
Cairo University

Electronics and Communications Department

Computer Arithmetic:

Learning how to add two numbers

Hossam A. H. Fahmy

c© Hossam A. H. Fahmy

Back to addition

Do you remember these decimal examples:

1.324 ×105

+ 1.576 ×103





1.324 ×105

+ 0.01576 ×105

1.33976 ×105

≈ 1.340 ×105

9.853 ×107

+ 1.466 ×106





9.853 ×107

+ 0.1466 ×107

9.9996 ×107

≈ 1.000 ×108

1.324 ×103

− 1.321 ×103





1.324 ×103

+ 8.679 ×103

0.003 ×103

= 3.000 ×100

1/19

One path algorithm for the IEEE binary standard

We need to perform the following steps for the significand of the
result:

1. Find the exponent difference and decide on the smaller number.

2. Shift the smaller number to the right by the difference.

3. Add or subtract the two numbers depending on the effective operation.

4. In the case of an effective subtraction and when the exponents are equal,
the “significand” of the result may become negative. If so, complement it.

5. In the case of an effective subtraction, find the location of the leading non-
zero digit and shift the result to the left up to this location.

6. In the case of an addition with a carry overflow, normalize the result by a
shift to the right.

7. Use the sticky digit, guard digit, and the LSD as well as the sign of the
number and the rounding mode to decide on the appropriate rounding action
then add this rounding digit.

8. If an overflow due to rounding occurs, renormalize the result.

2/19

What about the exponent and sign?

• The exponent of the result is that of the larger number adjusted
according to the normalization.

– For a subnormal result, the exponent is fixed to zero (satu-
rated addition at the lower bound).

– Depending on the rounding and traps, the case of overflow
yields either the maximum exponent (expmax) or an indication
of ±∞.

• The sign is that of the operand assumed to be the largest num-
ber.

– If a complementation occurs the sign is flipped.

– The rounding mode affects the sign: 4 (x− x) = +0 while
5 (x− x) = −0 but 4 ((−0) + (−0)) = −0.

3/19



What are the main pieces?

This algorithm has a number of big parts:

• adders: exponent difference, significand addition, complemen-

tation, rounding;

• big shifters: alignment (right), leading digit normalization (left);

and

• multiplexers: swap, short normalization shifts.

In addition to that, some logic blocks calculate the sticky digit,

the rounding decision, the effective operation, invert the smaller

operand for an effective subtraction, . . .

4/19

Simplified critical path analysis

-

?

?

?

?

?

Exp diff
O(log nexp)

Alignment block

Swap
O(log n)

Right shift
O(log n)

Sticky

Adder
O(log n)

LDD
O(log n)

Left shift LDD
Block

Round
O(log n)

Normalize
O(log n)

Time delays in the blocks of an adder (one-path algorithm)

5/19

Do we really need all that?

• A large normalization to the left may occur only

– for an effective subtraction, and
– when the exponent difference is either zero or at most one.

• The need for complementation may occur only

– for an effective subtraction, and
– when the exponent difference is exactly zero.

• A large alignment shift occurs only when the exponent difference

is large.

⇒ make two parallel paths, the “far” path and the “close” or “can-

cellation” path and run speculatively then choose the correct result

at the end.
6/19

Close exponents may lead to cancellation

In the close-path, the exponent difference is either zero or one.

Looking at the least significant two bits is enough to predict

which is larger. Why?

We do not need to wait till the end of the addition to detect the

leading non-zero digit, we can predict its approximate location

while adding. How?

No rounding is needed if a cancellation occurs. Why?

7/19



Leading one prediction

Looking at two binary numbers:

1 0 1 0 0 1 1 1 · · ·
− 1 0 1 0 0 0 0 1 · · ·

0 0 0 0 0 1 1 0 · · ·
we see that the bits cancel when they are exactly the same.

Hence, form the bitwise XOR function and predict the location of
the leading one.

Now, think about:

1 0 0 0 0 1 1 1 · · ·
− 0 1 1 1 1 0 0 1 · · ·

0 0 0 0 1 1 1 0 · · ·
For the general case, you need to consider all the bit patterns that
might lead to a cancellation and detect them then shift accordingly.

8/19

Rounding in the close path

• If the exponent difference is zero then the guard and sticky digits

are zero. (Regardless of any cancellations.)

• If the exponent difference is one then the sticky digit is zero. If

a left normalization shift is needed, the guard bit is shifted into

the result.

In both cases, the result is exact and no rounding is needed.

⇒ Make the left shifting (in the case of an exponent difference of

one) a condition to select the cancellation path and eliminate the

rounding logic completely from that path.

9/19

Simplified close path

Predict and swap
? ?

Adder LOP
?

Normalize�

A simple view of the close path.

10/19

The large exponent difference

• We need to calculate the absolute difference of the exponents

and shift the smaller number accordingly.

• Either add or subtract depending on the effective operation.

• Can we do the rounding decision in parallel to the adder since

the guard and sticky digits are ready (before normalization)?

11/19



The issue of integrated rounding

The result of the adder is:

before normalization (a) N ′ L′ G′ R′ S′
after normalization (b) N L G S
after rounding (c) N L

We want to decide the rounding based on (a) to get a correct

result (c) as if it is determined using (b).

12/19

Normalization in the far-path

With an exponent difference larger than one we get the following

possibilities for the final normalization:

Subtraction

No shift Simple rounding.

Shift left by one Must adjust the rounding. Is this true?

Addition

No shift Simple rounding.

Shift right by one Must adjust the rounding. How?

13/19

A compound adder

• The adder must provide both the sum and the sum + 1 and the

rounding logic picks the correct result.

• With careful analysis, we deduce that for the case of RP and

RM, the adder must also provide sum + 2. That leads to an

extra row of half adders.

14/19

Far path

-

?

?

? ?

Exp diff
O(log nexp)

Alignment block

Swap
O(log n)

Right shift
O(log n)

Sticky

Adder
O(log n)

Round
O(log n)

Mux/Normalize
O(log n)

From close path

Time delays in the far-path of an adder (two-path algorithm)

15/19



Variable latency adder

Yet another possible improvement uses a pipelined variable latency

adder.

• If the close path is chosen and the output does not need to be

left shifted, that output is then ready after just the first cycle.

• If it needs a left shift as indicated by the Leading One Predictor,

LOP, and the priority encoder, PENC, it is available after the

second cycle.

• Otherwise, it takes three cycles to finish.

A collision detection circuit prevents two outputs from getting out

of the pipelined adder on the data bus at the same time.

16/19

Block diagram of the variable latency adder

Collision
Out

Collision
Out

Far Close

Predict & swap

Exp diff

& swap
Com Add LOP

PENC

Left shift

Half Add

Com Add

Collision

out

Right shift

The variable latency adder.

17/19

But, isn’t variable latency bad?

There are a number of issues that limit the value of the variable

latency adder:

1. How many collisions occur and the best way to avoid them?

2. The difficulties in current high performance processors to sched-

ule a variable latency instruction.

3. How frequent are the results that finish earlier?

If, in a certain system, these are answered favorably then the variable

latency adder leads to a lower average delay time.

18/19

Real adders

To sum it all up, the real adders used in your computers may use

some of the previous optimizations but they must also

1. correctly get the sign and exponent,

2. handle exceptional inputs and outputs (±∞, ±0, NaN, and sub-

normals), and

3. generate the correct flags.

The adders usually also implement both the single and double pre-

cisions using the same unit.

19/19


