
Hardware Design of a Binary Integer Decimal-based
 IEEE P754 Rounding Unit

Charles Tsen Michael Schulte Sonia González-Navarro
University of Wisconsin University of Wisconsin Universidad de Málaga

stsen@wisc.edu schulte@engr.wisc.edu sonia@ac.uma.es

Abstract

Because of the growing importance of decimal
floating-point (DFP) arithmetic, specifications for it were
recently added to the draft revision of the IEEE 754
Standard (IEEE P754). In this paper, we present a
hardware design for a rounding unit for 64-bit DFP
numbers (decimal64) that use the IEEE P754 binary
encoding of DFP numbers, which is widely known as the
Binary Integer Decimal (BID) encoding. We summarize the
technique used for rounding, present the theory and design
of the BID rounding unit, and evaluate its critical path
delay, latency, and area for combinational and pipelined
designs. Over 86% of the rounding unit’s area is due to a
55-bit by 54-bit binary multiplier, which can be shared with
a double-precision binary floating-point multiplier. To our
knowledge, this is the first hardware design for rounding
IEEE P754 BID-encoded DFP numbers.

1. Introduction

Decimal floating-point (DFP) arithmetic is important in
many applications because of its ability to represent
decimal fractions exactly and to mimic manual calculations
that perform decimal rounding. Because binary floating-
point arithmetic can neither provide correct decimal
rounding nor exactly represent many decimal fractions,
such as 0.01, 0.10, 0.0475, and 10-35 [5], numerous
applications require DFP arithmetic. Such applications
include currency conversion, billing, insurance, tax
calculations, and banking. One study estimates that errors
from binary floating-point arithmetic can accumulate to a
yearly billing error of over $5 million for large billing
systems [10].

Applications that cannot tolerate errors due to binary
floating-point arithmetic often use software to perform DFP
arithmetic [5]. Software packages for DFP arithmetic
include IBM’s decNumber library [6] and the Java

BigDecimal library [14]. Also, Intel recently published
results for a prototype software library using the Binary
Integer Decimal (BID) encoding [3,4]. These software
packages are adequate for many of today’s applications, but
as trends towards globalization and e-commerce continue,
the performance of software for DFP arithmetic may not
suffice.

Several hardware designs for DFP arithmetic have been
developed using encodings other than BID [1, 2, 12, 17, 18,
19]. Recently, IBM announced DFP hardware on its
Power6 server processor [13] and System z9 processor [8]
using the Densely Packed Decimal (DPD) encoding,
discussed in Section 2. Previous designs for DFP
arithmetic differ from our design in that they operate on
significands with a decimal radix of 10, such as Binary
Coded Decimal (BCD) or DPD, as opposed to BID’s binary
radix of 2. We believe ours is the first hardware design
published for BID-encoded floating-point numbers. This
may be due to a perception that the BID format is more
appropriate for implementing in software than in hardware.
Contrarily, we argue that BID is well suited for hardware
implementations, since it can share hardware with binary
arithmetic units.

A well-designed rounding unit is an important
component of a BID-based hardware DFP solution, since
decimal rounding is frequently performed in commercial
and financial applications. One such example is
accumulating daily interest on credit card accounts, where
the daily periodic interest rate is precise to five digits after
the decimal point. The accumulated balance must be
rounded to the minimum currency unit of one cent. Similar
calculations are found with interest, tax, currency
conversion, and billing applications, in which such
rounding operations are very common [20]. In some
applications, rounding is required after every intermediate
calculation. For such workloads, rounding is very
important. Furthermore, any addition, subtraction,
multiplication, division, or square root operation requires a
correctly rounded result. Thus, a rounding unit has a
significant effect on decimal floating-point performance.

Innovative techniques are needed to round BID results
to a specified number of decimal digits. This allows
hardware to leverage the BID significand’s compact
encoding, which lends itself well to existing high-speed
binary arithmetic circuits.

In this paper, we present a BID-based hardware design
that correctly rounds BID-encoded decimal64 numbers for
all IEEE P754 rounding modes. The design can be adapted
to provide rounding for BID addition, subtraction,
multiplication, roundToIntegral, and quantize. We focus
on the theory and design of the rounder rather than the
specifics of how to adapt it for each operation. Section 2
discusses the DFP formats in IEEE P754 and the challenge
of rounding BID-encoded numbers. Section 3 presents the
technique and theory for BID rounding. Section 4 discusses
the design details and testing methodology of the BID
rounding unit. Section 5 analyzes the critical path delay,
latency, and area of combinational and pipelined BID
rounding units. Section 6 presents our conclusions.

2. Decimal Floating-Point Formats and

Rounding

Due to the importance of DFP arithmetic, the IEEE
P754 Standard for Floating-Point Arithmetic includes
specifications for DFP formats and operations [11]. IEEE
P754 was recently voted on and initially approved in
sponsor ballot during December 2006. It specifies five
rounding modes: roundTiesToEven (RTE),
roundTiesToAway (RTA), roundTowardZero (RTZ),

roundTowardNegative (RTN), and roundTowardPositive
(RTP).

In IEEE P754, the value of a finite DFP number is:

CbiasES ××− −10)1(

where S is the sign bit, E is a biased exponent, bias is a
constant value that makes E non-negative, and C is the
significand. IEEE P754 specifies two methods for
encoding the significands of DFP numbers; Binary Integer
Decimal (BID) [15] and Densely Packed Decimal (DPD)
[7]. With BID, each significand can be viewed as an
unsigned binary integer. With DPD, each significand can
be viewed as an unsigned decimal integer, in which groups
of 10 bits represent three decimal digits [7]. In IEEE P754,
the BID encoding is called the binary encoding and the
DPD encoding is called the decimal encoding, but either
encoding can be used to represent DFP significands. For
example, 5.43 is represented as 543 × 10-2, where the
significand, 543, can be encoded using either BID or DPD.

 For 64-bit DFP numbers, of decimal64 type, the
supported precision is 16 decimal digits. The BID
significand is 54-bits because the maximum significand
supported by decimal64 is 1016-1, which is less than 254.
BID lends itself to high-performance binary circuits, since
the significand is a binary number. However, a challenge

to implementing the BID encoding is performing efficient
rounding, which we address in this paper.

To illustrate the challenge of BID rounding, we give an
example of the IEEE P754 roundToIntegral operation.
This operation’s input is a floating-point number, and its
output is the input rounded to one of its two closest
integers, depending on the rounding mode. Consider an
input of 1234 × 10-2 to the roundToIntegral operation. The
resulting value is either 13 × 100 (in the RTP mode) or 12 x
100 (in all other rounding modes). The BID significand of
the input is 123410 = 100110100102, where the subscript
indicates the base of the number and leading zeros are not
shown. After it is rounded, the BID significand is either
1310 = 11012 or 1210 = 11002. The challenge is to achieve
correct and efficient rounding of a specified number of
decimal digits from a binary number.

BID rounding can be abstracted to a division by 10d to
truncate d digits, combined with a decision to increment
based on the value of the digits that are truncated. We refer
to the intermediate truncated significand and its rounding
information as the pre-rounded result. Each rounding mode
examines different attributes of the truncated digits to
determine if an increment is needed or not. A straight-
forward method to round off the d least significant digits of
a BID number is to use a binary integer division circuit to
divide the number by 10d and to use a remainder operation
to determine the rounding information. However, these
two operations are traditionally costly in terms of area and
delay. Instead, our rounding unit uses reciprocal
multiplication to avoid division by 10d and an innovative
approach to ensure that results are correctly rounded in
spite of errors due to reciprocal multiplication.

3. Rounding Technique

The technique we use to effectively divide by m = 10d
and keep useful rounding information extends an already
known technique, reciprocal multiplication [9, 21], with a
novel theorem (Theorem 1), stated on the following page.
The reciprocal multiplication technique can be viewed as
multiplication by a precalculated approximation of wd ≈
10-d to effectively achieve division by m = 10d.

Reciprocal multiplication is well suited for division in
cases that the divisors are known and few, which is true
with the BID format for DFP numbers. We need no more
than p divisors in a format with a precision of p decimal
digits. The IEEE P754 decimal64 format has a precision of
p = 16 decimal digits, so when multiplying by 10-d, the
values of d span the range of integers from 1 to 16.

To perform correct rounding, it is necessary to
determine if the pre-rounded result lies exactly halfway
between two consecutive floating-point numbers (i.e. it is a
midpoint) or if it can be exactly represented as a floating-
point number with the desired exponent (i.e. it is exact). As
an example of why midpoint determination is important,

consider an input of 7654500 × 10-3 to roundToIntegral. In
this case, Ci is 7654500, d is 3, and the pre-rounded result
is 7654.500. The correctly rounded result is 7654 × 100 for
some rounding modes (RTE, RTZ, RTN), but 7655 × 100 for
others (RTA, RTP). The importance of midpoint
determination is demonstrated by the fact that a variation in
the input significand by ±1 unit in the last place (ulp)
changes rounding results for the RTE and RTA modes. Thus,
a functionally correct rounder must be able to precisely
detect midpoints. A similar example for determining
exactness can be followed using 7654000 × 10-3 as the
input to roundToIntegral.

To achieve correct rounding when using reciprocal
multiplication, we apply Theorem 1, where Ci is a u-bit
input significand, m = 10d is a v-bit unsigned integer, wd is
a (u+1)-bit unsigned integer that approximates 10-d, left-
shifted by u+v bits, and P is the (2u+1)-bit product of Ci ×
wd. P is partitioned into three fields, Q, R, and D, where Q
gives the truncated quotient (i.e, floor(Ci/10d)), R provides
rounding information, and D is discarded. Theorem 1 and
its proof are part of a body of work developed by Intel
engineers including Peter Tang, Marius Cornea, and John
Harrison [16].

Theorem 1: Let Ci and m = 10

d be positive
integers such that 0 < Ci < 2

u and 0 < m <
2v. Let q and r be the integer quotient and
remainder of Ci divided by m. Thus, Ci = q·m
+ r, 0 ≤ r ≤ m-1. Define wd = ceil(2uu++vv/m)
and let P = Ci × wd be expressed in the form

P = 2u+v Q + 2u R + D

where Q, R, and D are non-negative integers,
R < 2v, and D < 2u. Then Q = q. Furthermore
r = 0 iff R = 0; r ≤ (m/2)-1 iff R ≤ 2v-1-1;
r = m/2 iff R = 2v-1; and r ≥ (m/2)+1 iff R
≥ 2v-1+1.

Based on Theorem 1, Q provides the truncated
quotient, q = floor(Ci/10d), and R provides all information
needed to determine the correctly rounded result.

We elaborate on how this theorem helps to detect
midpoints and exactness by focusing on the calculation of
the two parameters u and v. The number of bits in the input
significand, Ci, is referred to as u. For decimal64 , u is
fixed at 54 bits, since the maximum significand supported,
1016-1, fits within 54 bits. The number of bits needed to
represent 10d, is referred to as v, where

 v = ceil(log2(10d)) = ceil(d · log2(10))

For example, 106 is represented in 20 bits, so v is 20 when
rounding off d = 6 decimal digits. It is important to note
that v varies with d, whereas u is fixed for a given
significand precision, p.

The (2u+1)-bit product, P = Ci × wd is shown in Figure
1, where P is partitioned into three fields: Q, R, and D. D
consists of the u least significant product bits, which
contain no useful information and are discarded. The Q
and R fields occupy the remaining (u+1)-bits and vary in
width depending on v. The most significant (u+1-v)-bits, Q,
correspond to the truncated quotient. The next lowest v
bits, R, are inspected to determine if the truncated decimal
digits, when viewed as a fraction, represent exactly zero,
exactly one half, between zero and one half, or above one
half.

To determine whether the pre-rounded result is exact,
less than a midpoint, a midpoint, or greater than a midpoint,
we use the properties described in Table 1. The round bit,
r*, is the most significant bit of the R field, and the sticky
bit, s*, is set if any of the remaining bits of the R field are
1. As shown in Table 1, these two bits keep enough
information to know if the pre-rounded result is exact
(r*=0, s*=0), less than a midpoint (r*=0, s*=1), a midpoint
(r*=1, s*=0), or greater than a midpoint (r*=1, s*= 1).

Conditions Values of R r* s*

Pre-rounded result is exact R == 0 0 0
Pre-rounded result less than midpoint R < 2v-1 0 1
Pre-rounded result exactly midpoint R == 2v-1 1 0
Pre-rounded result greater than midpoint R > 2v-1 1 1

4. Rounding Unit Design and Testing

In our rounding unit for BID-encoded IEEE P754
decimal64 numbers, we pre-calculate sixteen values of wd
and store them in a lookup table. The table entry used to
truncate d digits is referred to as wd and is equal to ceil(2u+v
/ 10d). The pre-calculated values of wd used in this design
are shown in Table 2. Since u=54, each table entry is u+1
= 55 bits (Th.1). Though 55 bits are needed for the entries,
each value’s most significant bit is always 1. Thus, only 54
bits are stored per entry, and the most significant bit of wd
is hardwired to 1. A value of wd is selected from the table,
based on the number of digits to round off. The 54-bit
input significand, Ci, is then multiplied by wd to produce the
result P, a 109-bit intermediate value.

Figure 1. Product Fields

Table 1: Midpoints and Exact Results

d LUT Position wd
1 0001 55'h66666666666667
2 0010 55'h51eb851eb851ec
3 0011 55'h4189374bc6a7f0
4 0100 55'h68db8bac710cb3
5 0101 55'h53e2d6238da3c3
6 0110 55'h431bde82d7b635
7 0111 55'h6b5fca6af2bd22
8 1000 55'h55e63b88c230e8
9 1001 55'h44b82fa09b5a53
10 1010 55'h6df37f675ef6eb
11 1011 55'h57f5ff85e59256
12 1100 55'h465e6604b7a845
13 1101 55'h709709a125da08
14 1110 55'h5a126e1a84ae6d
15 1111 55'h480ebe7b9d5857
16 0000 55'h734aca5f6226f1

The top-level design of our rounding unit is presented

in Figure 2. The design takes as inputs, the 54-bit input
significand, Ci, an 11-bit value, d, that indicates the number
of digits to be rounded off, the sign of the input operand, Si,
and the 3-bit Rounding Mode. The d input was chosen to be
11 bits to handle the maximum difference between two
exponents, which is used when implementing the IEEE
P754 quantize operation. The output is a 54-bit rounded
significand, Co. The majority of the diagram, through the
center and left, illustrates the data path. The right side of
the diagram shows blocks for basic control. The rounder
handles the rounding of d > 16 digits by using a bypass
path, controlled by the bypass logic, skipping the multiplier
altogether. Division by powers of 10d with d > 16 results in
a value less than one tenth, which rounds to either 0 or 1,
depending on the rounding mode. In this case, the bypass
logic chooses one of these two values to route to the output.
The bypass logic also handles the case where the number of
digits rounded off, d, equals 0. In this case, Ci[53:0] is
routed along the bypass path to the output. The unit
assumes other IEEE P754 DFP computations such as sign
and exponent calculation, detection of Not-a-Number
(NaN), infinities, overflow, and inexact occur outside this
block. The 55-bit by 54-bit multiplier dominates the design
area, whereas the logic for multiplexer control is compact.
More details on the rounding unit’s design are given
throughout the rest of the section.

The extract significant, round and sticky unit following
the multiplier, which is also shown in Figure 3, is used to
extract Q, r*, and s*. Q is prepended with (v-1) leading
zeros, to produce a 54-bit temporary significand, Ctmp. The
Extract Significand and Round module can be considered a
“specialized shifter” which shifts P[108:54] right by v-1
bits, so r* is in its least significant bit position. The extract
sticky unit uses a mask obtained from a lookup table on
d[3:0] to keep only relevant bits of P[105:54]. It then
OR’s all these bits together to compute s*. We know that
P[108:106] can never contain sticky information, since (1)

P[108] is always clear due to Ci being restricted to values
less than 1016, (2) P[107] always contains information
about Q since Q is non-zero (i.e. it must be at least one bit),
and (3) r* is the most significant bit of the R field, which
prevents P[106] from containing sticky information. Note
that due to (1) the multiplier may be modified to omit the
computation of P[108].

The value of Ctmp extracted from the Q field of the
product is the truncated result. In many cases, this is the
value for Co, but in other cases it must be incremented. For
this reason, an increment unit is included in the design near
the output.

Figure 2. Top Level Design of BID Rounding Unit

Table 3 summarizes the control logic used to
determine if an increment is needed, based on Si, r*, s*, and
Ctmp[0]. The simplest rounding mode is RTZ, where Ctmp
can always be taken as the final significand. The r* bit is
set if the pre-rounded result is a midpoint or above, which
is sufficient knowledge for an increment in RTA mode. An
additional check of s* and Ctmp[0] is needed in the RTE
mode, because an exact midpoint with an even truncated
significand is not incremented. The sign must be checked to
determine if an increment is needed in the RTP and RTN
modes. If the sign matches the direction of the rounding

Table 2: Pre-calculated values of wd

mode and if the remainder is non-zero, Ctmp is incremented.
Any non-zero remainder has either r* or s* set.

Revisiting an earlier example, in the context of this
design, consider the input 7654500×10-3, to the
roundToIntegral function in the RTE mode. From Table 2,
the precalculated wd for d = 3 is 4189374bc6a7f016, which
is multiplied by the input significand, Ci = 765450010,
giving a product, P = 000000001de680000000002cd9c016.
Since v = 10 and u = 54, the quotient is Q = P[108:64] =
000000001de616 = 765410, Ctmp[53:0] = 00000000001de616,
and R = P[63:54] = 20016, which gives r* = 1 and s* = 0.
This means that the pre-rounded result is an exact midpoint,
so for roundTiesToEven, Ctmp is incremented if Ctmp[0] = 1.
In this example, it is not, so the control chooses the
multiplexer path that does not include the increment unit
and the expected result of 7654 × 100 is produced.

Rounding Mode Increment Condition
roundTiesToAway r*
roundTiesToEven r* & (s* | Ctmp[0])
roundTowardZero 0
roundTowardPositive ~Si & (r* | s*)
roundTowardNegative Si &(r* | s*)

We developed a directed random test generator to

enhance our test coverage and increase our confidence in
the design methodology. The test generator is written in
Perl, and it produces a significand and the number of digits
to round off. Then, it computes the expected result, against
which it compares the output of the rounder. The directed
random test generator produces a user-controllable mix of
tests that fall into five categories: vanilla, midpoint, exact,
near-midpoint, and near-exact. The vanilla tests can give
any significand between 1 and 9999999999999999 with a
uniform distribution. The midpoint and exact categories
exercise the boundary conditions by ensuring the digits cut
off are 5 followed by all zeros or all zeros, respectively.

The near-midpoint and near-exact categories are similar to
the midpoint and exact cases, with the input significand
incremented or decremented before rounding. The user can
control the percentage of tests in each category and
generate millions of tests very quickly. This directed
random test generator aided in our verification of the
design, allowing us to quickly test many iterations of the
design and to ensure correct functionality.

5. Results

We have initially synthesized, tested, and evaluated
our BID rounding unit using Mentor Graphics ModelSim,
Synopsys Design Compiler, and the LSI Logic Gflxp 0.11
micron CMOS standard cell library. Our testing consisted
of 1,000,000 directed random test vectors in addition to 500
corner-case test vectors. We have evaluated several
pipelined implementations of our BID rounding unit, all of
which are optimized for delay. A purely combinational
design has been synthesized as well as pipelined designs
with four to six stages. We examine the tradeoffs between
area, critical path delay, and latency across the designs.
The results are summarized in Table 4, where the total area
includes logic, wire routing, and registers. Each design has
registered inputs and outputs.

Pipeline
Depth

Total Area
(µm2)

Delay
(ns)

Latency
(ns)

Unpipelined 343612 2.90 2.90
4 612908 0.87 3.48
5 662503 0.81 4.05
6 726430 0.69 4.14

In this technology, an inverter with fan-out of 4 (FO4)

has a delay of 0.055 ns, and a 2-input NAND gate has an
area of 8.08 µm2. Thus, the clock cycle for the decimal64
BID rounder design ranges from 13 to 53 FO4 delays.
Furthermore, the total area ranges from 0.344 to 0.726
mm2. The 4-stage pipelined rounder consists of a 2-stage
multiplier with 1 stage before and 1 stage after. The 5-
stage pipelined rounder uses a 3-stage multiplier and is
otherwise the same. The 6-stage rounder is similar to the 5-
stage rounder, except it adds an additional pipeline stage
after the multiplier.

To put the rounding unit results in perspective, we
synthesized an unpipelined Synopsys DesignWare 54-bit
by 55-bit multiplier, named DW02_mult. We constrained
the synthesis to have the same critical path delay as the
multiply portion of the rounder design (1.57ns), and we
used the same technology. The total area of the
DesignWare multiplier was 329735 µm2. Thus, by this
measure, the multiplier comprises 96% of the total area of

Figure 3. Significand, Round, and Sticky
Extraction Unit

Table 3: Logic Equations for Increment
Control

Table 4: BID Rounding Unit Synthesis
 Results as a Function of Pipeline Depth

the unpipelined rounder design. Though this comparison
serves as a good first-order approximation, we believe that
the synthesizer had more liberty to optimize the delay at the
cost of area in the standalone multiplier design. Thus, it is
possible that the area of the standalone multiplier is slightly
inflated.

To corroborate the above area measurement, we
conducted a separate analysis by invoking the Synopsys
profile_area command. The tool reported the
combinational area of the 55-bit by 54-bit multiplier as
ranging from 86% to 88% of the combinational area of the
total rounder design, depending on the number of pipeline
stages.

These results are promising, as they indicate that BID
rounding can be achieved with only a small increase in area
when hardware is shared with an existing double-precision
floating-point multiplier. Since we are using a synthesized
multiplier, we are further encouraged that efforts to
improve the multiplier have the potential to also enhance
the rounding unit.

In the unpipelined rounding unit design, the critical
path delay from inputs to outputs is 2.90ns. The critical
path is through the wd lookup table, 55-bit by 54-bit
Multiplier, Extract Significand Unit, d > 16 Multiplexer,
Increment Unit, and finally the Result Multiplexer. A large
portion of the delay is due to the 55-bit by 54-bit
Multiplier, which has a delay of 1.57ns, or 54.1 percent of
the total delay. The delay of the other units on the critical
delay path is as follows: the wd lookup table delay is
0.47ns, the Extract Significand Unit delay is 0.47ns, the d >
16 Multiplexer delay is 0.08ns, the Increment Unit delay is
0.23ns, and the Result Multiplexer delay is 0.08ns. These
results show that a BID hardware rounder can be
implemented with a reasonable delay, and its delay is
largely due to the delay of the multiplier. The remaining
circuitry has relatively low delay.

6. Conclusion

We have presented the first design of a BID-based

DFP rounding unit. This design correctly rounds the
significand of an IEEE P754 BID decimal64 number. The
techniques and theory of the design can be adapted to
support the IEEE P754 operations of addition, subtraction,
multiplication, roundToIntegral, and quantize, and can be
adapted for other operand sizes.

The hardware design is promising in terms of area,
latency, and potential hardware reuse. The design can be
pipelined to achieve a cycle time equal to 13 FO4 inverter
delays. Over 86% of the rounding unit’s area is due to a
55-bit by 54-bit binary multiplier, which can be shared with
a double-precision binary floating-point multiplier. The
design illustrates that BID rounding can be effectively
achieved in hardware.

7. Acknowledgements

The research presented in this paper is supported in
part by a grant from Intel Corporation. The authors are
indebted to Peter Tang, Marius Cornea, John Crawford, and
John Harrison for theoretical work supporting the rounder
design.

8. References

[1] G. Bohlender, T. Teufel, “A Decimal Floating-Point

Processor for Optimal Arithmetic,” Computer Arithmetic :
Scientific Computation and Programming Languages, ISBN
3-519-02448-9, B. G. Teubner Stuttgart, 1987, pp. 31-58.

[2] M. S.Cohen, T. E. Hull, V. C. Hamacher, “CADAC: A
Controlled-Precision Decimal Arithmetic Unit,” IEEE
Transactions on Computers, vol. C-32, no. 4, April 1983,
pp. 370-377.

[3] M. Cornea, C. Anderson, J. Harrison, P. Tang, E. Schneider,
C. Tsen, “A Software Implementation of the IEEE 754R
Decimal Floating-Point Arithmetic Using the Binary
Encoding Format,” to be published in the 18th International
Symposium on Computer Arithmetic, Montpelier, France,
June 2007.

[4] M. Cornea, C. Anderson, C. Tsen, “Software Implementation
of the IEEE 754R Decimal Floating-Point Arithmetic,”
Proceedings of the International Conference on Software
and Data Technologies, Setúbal, Portugal, September 2006.

[5] M. F. Cowlishaw, “Decimal Floating-Point : Algorism for
Computers,” Proceedings of the 16th IEEE Symposium on
Computer Arithmetic, June 2003, Santiago de Compostela,
Spain, pp. 104-111.

[6] M. F. Cowlishaw, “The decNumber Library,” Available at
http://www2.hursley.ibm.com/decimal/decnumber/pdf 2006.

[7] M. F. Cowlishaw, “Densely Packed Decimal Encoding,” IEE
Proceedings – Computers and Digital Techniques, vol. 149,
May 2002, pp. 102-104.

[8] A. Y. Duale, M. H. Decker, H-G. Zipperer, M. Aharoni, T. J.
Bohizic, “Decimal floating-point in z9: An implementation
and testing perspective,” IBM Journal of Research and
Development. vol. 51, no. 1/2, March 2007.

[9] T. Granlund, P. Montgomery, “Division by Invariant
Integers using Multiplication,” Proceedings of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation, Orlando, Florida 1994, pp. 61-72.

[10] IBM Corporation, “The ‘telco’ benchmark,” Available at
http://www2.hursley.ibm.com/decimal/ telco.html, 2002.

[11] Institute of Electrical and Electronic Engineers, “Draft
Standard for Floating-Point Arithmetic,”
http://754r.ucbtest.org/drafts/754r.pdf, October, 2006.

[12] H. Nikmehr, B. Phillips, C.-C. Lim, “Fast Decimal Floating-
Point Division,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 14, no 9, September 2006.
pp. 951-961.

[13] S. Shankland, “IBM’s Power6 Gets Help with Math
Multimedia,” Available at http://news.zdnet.com/2100-

9584_22-6124451.html. Published on ZDNet News, October
10, 2006.

[14] Sun Microsystems, “BigDecimal (Java 2 Platforms SE
v1.4.0),” URL: http://java.sun/com/products, Sun
Microsystems Inc., 2002.

[15] P. Tang, “Binary-Integer Decimal Encoding for Decimal
Floating-Point,” Intel Corporation, Available at
http://754r.ucbtest.org/issues/decimal/bid_rationale.pdf.

[16] P. Tang, M. Cornea, J. Harrison, “BID Building Blocks,”
Intel Internal Technical Report. Available Upon Request.

[17] J. Thompson, N. Karra, and M. J. Schulte, “A 64-bit Decimal
Floating-Point Adder,” IEEE Computer Society Annual
Symposium on VLSI, Lafayette, Louisiana, February 2004,
pp. 297-298.

[18] L.-K. Wang, M. J. Schulte, “Decimal Floating-Point Division
Using Newton-Raphson Iteration,” Proceedings of the IEEE

International Conference on Application-Specific Systems,
Architectures and Processors, September 2004, pp. 84-95.

[19] L.-K. Wang, M. J. Schulte, “Decimal Floating-Point Square
Root Using Newton-Raphson Iteration,” Proceedings of the
IEEE International Conference on Application-Specific
Systems, Architectures, and Processors, Samos, Greece, July
2005, pp. 309-315.

[20] L.-K. Wang, C. Tsen, D. Jhalani, M. J. Schulte,
“Performance Analysis and Benchmarking for Decimal
Floating-Point Applications,” submitted to the International
Conference on Computer Design, Lake Tahoe, California,
October 2007.

[21] Warren, Henry S Jr. Hacker’s Delight, Addison Wesley,
Reading Massachusetts, 2003.

