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Abstract —In this paper, a parallel, power-efficient and scalable word-based crypto architecture is 

proposed that performs the operations required for scalar point multiplication including add, 

multiplication and inversion operations on GF(2m) operands. The proposed architecture 

distinguishes itself from exiting architectures, including our prior architecture, by the fact that its 

resource usage and power-consumption is based on the input data. Hence, such architecture might 

be used for various operand sizes without modifying or reconfiguring the underlying hardware. The 

architecture has also the ability to perform several different operations in parallel when each 

operation requires a small key size which significantly increases the overall performance and 

throughput of the system. In the absence of parallel requests, the remaining unused modules will be 

turned off in order to save power. The experimental results show significant improvement in the 

timing, throughput and energy performances with a slight overhead in the circuit area. 
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1 INTRODUCTION 

Public key encryption systems such as Rivest-Shamir-Adleman (RSA) [1] and Elliptic Curve 

Cryptography (ECC) [2, 3] play a vital role in contemporary secure systems as they ensure the 

privacy, message integrity, authenticity, and non-repudiation requirements of secure communications. 

The security strength of any encryption algorithm depends on its key size [4]. ECC is becoming 

increasingly the promising public-key method because it uses shorter keys at a security level 

equivalent to other public-key algorithms like RSA [4].   

For real-time applications such as SSL server connections, a software implementation of an ECC 

scheme may not provide the desired performance level and hardware implementations are needed as 

they better meet the performance requirements. There are many factors which must be considered in 

the hardware implementation of ECC system designs such as: 

• Power consumption as it is becoming the main design constraint by the advent of portable and 
contactless devices.  

• Flexibility as the device is neither tied to a certain ECC curve nor needs a specific type of 
irreducible polynomial. 

• Scalability as the device can provide various levels of security without changing the 
underlying hardware. For instance, the system supports different operand sizes to 
accommodate different levels of security. Otherwise, the system will become outdated within a 
short period of time.   

• Throughput of the system is a very important factor in cases the system likely need to handle 
thousands of operations per second like servers, router gateways, etc.  

The operation that dictates the execution time of an elliptic curve cryptographic protocol is the 

point multiplication of the Galois Fields (GF) operands, and its hardware implementation would have 

a significant impact on the system performance [4]. 

One of the other crucial parameters in the implementation of ECC architectures is the type of the 

underlying finite field upon which the elliptic curve operations are based. ECC implementations 

could either use prime fields GF(p) of binary finite fields GF(2m) in which field elements are usually 



 

 

represented as binary polynomials. The latter ones are often chosen for hardware realizations as they 

require smaller hardware circuits for implementation [5].  

1.1 Related Work 

Due to the increased significance of cryptography, several public key cryptographic hardware for 

GF(2m) have been proposed in the literature. The authors of [6] have targeted a compact architecture 

that performs three different cryptographic algorithms: RSA, ECC and paring-based cryptography. 

They have tried to improve the time/area metrics by designing reusable functional units which can be 

shared among different modules. They have used the similarity of these three cryptographic 

algorithms for their basic arithmetic operations such that it allows diverse utilizations of the 

functional units in the design. However, they have not reported any results to show how much their 

design improved these metrics. The authors of [7] proposed an architecture that supports arbitrary 

operand sizes and provides multiplication, modular squaring and inversion operations. However, the 

computation time for the modular inversion of that architecture is in the order of O(m2). In contrast, 

our proposed architecture performs the inversion operation in the order of O(m). Meanwhile, the 

architecture proposed in [8] performs multiplication in GF(2m) for any value of m less than 256. Such 

architecture offers the flexibility in selecting the field size at the expense of being limited to only few 

fixed irreducible polynomials. Furthermore, the proposed architecture does not support the inversion 

operation. In [9] a reconfigurable design has been presented which supports variable operand sizes. 

The advantage of this architecture is its support for both GF(2m) and GF(p). However, it is restricted 

to specific types of elliptical curves. An architectures for implementing LSD multipliers for binary 

fields GF(2m) is presented in [10]. In this architecture, internal accumulators have been deployed for 

storing intermediate results and then, these extra accumulators were used to increase the maximum 

operating frequency by reducing the critical path delay of the multipliers. However, no hardware 

implementation report has been given in [10] and just analytical area and timing reports have been 

presented. Alternative modular designs have been proposed in [10, 11] based on offline 



 

 

reconfiguration. For instance, [10] presents a modular Field Programmable Gate Array (FPGA) based 

architecture that uses very simple hardware components. However, it does not perform the inversion 

operation. Meanwhile, the architecture presented in [11] supports both binary and polynomial field 

multiplication but only considers a specific type of irreducible polynomials and reconfiguration is 

offline. Hence, it can only be used for modular multiplications and does not support other important 

crucial operations in ECC, such as inversion and addition. In [12], the authors have proposed a 

reordered normal bias multiplier which gives the designer the ability to set a trade-off between the 

area and speed performance and have implemented their architecture on a 780-pin FPGA circuit. 

Another reconfigurable design was proposed in [13] to support various operand sizes for both binary 

and prime fields. This design implements RSA operations as well. It also supports power-gating 

approach to reduce the power wastage. However, it requires the data to be aligned before being 

exchanged with the outside world which complicates the design and increases the delay. A Graphics 

Processing Units (GPU) implementation is proposed in [14]. In this work, Least Significant Bit (LSB) 

invariant scalar point multiplication for binary elliptic curves is implemented on NVidia graphics 

cards by implementing parallel algorithms for GPU. Hardware/Software Co-Design implementations 

are also presented in the literature. For instance, the authors of [15] have proposed 

Hardware/Software Co-Design of ECC operations on an 8051 Microcontroller. They have tried to 

minimize the communication overhead due to operand transfers by the integration of a small DMA 

unit and inclusion of an additional I/O register into the hardware accelerator. Their design supports 

operations over binary fields of degree up to 192. 

1.2 Paper Contributions and Organization 

Based on the above discussion of the related literature, only few of the proposed architectures support 

key size selection feature and also save power for smaller key applications. In our previous work 

[17], a modular architecture has been proposed which is not only area efficient but also offers these 

features. However, when a small key size is used, the proposed architecture sets the other unutilized 



 

 

modules deactivated even if there are other requests to the system, as the case with the 

aforementioned related architectures. Such a common deficiency makes the system inefficient in 

terms of throughput and performance when there are many concurrent requests to the system which is 

a typical feature of secure server systems. 

In contrast, this paper alleviates such performance deficiencies by presenting a new parallel 

architecture that has the unutilized modules simultaneously operating to handle other requests in 

order to use the system more efficiently and increase the performance and throughput of the system. 

The main contributions and characteristics of the proposed architecture that distinguish it from the 

existing literature are summarized as follows: 

• The architecture is neither tied to a certain ECC curve nor need a specific type of irreducible 
polynomial.  

• The proposed design deactivates the unused modules by power and/or clock gating and saves 
power when small key size operations are performed and there is no other requested 
operation. 

• The proposed design handles multiple different operations in parallel in order to increase the 
overall performance and throughput of the system. 

• The proposed architecture handles different key sizes per each operation running in the 
system. 

The organization of the rest of this paper is as follows: the necessary background discuss of 

multiplication and inversion algorithms in GF(2m) is given in Section 2. Then, the base architecture to 

be used in this paper is briefly discussed in section 3. The new parallel architecture is discussed in 

Section 4. Simulation setup and results are analyzed in Section 5 and Section 6 concludes the paper. 

2 MULTIPLICATION AND INVERSION OPERATIONS IN GF(2M)  

Elliptic curve cryptography (ECC) is a public-key cryptography algorithm which is based on the 

algebraic structure of elliptic curves over finite fields. Point addition/subtraction, point doubling, and 

scalar point multiplication are geometrically-defined operations for elliptic curves. Two 

implementation alternatives, namely, prime field GF(p) and binary field GF(2m) are used for ECC 



 

 

systems. We only discuss the GF(2m) arithmetic as our proposed architecture is based on it. Equation 

(1) represents an elliptic curve on binary field GF(2m): 

�� + �� = �� + ��� + � (1) 

where x, y, a, b are m-bit binary numbers and b is non-zero. More details about the underlying theory 

behind of ECC operations can be found in [4]. 

The creation of public key in ECC requires scalar point multiplication on the base point, P. Scalar 

point multiplication could be done by repetitively performing point doubling and point addition. The 

basic operations for scalar point multiplication boil down to modular addition, subtraction, 

multiplication, and division on GF(2m) operands [4]. Addition and subtraction are trivial operations 

which are simply done by bit-wise XOR operation on operands. Division operation is more 

complicated than multiplication and inversion and therefore, it is normally substituted with an 

inversion of divisor followed by a multiplication [4]. In the following subsections, implementing 

multiplication and inversion operations are briefly discussed. 

2.1 Modular Multiplication in GF(2m)  

A modular multiplication in GF(2m) can be denoted by: C = A×B mod F, where  A, B and C are m-bit 

binary polynomials in GF(2m) and F is an (m+1)-bit irreducible binary polynomial for the 

corresponding GF(2m). Table I shows the pseudo-code of the algorithm presented in [11] which is the 

basis of our proposed architecture too. More details about this algorithm could be found in [11]. In 

this paper, a modified version of this algorithm is used in order to support selectable operand size.  

2.2 Modular Inversion in GF(2m)  

A modular inversion operation in GF(2m) finds a multiplicative inverse, A-1 of field element, A such 

that 	 × 	�� = 1	���	�, where, F is the irreducible polynomial of corresponding GF(2m). In [17], 

we have presented an architecture that uses the algorithm presented in [18] as it can be easily 



 

 

modified to achieve selectable key size architecture. The pseudo-code of the algorithm is given in 

Table II. Both multiplication and inversion algorithms, depend on very simple operations such as 

shift right, shift left, addition and XOR. Using this feature, a hardware component has been designed 

that performs both multiplication and inversion operations which saves the system in terms of area 

and power consumption. 

3 OVERVIEW OF BASIC ARCHITECTURE 
 

In our prior work [17], a modular multiplier had been designed which implements all the necessary 

arithmetic operations over GF(2m)  required to do ECC computations. In this architecture, users can 

select the operand size according to their security needs. Let us assume that we want to design an 

m-bit multiplier, where m is the maximum operand size that would be needed in the foreseeable 

future. In this architecture, the m-bit binary operands are split into k smaller n-bit words (m = k × N) 

as follows: 

A=A1 + 2nA2 + … + 2(k-2)nAk-1 + 2(k-1)nAk, where ∑
−

=
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B=B1 + 2nB2 + … + 2(k-2)nBk-1 + 2(k-1)nBk, where ∑
−
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F=F1 + 2nF2 + … + 2(k-2)nFk-1 + 2(k-1)nFk, where ∑
−

=
= 1

0
2

n

j

j
iji fF , and fij are binary bits of modulus  F 

Regarding above discussions, the basic multiplier architecture is composed of k modules each has 

n-bit size as shown in Figure 1. Each of the modules [0  -  k-1] is responsible for operating on one 

n-bit word of the operand. In this architecture two design parameters must be defined: (i) number of 

words k, and (ii)  word-width n. Suppose that k=8 and n=8. If a 24-bit computation is required, then, 

the first three modules will be activated by controller and remaining modules will remain inactive. 

Referring to the multiplication and inversion algorithms (Table I and Table II), a mechanism is 

required for selecting the appropriate MSBs of operands which is one of the tasks of controller 



 

 

module. For example, if a three word computation is needed, then the MSBs coming from the third 

module will be used for the calculation. 

Inside each module, there are four shift registers to hold four input/output words of the operands. 

The MSBs of each register are also connected to the controller, which selects the appropriate MSBs 

for operands. Besides, each module has an ALU that is responsible for performing various operations 

such as, XOR, shifting, etc. The controller unit generates appropriate signals to coordinate the 

operations performed inside this ALU. The block diagram of the controller unit is presented in 

Figure 2. The controller has three sub-blocks:  

• Load/Store, which is used during the operations of the input and output loops. It keeps a 
counter, WordCount, to count how many modules are required for a particular computation. It 
also turns on and off modules by generating appropriate module select signal for each module. 
During input cycle, the controller also gets “Instruction” signal, which tells the arithmetic 
processor which operation among add, multiplication, and inversion is requested.  

• MSB Selector, which is composed of four multiplexers for A, B, F, and C operands. 
Multiplexers are connected to the MSBs coming from k modules. This module selects the 
appropriate MSBs based on the value of WordCount register. 

• Finite State Machine, which controls the operation of the proposed architecture. The 
controller implements a finite state machine and generates control signals for various sub 
tasks, such as XOR, shift left, shift right, etc. It should also be noted that during the 
computation loop, the module select signal selects just the needed modules and keeps the rest 
turned off in order to save power.  

Choosing n=32 and k=8, the design was synthesized by 45nm technology cells with clock 

frequency adjusted to 1GHz. The main goal in this design was introducing a low-power and 

area-efficient design. As Figure 3, the power consumption is directly proportional to number of used 

modules.   Hence, the design saves power when a smaller key size operation is requested. 

4 PROPOSED MODULAR PARALLEL ARCHITECTURE 

In our previous work [17], the power consumption was reduced by making relation between selected 

operand size and power consumption. However, that system could not deal with new requests even if 

there are free unutilized modules which can perform new tasks. In other words, it did not efficiently 



 

 

use the available hardware resources. Thus motivated, we propose a parallel architecture in this paper 

that increases the overall performance and throughput of the system by grant all requests as long as 

there are idle modules which can handle new requests. There are two scenarios for making the system 

operate in parallel. One solution is handling multiple same operations in parallel, i.e. handling 

multiple multiplication operations. Since high level scalar ECC operations are composed of different 

operations, this parallelism will not be effective. For instance, a point doubling operation is consisted 

of multiplication, inversion, and addition operations. This way, if two point doubling requests do not 

enter at the same time, the second request must wait for the first operation to be completed. Therefore, 

the system should handle multiple different operations to run in parallel. In our developed parallel 

architecture, the system handles different operations with different operand sizes concurrently. For 

instance, both multiplication and inversion are required to be simultaneously handled. 

The block diagram of the parallel architecture is depicted in Figure 4. Comparing Figure 1 and 

Figure 4, the parallel architecture has module separators between consecutive modules. These module 

separators are used to dynamically partition the modules where each partition is responsible for one 

task. The module separator is a simple multiplexer which selects either zero or previous module’s 

output as the input of the next module. This partitioning is online and its control signals come from 

Module-Assigner that will be discussed later.  

The Controller unit shown in Figure 5 generates appropriate signals to coordinate operations 

performed in the system. This Controller has three sub-blocks: i) Module Assigner, ii) Task 

Controllers, and iii) Correlator which will be discussed in the following sub sections. 

4.1 Module-Assigner: 

Module-Assigner connects the system to outside environment. It receives requests from outside and 

replies to them. Each new request states how many modules it requires (word-count) and also the 

instruction type that must be performed such as multiplication, division, or addition/subtraction. In 



 

 

response, the Module-Assigner will check (i) if there is a free Task-Controller to take care of this 

particular task and (ii)  if there are enough free consecutive modules to handle this task. If one of these 

conditions fails, then Module-Assigner will reply to the requesting part that it cannot accept this task 

by putting zero on grant signal. Otherwise, the grant signal will be one. 

Each Task-Controller has a busy tag which is used for this purpose. To check the second condition, 

the Module-Assigner starts from the first module and check if it can find word-count free modules in 

a row. For example, if the task requires three modules, it will start with checking modules 0, 1 and 2. 

If module 0 is taken, then it will check modules 1, 2 and 3. This process continues until it finds three 

consecutive free modules and after that it gives a task-number to that particular task in order to make 

a distinction between tasks. Otherwise, it refuses the new task. This search procedure is implemented 

by a look up table. The size and complexity of this lookup table is proportional to the number of 

modules in the system.  

After accepting the new request, the Module-Assigner will follow these steps: 

1. The Module-Assigner sets the corresponding modules’ I/O signals to load the inputs (A, B 

and F). The I/O signals define the type of I/O operation based on instruction type. It also 

triggers modules’ mselect-load signals one after another to enable them to execute the I/O 

operation. 

2. After the load phase, the Module-Assigner will start the following actions concurrently. 

(a) It will inform the corresponding Task-Controller to start its work by triggering its 

load-complete signal.  

(b) It enables all dedicated modules for the computation phase by triggering their 

mselect-op signals.  



 

 

(c) The Module-Assigner also generates mux-select signals which are used for 

separating this task’s modules from other tasks’ modules.  

(d) It triggers module-state and task-wordcount signals to correlate Task-Controllers 

with their assigned modules. Since Module-Assigner is the only part who knows 

the relation among tasks, modules, and Task-Controllers, it generates these signals 

dynamically to make this correlation. 

3. When the result of the task at hand becomes ready, the corresponding Task-Controller 

raises its done-signal. Then, Module-Assigner puts the task number on outtask-number line 

to notify the outside parts that the results on the output bus belong to this specific task 

number. Similar to the loading phase, the modules will send their results to the output bus 

one by one.  

4. Eventually, the corresponding Task-Controller and all assigned modules will become free.  

Furthermore, suppose that task A arrives while task B is ready to send its results. Module-Assigner 

gives the priority to task B and rejects task A. This way, there are more free modules for new tasks 

and more importantly, it prevents the deadlock. 

4.2 Task-Controllers 

The block diagram of Task-Controllers part is shown in Figure 6. This part has t independent units 

where each unit is the Finite-State-Machine in the basic architecture shown in Figure 2. Each of these 

units generates the appropriate signals to coordinate operations performed inside modules. These 

units are connected to Module-Assigner and Correlator. The Module-Assigner informs each unit 

when it is its turn to start computation by load-complete signal. At the end of computation of each 

task, the corresponding unit will inform it to Module-Assigner by raising its done-signal. 



 

 

4.3 Correlator: 

The Correlator creates a channel between Task-Controller units and their corresponding modules as 

shown in Figure 7. The Correlator sends the generated op-codes by Task-Controller to modules and 

in the opposite side, it sends the MSB of operands inside modules to their respective Task-Controller. 

Per each Task-Controller unit, there is an MSB-Selector circuit inside Correlator. These 

MSB-Selectors are exactly as the MSB-Selector circuit in the basic architecture. The appropriate 

MBS bits selected by these circuits will be forwarded to the corresponding Task-Controller units. 

In the basic architecture [17], there was only one Finite-State-Machine and one MSB-Selector 

circuit. In the new parallel architecture, there are many of these units. Besides, the Load/Store module 

in the basic design is replaced by a more complex Module-Assigner unit, which handles the task 

assignment in addition to controlling the load and store operations. 

Figure 8 demonstrates a sample operation of the proposed architecture. Let us assume a 256-bit 

architecture, composed of eight 32-bit word modules. In this Figure, the thick-border means that the 

module is busy with input/output operation. The gray and black rectangles mean that the module is 

busy with multiplication or inversion operation respectively. Whenever the modules are presented in 

multiple lines, it means that there are parallel operations in process. Initially, the system is in power 

save mode, only the Controller is active and all the modules are turned off using power-gating signals. 

Now suppose that a 96-bit multiplication request arrives and accordingly modules 1, 2, and 3 will be 

activated and will load the input data in cycle 2. In the next cycle, all the input data are read into 

modules’ registers and they will perform the multiplication operation. In cycle 4, a 128-bit inversion 

request arrives which requires four modules. At this cycle, modules 4, 5, 6 and 7 will load the 

corresponding input data where modules 1, 2 and 3 are busy with multiplication operation. The 

modules are presented in separate lines in cycle 4 to indicate the parallel behavior of the system. At 

cycle 5, modules 1, 2 and 3 are still busy with multiplication operation and modules 4, 5, 6 and 7 are 



 

 

busy with inversion operation. In the next cycle, the multiplication process computation is over and 

corresponding modules will send their result. Eventually in cycle 8, the inversion process is over and 

modules 4, 5, 6 and 7 will send their results as well and afterwards, the processor enters idle state 

again. 

5 EXPERIMENTAL RESULTS  

Based on the proposed architectures, a 1024-bit multiplier is designed in three different modes: 

• 16-64 Mode: 16 modules each one is 64-bit wide. 

• 32-32 Mode: 32 modules each one is 32-bit wide. 

• 64-16 Mode: 64 modules each one is 16-bit wide. 

The designs are synthesized by Synopsys Design Compiler in the 45 nm technology mode and the 

FreePDK45 Process Design Kit (PDK). The clock frequency is set to 1 GHz. The operating 

conditions are set to typical, the supply voltage is fixed at 1.1V, and the temperature is set to 27°C. 

For place and route, the Cadence SOC Encounter tool in 45nm technology mode is used. Post-layout 

analysis is used for power and area estimation. Static timing verification method is used for 

evaluating the design for set up and holds time violations. For timing estimation, a software tool is 

also developed for generating random data vectors in the test bench codes and these test bench codes 

are simulated by ModelSim tool. 

5.1 Area 

Table III summarizes the reported area figures from post-layout die area for 1024-bit implementation. 

As Table III presents, the basic design is more efficient in terms of area overhead when the number of 

modules increases as expected. In the new parallel design, the Module-Assigner part has a lookup 

table to keep track of the idle modules. The size of the lookup table grows with increasing the number 

of modules and clearly its area will increase accordingly. In the basic design, the complexity of the 

controller is much less relevant to the number of modules. Increasing the number of modules, the 



 

 

number of I/O pins also decreases, but, the load input and store output phases will increase as well.  

We compare our designs’ area in 32-32 mode with three other 1024-bit designs which is presented 

in Table IV. It must be noted that our architectures use newer technology compared to other designs 

which has considerable effect in area as well.  

5.2 Timing 

Each operation is done in four phases, namely, check availability, load operands, computation and 

store result. The check availability phase does not exist in the basic design since it was designed to 

handle just one task at a given time. The duration of check-availability phase is fixed and it is always 

4 clock cycles regardless of the granularity of the system and the number of controllers. The 

durations of the load and store phases depend on the number of required modules for that particular 

operation. The addition operation always needs one clock cycle and the multiplication always needs 

twice the operand size number of cycles. The operation cycle of the inversion operation depends on 

the input data bit-pattern.  We perform a large number of simulations by changing bit patterns of 

input vectors to figure out the average number of clock cycles needed to perform an inversion 

operation. The average number is 5.5 times the operand size. Changing the module-size and keeping 

the maximum operand size the same, only the durations of load and store phases will change which is 

negligible. Consequently, the main computation cycle is proportional to the operand width O(m) and 

is irrespective of the size of module. This discussion is summarized in Table V. 

The main improvement in our parallel architecture is the throughput performance of the system. To 

evaluate our claim, we simulate both systems in 32-32 mode and generate 100,000 point doubling 

operations where each operation requires limited random number of modules for completion. This is 

a typical situation for today secure systems as they likely must handle hundreds of ECC operations 

per second. Point doubling operation is a good candidate for testing the utilization and throughput of 

the system because it has all basic operations.  Each scalar point multiplication is composed of a 



 

 

series of point doubling and additions. Considering the involved basic operations, point doubling is 

very similar to point addition and therefore, it is a good approximation for scalar point multiplication 

as well. Each point doubling operation is composed of seven additions, three multiplications and one 

inversion. Each point doubling operation has random field-size between 160-bit and 256-bit. In 32-32 

mode these operations will require between 5 to 8 modules. 160-bit ECC is secure today and most of 

typical applications use this scheme and 256 bit ECC in secure until 2030 [19]. So this way, a wide 

range of secure applications’ data will be injected to the system. 

Table VI presents the differences between the results of the two architectures. As the results in 

Table VI shows, the new architecture completes the task almost 3.47 times faster than the basic 

architecture. Hence, the throughput of parallel architecture is 3.47 times more than throughput of 

basic design.  

Where the change in key size is limited, the system response time and controller area overhead 

deteriorates by increasing the granularity of the system as Table VII shows. Making the modules 

smaller, the response time is increasing because the load and store operations take more time. 

Therefore, it is better to choose granularity low in typical cases where the change in the key size is 

limited. However, the flexibility of the system in terms of supporting different key sizes will be low 

as it does not support keys that are not submultiples of module size when the granularity of the 

system is low. This implies the existence of a trade-off between the flexibility and area, performance 

similar to other existing parallel systems. 

5.3 Power and Energy 

Similar to the area evaluation, our designs’ power consumption in 32-32 mode are being compared 

with three other 1024-bit designs which is presented in Table VIII. The proposed architecture in [7] 

does not report any actual power figures and has reported just analytical results. Our proposed 

designs offer very low-power compared to two other designs because of i) implementing power 



 

 

and/or clock gating techniques and ii) use of simple components. 

Although, the power consumption in parallel architecture is more than the basic design, it requires 

less energy to accomplish tasks when there are several concurrent tasks. To illustrate the difference, 

assume that there are 100,000 point doubling tasks like what was assumed in timing evaluation. As 

Table IX presents, the basic design consumes less power than the parallel design because in average 

only 25% of its modules are active whereas 95% of the modules are active in parallel design. 

However, the parallel design completes the tasks in much less time and requires 9% less energy 

compared to basic architecture. 

6 CONCLUSIONS 

In this paper, a high-performance parallel arithmetic processor architecture for GF(2m) has been 

proposed which supports all essential ECC operations. The architecture is modular, supports arbitrary 

operand sizes and is scalable for very large operand sizes. When a small key size operation is 

requested, the system deactivates the remaining modules to reduce the power consumption if there is 

no parallel request to the system. Otherwise, it handles new requests by the remaining unutilized 

modules in parallel with other modules. The new request to the system could be different operations 

with different operand sizes that let the system to use its resources very efficiently which 

considerably increases the overall performance and throughput of the system. Adding other 

operations such as point addition and point doubling to our architecture is our future work in our 

ultimate goal to design a complete ECC processor. 
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Figure 1. Block diagram of basic multiplier architecture 
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Figure 2. Block diagram of Controller in basic architecture. 
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Figure 3. The relation between power consumption and operand size. 
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Figure 4. Block diagram of our parallel multiplier architecture 
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Figure 5. Block diagram of Controller in our parallel architecture 
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Figure 6. Block diagram of Task-Controllers in the proposed parallel architecture 
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Figure 7. The relation between the Corelator, Tasks and Task-Controllers 
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Figure 8. An example of the operation of our proposed parallel architecture  
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TABLE I 

 MODULAR MULTIPLICATION ALGORITHM 

(ADAPTED FROM [11]) 

/*This algorithm reads m-bit operands and then 
performs the computation in m iteration and 
finally outputs the m-bit output.*/ 

Inputs: 

A: m-bit input // multiplicand 

B: m-bit input // multiplier 

F: m-bit input // modulus; although it is an 

               //  (m+1)binary number, the MSB 

               //  is always 1, hence not  

               //  needed for this algorithm 

Output 

C: m-bit output // the result 

 

Read A, B, and F; 

C := 0; MSB_C := 0; 

for i = m-1 down to 0 with step 1 begin 

  if (B[m-1] = 1)  

    C : = C XOR A; 

  if (i > 0) begin 

    MSB_C := C[m-1]; 

    C := C << 1; // Shift left once 

    if (MSB_C = 1) 

      C := C XOR F; 

  endif 

  B := B << 1; // Shift left once 

endfor 

Output C as the result;  
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TABLE II 

 MODULAR INVERSION ALGORITHM (ADAPTED FROM [18]) 

/*This algorithm reads m-bit operands and then  

performs the computation in 2m iteration and finally 

outputs the m-bit output.*/ 

 

Inputs: 

A: m-bit input // operand to be inverted 

F: m-bit input // modulus; although it is an (m+1) 

               //  binary number, the MSB is always 1,  

               // hence not needed for this algorithm 

Output 

C: m-bit output // the result 

 

Read A and F; 

B := 0, C := 1 and Deg := 0; 

Am := 0, Bm := 0, Cm := 0, Fm := 1; //Initialize MS Bs 

for i = 1 to 2m with step 1 begin 

  if (Am = 0) then begin 

    {Am, A} := {Am, A} << 1; // Shift left once 

    {Cm, C}: = {Cm, C} << 1; // Shift left once 

    Deg := Deg + 1; 

  endif 

  else begin 

    if (Fm = 1) begin 

      {Fm, F} := {Fm, F} XOR {Am, A}; 

      {Bm, B} := {Bm, B} XOR {Cm, C}; 

    endif 

    {Fm, F} := {Fm, F} << 1; Shift left once 

    if (Deg = 0) begin 

      Swap({Am, A}, {Fm, F}); 

      Swap(({Bm, B} << 1), {Cm,C}) // left shift, swap 

      Deg := 1; 

    else begin 

      {Cm, C} : = {Cm, C} >> 1; // right shift once 

       Deg := Deg – 1; 

    endif 

  endif 

endfor 

Output C as the result  
 
 
 
 
 



 

 

A Low-Power Parallel Architecture for Finite Galois Field 

GF(2m) Arithmetic Operations for Elliptic Curve Cryptography 

Esmaeil Amini, Zahra Jeddi, Ahmed Khattab, and Magdy Bayoumi 

 
 
 
 
 

TABLE III 
GRANULARITY VERSUS CONTROLLER AREA OVERHEAD 

 Design mode # of I/O pins Total die area 
(um2) 

Controller 
overhead 

Basic 
Design 

16-64 265 195,000 3.5% 

32-32 137 201,000 4% 

64-16 73 214,000 4.7% 

     

Parallel 
Architecture 

16-64 275 211,000 11% 

32-32 148 230,000 17% 

64-16 85 282,000 25% 
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TABLE IV 

AREA COMPARISON WITH OTHER WORKS 

Design Area (mm2) Comments 

[9] 4.608 mm2 0.25 um Technology 

[16] 2.34 mm2 0.13 um Technology 

[7] O (1024) Analytic result 

Basic Architecture 0.2 45 nm Technology 

Parallel Architecture 0.23 45 nm Technology 
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TABLE V 
# OF CYCLES PER OPERATION VS OPERAND SIZE 

 Check-Availability Load/Store Inversion Multiplication Addition 

Basic design - RM* 5.5m** 2m** 1 

Parallel Design 4 RM* 5.5m** 2m** 1 

 
** m : Operand Size     * RM : Number of Required Modules 
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TABLE VI 
COMPARISON OF THROUGHPUT BETWEEN BASIC AND PARALLEL DESIGNS 

 # of tasks Completion 
Time 

Basic 
Architecture 

100,000 1.22 s 

   
Parallel 

Architecture 
100,000 0.357 s 
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TABLE VII 

RELATION BETWEEN GRANULARITY AND PERFORMANCE 

Design mode Response 
time (cycle) 

Controller 
Area Overhead 

16-64 0.347 s 11% 

32-32 0.357 s 17% 

64-16 0.37 s 25% 
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TABLE VIII 

POWER COMPARISON WITH OTHER WORKS 

Design Power 
consumption 

Comments 

[9] 75 mW Moderate power 

[16] 455 mW High power 

[7] n/a Analytic result 

Basic Architecture 23 mW Low Power 

Parallel Architecture 28 mW Low Power 
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TABLE IX 

ENERGY COMPARISON CONSIDERING CONCURRENT TASKS 

Design Completion 
time 

Power 
consumption 

Energy Comment 

Basic 
Architecture 

1.22 s 9.17 mW 11.19 mJ 
~25% of modules 

are active 
     

Parallel 
Architecture 

0.357 s 27 mW 9.64 mJ 
~95% of modules 

are active 
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