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Abstract 
 

Because of the growing importance of decimal 
floating-point (DFP) arithmetic, specifications for it are 
included in the IEEE Draft Standard for Floating-point 
Arithmetic (IEEE P754). In this paper, we present a 
novel algorithm and hardware design for a DFP adder. 
The adder performs addition and subtraction on 64-bit 
operands that use the IEEE P754 binary encoding of 
DFP numbers, widely known as the Binary Integer 
Decimal (BID) encoding. The BID adder uses a novel 
hardware component for decimal digit counting and an 
enhanced version of a previously published BID 
rounding unit. By adding more sophisticated control, 
operations are performed with variable latency to 
optimize for common cases.  We show that a BID-based 
DFP adder design can be achieved with a modest area 
increase compared to a single 2-stage pipelined 64-bit 
fixed-point multiplier.  Over 70% of the BID adder’s 
area is due the 64-bit fixed-point multiplier, which can 
be shared with a binary floating-point multiplier and 
hardware for other DFP operations.  To our knowledge, 
this is the first hardware design for adding and 
subtracting IEEE P754 BID-encoded DFP numbers. 
 
 

1. Introduction 
 

Decimal floating-point (DFP) arithmetic is important 
in many applications because of its ability to represent 
decimal fractions exactly and to mimic manual 
calculations that perform decimal rounding. Because 
binary floating-point (BFP) arithmetic neither provides 
correct decimal rounding nor exactly represents many 
decimal fractions, such as 0.01, 0.0475, and 10-35 [1], 
numerous applications require DFP arithmetic. Such 
applications include currency conversion,  insurance, tax 
calculations, billing, and banking. One study estimates 
that BFP arithmetic errors can accumulate to an annual 
error of over $5 million for large billing systems [2].  

Applications that cannot tolerate errors due to BFP 
arithmetic often use software to perform DFP arithmetic 
[1]. Software packages for DFP arithmetic include 

IBM’s decNumber library [3] and the Java BigDecimal 
library [4].  Intel recently published results for a Binary 
Integer Decimal (BID) software library [5, 6].  These 
software packages are adequate for many applications, 
but as globalization and e-commerce grow, software 
performance for DFP arithmetic may not suffice. 

Several hardware designs for DFP arithmetic have 
been developed using encodings other than BID [7, 8, 9, 
10, 11].  Recently, IBM announced DFP hardware on its 
Power6 server processor [12] and System z9 processor 
[13] using the Densely Packed Decimal (DPD) 
encoding, discussed in Section 2.  Previous designs for 
DFP arithmetic differ from our design in that they 
operate on significands with a decimal radix of 10, such 
as Binary Coded Decimal (BCD) or DPD, as opposed to 
BID’s binary radix of 2.   

Addition and subtraction operations occur frequently 
in DFP applications, so the design of a DFP adder with 
correct rounding is very important. In this paper, we 
present a hardware design that correctly performs 
addition and subtraction on 64-bit BID-encoded DFP 
numbers for all IEEE P754 rounding modes. We do not 
address exceptions or special values such as NaN and 
infinity.  Our BID adder differs from previous DFP 
adder designs, which operate on DPD-encoded numbers 
[14, 15]. It uses a novel hardware component for 
decimal digit counting and leverages an enhanced 
version of a previously published BID rounding unit 
[16]. Furthermore, operations are performed with 
variable latency to optimize common cases.    

We believe ours is the first hardware design for 
adding and subtracting BID-encoded floating-point 
numbers.  This may be due to a perception that the BID 
format is more appropriate for software rather than 
hardware. Contrarily, we argue that BID is well suited 
for hardware implementations, since it can share 
hardware with binary arithmetic units.  For example, a 
64-bit fixed-point multiplier occupies a large percentage 
of the area of our BID adder, can also be used to perform 
BFP multiplication, and BID multiplication, comparison, 
minimum, maximum, quantize, and toIntergalValue.   

The remainder of this paper is organized as follows. 
Section 2 discusses DFP numbers in IEEE P754.  

1-4244-1258-7/07/$25.00 ©2007 IEEE 288



 

Section 3 discusses the challenge of adding BID-
encoded numbers, and presents the technique and theory 
for BID addition and subtraction.  Section 4 combines 
the concepts from Section 3 to show a compact DFP 
adder design. Section 5 provides preliminary synthesis 
results. Section 6 presents our conclusions. 
 
2. Decimal Numbers in IEEE P754 
 

Due to the importance of DFP arithmetic, the IEEE 
P754 Draft Standard for Floating-Point Arithmetic 
includes specifications for DFP formats and operations 
[17]. In IEEE P754, the value of a finite DFP number is: 

CbiasES ××− −10)1(  

where S is the sign bit, E is a biased exponent, bias is a 
constant value that makes E non-negative, and C is the 
significand.  IEEE P754 specifies two methods for 
encoding the significands of DFP numbers; Binary 
Integer Decimal (BID) [18] and Densely Packed 
Decimal (DPD) [19]. With BID, each significand can be 
viewed as an unsigned binary integer.  With DPD, each 
significand can be viewed as an unsigned decimal 
integer, in which groups of 10 bits represent three 
decimal digits [19]. In IEEE P754, the BID encoding is 
called the binary encoding and the DPD encoding is 
called the decimal encoding, but either encoding can be 
used to represent DFP significands. For example, 5.43 is 
represented as 543 × 10-2, where the significand, 543, 
can use either the BID or DPD encoding.   

The significand of a DFP number is not normalized, 
meaning that a single DFP number may have multiple 
representations. For example, 3 × 10-1, 30 × 10-2, and 
300 × 10-3 all have the same numeric value, but they 
have different IEEE P754 representations. Because of 
this characteristic, IEEE P754 defines the Preferred 
Representation Exponent, which specifies a required 
exponent, and implicitly the significand, after each 
decimal operation. For example, with decimal addition 
and subtraction, the exponent of the result equals the 
smaller exponent of the two input operands if the result 
is exact. If it is not exact, the exponent is selected to 
maximize the number of significant digits in the rounded 
result. IEEE P754 specifies five rounding modes for 
DFP arithmetic: roundTiesToEven (RTE), 
roundTiesToAway (RTA), roundTowardZero 
(RTZ), roundTowardNegative (RTN), and 
roundTowardPositive (RTP).  

 For 64-bit DFP numbers, of decimal64 type, the 
precision is p = 16 decimal digits. The decimal64 
significand is 54 bits, because the maximum significand 
supported is 1016 - 1, which is less than 254. The biased 
exponent is ten bits, and one bit represents the sign.     

BID lends itself to high-performance binary circuits, 
since the significand is a binary integer.  However, a 
challenge is performing efficient significand alignment 
and rounding.  Section 3 describes our technique for 
BID addition and subtraction and illustrates the 
challenges that we address in this paper. 
 

3. BID Addition/Subtraction Technique  
 

In the following discussion, let A and B be the DFP 
operands represented by the triples of (Asign, Ac , Aexp) 
and (Bsign, Bc , Bexp), respectively.  The subscripts sign, c, 
and exp represent the sign, significand, and exponent of 
an operand, respectively.  In our design, the inputs may 
be swapped to enable the simplifying assumption that 
Aexp  ≥ Bexp.  The swapped operands, AN and BN, are 
represented by the triples (ANsign, ANc , ANexp) and (BNsign, 
BNc , BNexp), respectively. 

To help understand the hardware implementation of 
our BID adder, we first describe a high-level approach 
for BID addition. Abstractly, the addition of two DFP 
numbers can be thought of as an alignment of the 
significands so that the exponents are equal, followed by 
adding the aligned significands, followed by rounding 
the intermediate result to the format’s precision. Since 
DFP numbers have an exponent base of 10, alignment of 
significands corresponds to multiplication by powers of 
10.  Rounding DFP numbers by d decimal digits is 
equivalent to discarding d digits, followed by a possible 
increment of the truncated significand, depending on the 
rounding mode, and an increase of the exponent by d. 

As a potential technique for implementing BID 
addition in the decimal64 format with p = 16, consider 
the addition of AN = 1,234,567,890,123,456 × 1017 plus 
BN = 6,543,210,987,654,321 × 1012.  With this technique, 
ANc is first multiplied by 10(Aexp - Bexp) = 105 to align it 
with BNc, having an exponent of 12.  After addition, the 
intermediate significand is ZIc = 123,463,332,223,333, 
254,321 and the intermediate exponent is ZIexp = BNexp = 
12. The 21-digit intermediate significand is then rounded 
to fit in 16 digits, so d = digits(ZIc) – p = 21 – 16 =  5 
digits are rounded off  and the intermediate exponent is 
increased by d.  Thus, in the RTZ rounding mode, the 
correctly rounded significand and exponent are Zc = 
1,234,633,322, 233,332 and Zexp = BNexp + d = 12 + 5 = 
17. With unconstrained hardware resources, this 
approach suffices for all exponent values, but it is not 
practical.  If A and B have the decimal64 format’s 
maximum exponent difference of 767, ZIc has over 2,500 
bits, which is not practical for a rounder to handle.   
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Our design uses a BID rounder that can handle inputs 

of up to 64-bits, such that intermediate results can have 
values up to 264-1 = 18,446,744,073,709,551,615, which 
is a 20 digit number.  This size is chosen because the 
critical operation in BID-based rounding is 
multiplication [20], and many processors include a 64-bit 
by 64-bit multiplier.  With a rounder of this size, we 
divide the problem space into three cases.  In the first 
case, ZIc is guaranteed to fit into the 64-bit rounder, and 
an approach similar to that shown in the previous 
example is used.  The second case is a special case of the 
first case, where Aexp = Bexp. This case occurs frequently 

in DFP applications [21], does not require significant 
alignment, and requires rounding of at most one digit.  In 
the third case, the intermediate result is too large for the 
rounder and an alternative approach is necessary. 
 

3.1 BID Addition/Subtraction Algorithm 
 

In this section we present our proposed BID 
addition/subtraction algorithm and implementation. The 
general algorithm is given in Figure 1.  For simplicity, 
the algorithm does not address exceptions or special case 
handling for NaN and Infinity.  We describe sections of 
the algorithm in general terms and the modules used to 
implement them.  In Section 4, we present the complete 
BID adder design. 

In the algorithm, three functions are used, with the 
following definitions: 

digits(n1) -  the number of decimal digits in n1 
max(n1, n2) - the greater of n1 or n2 
round(n1,d) - the value of n1 after rounding off d 

digits in the prevailing rounding 
mode. 

Step 1 of the BID Addition/Subtraction Algorithm 
consists of some initial computations to prepare the 
operands for further processing.  First, the operands may 
be swapped, as shown in Figure 2, so that AN is the 
operand with the larger exponent in the rest of the 
circuit.  This is similar to a technique used in BFP 
addition [20].  Also, the effective operation (EOP) is 
computed, based on the input operation (OP) and the 
signs of the operands, Asign and Bsign, as EOP = OP xor 
Asign xor Bsign, where OP is zero for addition and one for 
subtraction. 

 

 
 
 

Step 2 of the BID Addition/Subtraction Algorithm 
consists of calculating the number of decimal digits in 
ANc, which is referred to as Qa. Counting decimal digits 
is important in BID-based DFP hardware.  For example, 
it is also needed in Case 1, which is described later.  

BID ADDITION/SUBTRACTION ALGORITHM 

Step1: Compare Exponents K = |Aexp – Bexp| 

       Swap operands if (Aexp – Bexp) < 0 

       Determine Effective Operation (EOP) 

Step2: Qa = digits(ANc) 
Step3: Examine r = Qa + K 

 Case1: r ≤ 19 AND K ≠ 0 
   ZIc = |10

K ANc ± BNc|  

   ZIsign = (10
KANc ± BNc < 0) 

   QI = digits(ZIc) 

   d1 = max(0, QI - 16)    

   Zc = round(ZIc, d1) 

   Zexp = ANexp – d1 

   Zsign = ANsign XOR ZIsign 

 Case2: K == 0 // thus r ≤ 16 
   ZIc = |ANc ± BNc| 

   ZIsign = (ANc ± BNc < 0) 

   Zsign = ANsign XOR ZIsign   

   If (ZIc < 10
16) 

        Zc = ZIc 
        Zexp = ANexp 
   Else 

        Zc = round(ZIc, 1) 

        Zexp = ANexp + 1 

 Case3: r > 19 // thus K ≥ 4 
   g = 16 - Qa 

   d3 = K – g 

   ZIC = 10
g ANc ± round(BNc, d3) 

   ZIexp = ANexp - g // = BNexp + d3  

   Zsign = ANsign 
   If (ZIC ≥ 1016) 
      // second round needed: 

      Zc = round(ZIC, 1) 

      Zexp = ZIexp + 1 

   Elsif (ZIC < 10
15) 

      // recalculate: 

      Zc = 10
g+1 ANc – round(BNc, d3-1) 

      Zexp = ZIexp - 1 

   Else 

      Zc = ZIC 

Figure 2: Hardware for Algorithm Step1 

Figure 1: BID Addition/Subtraction Algorithm
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Furthermore, counting decimal digits is a challenge since 
BID significands are represented in binary.  To resolve 
this challenge, we present a novel hardware component 
to calculate the number of decimal digits of a BID 
significand. 

A general top-level design of this digit-counter is 
shown in Figure 3, whose input to x in Step 2 of the BID 
Addition/Subtraction Algorithm is ANc. The module uses 
a binary leading-1 detector to determine the bit position, 
m, which indexes into a lookup table (LUT) to estimate 
the number of decimal digits in x. This estimate is 
denoted as n and may be one digit less than the actual 
number of decimal digits. If m is the position of the most 
significant bit, the decimal value range is [2m, 2m+1 – 1].  
Table 1 illustrates the relationship between m and the 
number of decimal digits, and shows that there is an 
uncertainty in roughly 1 out of log210 entries, based on 
where binades and decades overlap.  The idea is simple, 
but the table helps illustrate the motivation behind the 
design of the Decimal Digit Counter. In Table 1, the 
lower number of the rightmost column is bolded and is 
the value of n for the LUTs.  Table 1 shows m up to 63, 
the largest value needed in our design. In Step 2, m up to 
53 suffices. 

 
 

 
Leading 1  
bitpos (m) 

Decimal Value Range Decimal 
Digits 

0 1 1 
1 2-3 1 
2 4-7 1 
3 8-15 1 or 2 
4 16-31 2 
5 32-63 2 
6 64-127 2 or 3 
7 128-255 3 
8 256-511 3 
9 512-1,023 3 or 4 

10 1,024-2,047 4 
… … … 
63 9,223,372,036,854,775,808- 

18,446,744,073,709,551,615 
19 or 20 

In our implementation, each entry is indexed by m 
and each entry of the LUT contains n, the minimum 
number of decimal digits for a given value of m.  For 
example, if the leading one of the BID significand x is in 
bit position m = 3, then x can be between 8 and 15.  As 
shown in Table 1, the minimum number of decimal 
digits that x can have in this case is n = 1. Thus, this 
lookup table provides the number of decimal digits in x, 
with an error of at most one. In this example, if the input 
significant is 12, the number of decimal digits is 2.   

Another lookup table, indexed by m, stores pre-
calculated values of 10n, such that 10n is the smallest 
power of ten greater than 2m. Following the earlier 
example, the power of ten stored in index m = 3 of this 
second lookup table is 10 (since 10 > 23 ). Finally, if x < 
10n then n is chosen as the output of the digit counter; 
otherwise n+1 is chosen.  

 
 

Due to using a rounder that handles inputs with at 
most 20 digits, we characterize the input as one of three 
cases:  (1) ANc × 10K < 1019 and ANexp ≠ BNexp, (2) ANexp = 
BNexp (thus ANc × 10K < 1016), and (3) ANc 10K > 1019. 

In Case 1, ZIc = |10K × ANc ± BNc| can be handled by 
our rounder, and several computations are performed.  
First, ANc is multiplied by 10K, which is obtained from a 
LUT indexed by K.  The hardware for the LUT and 
multiply is shown at the top of Figure 4.  Next, the 
Add/Subtract and Absolute Value Unit computes ZIc = 
|10K × ANc ± BNc| and ZIsign = (10K × ANc ± BNc < 0) based 
on EOP.  ZIsign is used to help determine the sign of the 
final result.  Once ZIc is computed, it is sent to the 
rounder. To determine the number of digits to round off, 
a digit counter is used.  The number of digits to round 
off is d1 = max(QI - 16, 0), where QI  = digits(ZIc). 

Case 2, in which Aexp = Bexp, represents an optimized 
Case 1. A previous study [21], found that a large 
percentage of DFP addition operations have operands 
with identical exponents.  In some DFP applications, Aexp 
= Bexp in over 90% of the addition operations [21].  
Because this case is so common, Amdahl’s Law suggests 
that it is worth optimizing. 

 

Figure 3:  Decimal digit counter 

Table 1:  Bit position in unsigned binary 
number versus number of decimal digits 
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In Case 2, the input exponents are equal and thus 
significand alignment is not needed, saving a multiply.  
Also, rounding is only needed when ZIc ≥ 1016.  
Consequently, the rounder may be skipped, with 
detection of the case where the result does not fit in the 
format’s precision.  Handling Case 2 with the ability to 
bypass the rounder comes at a small incremental 
hardware cost, requiring just two multiplexers and logic 
to detect if ZIc ≥ 1016, as shown in gray in Figure 4.  This 
detection logic sets a flag when ZIc ≥ 1016 to indicate that 
the final result should be taken from the rounder. When  
ZIc ≥ 1016, the rounder rounds one digit from ZIc  and the 
exponent logic sets Zexp to ANexp + 1.  

The same hardware used in Case 2 can also improve 
the latency of Case 1, when ZIc < 1016 and Aexp ≠ Bexp. 
Since rounding is not needed when ZIc < 1016, the result 
may come directly from the Add/Subtract and Absolute 
Value Unit, bypassing the rounder. This improvement is 
not shown in Case 1 of Figure 1 and is not implemented 
in our BID adder, but it can easily be added. 

Case 3 handles the situation when ZIc = |10K × ANc ± 
BNc| is too large to be handled by the rounder. The 
hardware shown in Figure 5 follows the BID 
Addition/Subtraction Algorithm by rounding BNc to give 
B’, which is then added to or subtracting from 10g × ANc.  
As shown in Figure 5, the hardware to handle this case 
consists of similar components to Cases 1 and 2, but the 
ordering differs.  The first step is to determine how many 
digits need to be rounded from BNc.  BNc is rounded by d3 
= K - g digits, where g = 16 - Qa and K = | Aexp – Bexp |.  
The main idea here is to compute the number of digits in 
BNc that do not overlap with an aligned 10g × ANc that 
occupies the full precision of 16 digits.  ANc is multiplied 
by 10g to ensure its most significant digit is in the 
format’s most significant digit position. As in Case 1, 
this is accomplished with a LUT before the multiplier, 
but in this case the index is g.  B’ is then added to or 
subtracted from 10g ×ANc, depending on EOP.  The 
multiplier may be bypassed if g = 0. 

The algorithm, as we have discussed up until now 
provides correctly rounded results for the overwhelming 
majority of inputs.  However, Case 3 leaves two 
situations in which results need to be adjusted to comply 
with IEEE P754.  The first is when the EOP is addition 
and the number of digits in the intermediate result ZIc 
exceeds the format precision (ZIc ≥ 1016).  The second 
occurs when the EOP is subtraction and the intermediate 
result has too few digits of precision (ZIc < 1015).  To 
illustrate these two cases, we show two examples. 

The problem of too many digits in ZIc occurs, for 
example, when adding A = 9,999,999,999,995,555 × 1011

   
plus B = 5,555,400,000,000,001 × 100.  To realize the 
addition using our BID adder, the operands follow the 
hardware path shown in Figure 5 for Case 3. Since Qa = 
16 and g = 0, operand A need not be pushed, but operand 
B is rounded off by d3 = K - g = 11 decimal digits. If we 
consider the RTZ rounding mode, this gives us the 
addition of operand ANc = 9,999,999,999,995,555 and the 
rounded operand B' = 55,554 to produce the intermediate 
significand ZIc = 10,000,000,000,051,109, having 17 
digits, which is one digit more than the format precision. 
To obtain the correctly-rounded 16-digit result, the least 
significant digit of ZIc is rounded to produce Zc = 
1,000,000,000,005,110 and the inter-mediate exponent is 
incremented to produce Zexp = 12.  

The problem of too few digits in ZIc is shown with the 
subtraction of B = 1,111,222,233,340,000 × 107 from A 
= 1,000,111,122,223,333×1011.  As in the previous 
example, to realize the subtraction the operands follow 
the hardware path shown in Figure 5. In this case, the 
number of digits rounded off from the operand B is the 
exponent difference of K = 4. Thus, the operands for 
subtraction are ANc = 1,000,111,122,223,333 and B' = 
111,122,223,334 whose resultant significand is ZIc = 

Figure 4: Direct hardware for Cases 1 and 2 
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999,999,999,999,999, which has 15 digits, one digit less 
than the format precision. To obtain the correctly 
rounded 16-digit result, the alignment and rounding are 
recalculated, with g increased by 1 and d3 decreased by 
1, so that one less digit is rounded off.  This gives Zc = 
9,999,999,999,999,990 and Zexp = 10. 

 

 
 

 
In Case 3, the algorithm detects the occurrence of 

either of these situations.  The detection can be enhanced 
by restricting it to test for greater than or equal to 1016

 if 
the operation is addition and less than 1015

 if the 
operation is subtraction, as shown in Figure 5.  If either 
of these situations is detected, the results can be fed back 
through the rounder or recalculated. This technique 
provides variable latency results, and it is the approach 
used in our design. The need to feed results back through 
the rounder or to recalculate results should be rare, as it 
only occurs in Case 3 when the four most significant 
digits of 10g × ANc are 9999 for addition or 1000 for 
subtraction.  

 

3.2 BID Rounder Enhancements 
 

The rounder design is an important component of the 
overall BID adder.  We use a rounder that has been 
enhanced from the BID rounder design presented in [16].  
The design presented in [16] only performs rounding up 
to 16 decimal digits and cannot be used to implement our 
algorithm.  There are two major enhancements to this 
design.  First, it has been expanded to use a 64-bit 
multiply as necessary in our algorithm.  Second, it has 
more control bits to allow the rounding direction to be 
determined based on external information.  The added 
control bits and their function are listed below. 

a_odd_even: indicates whether A is odd or even 
override_active_in: indicates whether in Case3 
sub_rnd_mode: indicates if the EOP is subtraction;, 

which affects rounding decisions, as shown in 
Table 2 

rnd2_active: indicates second pass through the 
rounder to avoid double rounding errors 

rnd2_active_prev_dir: on the second pass through 
the rounder, indicates the direction of the first 
pass to avoid double rounding errors  

In Case 3, the EOP affects the rounding direction, as 
shown in Table 2, where | denotes logical OR and & 
denotes logical AND. In this table, f is the fraction being 
rounded off, and odd is set if the truncated value of 10g × 
ANc ± B’ is odd.  An increment is defined as adding 1 to 
the value of the rounder input after truncating d digits. 

As an example, assume A = 5,000,000,000,000,004 × 
100, B = 1,500,000,000,000,000 × 10-15, and RTA 
rounding. The infinitely precise result for addition is 
5,000,000,000,000,005.500000000000000 × 100

, which 
rounds to 5,000,000,000,000,006 × 100.  For subtraction, 
it is 5,000,000,000,000,002.500000000000000 × 100, which 
rounds to 5,000,000,000,000,003 × 100.  BNc is rounded 
by d3 = K – g = 15 digits before it is added to or 
subtracted from 10g × ANc.  If EOP is addition, B’ should 
be 1, and if EOP is subtraction, B’ should be 2.  Thus, 
the rounding direction for B’ can vary based on EOP. 

 
 

 
 

Rounding 
Mode 

Addition 
Increment Condition 

Subtraction 
Increment Condition 

RTZ Never f ≠ 0 
RTA f  ≥ ½  f > ½  
RTE f > ½ | (f = ½ & odd) f > ½ | (f = ½ & odd) 
RTP ~ANsign and f ≠ 0 ANsign and f  ≠ 0 
RTN ANsign and f ≠ 0 ~ANsign and f ≠ 0  

 

Figure 5: Direct hardware for Case 3 

Table 2: Increment conditions for Case 3 
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4. Combined BID Adder Design 
 

Cases 1-3 have been presented to explain the ideas 
behind the BID adder design.  Figure 6 shows our 
complete BID adder design, which shares components to 
use less hardware, by adding multiplexers and control 
logic.  With intelligent scheduling and adding an 
additional path through the rounder, only one multiplier 
is needed.  The multiplication used to push ANc to the 
full decimal64 precision of p = 16 digits is performed 
with the multiplier inside the rounder.  To simplify 
Figure 6, the multiplier is darkened to illustrate this 
point. 

The ability to reuse the multiplier in the DFP unit has 
important effects.  First, by adding logic around the 
multiplier, many functions may be incrementally added 
to a DFP solution at a modest area cost.  Second, the 
high utilization of the multiplier requires sophisticated 
scheduling with several possibilities for optimization 
including adding buffers, reservation stations, and 
control logic.  These details are not shown in Figure 6. 

 
5. Results 
 

To verify our algorithm, we modeled a BID adder in 
Verilog with a separate path for each case and additional 
steps for the cases that require a second pass through the 
rounder.  Though this design is too large to be practical, 
we have successfully run over 10 million random test 
vectors and over 300 directed corner testcases. 

As a more realistic design, we have pipelined the 
BID adder and combined the datapaths so that only one 
64-bit multiplier is used.  In this design, the multiplier 
has two pipeline stages, the rounder has four pipeline 
stages, and a flag is set in Case 3 when ZIC < 1015 to 
indicate that the result must be recalculated. Except for 
infrequent cases that need a second rounding or 
recalculation, the latency is seven cycles for Cases 1 and 
3, and three cycles for Case 2.  In comparison, the 
average latency of a 64-bit DFP addition using a BID 
software library and executing on an EM64t Xeon 5100 
Processor is 71 cycles when function call overhead is not 
included [5].   

We have performed preliminarily synthesis, testing, 
and evaluation of our BID adder using Mentor Graphics 
ModelSim, Synopsys Design Compiler, and the LSI 
Logic Gflxp 0.11 micron CMOS Standard Cell Library.   
In this technology, a 2-input NAND gate’s  area is 8.08 
µm2, and a fan-out-of-four (FO4) inverter’s delay is 55 
ps. Our preliminary synthesis indicates the total area is 
roughly 0.55 mm2 (68,459 NAND gate equivalents) and 
the critical path delay is roughly 2.4 ns (44 F04 inverter 
delays). We believe the delay can be improved 

significantly through code rewriting, timing path 
adjustments, further design optimizations, and deeper 
pipelining.  

For comparison, we synthesized a 2-stage pipelined 
Synopsys DesignWare 64-bit by 64-bit multiplier, 
named DW02_mult_2stage.  The total area of this 
multiplier is 0.41 mm2. By this measure, the multiplier 
comprises roughly 70% of the total area of the pipelined 
BID adder design. These results indicate that BID 
addition and subtraction can be achieved with a modest 
increase in area when hardware is shared with an 
existing BFP multiplier.  Since we are using a 
synthesized multiplier, we are encouraged that efforts to 
improve the multiplier will also likely enhance the BID 
adder. 
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 Figure 6: Adder hardware design with 
combined paths for Cases 1 - 3 
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6.   Conclusion 
 

We have presented the first design of a BID-based 
DFP adder, which provides correctly rounded results for 
adding and subtracting IEEE P754 decimal64 numbers. 
The design demonstrates that BID addition and 
subtraction can be effectively achieved in hardware. It 
can be adapted to also support the IEEE P754 operations 
of comparison, minimum, maximum, quantize, and 
toIntergalValue, and it can be adapted for other operand 
sizes. The design is promising in terms of area and 
potential hardware reuse.  Over 70% of the BID adder’s 
area is due to a 64-bit binary multiplier, which can be 
shared with a BFP multiplier and other BID operations.  
In future research, we plan to investigate the design of 
shared IEEE P754 BFP and  DFP units. 
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