
Cairo University

Electronics and Communications Department

Computer Arithmetic:

1 + 1 = 10

Hossam A. H. Fahmy

c© Hossam A. H. Fahmy

Addition is fundamental

• The subtraction, multiplication, and division are based on the

addition.

• The addition is also fundamental in determining the processor

cycle time and hence the overall performance.

Many people worked on addition producing algorithms that differ in

minute details.

1/16

Types of adders

Time: variable time versus fixed (usually worst case) time.

Arrival of inputs: serial versus parallel adders.

Operands: two-operand versus multi-operand adders.

Two-operand parallel addition may use ripple carry, carry skip, carry

select, conditional sum, carry lookahead, prefix, . . .

2/16

Full adder

The sum and carry at a certain bit location are:

si = ai ⊕ bi ⊕ ci (Odd)
ci+1 = aibi + aici + bici (Majority)

• An incoming carry propagates to ci+1 if pi = ai + bi = 1.

• A carry is generated (regardless of ci) if gi = aibi = 1.

• An incoming carry is absorbed (killed) if ki = āībi = 1.

Note that ci+1 = gi + pici = gi + tici where ti = ai ⊕ bi.

3/16



Rippling the carry

• The simplest parallel addition uses a ripple carry adder .

• Since ci+1 = aibi + aici + bici, the generation of the carry takes

2 gate delays.

• The complete adder takes 2n gate delays.

4/16

Carry skip idea

We know that ci+1 = gi + pici. Hence,

ci+1 = gi + pi(gi−1 + pi−1ci−1)

= gi + pigi−1 + pipi−1gi−2 + pipi−1pi−2ci−2

A low order carry propagates if all the propagate signals are active.

With the simple grouping Pi←i−2 = pipi−1pi−2, we have

ci+1 = ci+1(out of full adder i + 1) + Pici−2

If the group propagation signal is ready, we skip over the group.

5/16

Carry skip analysis

• The worst case delay is to ripple through the first and last group

and skip over the middle ones.

• Simple designs use a fixed group size of r − 1.

• Hence the delay is 2× 2(r − 1) + 2
(
d n
r−1e − 2

)
.

• Better designs use multiple levels and variable block sizes.

6/16

Carry select and conditional sum idea

Instead of waiting for the carry then perform the summation,

let us prepare two sums one with the carry assumed as zero and

the other with the carry assumed as one.

We can break the long operand into smaller groups with two

sums for each group. Once available, the carry selects the cor-

rect sum via a multiplexer.

The time delay is 5 + 2 dlogr−1(dn/re − 1)e

If the group size is reduced to just a pair of positions this is

conditional sum.

7/16



A decimal conditional sum example

The operation is:

2 6 7 7 4 1 0 0 2 6 9 2 4 3 5 8
+ 5 6 0 4 9 7 9 4 1 5 1 7 1 6 4 5

8 2 8 2 3 8 9 4 4 2 0 9 6 0 0 3

i→ 15 14 13 12 11 10 9 8
Xi 2 6 7 7 4 1 0 0
Yi 5 6 0 4 9 7 9 4

08 07 13 12 08 07 12 11 14 13 09 08 10 09 05 04 t0
083 082 082 081 139 138 095 094 t1

08282 08281 13895 13894 t2
082823895 082823894 t3

t4

i→ 7 6 5 4 3 2 1 0
Xi 2 6 9 2 4 3 5 8
Yi 1 5 1 7 1 6 4 5

04 03 12 11 11 10 10 09 06 05 10 09 10 09 13 t0
042 041 110 109 060 059 103 t1

04210 04209 06003 t2
042096003 t3

08282389442096003 t4

8/16

Carry lookahead ideas

Since

ci+1 = gi + pi(gi−1 + pi−1ci−1)

= gi + pigi−1 + pipi−1gi−2 + pipi−1pi−2ci−2

= gi + pigi−1 + pipi−1gi−2 + pipi−1pi−2gi−3

+ pipi−1pi−2pi−3ci−3

We define two quantities,

a group generate

Gi←i−3 = gi + pigi−1 + pipi−1gi−2 + pipi−1pi−2gi−3

and

a group propagate Pi←i−3 = pipi−1pi−2pi−3.

9/16

Carry lookahead, grouping the carries

With the group generate and propagate we get

c4 = G3←0 + P3←0c0

c8 = G7←4 + P7←4c4

c12 = G11←8 + P11←8c8

c16 = G15←12 + P15←12c12

Notice that each of G3←0 and P3←0 needs two gate delays after

getting gi and pi. Then for each carry we need two more gate

delays.

Hence, the calculation of c16 takes 1 + 2 + 4× 2 = 11 gate delays.

10/16

Carry lookahead, second level

c16 = G15←12 + P15←12c12

= G15←12 + P15←12G11←8 + P15←12P11←8c8

= G15←12 + P15←12G11←8 + P15←12P11←8G7←4

+ P15←12P11←8P7←4c4

= G15←12 + P15←12G11←8 + P15←12P11←8G7←4

+ P15←12P11←8P7←4G3←0 + P15←12P11←8P7←4P3←0c0

Once more we can define:

G15←0 = G15←12 + P15←12G11←8 + P15←12P11←8G7←4

+ P15←12P11←8P7←4G3←0

P15←0 = P15←12P11←8P7←4P3←0

Now, the calculation of c16 takes 1 + 2 + 2 + 2 = 7 gate delays.

Note that we take the same time to get c12 and c8.

11/16



Time delay in a 64 bit adder

2 GATE DELAYS

S63

C64

C63

WORST CASE PATH DELAY

2 GATE DELAYS 2 GATE DELAYS

C0

C0

C 0C 4C 8C 12C 16C 20C 24C 28C 32C 36C 40C 44C 48C 52C 56C 60

S3 S1
S2 S0

S63 S61
S62 S60

B63 B61
A62 A60

B3 B0
A3 A0

c48 = G47←0 + P47←0c0

c60 = G59←48 + P59←48c48

c63 = G62←60 + P62←60c60

s63 = t63 ⊕ c63

Hence the delay is 2× (2dlogr ne − 1) + 1 + 1 = 4× dlogr ne.

12/16

Canonic and prefix adders

• The canonic adder has a specific circuit to generate the carry
into each bit location.

• ci+1 is due to a propagation from c0 or a propagation from a
generation at position 1 or a propagation from a generation at
position 2 or . . .

• Hence the delay is that of an AND tree to detect the propagation
followed by an OR tree to combine the result.

• The total delay is 2dlogr ne + 1 + 1. (The two trees plus the
formation of the initial p and g plus the final bit sum.)

• The prefix adder is similar assuming r = 2.

13/16

Ling adder

We notice that gi = pigi and hence

Gi←i−3 = gi + pigi−1 + pipi−1gi−2 + pipi−1pi−2gi−3

= pi
(
gi + gi−1 + pi−1gi−2 + pi−1pi−2gi−3

)

But,

ci+1 = Gi←i−3 + Pi←i−3ci−3

= pihi+1

which yields

si+1 = ti+1 ⊕ (pihi+1),

= ti+1(p̄i + h̄i+1) + t̄i+1pihi+1,

= h̄i+1ti+1 + hi+1(ti+1 ⊕ pi).

We moved one gate delay away from the critical path.

In his original work, Ling also used the wired logic capability of ECL
to enhance the speed.

14/16

Hybrid adders

• Modern adders do not follow a “pure” strategy but use a com-

bination of techniques.

• The “best” adder is not clearly defined. Those with lower gate

delays usually have larger areas and complicated wiring.

15/16



Lookahead

• Multi-operand addition

• Carry save adders

• Multiplication

16/16


