complicdtesdesign and increases the delay. A Graphics
Processing Units (GPU) implementation is proposeld4]. In this work, Least Significant Bit (LSB)
invariant scalar point multiplication for binaryliptic curves is implemented on NVidia graphics
cards by implementing parallel algorithms for GPArdware/Software Co-Design implementations
are also presented in the literature. For instanites authors of [15] have proposed
Hardware/Software Co-Design of ECC operations or8@51 Microcontroller. They have tried to
minimize the communication overhead due to opetsaasfers by the integration of a small DMA
unit and inclusion of an additional I/O registetoirihe hardware accelerator. Their design supports

operations over binary fields of degree up to 192.

1.2 Paper Contributions and Organization

Based on the above discussion of the related titeraonly few of the proposed architectures sujppor
key size selection feature and also save powesrfaller key applications. In our previous work
[17], a modular architecture has been proposedwisiciot only area efficient but also offers these

features. However, when a small key size is udezlptoposed architecture sets the other unutilized

modules deactivated even if there are other reguéstthe system, as the case with the
aforementioned related architectures. Such a comdadiciency makes the system inefficient in
terms of throughput and performance when therenam®y concurrent requests to the system which is

a typical feature of secure server systems.

In contrast, this paper alleviates such performateBciencies by presenting a new parallel
architecture that has the unutilized modules siamglbusly operating to handle other requests in
order to use the system more efficiently and inrseg&ie performance and throughput of the system.
The main contributions and characteristics of theppsed architecture that distinguish it from the

existing literature are summarized as follows:

» The architecture is neither tied to a certain EQ@we nor need a specific type of irreducible
polynomial.

e The proposed design deactivates the unused molylpswer and/or clock gating and saves
power when small key size operations are perforraad there is no other requested
operation.

* The proposed design handles multiple different ajp@ns in parallel in order to increase the
overall performance and throughput of the system.

» The proposed architecture handles different kegssiger each operation running in the
system.

The organization of the rest of this paper is dtovis: the necessary background discuss of
multiplication and inversion algorithms in GF{j2s given in Section 2. Then, the base architectar
be used in this paper is briefly discussed in eac8. The new parallel architecture is discussed in

Section 4. Simulation setup and results are andlyz&ection 5 and Section 6 concludes the paper.

2 MULTIPLICATION AND INVERSION OPERATIONSIN GF(2")

Elliptic curve cryptography (ECC) is a public-keyygtography algorithm which is based on the
algebraic structure of elliptic curves over finitelds. Point addition/subtraction, point doublirsgnd
scalar point multiplication are geometrically-defih operations for elliptic curves. Two

implementation alternatives, namely, prime field(®Fand binary field GF(?) are used for ECC

systems. We only discuss the GB2rithmetic as our proposed architecture is baseid. Equation

(1) represents an elliptic curve on binary field(&H:
yi+xy=x3+ax?+b (1)

wherex, y, a, b are m-bit binary numbers aihds non-zero. More details about the underlyingtie

behind of ECC operations can be found in [4].

The creation of public key in ECC requires scalanpmultiplication on the base poi, Scalar
point multiplication could be done by repetitivgdgrforming point doubling and point addition. The
basic operations for scalar point multiplicationilbdown to modular addition, subtraction,
multiplication, and division on GF{2 operands [4]. Addition and subtraction are tliiperations
which are simply done by bit-wise XOR operation operands. Division operation is more
complicated than multiplication and inversion argrefore, it is normally substituted with an
inversion of divisor followed by a multiplicatio®]. In the following subsections, implementing

multiplication and inversion operations are briedfigcussed.

2.1 Modular Multiplication in GF(2™)

A modular multiplication in GF(2) can be denoted b = AxB modF, where A, B andC are m-bit
binary polynomials in GF() and F is an (m+1)-bit irreducible binary polynomial fdhe
corresponding GF(J). Table | shows the pseudo-code of the algorithesgnted in [11] which is the
basis of our proposed architecture too. More detadlout this algorithm could be found in [11]. In

this paper, a modified version of this algorithnuged in order to support selectable operand size.

2.2 Modular Inversion in GF(2™)

A modular inversion operation in GF{Rfinds a multiplicative inversed™ of field elementA such
thatA x A~ = 1 mod F, where,F is the irreducible polynomial of corresponding @%(In [17],

we have presented an architecture that uses tlogitalg presented in [18] as it can be easily

modified to achieve selectable key size architectlihe pseudo-code of the algorithm is given in
Table 1l. Both multiplication and inversion algdms, depend on very simple operations such as
shift right, shift left, addition and XOR. Usingishifeature, a hardware component has been designed
that performs both multiplication and inversion gimns which saves the system in terms of area

and power consumption.

3 OVERVIEW OF BASIC ARCHITECTURE

In our prior work [17], a modular multiplier had die designed which implements all the necessary
arithmetic operations over GF{R required to do ECC computations. In this architee, users can
select the operand size according to their secaeds. Let us assume that we want to design an
m-bit multiplier, wherem is the maximum operand size that would be needeitha foreseeable
future. In this architecture, the m-bit binary ograats are split int& smaller n-bit wordsng = k x N)

as follows:

n-1 -
A=A+ 2P + .+ ZACL + 2 where A = Zj:o 8, 2!, anda; are binary bits of multiplicand
B=B, + 2'B, + ... + B, + 2B, where B = Z?:o b, 2!, andb; are binary bits of multiplieB

F=F, + 2F, + ... + ZPF , + X¥UE whereF, = r_1_ f. 2 andf; are binary bits of modulug
| j=0 1 Il

Regarding above discussions, the basic multiplehigecture is composed &modules each has
n-bit size as shown in Figure 1. Each of the magl{0e - k-1] is responsible for operating on one
n-bit word of the operand. In this architecture thasign parameters must be defin@dnumber of
wordsk, and(ii) word-widthn. Suppose that=8 andn=8. If a 24-bit computation is required, then,

the first three modules will be activated by cotémand remaining modules will remain inactive.

Referring to the multiplication and inversion algoms (Table | and Table Il), a mechanism is

required for selecting the appropriate MSBs of apds which is one of the tasks of controller

module. For example, if a three word computationgeded, then the MSBs coming from the third

module will be used for the calculation.

Inside each module, there are four shift registensold four input/output words of the operands.
The MSBs of each register are also connected tadh#&oller, which selects the appropriate MSBs
for operands. Besides, each module has an ALUghasponsible for performing various operations
such as, XOR, shifting, etc. The controller uningetes appropriate signals to coordinate the
operations performed inside this ALU. The blockgtdean of the controller unit is presented in

Figure 2. The controller has three sub-blocks:

» Load/Store, which is used during the operations of the inpod output loops. It keeps a
counter, WordCount, to count how many modules egaired for a particular computation. It
also turns on and off modules by generating appetermodule select signal for each module.
During input cycle, the controller also gets “Ingttion” signal, which tells the arithmetic
processor which operation among add, multiplicatiand inversion is requested.

e MSB Seector, which is composed of four multiplexers for A, B, and C operands.
Multiplexers are connected to the MSBs coming fiormodules. This module selects the
appropriate MSBs based on the value of WordCougister.

* Finite State Machine, which controls the operation of the proposed assdture. The
controller implements a finite state machine andeyates control signals for various sub
tasks, such as XOR, shift left, shift right, etc.sthould also be noted that during the
computation loop, the module select signal selgstisthe needed modules and keeps the rest
turned off in order to save power.

Choosingn=32 and k=8, the design was synthesized by 45nm technolagls avith clock

frequency adjusted to 1GHz. The main goal in thésigh was introducing a low-power and
area-efficient design. As Figure 3, the power camstion is directly proportional to number of used

modules. Hence, the design saves power when léesikey size operation is requested.

4 PROPOSED M ODULAR PARALLEL ARCHITECTURE

In our previous work [17], the power consumptiorswaduced by making relation between selected
operand size and power consumption. However, gsém could not deal with new requests even if

there are free unutilized modules which can perfoaw tasks. In other words, it did not efficiently

use the available hardware resources. Thus modivete propose a parallel architecture in this paper
that increases the overall performance and thrautgbipthe system by grant all requests as long as
there are idle modules which can handle new requ&hlere are two scenarios for making the system
operate in parallel. One solution is handling npldti same operations in parallel, i.e. handling
multiple multiplication operations. Since high Iégealar ECC operations are composed of different
operations, this parallelism will not be effectiVar instance, a point doubling operation is cdaslis

of multiplication, inversion, and addition operatso This way, if two point doubling requests do not
enter at the same time, the second request musfawdhe first operation to be completed. Therefor
the system should handle multiple different operetito run in parallel. In our developed parallel
architecture, the system handles different oparatiith different operand sizes concurrently. For

instance, both multiplication and inversion areuiegd to be simultaneously handled.

The block diagram of the parallel architecture eépidted in Figure 4. Comparing Figure 1 and
Figure 4, the parallel architecture has module rsgpiss between consecutive modules. These module
separators are used to dynamically partition theutes where each patrtition is responsible for one
task. The module separator is a simple multiplexieich selects either zero or previous module’s
output as the input of the next module. This partihg is online and its control signals come from

Module-Assigner that will be discussed later.

The Controller unit shown in Figure 5 generatesrappate signals to coordinate operations
performed in the system. This Controller has thse®-blocks: i) Module Assigner, ii) Task

Controllers, and iii) Correlator which will be disgsed in the following sub sections.

4.1 Module-Assigner:

Module-Assigner connects the system to outsiderenmient. It receives requests from outside and
replies to them. Each new request states how madules it requiresword-counj and also the

instruction type that must be performed such adiptightion, division, or addition/subtraction. In

response, the Module-Assigner will che@k if there is a free Task-Controller to take caretho$
particular task andi) if there are enough free consecutive modules mhaleahis task. If one of these
conditions fails, then Module-Assigner will reply the requesting part that it cannot accept ttsk ta

by putting zero omgrant signal. Otherwise, thgrant signal will be one.

Each Task-Controller has a busy tag which is usethis purpose. To check the second condition,
the Module-Assigner starts from the first moduld aheck if it can findvord-countfree modules in
a row. For example, if the task requires three nexjut will start with checking modules 0, 1 and 2
If module 0 is taken, then it will check modules21and 3. This process continues until it finde¢hr
consecutive free modules and after that it givessk-numbeto that particular task in order to make
a distinction between tasks. Otherwise, it refubesnew task. This search procedure is implemented
by a look up table. The size and complexity of tleigskup table is proportional to the number of

modules in the system.

After accepting the new request, the Module-Assigvi# follow these steps:

1. The Module-Assigner sets the corresponding modul@ssignals to load the inputé,(B
andF). The I/O signals define the type of I/O operatimased on instruction type. It also
triggers modulesinselect-loadsignals one after another to enable them to ezdbat I/O

operation.

2. After the load phase, the Module-Assigner will sthe following actions concurrently.

(@) It will inform the corresponding Task-Controller $tart its work by triggering its

load-completesignal.

(b) It enables all dedicated modules for the computapbase by triggering their

mselect-ofsignals.

(c) The Module-Assigner also generatesux-selectsignals which are used for

separating this task’s modules from other tasksiuhes.

(d) 1t triggers module-stateand task-wordcounssignals to correlate Task-Controllers
with their assigned modules. Since Module-Assigadhe only part who knows
the relation among tasks, modules, and Task-Cdatsolit generates these signals

dynamically to make this correlation.

3. When the result of the task at hand becomes raaéycorresponding Task-Controller
raises itglone-signal Then, Module-Assigner puts the task numbeowattask-numbeline
to notify the outside parts that the results on dligput bus belong to this specific task
number. Similar to the loading phase, the moduldissend their results to the output bus

one by one.

4. Eventually, the corresponding Task-Controller ath@gsigned modules will become free.

Furthermore, suppose that task A arrives while Bask ready to send its results. Module-Assigner
gives the priority to task B and rejects task AisTiay, there are more free modules for new tasks

and more importantly, it prevents the deadlock.

4.2 Task-Controllers

The block diagram of Task-Controllers part is shawrFigure 6. This part hasindependent units
where each unit is the Finite-State-Machine inlthsic architecture shown in Figure 2. Each of these
units generates the appropriate signals to coaelinperations performed inside modules. These
units are connected to Module-Assigner and Cowelathe Module-Assigner informs each unit
when it is its turn to start computation mad-completesignal. At the end of computation of each

task, the corresponding unit will inform it to MddeAssigner by raising itdone-signal

4.3 Corréator:

The Correlator creates a channel between Task-@amtunits and their corresponding modules as
shown in Figure 7. The Correlator sends the geeérap-codes by Task-Controller to modules and
in the opposite side, it sends the MSB of operamsisle modules to their respective Task-Controller.
Per each Task-Controller unit, there is an MSB-8efe circuit inside Correlator. These

MSB-Selectors are exactly as the MSB-Selector tircuthe basic architecture. The appropriate

MBS bits selected by these circuits will be forweddo the corresponding Task-Controller units.

In the basic architecture [17], there was only éi@te-State-Machine and one MSB-Selector
circuit. In the new parallel architecture, there arany of these units. Besides, the Load/Store taodu
in the basic design is replaced by a more complexilMe-Assigner unit, which handles the task

assignment in addition to controlling the load atate operations.

Figure 8 demonstrates a sample operation of thpogem architecture. Let us assume a 256-bit
architecture, composed of eight 32-bit word modulleghis Figure, the thick-border means that the
module is busy with input/output operation. Theygaad black rectangles mean that the module is
busy with multiplication or inversion operation pestively. Whenever the modules are presented in
multiple lines, it means that there are paralletragions in process. Initially, the system is inwpo
save mode, only the Controller is active and alrttodules are turned off usipgwer-gatingsignals.
Now suppose that a 96-bit multiplication requesitvas and accordingly modules 1, 2, and 3 will be
activated and will load the input data in cyclelr2.the next cycle, all the input data are read into
modules’ registers and they will perform the muditigtion operation. In cycle 4, a 128-bit inversion
request arrives which requires four modules. As ttycle, modules 4, 5, 6 and 7 will load the
corresponding input data where modules 1, 2 ande3basy with multiplication operation. The
modules are presented in separate lines in cytdeiddicate the parallel behavior of the system. At

cycle 5, modules 1, 2 and 3 are still busy withtiplitation operation and modules 4, 5, 6 and 7 are

busy with inversion operation. In the next cycls tultiplication process computation is over and
corresponding modules will send their result. Euealty in cycle 8, the inversion process is over and
modules 4, 5, 6 and 7 will send their results all amd afterwards, the processor enters idle state

again.

5 EXPERIMENTAL RESULTS

Based on the proposed architectures, a 1024-btiphert is designed in three different modes:

* 16-64 Mode: 16 modules each one is 64-bit wide.
e 32-32 Mode: 32 modules each one is 32-bit wide.
¢ 64-16 Mode: 64 modules each one is 16-bit wide.

The designs are synthesized by Synopsys Design ympthe 45 nm technology mode and the
FreePDK45 Process Design Kit (PDK). The clock festpy is set to 1 GHz. The operating
conditions are set to typical, the supply voltagéxed at 1.1V, and the temperature is set to 27°C
For place and route, the Cadence SOC Encounteim@d&@nm technology mode is used. Post-layout
analysis is used for power and area estimationticSteming verification method is used for
evaluating the design for set up and holds timéatimns. For timing estimation, a software tool is
also developed for generating random data veatotise test bench codes and these test bench codes

are simulated by ModelSim tool.

51 Area

Table Il summarizes the reported area figures fpmst-layout die area for 1024-bit implementation.
As Table Il presents, the basic design is morigiefit in terms of area overhead when the number of
modules increases as expected. In the new padaggn, the Module-Assigner part has a lookup
table to keep track of the idle modules. The sizh® lookup table grows with increasing the number
of modules and clearly its area will increase adirmly. In the basic design, the complexity of the

controller is much less relevant to the number ofiules. Increasing the number of modules, the

number of I/O pins also decreases, but, the lopdtiand store output phases will increase as well.

We compare our designs’ area in 32-32 mode witketlother 1024-bit designs which is presented
in TablelV. It must be noted that our architectures useereechnology compared to other designs

which has considerable effect in area as well.

5.2 Timing

Each operation is done in four phases, namely,kchegailability, load operands, computation and

store result. The check availability phase doesenadt in the basic design since it was designed to
handle just one task at a given time. The duratforheck-availability phase is fixed and it is ajwa

4 clock cycles regardless of the granularity of 8ystem and the number of controllers. The

durations of the load and store phases dependeonuimber of required modules for that particular

operation. The addition operation always needsabmek cycle and the multiplication always needs

twice the operand size number of cycles. The ojeratycle of the inversion operation depends on
the input data bit-pattern. We perform a large bemof simulations by changing bit patterns of

input vectors to figure out the average number lotlc cycles needed to perform an inversion

operation. The average number is 5.5 times theaogesize. Changing the module-size and keeping
the maximum operand size the same, only the dumsatbload and store phases will change which is
negligible. Consequently, the main computation eyslproportional to the operand widii{m)and

is irrespective of the size of module. This disousss summarized in Table V.

The main improvement in our parallel architectwéhie throughput performance of the system. To
evaluate our claim, we simulate both systems irB32node and generate 100,000 point doubling
operations where each operation requires limitedaen number of modules for completion. This is
a typical situation for today secure systems ay litely must handle hundreds of ECC operations
per second. Point doubling operation is a good idael for testing the utilization and throughput of

the system because it has all basic operationsth Eealar point multiplication is composed of a

series of point doubling and additions. Considetimg involved basic operations, point doubling is

very similar to point addition and therefore, ieigjood approximation for scalar point multiplicati

as well. Each point doubling operation is composkeseven additions, three multiplications and one
inversion. Each point doubling operation has randietd-size between 160-bit and 256-bit. In 32-32

mode these operations will require between 5 tofutes. 160-bit ECC is secure today and most of
typical applications use this scheme and 256 bi€ BCsecure until 2030 [19]. So this way, a wide

range of secure applications’ data will be injedi®the system.

Table VI presents the differences between the tesilthe two architectures. As the results in
Table VI shows, the new architecture completestés& almost 3.47 times faster than the basic
architecture. Hence, the throughput of parallehiéecture is 3.47 times more than throughput of

basic design.

Where the change in key size is limited, the systesponse time and controller area overhead
deteriorates by increasing the granularity of tiistesn as Table VII shows. Making the modules
smaller, the response time is increasing becausdodd and store operations take more time.
Therefore, it is better to choose granularity lowtypical cases where the change in the key size is
limited. However, the flexibility of the system tarms of supporting different key sizes will be low
as it does not support keys that are not submestipf module size when the granularity of the
system is low. This implies the existence of agraff between the flexibility and area, performance

similar to other existing parallel systems.

5.3 Power and Energy

Similar to the area evaluation, our designs’ poearsumption in 32-32 mode are being compared
with three other 1024-bit designs which is presgmteTable VIII. The proposed architecture in [7]
does not report any actual power figures and hpsrted just analytical results. Our proposed

designs offer very low-power compared to two otHesigns because of i) implementing power

and/or clock gating techniques and ii) use of seng@mponents.

Although, the power consumption in parallel arcttilee is more than the basic design, it requires
less energy to accomplish tasks when there argaesancurrent tasks. To illustrate the difference,
assume that there are 100,000 point doubling tilsksvhat was assumed in timing evaluation. As
Table IX presents, the basic design consumes ssrphan the parallel design because in average
only 25% of its modules are active whereas 95%hef modules are active in parallel design.
However, the parallel design completes the taskswich less time and requires 9% less energy

compared to basic architecture.

6 CONCLUSIONS

In this paper, a high-performance parallel aritien@rocessor architecture for GF{j2has been
proposed which supports all essential ECC operatibhe architecture is modular, supports arbitrary
operand sizes and is scalable for very large opesares. When a small key size operation is
requested, the system deactivates the remainingile®tb reduce the power consumption if there is
no parallel request to the system. Otherwise, itdles new requests by the remaining unutilized
modules in parallel with other modules. The newsst to the system could be different operations
with different operand sizes that let the systemute its resources very efficiently which
considerably increases the overall performance #mdughput of the system. Adding other
operations such as point addition and point dogbtm our architecture is our future work in our

ultimate goal to design a complete ECC processor.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

REFERENCES
R. Rivest, A. Shamir, and L. Adleman, “A method &taining digital signatures and public-

key cryptosystems,” Communications of the ACM18), Vol. 21(2), pp. 120-126.

V. Miller, “Uses of elliptic curves in cryptograpliy Proceedings of the Advances in

Cryptography 1986), Vol. 218, pp. 417-426.

N. Kobilitz, “Elliptic curve cryptosystems,” Matheatics of Computation1087), Vol. 48, pp.

203-209.

D. Hankerson, A. J. Menezes, and S. Vanstone. ‘&ud elliptic curve cryptography,”

Springer-Verlag, pp. 259 — 26@004)

P. K. Meher, “On Efficient Implementation of Accutation in Finite Field Over GF(9 and

its Applications”, IEEE Transactions on VLSI Syste009), Vol. 17, No° 4, pp. 541-550.

E. Savas, and C. K. Ko¢ “Finite Field Arithmeticr f€ryptography”, IEEE Circuits and

Systems Magazin€010), pp. 40-56.

M. Hasan and M. Ebtedaei, “Efficient architecturé computations over variable
dimensional Galois Field,” IEEE Transactions oncGits Systems — |: Fundamental Theory

and Applications (1998), Vol. 45, N° 11, pp. 1205L1.

N. Gura, et al., “An end-to-end systems approach etliptic curve cryptography,”

Cryptographic Hardware and Embedded Systems, 3388 002)

J. Goodman, and A. Chandrakasan , “An energy-[Efiicireconfigurable public-key
cryptography processor,” IEEE Journal of Solid-&t@tircuits 2001), Vol. 36, N° 11, pp.

1808-1820.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

S. Kumar, T. Wollinger, and C. Paar, "Optimum Di§ierial GF(Z) Multipliers for Curve-
Based Cryptography”, IEEE Transactions on Compuf{@896), Vol. 55, No° 10, pp.

1306-1311.

P. Kitsos, G. Theodoridis, and O. Koufopavlou, “Afficient reconfigurable, multiplier
architecture for Galois Field GF{R” Elsevier Microelectronics Journa2@03), Vol. 34, pp.

975-980.

C. Chiou, C. Lee, J. Lin, “Unified dual-field mutier in GF(p) and GF(3,” Institute of

Engineering and Technology (IET) Information Setgu(2009), Vol. 3, N° 2, pp. 45-52.

A. H. Namin, H. Wu and M. Ahmadi "Comb architerets for finite field multiplication in

IF,™, IEEE Transactions on Compute2(7), Vol. 56, pp. 909-916.

A. E. Cohen, K. K. Parhi, “GPU Accelerated Ellipt@urve Cryptography in GF(Y’,
Proceedings of IEEE International Midwest Symposiam Circuits and System=(10),

pp. 57-60.

M. Koschuch , J. Lechner J, A. Weitzer A, et al.afblware/software co-design of elliptic
curve cryptography on an 8051 microcontroller”, d&®ding of Workshop of Cryptographic

Hardware and Embedded Syst€2006), pp. 430-444.

J. Chen, M. Shieh, "A high-performance unifieddieéconfigurable cryptographic processor",
IEEE Transaction on Very Large Scale Integratioh%Yj Systems Z010), Vol. 18, N° 8,

pp. 1145-1158.

Md. I. Faisal, Z. Jeddi, E. Amini and M. Bayoumf Power-Aware Selectable Operand-Size
Modular Multiplication Architecture for GF(3“, Journal of Low Power Electronic2q11),

Vol. 7, N° 3, pp. 314-327.

[18] H. Brunner, A. Curiger, and M. Hofstetter, “On camipg multiplicative inverses in GF(3”

IEEE Transactions on Computef®93), Vol. 42, N° 8, pp.1010-1015.

[19] V. Gupta, D. Stebila, and S. Chang, “Integratinigpet curve cryptography (ECC) into the

web’s security infrastructure”, Proceedings of intional World Wide Web Conference on

Alternate Track Papers and Post&d04), pp. 402—-403.

FIGURESAND TABLES

A Low-Power Parallel Architecturefor Finite Galois Field

GF(2™) Arithmetic Operations for Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and MaBdyoumi

n .
A n » C
B n
]
;VV ;VV +VV
— Aout An |- -t Aout An |- Aout Ain
—— Bout K Bin |« -t Bout 1 Bin | Bout 0 Bin
Fout Fin | -t Fout Fin | Fout Fin
Coit Cin Cot C Cout Cin
Control Signals
Yvvy YvvyYy Yyvy Yyvy
IntputReady -
Start P>
Instruction > Controller = OutputReady
Clock >
Reset -

Figure 1. Block diagram of basic multiplier architecture

A Low-Power Parallel Architecturefor Finite Galois Field

GF(2™) Arithmetic Operationsfor Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and MaBdyoumi

From k Modules

Aout Bout Cout Fout
LR
YvYyyvy
MSB_A o
MSB_B o
MSB Selectors MSB C
= >
MSB_F o
A -
WordCount o | Finite State
C - k "] Machine
out &
Operation -
13
2
3
o
o k
= | ModuleSelect &
X
e Load - Load/Store -4 Done
ReadOutput & »
LoadComplete
A A A A f A A
[

X -
5 ¢ 8 §
S5 3 8 3B
4 © © 3
5 ?
Qo =4
2 £

Input/Output

Figure 2. Block diagram of Controller in basic architecture.

A Low-Power Paralle Architecturefor Finite GaloisField

GF(2m) Arithmetic Operationsfor Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and MaBdyoumi

7.00
6.00
5.00
E 4.00
o
% 3.00 ++sQe+ Leakage
o
2.00 ---X--- Dynamic
—e— Total
1.00
000 p O...o...O...(h.o:{)o--‘).o-sz-..s)
0 32 64 96 128 160 192 224 256
Width (bits)

Figure 3. Therelation between power consumption and operand size.

A Low-Power Parallel Architecturefor Finite Galois Field GF(2™)

Arithmetic Operations for Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and MaBdyoumi

A k
Input{'E:3 kk -
;‘ %

12} o Al o Al

M Aot An — (0 8 -t At An 0 S - Aot Ain

T Bout Bn r—-- 3 & [Bow 4 Bn & 3 5 [Bout o Bin

Fou = Fin r— 2 S| Fot = Fin -2 S | Foi = Fin

(G Cin ... (28 » Cou Cin 4 © |- - Cout Cin

muxSelect k

Control
signals

Controller

Figure 4. Block diagram of our parallel multiplier architecture

A Low-Power Parallel Architecturefor Finite Galois Field

GF(2™) Arithmetic Operationsfor Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and MaBdyoumi

clk Alg—~AA A Algg—<— A
reset ——@l—p» B [-——|B Bl#—<~— B
word-count <@ Task Cle€—4—|c Cle—<— ¢
instruction g > F [——F Fle—E—
Controllers
MSB-last——<" ! <" g MSB-last
ALy
[}
e pnpn operation Correlator Multiplier
Input/ 8 o Modules
output 8 3 task_wordcount
> Kn —A’ operation
—>> module—siate
start g Module k P mselect-load
input-ready —— ! . k P mselect-op
t ASS|gner k P mux-select
X gran 4 P module-10-enable
intask-number ———

outtask-number <@———
read-output ——

Figureb5. Block diagram of Controller in our paralle architecture

A Low-Power Parallel Architecturefor Finite Galois Field

GF(2™) Arithmetic Operationsfor Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and MaBdyoumi

Task Controllers

clk
Input/ reset . .
output

word-count @ @
instruction ® 4
Module ["oad-complete___.n
Assigner one -1 ! ! ¢

t t-1 YY) 1
AB C; AB CR ABCF
e o0 THE TR
Corelator BCF g I I
MSB-last -~

Figure 6. Block diagram of Task-Controllersin the proposed paralld architecture

A Low-Power Parallel Architecturefor Finite Galois Field

GF(2™) Arithmetic Operationsfor Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and MaBdyoumi

/
Corelator /
/
A
\ A

Task Task Task
Controller t Controller 2 Controller 1

Figure7. Therelation between the Coreator, Tasksand Task-Controllers

A Low-Power Parallel Architecturefor Finite Galois Field

GF(2™) Arithmetic Operationsfor Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and MaBdyoumi

[] O
O 1/0 operation
[J Multiplication operation

B Inversion Operation

ululw
=|v_ 0000
]

Figure 8. An example of the operation of our proposed parallel architecture

A Low-Power Parallel Architecturefor Finite Galois Field

GF(2™) Arithmetic Operationsfor Elliptic Curve Cryptography
Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and MaBdyoumi

TABLE |
MODULAR MULTIPLICATION ALGORITHM

(ADAPTED FROM [11])

/*This algorithmreads mbit operands and then
perforns the conputation in miterati on and
finally outputs the mbit output.*/

I nput's:

A mbit input / multiplicand

B: mbit input // nultiplier

F: mbit input/ nodulus; although it is an
/I (m+l) bi nary nunber, the MSB
/I is always 1, hence not
/I needed for this algorithm

CQut put

C. mbit output / the result

Read A, B, and F;
C:=0; MSB_C :=0;

for i =m-1 down to O with step 1 begi n
i f (B[m-1]=1)
C:=CXORA,;

if (i>0) begi n
MSB_C := C[m-1];

C:=C<<1;/l Shift left once
if (MSB_C=1)
C:=CXORF;
endi f
B:=B<<1;// shift left once
endf or

Output C as the result;

A Low-Power Parallel Architecturefor Finite Galois Field

GF(2™) Arithmetic Operationsfor Elliptic Curve Cryptography
Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and MaBdyoumi

TABLEII
M ODULAR INVERSION ALGORITHM (ADAPTED FROM [18])

/*This algorithmreads mbit operands and then
performs the conputation in 2miteration and finally
outputs the mbit output.*/

I nput s:
A: mbit input / operand to be inverted
F: mbit input/ nodulus; although it is an (mtl)
/I binary nunber, the MSB is always 1,
/I hence not needed for this algorithm
Qut put
C mbit output // the result

Read A and F;
B:=0,C:=1andDeg:=0;
Am =0, Bm :=0, Cm := 0, Fm := 1, //Initialize MS Bs
for i=1to2m with step 1 begin
i f (Am=0)then begi n
{Am, A} :={Am, A} << 1; // sShift left once
{Cm, C}: ={Cm, C} << 1,/ Shift left once
Deg :=Deg + 1,
endi f

el se begin
if (FM=1) begin
{Fm, F} := {Fm, F} XOR {Am, A};
{Bm, B} :={Bm, B} XOR {Cm, C};
endi f
{Fm, F} := {Fm, F} << 1; Shift left once
i f (Deg=0) begin
Swap({Am, A}, {Fm, F});
Swap(({Bm, B} << 1), {Cm,C}) // left shift, swap
Deg = 1;
el se begin
{Cm,C}:={Cm,C}>>1;// right shift once
Deg :=Deg -1,
endi f
endi f
endf or
Output C as the result

A Low-Power Parallel Architecturefor Finite Galois Field

GF(2™) Arithmetic Operationsfor Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and MaBdyoumi

TABLEIII
GRANULARITY VERSUS CONTROLLER AREA OVERHEAD

Design mode #of /O pins Total diearea Controller

(um?d over head
. 16-64 265 195.000 3.5%
Basic 32-32 137 201,000 4%
Design
64-16 73 214,000 4.7%
16-64 275 211,000 11%
Parallel 32-32 148 230,000 17%

Architecture
64-16 85 282,000 25%

A Low-Power Parallel Architecturefor Finite Galois Field

GF(2™) Arithmetic Operationsfor Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and MaBdyoumi

TABLEIV
AREA COMPARISON WITH OTHER WORKS
Design Area (mm?) Comments
[9] 4.608 mni 0.25 um Technology
[16] 2.34mm 0.13 um Technology
[7] O (1024) Analytic result
Basic Architecture 0.2 45 nm Technology

Parallel Architecture 0.23 45 nm Technology

A Low-Power Parallel Architecturefor Finite Galois Field

GF(2™) Arithmetic Operationsfor Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and MaBdyoumi

TABLEV
#OF CYCLESPER OPERATION VS OPERAND SIZE

Check-Availability Load/Store Inversion Multiplication Addition

Basic design - RM* 5.5m** 2m** 1

Parallel Design 4 RM* 5.5m** 2m** 1

**m : Operand Size * RM : Number of Requirecbtiles

A Low-Power Parallel Architecturefor Finite Galois Field GF(2™)

Arithmetic Operationsfor Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and MaBdyoumi

TABLE VI
COMPARISON OF THROUGHPUT BETWEEN BASIC AND PARALLEL DESIGNS

#of tasks Completion

Time
Basic 100,000 1.22s
Architecture
Paralle 100,000 0.357 s

Architecture

A Low-Power Parallel Architecturefor Finite Galois Field

GF(2™) Arithmetic Operations for Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and MaBdyoumi

TABLE VII
RELATION BETWEEN GRANULARITY AND PERFORMANCE

Design mode Response Controller
time (cycle) Area Overhead

16-64 0.347s 11%
32-32 0.357s 17%
64-16 0.37s 25%

A Low-Power Parallel Architecturefor Finite Galois Field

GF(2™) Arithmetic Operationsfor Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and MaBdyoumi

TABLE VIII
POWER COMPARISON WITH OTHER WORK'S

Design Power Comments
consumption
[9] 75 mW Moderate power
[16] 455 mwW High power
[7] n/a Analytic result
Basic Architecture 23 mw Low Power

Parallel Architecture 28 mwW Low Power

A Low-Power Parallel Architecturefor Finite Galois Field

GF(2™) Arithmetic Operationsfor Elliptic Curve Cryptography

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and MaBdyoumi

TABLE IX
ENERGY COMPARISON CONSIDERING CONCURRENT TASKS

Design Completion Power Energy Comment
time consumption
1 ~ 0
Basic 1225 9.17 MW 11.19 mg ~25% of modules
Architecture are active
Parallel ~95% of modules

Architecture 0.357's 27 mw 9.64 mJ are active

BIOGRAPHIES

Esmaeil Amini received his BS degree from Sharif University otAmology and MS degree from
Amirkabir University of Technology both in ComputEéngineering. He is currently a Ph. D. student
at the Center for Advanced Computer Studies (CA&tShe University of Louisiana at Lafayette.
His research interests include computer architec&ecurity and low power design. He is a member

of the IEEE.

Zahra Jeddi received her BS degree in electrical engineeriognfiran University of Science and
Technology and her MS degree in Computer Engingdrom Amirkabir University of Technology.
She is currently a Ph. D. student at the CenterAldvanced Computer Studies (CACS) at the
University of Louisiana at Lafayette. Her reseansterests include low power design, computer

architecture and security. She is a member of il

Ahmed Khattab received his B.Sc. and M.Sc. in Electronics anch@ainications Engineering from
Cairo University, Egypt, in 2002 and 2004, respa&tii. He received an M.EE. degree from Rice
University, USA, in 2009. He received his Ph.D. @omputer Engineering degree from the
University of Louisiana at Lafayette, USA, in 201His research interests are the design and
implementation of cross layer PHY-MAC protocols aratlio resource management for high
performance wireless networks. He won the bestesiugaper award of the ULL IEEE Computer

Society in 2010 and was finalist in the IEEE ICC2DD8 best paper contest.

Magdy Bayoumi received the B.Sc. and M.Sc. degrees in electrecadineering from Cairo
University, Egypt. He received the M.Sc. degree computer engineering from Washington
University, St. Louis, MO, and the Ph.D. degreeelactrical engineering from the University of

Windsor, ON, Canada.

He is currently Director of the Center for Advand@dmputer Studies (CACS) and Department
Head of the Computer Science Department, Universftyouisiana, Lafayette. He is also the
Edmiston Professor of Computer Engineering and loanRrofessor of Computer Science at the
Center for Advanced Computer Studies, Universityofiisiana at Lafayette, where he has been a
faculty member since 1985. He is editor or coeddbithree books in the area of VLSI Signal
Processing. His research interests include VLSigdewethods and architectures, low-power circuits,
and systems, digital signal processing architestyparallel algorithm design, computer arithmetic,

image and video signal processing neural netwankd,wideband network architectures.

Dr. Bayoumi was Vice President for the technicdiviees of the IEEE Circuits and Systems
Society. Currently, he is Chairman of the TechniCaimmittee (TC) on Circuits and Systems for
Communication and the TC on Signal Processing Deaiyd Implementation. He was a founding
member and Chairman of the VLSI Systems and Apipdica Technical Committee. He is also a
member of the Neural Network and the Multimediahrexdogy Technical Committees. He has been
on the technical program committee for ISCAS foresal years, and he was the publication chair for
ISCAS’99. He was the General Chairman of the 19943€CAS and is a member of the Steering
Committee of this symposium. He was an AssociaitEdf the IEEE CIRCUITS AND DEVICES
MAGAZINE, IEEE TRANSACTION ON VERY LARGE SCALE INTEBRATION (VLSI)
SYSTEMS, IEEE TRANSACTIONS ON NEURAL NETWORKS, attsEE TRANSACTIONS ON
CIRCUITS AND SYSTEMS Il. He was the cochairman loé tWorkshop on Computer Architecture
for Machine Perception in 1993 and is a memberhef $teering Committee of this workshop. He
was general chairman for the 8th Great Lake Symposin VLSI in 1998, and general chairman of
the 2000 Workshop on Signal Processing Design ampdeimentation. He is an Associate Editor of
the VLSI JournalINTEGRATION,and theJournal of VLSI Signal Processing Systeids. is a

regional editor for theVLSI Design Journaland on the Advisory Board of thé&ournal on

Microelectronics Systems Integratidde served on the Distinguished Visitors Prograntlie IEEE
Computer Society from 1991 to 1994 and is curreatiythe Distinguished Lecture program of the
Circuits and Systems Society. He won the UL Lafiey@088 Researcher of the Year Award and the

1993 Distinguished Professor Award at UL Lafayette.

