Computer Arithmetic:

$$
1+1=10
$$

Hossam A. H. Fahmy
(C) Hossam A. H. Fahmy

Types of adders

Time: variable time versus fixed (usually worst case) time.

Arrival of inputs: serial versus parallel adders.

Operands: two-operand versus multi-operand adders.

Two-operand parallel addition may use ripple carry, carry skip, carry select, conditional sum, carry lookahead, prefix, ...

- The subtraction, multiplication, and division are based on the addition.
- The addition is also fundamental in determining the processor cycle time and hence the overall performance.

Many people worked on addition producing algorithms that differ in minute details.

The sum and carry at a certain bit location are:

$$
\begin{array}{rll}
s_{i} & =a_{i} \oplus b_{i} \oplus c_{i} & \\
c_{i+1} & =a_{i} b_{i}+a_{i} c_{i}+b_{i} c_{i} & \text { (Odd) } \\
\text { (Majority) }
\end{array}
$$

- An incoming carry propagates to c_{i+1} if $p_{i}=a_{i}+b_{i}=1$.
- A carry is generated (regardless of c_{i}) if $g_{i}=a_{i} b_{i}=1$.
- An incoming carry is absorbed (killed) if $k_{i}=\bar{a}_{i} \bar{b}_{i}=1$.

Note that $c_{i+1}=g_{i}+p_{i} c_{i}=g_{i}+t_{i} c_{i}$ where $t_{i}=a_{i} \oplus b_{i}$.

- The simplest parallel addition uses a ripple carry adder.
- Since $c_{i+1}=a_{i} b_{i}+a_{i} c_{i}+b_{i} c_{i}$, the generation of the carry takes 2 gate delays.
- The complete adder takes $2 n$ gate delays.

Carry skip analysis

- The worst case delay is to ripple through the first and last group and skip over the middle ones.
- Simple designs use a fixed group size of $r-1$.
- Hence the delay is $2 \times 2(r-1)+2\left(\left\lceil\frac{n}{r-1}\right\rceil-2\right)$.
- Better designs use multiple levels and variable block sizes

We know that $c_{i+1}=g_{i}+p_{i} c_{i}$. Hence,

$$
\begin{aligned}
c_{i+1} & =g_{i}+p_{i}\left(g_{i-1}+p_{i-1} c_{i-1}\right) \\
& =g_{i}+p_{i} g_{i-1}+p_{i} p_{i-1} g_{i-2}+p_{i} p_{i-1} p_{i-2} c_{i-2}
\end{aligned}
$$

A low order carry propagates if all the propagate signals are active.

With the simple grouping $P_{i \leftarrow i-2}=p_{i} p_{i-1} p_{i-2}$, we have

$$
c_{i+1}=c_{i+1}(\text { out of full adder } i+1)+P_{i} c_{i-2}
$$

If the group propagation signal is ready, we skip over the group.

Carry select and conditional sum idea

Instead of waiting for the carry then perform the summation, let us prepare two sums one with the carry assumed as zero and the other with the carry assumed as one.

We can break the long operand into smaller groups with two sums for each group. Once available, the carry selects the correct sum via a multiplexer.

The time delay is $5+2\left\lceil\log _{r-1}(\lceil n / r\rceil-1)\right\rceil$

If the group size is reduced to just a pair of positions this is conditional sum.

The operation is:

$i \rightarrow$	15	14	13	12	11	10	9	8	
X_{i}	2	6	7	7	4	1	0	0	
Y_{i}	5	6	0	4	9	7	9	4	
	08 07	1312	08107	12 11	1413	09108	$10 \quad 09$	0504	t_{0}
	083	082	082	081	139	138	095	094	t_{1}
	08282		08281		13895		13894		t_{2}
	082823895				082823894				t_{3}
									t_{4}

$\xrightarrow{i \rightarrow}$	7	6	5	4	3	2	1	0	
	2	6	9	2	4	3	5	8	
Y_{i}	1	5	1	7	1	6	4	5	
	04	12 11	1110	$10 \mid 09$	$06 \mid 05$	$10 \mid 09$	$10 \quad 09$	13	t_{0}
	042	041	110	109	060	059		103	t_{1}
	04210		04209				06		t_{2}
					042096003				t_{3}
	08282389442096003								t_{4}

Since

$$
\begin{aligned}
c_{i+1}= & g_{i}+p_{i}\left(g_{i-1}+p_{i-1} c_{i-1}\right) \\
= & g_{i}+p_{i} g_{i-1}+p_{i} p_{i-1} g_{i-2}+p_{i} p_{i-1} p_{i-2} c_{i-2} \\
= & g_{i}+p_{i} g_{i-1}+p_{i} p_{i-1} g_{i-2}+p_{i} p_{i-1} p_{i-2} g_{i-3} \\
& +p_{i} p_{i-1} p_{i-2} p_{i-3} c_{i-3}
\end{aligned}
$$

We define two quantities,

a group generate

$$
G_{i \leftarrow i-3}=g_{i}+p_{i} g_{i-1}+p_{i} p_{i-1} g_{i-2}+p_{i} p_{i-1} p_{i-2} g_{i-3}
$$

and
a group propagate $P_{i \leftarrow i-3}=p_{i} p_{i-1} p_{i-2} p_{i-3}$.

Carry lookahead, second level

$$
\begin{aligned}
c_{16}= & G_{15 \leftarrow 12}+P_{15 \leftarrow 12} c_{12} \\
= & G_{15 \leftarrow 12}+P_{15 \leftarrow 12} G_{11 \leftarrow 8}+P_{15 \leftarrow 12} P_{11 \leftarrow 8} c_{8} \\
= & G_{15 \leftarrow 12}+P_{15 \leftarrow 12} G_{11 \leftarrow 8}+P_{15 \leftarrow 12} P_{11 \leftarrow 8} G_{7 \leftarrow 4} \\
& +P_{15 \leftarrow 12} P_{11 \leftarrow 8} P_{7 \leftarrow 4} c_{4} \\
= & G_{15 \leftarrow 12}+P_{15 \leftarrow 12} G_{11 \leftarrow 8}+P_{15 \leftarrow 12} P_{11 \leftarrow 8} G_{7 \leftarrow 4} \\
& +P_{15 \leftarrow 12} P_{11 \leftarrow 8} P_{7 \leftarrow 4} G_{3 \leftarrow 0}+P_{15 \leftarrow 12} P_{11 \leftarrow 8} P_{7 \leftarrow 4} P_{3 \leftarrow 0} c_{0}
\end{aligned}
$$

Once more we can define:

$$
\begin{aligned}
G_{15 \leftarrow 0}= & G_{15 \leftarrow 12}+P_{15 \leftarrow 12} G_{11 \leftarrow 8}+P_{15 \leftarrow 12} P_{11 \leftarrow 8} G_{7 \leftarrow 4} \\
& +P_{15 \leftarrow 12} P_{11 \leftarrow 8} P_{7 \leftarrow 4} G_{3 \leftarrow 0} \\
P_{15 \leftarrow 0}= & P_{15 \leftarrow 12} P_{11 \leftarrow 8} P_{7 \leftarrow 4} P_{3 \leftarrow 0}
\end{aligned}
$$

Now, the calculation of c_{16} takes $1+2+2+2=7$ gate delays.

C_{63}

$$
\begin{aligned}
& c_{48}=G_{47 \leftarrow 0}+P_{47 \leftarrow 0} c_{0} \\
& c_{60}=G_{59 \leftarrow 48}+P_{59 \leftarrow 48} c_{48} \\
& c_{63}=G_{62 \leftarrow 60}+P_{62 \leftarrow 60} c_{60} \\
& s_{63}=t_{63 \oplus} \oplus c_{63}
\end{aligned}
$$

Hence the delay is $2 \times\left(2\left\lceil\log _{r} n\right\rceil-1\right)+1+1=4 \times\left\lceil\log _{r} n\right\rceil$.
12/16

Ling adder

We notice that $g_{i}=p_{i} g_{i}$ and hence

$$
\begin{aligned}
G_{i \leftarrow i-3} & =g_{i}+p_{i} g_{i-1}+p_{i} p_{i-1} g_{i-2}+p_{i} p_{i-1} p_{i-2} g_{i-3} \\
& =p_{i}\left(g_{i}+g_{i-1}+p_{i-1} g_{i-2}+p_{i-1} p_{i-2} g_{i-3}\right)
\end{aligned}
$$

But,

$$
\begin{aligned}
c_{i+1} & =G_{i \leftarrow i-3}+P_{i \leftarrow i-3} c_{i-3} \\
& =p_{i} h_{i+1}
\end{aligned}
$$

which yields

$$
\begin{aligned}
s_{i+1} & =t_{i+1} \oplus\left(p_{i} h_{i+1}\right) \\
& =t_{i+1}\left(\bar{p}_{i}+\bar{h}_{i+1}\right)+\bar{t}_{i+1} p_{i} h_{i+1} \\
& =\bar{h}_{i+1} t_{i+1}+h_{i+1}\left(t_{i+1} \oplus p_{i}\right)
\end{aligned}
$$

We moved one gate delay away from the critical path.
In his original work, Ling also used the wired logic capability of ECL to enhance the speed.

- The canonic adder has a specific circuit to generate the carry into each bit location.
- c_{i+1} is due to a propagation from c_{0} or a propagation from a generation at position 1 or a propagation from a generation at position 2 or ...
- Hence the delay is that of an AND tree to detect the propagation followed by an $O R$ tree to combine the result.
- The total delay is $2\left\lceil\log _{r} n\right\rceil+1+1$. (The two trees plus the formation of the initial p and g plus the final bit sum.)
- The prefix adder is similar assuming $r=2$.

13/16

Hybrid adders

- Modern adders do not follow a "pure" strategy but use a combination of techniques.
- The "best" adder is not clearly defined. Those with lower gate delays usually have larger areas and complicated wiring.
- Multi-operand addition
- Carry save adders
- Multiplication

