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Abstract 
 

Because of the growing importance of decimal 
floating-point (DFP) arithmetic, specifications for it were 
recently added to the draft revision of the IEEE 754 
Standard (IEEE P754). In this paper, we present a 
hardware design for a rounding unit for 64-bit DFP 
numbers (decimal64) that use the IEEE P754 binary 
encoding of DFP numbers, which is widely known as the 
Binary Integer Decimal (BID) encoding. We summarize the 
technique used for rounding, present the theory and design 
of the BID rounding unit, and evaluate its critical path 
delay, latency, and area for combinational and pipelined 
designs. Over 86% of the rounding unit’s area is due to a 
55-bit by 54-bit binary multiplier, which can be shared with 
a double-precision binary floating-point multiplier.  To our 
knowledge, this is the first hardware design for rounding 
IEEE P754 BID-encoded DFP numbers. 
 
 
1. Introduction 
 

Decimal floating-point (DFP) arithmetic is important in 
many applications because of its ability to represent 
decimal fractions exactly and to mimic manual calculations 
that perform decimal rounding. Because binary floating-
point arithmetic can neither provide correct decimal 
rounding nor exactly represent many decimal fractions, 
such as 0.01, 0.10, 0.0475, and 10-35 [5], numerous 
applications require DFP arithmetic. Such applications 
include currency conversion, billing, insurance, tax 
calculations, and banking. One study estimates that errors 
from binary floating-point arithmetic can accumulate to a 
yearly billing error of over $5 million for large billing 
systems [10].  

Applications that cannot tolerate errors due to binary 
floating-point arithmetic often use software to perform DFP 
arithmetic [5]. Software packages for DFP arithmetic 
include IBM’s decNumber library [6] and the Java 

BigDecimal library [14].  Also, Intel recently published 
results for a prototype software library using the Binary 
Integer Decimal (BID) encoding [3,4].  These software 
packages are adequate for many of today’s applications, but 
as trends towards globalization and e-commerce continue, 
the performance of software for DFP arithmetic may not 
suffice. 

Several hardware designs for DFP arithmetic have been 
developed using encodings other than BID [1, 2, 12, 17, 18, 
19].  Recently, IBM announced DFP hardware on its 
Power6 server processor [13] and System z9 processor [8] 
using the Densely Packed Decimal (DPD) encoding, 
discussed in Section 2.  Previous designs for DFP 
arithmetic differ from our design in that they operate on 
significands with a decimal radix of 10, such as Binary 
Coded Decimal (BCD) or DPD, as opposed to BID’s binary 
radix of 2.  We believe ours is the first hardware design 
published for BID-encoded floating-point numbers.  This 
may be due to a perception that the BID format is more 
appropriate for implementing in software than in hardware. 
Contrarily, we argue that BID is well suited for hardware 
implementations, since it can share hardware with binary 
arithmetic units. 

A well-designed rounding unit is an important 
component of a BID-based hardware DFP solution, since 
decimal rounding is frequently performed in commercial 
and financial applications. One such example is 
accumulating daily interest on credit card accounts, where 
the daily periodic interest rate is precise to five digits after 
the decimal point. The accumulated balance must be 
rounded to the minimum currency unit of one cent.  Similar 
calculations are found with interest, tax, currency 
conversion, and billing applications, in which such 
rounding operations are very common [20].  In some 
applications, rounding is required after every intermediate 
calculation.  For such workloads, rounding is very 
important.  Furthermore, any addition, subtraction,       
multiplication, division, or square root operation requires a 
correctly rounded result.  Thus, a rounding unit has a 
significant effect on decimal floating-point performance.   



Innovative techniques are needed to round BID results 
to a specified number of decimal digits. This allows 
hardware to leverage the BID significand’s compact 
encoding, which lends itself well to existing high-speed 
binary arithmetic circuits. 

In this paper, we present a BID-based hardware design 
that correctly rounds BID-encoded decimal64 numbers for 
all IEEE P754 rounding modes.  The design can be adapted 
to provide rounding for BID addition, subtraction, 
multiplication, roundToIntegral, and quantize.  We focus 
on the theory and design of the rounder rather than the 
specifics of how to adapt it for each operation.  Section  2 
discusses the DFP formats in IEEE P754 and the challenge 
of rounding BID-encoded numbers. Section 3 presents the 
technique and theory for BID rounding. Section 4 discusses 
the design details and testing methodology of the BID 
rounding unit. Section 5 analyzes the critical path delay, 
latency, and area of combinational and pipelined BID 
rounding units. Section 6 presents our conclusions. 
 
2. Decimal Floating-Point Formats and 

Rounding 
 

Due to the importance of DFP arithmetic, the IEEE 
P754 Standard for Floating-Point Arithmetic includes 
specifications for DFP formats and operations [11]. IEEE 
P754 was recently voted on and initially approved in 
sponsor ballot during December 2006.  It specifies five 
rounding modes: roundTiesToEven (RTE), 
roundTiesToAway (RTA), roundTowardZero (RTZ), 

roundTowardNegative (RTN), and roundTowardPositive 
(RTP).   

In IEEE P754, the value of a finite DFP number is: 

CbiasES ××− −10)1(  

where S is the sign bit, E is a biased exponent, bias is a 
constant value that makes E non-negative, and C is the 
significand.  IEEE P754 specifies two methods for 
encoding the significands of DFP numbers; Binary Integer 
Decimal (BID) [15] and Densely Packed Decimal (DPD) 
[7]. With BID, each significand can be viewed as an 
unsigned binary integer.  With DPD, each significand can 
be viewed as an unsigned decimal integer, in which groups 
of 10 bits represent three decimal digits [7]. In IEEE P754, 
the BID encoding is called the binary encoding and the 
DPD encoding is called the decimal encoding, but either 
encoding can be used to represent DFP significands. For 
example, 5.43 is represented as 543 × 10-2, where the 
significand, 543, can be encoded using either BID or DPD. 

 For 64-bit DFP numbers, of decimal64 type, the 
supported precision is 16 decimal digits.   The BID 
significand is 54-bits because the maximum significand 
supported by decimal64 is 1016-1, which is less than 254.  
BID lends itself to high-performance binary circuits, since 
the significand is a binary number.  However, a challenge 

to implementing the BID encoding is performing efficient 
rounding, which we address in this paper. 

To illustrate the challenge of BID rounding, we give an 
example of the IEEE P754 roundToIntegral operation.  
This operation’s input is a floating-point number, and its 
output is the input rounded to one of its two closest 
integers, depending on the rounding mode. Consider an 
input of 1234 × 10-2 to the roundToIntegral operation. The 
resulting value is either 13 × 100 (in the RTP mode) or 12 x 
100 (in all other rounding modes).  The BID significand of 
the input is 123410 = 100110100102, where the subscript 
indicates the base of the number and leading zeros are not 
shown. After it is rounded, the BID significand is either 
1310 = 11012 or 1210 = 11002.  The challenge is to achieve 
correct and efficient rounding of a specified number of 
decimal digits from a binary number. 

BID rounding can be abstracted to a division by 10d to 
truncate d digits, combined with a decision to increment 
based on the value of the digits that are truncated.  We refer 
to the intermediate truncated significand and its rounding 
information as the pre-rounded result. Each rounding mode 
examines different attributes of the truncated digits to 
determine if an increment is needed or not. A straight-
forward method to round off the d least significant digits of 
a BID number is to use a binary integer division circuit to 
divide the number by 10d and to use a remainder operation 
to determine the rounding information.   However, these 
two operations are traditionally costly in terms of area and 
delay. Instead, our rounding unit uses reciprocal 
multiplication to avoid division by 10d and an innovative 
approach to ensure that results are correctly rounded in 
spite of errors due to reciprocal multiplication. 
 

3. Rounding Technique  
 

The technique we use to effectively divide by m = 10d 
and keep useful rounding information extends an already 
known technique, reciprocal multiplication [9, 21], with a 
novel theorem (Theorem 1), stated on the following page.  
The reciprocal multiplication technique can be viewed as 
multiplication by a precalculated approximation of wd  ≈  
10-d to effectively achieve division by m = 10d. 

Reciprocal multiplication is well suited for division in 
cases that the divisors are known and few, which is true 
with the BID format for DFP numbers.  We need no more 
than p divisors in a format with a precision of p decimal 
digits.  The IEEE P754 decimal64 format has a precision of 
p = 16 decimal digits, so when multiplying by 10-d, the 
values of d span the range of integers from 1 to 16. 

To perform correct rounding, it is necessary to 
determine if the pre-rounded result lies exactly halfway 
between two consecutive floating-point numbers (i.e. it is a 
midpoint) or if it can be exactly represented as a floating-
point number with the desired exponent (i.e. it is exact).  As 
an example of why midpoint determination is important, 



consider an input of 7654500 × 10-3 to roundToIntegral.  In 
this case, Ci is 7654500, d is 3, and the pre-rounded result 
is 7654.500. The correctly rounded result is 7654 × 100 for 
some rounding modes (RTE, RTZ, RTN), but 7655 × 100 for 
others (RTA, RTP).  The importance of midpoint 
determination is demonstrated by the fact that a variation in 
the input significand by ±1 unit in the last place (ulp) 
changes rounding results for the RTE and RTA modes.  Thus, 
a functionally correct rounder must be able to precisely 
detect midpoints. A similar example for determining 
exactness can be followed using 7654000 × 10-3 as the 
input to roundToIntegral.  

To achieve correct rounding when using reciprocal 
multiplication, we apply Theorem 1, where Ci is a u-bit 
input significand, m = 10d is a v-bit unsigned integer, wd is 
a (u+1)-bit unsigned integer that approximates 10-d, left-
shifted by u+v bits, and P is the (2u+1)-bit product of Ci × 
wd.  P is partitioned into three fields, Q, R, and D, where Q 
gives the truncated quotient (i.e, floor(Ci/10d)), R provides 
rounding information, and D is discarded.  Theorem 1 and 
its proof are part of a body of work developed by Intel 
engineers including Peter Tang, Marius Cornea, and John 
Harrison [16]. 
 
Theorem 1: Let Ci and m = 10

d be positive 
integers such that 0 < Ci < 2

u and 0 < m < 
2v.  Let q and r be the integer quotient and 
remainder of Ci divided by m. Thus, Ci = q·m 
+ r, 0 ≤ r ≤ m-1. Define wd = ceil(2uu++vv/m) 
and let P =  Ci × wd be expressed in the form 
 

P = 2u+v Q + 2u R + D 
 
where Q, R, and D are non-negative integers, 
R < 2v, and D < 2u.  Then Q = q. Furthermore 
r = 0 iff R = 0; r ≤ (m/2)-1 iff R ≤ 2v-1-1; 
r = m/2  iff R = 2v-1; and r ≥ (m/2)+1 iff R 
≥ 2v-1+1. 
 

Based on Theorem 1, Q provides the truncated 
quotient, q = floor(Ci/10d), and R provides all information 
needed to determine the correctly rounded result. 

We elaborate on how this theorem helps to detect 
midpoints and exactness by focusing on the calculation of 
the two parameters u and v.  The number of bits in the input 
significand, Ci, is referred to as u.  For decimal64 , u is 
fixed at 54 bits, since the maximum significand supported, 
1016-1, fits within 54 bits.  The number of bits needed to 
represent 10d, is referred to as v, where  
 
 v = ceil(log2(10d)) = ceil(d · log2(10)) 
 
For example, 106 is represented in 20 bits, so v is 20 when 
rounding off d = 6 decimal digits.  It is important to note 
that v varies with d, whereas u is fixed for a given 
significand precision, p.  

The (2u+1)-bit product, P = Ci × wd is shown in Figure 
1, where  P is partitioned into three fields: Q, R, and D.  D 
consists of the u least significant product bits, which 
contain no useful information and are discarded.  The Q 
and R fields occupy the remaining (u+1)-bits and vary in 
width depending on v. The most significant (u+1-v)-bits, Q, 
correspond to the truncated quotient.  The next lowest v 
bits, R, are inspected to determine if the truncated decimal 
digits, when viewed as a fraction, represent exactly zero, 
exactly one half, between zero and one half, or above one 
half.   
 

 
 
 
 

To determine whether the pre-rounded result is exact, 
less than a midpoint, a midpoint, or greater than a midpoint, 
we use the properties described in Table 1. The round bit, 
r*, is the most significant bit of the R field, and the sticky 
bit, s*, is set if any of the remaining bits of the R field are 
1.  As shown in Table 1, these two bits keep enough 
information to know if the pre-rounded result is exact 
(r*=0, s*=0), less than a midpoint (r*=0, s*=1), a midpoint 
(r*=1, s*=0), or greater than a midpoint (r*=1, s*= 1). 

 

 
 
 
Conditions Values of R r* s* 

Pre-rounded result is exact R == 0 0 0 
Pre-rounded result less than midpoint R < 2v-1 0 1 
Pre-rounded result exactly midpoint R == 2v-1 1 0 
Pre-rounded result greater than midpoint R > 2v-1 1 1 

 
4. Rounding Unit Design and Testing 
 

In our rounding unit for BID-encoded IEEE P754 
decimal64 numbers, we pre-calculate sixteen values of wd 
and store them in a lookup table. The table entry used to 
truncate d digits is referred to as wd and is equal to ceil(2u+v 
/ 10d). The pre-calculated values of wd used in this design 
are shown in Table 2. Since u=54, each table entry is u+1 
= 55 bits (Th.1). Though 55 bits are needed for the entries, 
each value’s most significant bit is always 1.  Thus, only 54 
bits are stored per entry, and the most significant bit of wd 
is hardwired to 1.  A value of wd is selected from the table, 
based on the number of digits to round off.  The 54-bit 
input significand, Ci, is then multiplied by wd to produce the 
result P, a 109-bit intermediate value. 
 

Figure 1.  Product Fields

Table 1: Midpoints and Exact Results



 
 

d LUT Position wd 
1 0001 55'h66666666666667 
2 0010 55'h51eb851eb851ec 
3 0011 55'h4189374bc6a7f0 
4 0100 55'h68db8bac710cb3 
5 0101 55'h53e2d6238da3c3 
6 0110 55'h431bde82d7b635 
7 0111 55'h6b5fca6af2bd22 
8 1000 55'h55e63b88c230e8 
9 1001 55'h44b82fa09b5a53 
10 1010 55'h6df37f675ef6eb 
11 1011 55'h57f5ff85e59256 
12 1100 55'h465e6604b7a845 
13 1101 55'h709709a125da08 
14 1110 55'h5a126e1a84ae6d 
15 1111 55'h480ebe7b9d5857 
16 0000 55'h734aca5f6226f1 

 
The top-level design of our rounding unit is presented 

in Figure 2. The design takes as inputs, the 54-bit input 
significand, Ci, an 11-bit value, d, that indicates the number 
of digits to be rounded off, the sign of the input operand, Si, 
and the 3-bit Rounding Mode. The d input was chosen to be 
11 bits to handle the maximum difference between two 
exponents, which is used when implementing the IEEE 
P754 quantize operation.  The output is a 54-bit rounded 
significand, Co. The majority of the diagram, through the 
center and left, illustrates the data path.  The right side of 
the diagram shows blocks for basic control.  The rounder 
handles the rounding of d > 16 digits by using a bypass 
path, controlled by the bypass logic, skipping the multiplier 
altogether.  Division by powers of 10d with d > 16 results in 
a value less than one tenth, which rounds to either 0 or 1, 
depending on the rounding mode.  In this case, the bypass 
logic chooses one of these two values to route to the output.  
The bypass logic also handles the case where the number of 
digits rounded off, d, equals 0.  In this case, Ci[53:0] is 
routed along the bypass path to the output.  The unit 
assumes other IEEE P754 DFP computations such as sign 
and exponent calculation, detection of Not-a-Number 
(NaN),  infinities, overflow, and inexact occur outside this 
block.  The 55-bit by 54-bit multiplier dominates the design 
area, whereas the logic for multiplexer control is compact.  
More details on the rounding unit’s design are given 
throughout the rest of the section.  

The extract significant, round and sticky unit following 
the multiplier, which is also shown in Figure 3, is used to 
extract Q, r*, and s*. Q is prepended with (v-1) leading 
zeros, to produce a 54-bit temporary significand, Ctmp. The 
Extract Significand and Round  module can be considered a 
“specialized shifter” which shifts P[108:54] right by v-1 
bits, so r* is in its least significant bit position.   The extract 
sticky unit uses a mask obtained from a lookup table on 
d[3:0] to keep only relevant bits of P[105:54].  It then 
OR’s all these bits together to compute s*. We know that 
P[108:106] can never contain sticky information, since (1) 

P[108] is always clear due to Ci being restricted to values 
less than 1016,  (2) P[107] always contains information 
about Q since Q is non-zero (i.e. it must be at least one bit), 
and (3) r* is the most significant bit of the R field, which 
prevents P[106] from containing sticky information.  Note 
that due to (1) the multiplier may be modified to omit the 
computation of P[108]. 

The value of Ctmp extracted from the Q field of the 
product is the truncated result.  In many cases, this is the 
value for Co, but in other cases it must be incremented.  For 
this reason, an increment unit is included in the design near 
the output.  
 

 
Figure 2.  Top Level Design of BID Rounding Unit 

 
 

Table 3 summarizes the control logic used to 
determine if an increment is needed, based on Si, r*, s*, and 
Ctmp[0].  The simplest rounding mode is RTZ, where Ctmp 
can always be taken as the final significand.  The r* bit is 
set if the pre-rounded result is a midpoint or above, which 
is sufficient knowledge for an increment in RTA mode.  An 
additional check of s* and Ctmp[0] is needed in the RTE 
mode, because an exact midpoint with an even truncated 
significand is not incremented. The sign must be checked to 
determine if an increment is needed in the RTP and RTN 
modes.  If the sign matches the direction of the rounding 

Table 2: Pre-calculated values of wd



mode and if the remainder is non-zero, Ctmp is incremented.  
Any non-zero remainder has either r* or s* set. 
 

 
 
 
 
 

Revisiting an earlier example, in the context of this 
design, consider the input 7654500×10-3, to the 
roundToIntegral function in the RTE mode.  From Table 2, 
the precalculated wd for d = 3 is 4189374bc6a7f016, which 
is multiplied by the input significand, Ci = 765450010, 
giving a product, P = 000000001de680000000002cd9c016.  
Since v = 10 and u = 54, the quotient is Q = P[108:64] = 
000000001de616 = 765410, Ctmp[53:0] = 00000000001de616, 
and R = P[63:54] = 20016, which gives r* = 1 and s* = 0.  
This means that the pre-rounded result is an exact midpoint, 
so for roundTiesToEven, Ctmp is incremented if Ctmp[0] = 1.  
In this example, it is not, so the control chooses the 
multiplexer path that does not include the increment unit 
and the expected result of 7654 × 100 is produced.  

 
 

 
 

Rounding Mode Increment Condition 
roundTiesToAway r* 
roundTiesToEven r* & (s* | Ctmp[0]) 
roundTowardZero 0 
roundTowardPositive ~Si & (r* | s*) 
roundTowardNegative Si &(r* | s*) 

 
 
We developed a directed random test generator to 

enhance our test coverage and increase our confidence in 
the design methodology.  The test generator is written in 
Perl, and it produces a significand and the number of digits 
to round off. Then, it computes the expected result, against 
which it compares the output of the rounder.  The directed 
random test generator produces a user-controllable mix of 
tests that fall into five categories: vanilla, midpoint, exact, 
near-midpoint, and near-exact.  The vanilla tests can give 
any significand between 1 and 9999999999999999 with a 
uniform distribution.  The midpoint and exact categories 
exercise the boundary conditions by ensuring the digits cut 
off are 5 followed by all zeros or all zeros, respectively.  

The near-midpoint and near-exact categories are similar to 
the midpoint and exact cases, with the input significand 
incremented or decremented before rounding.  The user can 
control the percentage of tests in each category and 
generate millions of tests very quickly.  This directed 
random test generator aided in our verification of the 
design, allowing us to quickly test many iterations of the 
design and to ensure correct functionality. 
 
5. Results 
 

We have initially synthesized, tested, and evaluated 
our BID rounding unit using Mentor Graphics ModelSim, 
Synopsys Design Compiler, and the LSI Logic Gflxp 0.11 
micron CMOS standard cell library.   Our testing consisted 
of 1,000,000 directed random test vectors in addition to 500 
corner-case test vectors.  We have evaluated several 
pipelined implementations of our BID rounding unit, all of 
which are optimized for delay. A purely combinational 
design has been synthesized as well as pipelined designs 
with four to six stages.  We examine the tradeoffs between 
area, critical path delay, and latency across the designs.  
The results are summarized in Table 4, where the total area 
includes logic, wire routing, and registers.  Each design has 
registered inputs and outputs. 

 
 

 
 
 

Pipeline 
Depth 

Total Area 
(µm2) 

Delay 
(ns) 

Latency 
(ns) 

Unpipelined 343612 2.90 2.90 
4 612908 0.87 3.48 
5 662503 0.81 4.05 
6 726430 0.69 4.14 

 
In this technology, an inverter with fan-out of 4 (FO4) 

has a delay of 0.055 ns, and a 2-input NAND gate has an 
area of 8.08 µm2.  Thus, the clock cycle for the decimal64 
BID rounder design ranges from 13 to 53 FO4 delays.  
Furthermore, the total area ranges from 0.344 to 0.726 
mm2.  The 4-stage pipelined rounder consists of a 2-stage 
multiplier with 1 stage before and 1 stage after.  The 5-
stage pipelined rounder uses a 3-stage multiplier and is 
otherwise the same.  The 6-stage rounder is similar to the 5-
stage rounder, except it adds an additional pipeline stage 
after the multiplier. 

To put the rounding unit results in perspective, we 
synthesized an unpipelined Synopsys DesignWare 54-bit 
by 55-bit multiplier, named DW02_mult.  We constrained 
the synthesis to have the same critical path delay as the 
multiply portion of the rounder design (1.57ns), and we 
used the same technology.  The total area of the 
DesignWare multiplier was 329735 µm2. Thus, by this 
measure, the multiplier comprises 96% of the total area of 

Figure 3. Significand, Round, and Sticky 
Extraction Unit 

Table 3: Logic Equations for Increment 
Control  

Table 4: BID Rounding Unit Synthesis
 Results as a Function of Pipeline Depth 



the unpipelined rounder design.  Though this comparison 
serves as a good first-order approximation, we believe that 
the synthesizer had more liberty to optimize the delay at the 
cost of area in the standalone multiplier design.  Thus, it is 
possible that the area of the standalone multiplier is slightly 
inflated. 

To corroborate the above area measurement, we 
conducted a separate analysis by invoking the Synopsys 
profile_area command.  The tool reported the 
combinational area of the 55-bit by 54-bit multiplier as 
ranging from 86% to 88% of the combinational area of the 
total rounder design, depending on the number of pipeline 
stages. 

These results are promising, as they indicate that BID 
rounding can be achieved with only a small increase in area 
when hardware is shared with an existing double-precision 
floating-point multiplier.  Since we are using a synthesized 
multiplier, we are further encouraged that efforts to 
improve the multiplier have the potential to also enhance 
the rounding unit. 

In the unpipelined rounding unit design, the critical 
path delay from inputs to outputs is 2.90ns.  The critical 
path is through the wd lookup table, 55-bit by 54-bit 
Multiplier, Extract Significand Unit, d > 16 Multiplexer, 
Increment Unit, and finally the Result Multiplexer.  A large 
portion of the delay is due to the 55-bit by 54-bit 
Multiplier, which has a delay of 1.57ns, or 54.1 percent of 
the total delay.  The delay of the other units on the critical 
delay path is as follows: the wd lookup table delay is 
0.47ns, the Extract Significand Unit delay is 0.47ns, the d > 
16 Multiplexer delay is 0.08ns, the Increment Unit delay is 
0.23ns, and the Result Multiplexer delay is 0.08ns. These 
results show that a BID hardware rounder can be 
implemented with a reasonable delay, and its delay is 
largely due to the delay of the multiplier.  The remaining 
circuitry has relatively low delay.  
 
6. Conclusion 

 
We have presented the first design of a BID-based 

DFP rounding unit.  This design correctly rounds the 
significand of an IEEE P754 BID decimal64 number.  The 
techniques and theory of the design can be adapted to 
support the IEEE P754 operations of addition, subtraction, 
multiplication, roundToIntegral, and quantize,  and can be 
adapted for other operand sizes.  

The hardware design is promising in terms of area, 
latency, and potential hardware reuse.  The design can be 
pipelined to achieve a cycle time equal to 13 FO4 inverter 
delays.  Over 86% of the rounding unit’s area is due to a 
55-bit by 54-bit binary multiplier, which can be shared with 
a double-precision binary floating-point multiplier.  The 
design illustrates that BID rounding can be effectively 
achieved in hardware. 
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