Computer Arithmetic: Introduction to Floating Point Numbers

Hossam A. H. Fahmy

The *dynamic range* is the ratio of the largest magnitude to the smallest non-zero magnitude representable.

Example 1 With four decimal digits, the numbers range from

 $9999 \longrightarrow 0000$

The dynamic range is $9\,999 \approx 10\,000$, independent of the decimal point position. The dynamic range of $0.9999 \longrightarrow 0.0000$ is also $\approx 10\,000$.

How can we represent both 9999 and 0.0001?

© Hossam A. H. Fahmy

#include < stdio . h>
int main(void)

float x = +0.0, y = -0.0;

What do you expect from this code?

printf(" \n_10^30 _=_%f", 10.0E30);

printf(" $\1.0/(+0.0) = \sqrt{6}$ ", 1.0/x); printf(" $\1.0/(-0.0) = \sqrt{6}$ ", 1.0/y);

printf(" $\n_+0.0\+_(-0.0)=\%f'', x+y$);

 $printf(" \setminus n _ -0.0 _ - _ (-0.0) = _\%f", y-y);$

printf(" $\n\t\t_$ The_amazing_results: $_\n"$);

printf("\n_10^30-10^30_=_0=_%f", 10.0E30-10.0E30); printf("\n_10^60_=_10^30*10^30_=_%f", 10.0E30*10.0E30);

A strange behavior

 $printf("\n_10^60_=_10^30*10^30_=_%f", (float)(10.0E30*10.0E30))$

printf(" $\1.0/(+0.0)$ _+_1/(-0.0)=_%f", (1.0/x)+(1.0/y));

1/19

Simple results!

Here is the output.

The amazing results:

The value of a number in scientific notation has six attributes:

\pm	$d_0 \cdot d_{-1} d_{-2}$	$\cdots d_{-t}$	$\times \beta^{\pm exp}$
\uparrow	\uparrow	\uparrow	$\uparrow\uparrow\uparrow$
1	2	3	45 6

The computer representation of floating point numbers is similar.

- 1. The fraction is an unsigned number called the *mantissa*.
- 2. The sign of the entire number is represented by the most significant bit of the number.
- 3. The exponent is represented by a *characteristic*, a number equal to the exponent plus some positive bias.

Only mantissas of the form $0.xxx \cdots$ are fractions. When discussing both fraction and other mantissa forms (as in 1.xxx), people tend to use the more general term *significand*.

5/19

Why excess code?

 $0.9\times 10^0 = 0.09\times 10^1 = 9.0\times 10^{-1},$ which one do you want to represent?

Normalization

A *normalized* number is represented by:

1.
$$d_0.d_{-1}\cdots d_{-n}$$
 × β^{exp} , with $d_0 \neq 0$, or

- 2. $0.d_{-1}d_{-2}\cdots d_{-n} \times \beta^{exp}$, with $d_{-1} \neq 0$.
- By definition the number zero is represented by a string of zero bits.

If $\beta = 2$, it is either $1.d_{-1}\cdots$ or $0.1d_{-2}\cdots$. The *MSB* is certainly 1, no need to store it. \Rightarrow *Hidden One*

- 1. Zero is represented by a string of all zeros.
- 2. Smaller numbers (i.e., with a negative exponent) uniformly approach zero.
- 3. Simplifies the comparison logic.

If n_{exp} is the number of exponent digits, (usually) bias= $\frac{1}{2}\beta^{n_{exp}}$.

4/19

Range: a pair of numbers (smallest, largest) to bound all representable numbers.

Precision: is the resolution of the system. Defined as the minimum difference between two mantissa representations. Equal to the value of the least significant bit of the mantissa.

 $\max = M_{\max} \times \beta^{exp_{\max}}$

 $\min = M_{\min} \times \beta^{exp_{\min}}$

8/19

Mapping from the infinite number system to a finite range may result in an unrepresentable exponent (exponent spill):

Overflow if $|\text{result}| > \max(\rightarrow \pm \infty ?)$

Underflow if $|result| < min (\rightarrow 0?)$

For $\pm d_0.d_{-1}\cdots d_{-t} \times \beta^{exp}$, the *gap* between two successive normalized numbers is $\beta^{-t}\beta^{exp}$.

With an increase in the exponent value by one, the gap becomes β times larger.

The precision is constant but the gap is a variable.

9/19

Representation errors

For a number x, $f_x \times \beta^{exp}$ is its exact (normalized) representation. The computer represents x as $f_B \times \beta^{exp}$.

MRRE is the maximum error relative to x,

$$MRRE = max(\frac{|f_x\beta^{exp} - f_R\beta^{exp}|}{f_x\beta^{exp}})$$
$$= max(\frac{1/2 \times 2^{-t}}{f_x})$$
$$= \frac{1/2 \times 2^{-t}}{1/\beta} = 2^{-t-1}\beta$$

To have the same (or better) MRRE for $\beta = 2^k$ and $\beta = 2$, the gaps between two successive numbers in the larger base must be less than or equal to the gaps in the binary-base. $\Rightarrow t_k - t_1 \ge k - 1$.

Assume a 32-bit format:

	Largest	Smallest	Precision	Accuracy
	Number	Number		
$\beta = 16$	$7.2 imes 10^{75}$	$5.4 imes10^{-79}$	16^{-6}	2 ⁻²¹
$\beta = 2$	$9.2 imes 10^{18}$	$2.7 imes10^{-20}$	2 ⁻²⁴	2 ⁻²⁴

Accuracy is the guaranteed or minimum number of significant mantissa bits excluding any leading zeros. Base 2 provides a better accuracy but less range. Example 2 For a 24-bit mantissa with all bits zero except the least significant bit, what is the maximum number of shifts required for each case of postnormalization.
Binary system: Radix = 2 and 23 shifts are required.
Hexadecimal system: Radix = 16 and 5 shifts are required.

Better accuracy is obtained with small base values and sophisticated round-off algorithms, while computational speed is associated with larger base values and crude round-off procedures such as truncation. A basic law of algebra is $(A + B = A) \Rightarrow B = 0$.

Example 3 For a system with $\beta = 2$ and 24 bits in the significand, if $A = 1.0 \times 2^{30}$ and $B = 1.0 \times 2^{-40}$ then A + B = A while $B \neq 0$!

Example 4 In a decimal system with five digits after the point, check the associativity with $1.12345 \times 10^1 + 1.00000 \times 10^4 - 1.00000 \times 10^4$. Solution: Given only five decimal digits, the result of

 $\begin{array}{rcl} (1.12345\times10^1 & + & 1.00000\times10^4) - 1.00000\times10^4 \\ & = & 1.00112\times10^4 - 1.00000\times10^4 \\ & = & 1.12000\times10^1. \end{array}$ However, $1.12345\times10^1 + (1.00000\times10^4 - 1.00000\times10^4) = 1.12345\times$

 $10^1 + 0 = 1.12345 \times 10^1$. Associativity fails and the first answer lost three digits of significance.

13/19

12/19

Yet another loss

Example 5 With $A = 0.100000 \times 16^{1}$ and $B = 0.FFFFFF \times 16^{0}$, what is A - B? Solution: $A = 0.1 \ 0 \ 0 \ 0 \ 0 \ \times 16^{1}$ $B = 0.0 \ F \ F \ F \ F \ F \times 16^{1}$ $A - B = 0.0 \ 0 \ 0 \ 0 \ 1 \times 16^{1} = 0.1 \times 16^{-4}.$ The real answer is 0.1×16^{-5} .

Thus, the loss of significance (error) is $0.1 \times 16^{-4} - 0.1 \times 16^{-5} = 0.F \times 16^{-5} = 93.75\%$ of the correct result. Quite a large relative error!

We need to guard our digits.

Rounding

The rounding is a mapping from the real numbers to the machine representable numbers.

Number	\bigtriangledown	\triangle	RZ	RA	RNA	RNE
+38.7	+38	+39	+38	+39	+39	+39
+38.5	+38	+39	+38	+39	+39	+38
+38.2	+38	+39	+38	+39	+38	+38
+38.0	+38	+38	+38	+38	+38	+38
-38.0	-38	-38	-38	-38	-38	-38
-38.2	-39	-38	-38	-39	-38	-38
-38.5	-39	-38	-38	-39	-39	-38
-38.7	-39	-38	-38	-39	-39	-39

16/19

Special values

Exponent bits	Fraction bits	Meaning		
All ones	all zeros	$\pm\infty$ (depending on the sign bit)		
All ones	non zero	NaN (Not a Number)		
All zeros	all zeros	± 0 (depending on the sign bit)		
All zeros	non zero	subnormal (denormalized) numbers		

The value of a subnormal number in the single format is equal to $(-1)^{sign} \times 2^{-126}(0.f)$.

Example 6 According to this definition the following bit string

Those subnormal numbers provide the gradual underflow property.

Sign	Biased exponent	Significand = 1.f (the '1' is hidden)
±	e + bias	f
-		

32 bits:	8 bits, bias = 127	23 + 1 bits, single-precision or short format	
64 bits:	11 bits, bias = 1023	52 + 1 bits, double-precision or long format	
128 bits:	15 bits, bias = 16383	112 + 1 bits, quad-precision	
IEEE single	(binary32), double	(binary64), and quad (binary128)	
floating point number formats.			

Maximum and minimum exponents in the binary IEEE formats:

Parameter	binary32	binary64	binary128
Exponent width in bits	8	11	15
Exponent bias	+127	+1023	16383
exp_{\max}	+127	+1023	16383
exp_{min}	-126	-1022	-16382

17/19

Prior formats

	IBM S/370	DEC PDP-11	CDC Cyber 70
	S = Short	S = Short	
	L = Long	L =Long	
Nord length	S: 32 bits	S: 32 bits	60 bits
	L: 64 bits	L: 64 bits	
Exponent	7 bits	8 bits	11 bits
Significand	S: 6 digits	S: (1)+23 bits	48 bits
	L: 14 digits	L: (1)+55 bits	
Bias of exponent	64	128	1024
Radix	16	2	2
Hidden '1'	No	Yes	No
Radix point	Left of Fraction	Left of hidden '1'	Right of MSB of Fraction
Range of Fraction (F)	(1/16) < F < 1	0.5 < F < 1	1 < F < 2
= representation	Signed magnitude	Signed magnitude	One's complement
pproximate max. $16^{63} \simeq 10^{76}$		$2^{126} \simeq 10^{38}$	$2^{1023} \simeq 10^{307}$
positive number*		-	_
Precision	$5.16^{-6} \sim 10^{-7}$	$5 \cdot 2^{-24} \sim 10^{-7}$	$2^{-48} \sim 10^{-14}$
	$1 \cdot 16^{-14} \sim 10^{-17}$	$1 \cdot 2^{-56} \sim 10^{-17}$	2 = 10

Approximate maximum positive number for the DEC PDP-11 is 2^{126} , as 127 is a reserved expo-

nent.