Cairo University
Electronics and Communications Department

Computer Arithmetic:

Introduction to Floating Point Numbers

Hossam A. H. Fahmy

© Hossam A. H. Fahmy

A strange behavior

What do you expect from this code?
#include <stdio .h>

int main(void)

{
float x=+40.0, y=-0.0;

printf(”\n\t\t_.Thec,amazing._.results:._\n");
printf("\n.10"30.=.%f", 10.0E30);
printf("\n.10"30-10"30.=.0=_%f", 10.0E30—-10.0E30);
printf("\n.10"60.=.10"30%10"30.=_%f", 10.0E30%x10.0E30);
printf("\n_.10"60.=.10"30%10"30._=%f", (float)(10.0E30%x10.0E30))

printf("\n.1.0/(+0.0) _=%f", 1.0/x);
printf("\n.1.0/(—-0.0).=%f", 1.0/y);

printf("\n.+0.0 4.(—-0.0)="%F", x+vy);
printf("\n.—0.0_.—.(—-0.0)=%f", y-y);

printf("\n.1.0/(4+0.0) 4.1/(—-0.0)="%f", (1.0/x)4+(1.0/y));
printf ("\n\n\t+—x/+—*/+—x/+—x/+—x/+—x/+—%/+—*/+—*/+—x/\n\n") ;

}

2/19

Integers are not enough!

The dynamic range is the ratio of the largest magnitude to the
smallest non-zero magnitude representable.

Example 1 With four decimal digits, the numbers range
from

9999 — 0000

The dynamic range is 9999 ~ 10000, independent of the
decimal point position.
The dynamic range of 0.9999 — 0.0000 is also ~ 10 000.

How can we represent both 9999 and 0.00017

1/19
Simple results!
Here is the output.
The amazing results:
10730 = 9999999999999999635896294965248.000000
10°30-10"30 = 0= 0.000000
10760 = 10730%10730 = 9999999999999999208421814429548
2124579792562202350734542897152.000000
10760 = 10730%10730 = inf
1.0/(+0.0) = inf
1.0/(-0.0) = -inf
+0.0 + (-0.0)= 0.000000
-0.0 - (-0.0)= 0.000000
1.0/(+0.0) + 1/(-0.0)= nan
+—k/+=k/+=x/+=%k[+—k[+=-%[+—%[+—% [+-x[+—% [
3/19

Scientific notation

The value of a number in scientific notation has six attributes:

+ dod_1d_p---d_y x[BFeTP

T 1 T
1 2 3 456

The computer representation of floating point numbers is similar.

4/19

Normalization

0.9 x 109 = 0.09 x 10! = 9.0 x 1071, which one do you want to
represent?

A normalized number is represented by:

1. dgd_1---d—py X BTP, with dg # 0,

or
2. 0.d_1d_5---d_p x BP, with d_qi % 0.

By definition the number zero is represented by a string of zero bits.

If =2, it is either 1.d_1--- or 0.1d_5---. The MSB is certainly 1,

no need to store it. = Hidden One
6/19

Floating point basics

1. The fraction is an unsigned number called the mantissa.

2. The sign of the entire number is represented by the most sig-
nificant bit of the number.

3. The exponent is represented by a characteristic, a number equal
to the exponent plus some positive bias.

Only mantissas of the form O.xzzx - - - are fractions. When discussing
both fraction and other mantissa forms (as in 1l.zzx), people tend
to use the more general term significand.

5/19

Why excess code?

1. Zero is represented by a string of all zeros.

2. Smaller numbers (i.e., with a negative exponent) uniformly ap-
proach zero.

3. Simplifies the comparison logic.

If nexp is the number of exponent digits, (usually) bias= %B”EIP.

7/19

Range and precision

Range: a pair of numbers (smallest, largest) to bound all rep-
resentable numbers.

Precision: is the resolution of the system. Defined as the min-
imum difference between two mantissa representations. Equal
to the value of the least significant bit of the mantissa.

max = Mmax X /Bempmax

N) Dt
min = M,i, X B¢Pmin

8/19

Exponent range, significand width, and radix

Assume a 32-bit format:

0 1 7 8 31
+ | 7 bits | 24 bits |
sign characteristic mantissa

(overall) (excess code) | (magnitude)
implied fraction point

Largest Smallest Precision | Accuracy
Number Number
B=16 | 7.2 x107° [5.4 x 107 7° 167° 2-21
B=2 9.2 x 1018 [2.7 x 10°%0 PRt 224

Accuracy is the guaranteed or minimum number of significant man-
tissa bits excluding any leading zeros.

accuracy but less range.

Base 2 provides a better

Overflow, underflow, and gap

Mapping from the infinite number system to a finite range may
result in an unrepresentable exponent (exponent spill):

Overflow if |result| > max (— foo0?)
Underflow if |result| < min (— 07)

For dg.d_1 - - - d_ x 8P, the gap between two successive normalized
numbers is St3€TP,

With an increase in the exponent value by one, the gap becomes
B times larger.

The precision is constant but the gap is a variable.

9/19

Representation errors

For a number z, fz x B¢*P is its exact (normalized) representation.
The computer represents = as fr x BP.

MRRE is the maximum error relative to x,

mm(l JaBP — fRBP I)
JzB"P
1/2 x 271

fa
1/2 x 27t
— /2 % —o—t-1g
1/8
To have the same (or better) MRRE for 8 = 2F and 8 = 2, the
gaps between two successive numbers in the larger base must be

less than or equal to the gaps in the binary-base. = ¢, —t1 > k— 1.

MRRE =

)

= max(

11/19

Shifting speed

Example 2 For a 24-bit mantissa with all bits zero except

the least significant bit, what is the maximum number of

shifts required for each case of postnormalization.

Binary system: Radix = 2 and 23 shifts are required.

Hexadecimal system: Radix = 16 and 5 shifts are re-
quired.

Better accuracy is obtained with small base values and sophisticated
round-off algorithms, while computational speed is associated with

larger base values and crude round-off procedures such as trunca-
tion.

12/19

Yet another loss

Example 5 With 4 = 0.100000 x 16! and B =
0.FFFFFF x 169, what is A — B?

Solution:
A= 010 0 0 0 Ox16!
B= 00 F F F F Fx16!
A-B= 000 0 0 0 1x16l =0.1x167%
The real answer is 0.1 x 1672,

Thus, the loss of significance (error) is 0.1 x 1674 — 0.1 x 167> =

0.F x 1672 = 93.75% of the correct result. Quite a large relative
error!

We need to guard our digits.

14/19

The rounding is a mapping from the
representable numbers.

FP does not always obey the law!

A basic law of algebra is (A+ B= A) = B=0.

Example 3 For a system with 8 = 2 and 24 bits in the significand,
if A=1.0x 230 and B=1.0 x27%° then A+ B = A while B # 0!

Example 4 In a decimal system with five digits after the point, check
the associativity with 1.12345 x 10! 4 1.00000 x 10* — 1.00000 x 10%.
Solution: Given only five decimal digits, the result of
(1.12345 x 10! + 1.00000 x 10*) — 1.00000 x 10*
= 1.00112 x 10* — 1.00000 x 10*
= 1.12000 x 10%.

However, 1.12345 x 1014 (1.00000 x 10% —1.00000 x 10%) = 1.12345 x
101 40 =1.12345 x 10%.

Associativity fails and the first answer lost three digits of significance.

Rounding

Number \V/ A | RZ| RA|RNA | RNE
+38.7 | +38 | +39 | +38 | +39 | +39 | +39
+385| 438 | +39 | +38 | +39| +39 | +38
+382| 438 | +39| +38|+39| +38 | +38
+38.0|+38|+38| +38 | +38| +38 | +38
—-38.0| —38| —38| —38| —38| —38| —38
—-382| -39 | -38| -38| -39 | —-38| —-38
—-385| -39 | -38| -38| -39 | -39 | -38
-38.7| -39 | -38| -38| -39 | -39 | -39

13/19

real numbers to the machine

15/19

Real numbers to floating numbers

DE— vV DE—
= RA ——
00 s XXX 400
even even
- RNE 2/
. —= — RNZ ~— +—

Note the difference between RNE, RNA, and RNZ in tie cases.

16/19

Special values

Exponent bits Fraction bits Meaning

All ones all zeros +o0o (depending on the sign bit)
All ones non zero NaN (Not a Number)

All zeros all zeros +0 (depending on the sign bit)

All zeros non zero subnormal (denormalized) numbers

The value of a subnormal number in the single format is equal to
(_1)sign X 2—126(0.‘}(‘)_

Example 6 According to this definition the following bit
string
0 1 8 9 31
0....0| [010....0]
sign(bias= 127) significand

is equal to 27126 x 0.01 = 2128,

Those subnormal numbers provide the gradual underflow property.

18/19

IEEE standard (binary)

Sign Biased exponent Significand = 1.f (the ‘1’ is hidden)

[£] e + bias \ f |
32 bits: 8 bits, bias = 127 23 4+ 1 bits, single-precision or short format
64 bits: 11 bits, bias = 1023 52 4+ 1 bits, double-precision or long format
128 bits: 15 bits, bias = 16383 112 4+ 1 bits, quad-precision

IEEE single (binary32), double (binary64), and quad (binary128)
floating point number formats.

Maximum and minimum exponents in the binary IEEE formats:

Parameter binary32 binary64 binaryl128
Exponent width in bits 8 11 15
Exponent bias 4127 +1023 16383
erpmax +127 41023 16383
€XPmin —126 —-1022 —16382
17/19

Prior formats

IBM S/370 DEC PDP-11 CDC Cyber 70
S = Short S = Short
L = Long L =Long
Word length S: 32 bits S: 32 bits 60 bits
L: 64 bits L: 64 bits
Exponent 7 bits 8 bits 11 bits
Significand S: 6 digits S: (1)423 bits 48 bits
L: 14 digits L: (1)455 bits
Bias of exponent 64 128 1024
Radix 16 2 2
Hidden ‘1’ No Yes No
Radix point Left of Fraction Left of hidden ‘1’ Right of MSB of Fraction
Range of Fraction (F) (1/16) < F <1 05<F«<1 1<F<2
F representation Signed magnitude | Signed magnitude One’s complement
Approximate max. 16%3 ~ 1076 2126 ~ 1038 21023 ~ 10307
positive number*
Precision S: 1676 ~1077 S: 2724~ 1077 2748 ~ 10714
L: 167~ 1017 L: 2756 ~ 10°17

Approximate maximum positive number for the DEC PDP-11 is 2126, 3s 127 is a reserved expo-

nent.

19/19

