
Cairo University

Electronics and Communications Department

Computer Arithmetic:

Decimal and the ‘fine print’ of the standard

Hossam A. H. Fahmy

c© Hossam A. H. Fahmy

Do we need decimal?

(1/10)β=10 = (0.1)β=10 but in binary it is (0.000110011001100 . . .)β=2

which the computer rounds into a finite representation.

For a computer using binary64, if y = 0.30 and x = 0.10 then

3x − y = 5.6 × 10−17. Furthermore, 2x − y + x = 2.8 × 10−17.

Leading to the wonderful surprise that

3x− y
2x− y + x

∣∣∣∣∣
(x=0.1,y=0.3)

= 2 !

For a human, is 0.050 kg = 0.05 kg?

1/19

Humans and decimal numbers

If both measurements are normalized to 5 × 10−2 and stored in a

format with 16 digits as (5.000000000000000× 10−2) they are

• indistinguishable and

• give the incorrect impression of a much higher accuracy

(0.050000000000000 kg).

To maintain the distinction, we should store

0.000000000000050× 1012 first measurement
0.000000000000005× 1013 second measurement

with all those leading zeros. Both are members of the same cohort.

2/19

IEEE decimal formats

Sign Combination Trailing Significand

± exponent and MSD t = 10J bits

64 bits: 1 bit 13 bits, bias = 398 50 bits, 15 + 1 digits
128 bits: 1 bit 17 bits, bias = 6176 110 bits, 33 + 1 digits

IEEE decimal64 and decimal128 formats.

Note that (−1)s × βe ×m = (−1)s × βq × c when

m = d0.d−1d−2 . . . dp−1,

c = d0d−1d−2 . . . dp−1, and

q = e− (p− 1).

The combination field encodes the exponent q and four significand

bits.

3/19



Back to addition

Decimal examples:

1.324 ×105

+ 1.576 ×103





1.324 ×105

+ 0.01576 ×105

1.33976 ×105

≈ 1.340 ×105

9.853 ×107

+ 1.466 ×106





9.853 ×107

+ 0.1466 ×107

9.9996 ×107

≈ 1.000 ×108

1.324 ×103

− 1.321 ×103





1.324 ×103

+ 8.679 ×103

0.003 ×103

?
= 3.000 ×100

4/19

Back to addition

Decimal examples:

1.324 ×105

+ 1.576 ×103





1.324 ×105

+ 0.01576 ×105

1.33976 ×105

≈ 1.340 ×105

9.853 ×107

+ 1.466 ×106





9.853 ×107

+ 0.1466 ×107

9.9996 ×107

≈ 1.000 ×108

1.324 ×103

− 1.321 ×103





1.324 ×103

+ 8.679 ×103

0.003 ×103

?
= 3.000 ×100

5/19

Back to addition

Decimal examples:

1.324 ×105

+ 1.576 ×103





1.324 ×105

+ 0.01576 ×105

1.33976 ×105

≈ 1.340 ×105

9.853 ×107

+ 1.466 ×106





9.853 ×107

+ 0.1466 ×107

9.9996 ×107

≈ 1.000 ×108

1.324 ×103

− 1.321 ×103





1.324 ×103

+ 8.679 ×103

0.003 ×103

?
= 3.000 ×100

6/19

Multiplication

1. No alignment is necessary.

2. Multiply the significands.

3. Add the exponents.

4. The sign bit of the result is the XOR of the two operand signs.

Is it really that simple?

7/19



Division

1. No alignment is necessary.

2. Divide the significands.

3. Subtract the exponents.

4. The sign bit of the result is the XOR of the two operand signs.

You know it is not that simple!

8/19

Where is the nearest number?

Humans add 1/2 of the LSD position of the desired precision to the

MSD of the portion to be discarded.

For a sign-magnitude representation this gives RNA but not RNE:

38.5XXXX←Number to be rounded
0.5 0 0 0 0 ←Add 0.5

39.0XXXX←Result
39 ←Truncate

The sticky bit is the OR function of all the bits we want to check.

The round digit is the MSD of the discarded part.

M. L G R S
← desired precision →

9/19

Shall we normalize then round?

Even in decimal, if you have leading zeros and there are digits to
discard then: Yes, shift to the left first.

Consider binary with a possibility of a single position shifting:

Left shift: S does not participate but G is shifted into the number
and R into the old position of G.

Right shift: S and R guard bits are ORed into S (i.e., L → G and
G+R+ S → S).

1. L G S
← desired precision → a

The proper action to obtain unbiased rounding-to-even (RNE) is:

L G S Action a
X 0 0 Exact result, no action. 0
X 0 1 Inexact result, but no action needed. 0
0 1 0 Tie with even significand, no action. 0
1 1 0 Tie with odd significand, round to nearest even. 1
X 1 1 Round to nearest by adding 1. 1

10/19

The sticky is important

Example 1 Let us see the importance of the sticky bit to

Directed Upward Rounding when we round to the integer

in the following two cases.
Case 1: No sticky bit is used;

38.00001→ 38
38.00000→ 38

Case 2: Sticky bit is used:
38.00001→ 39 (sticky bit = 1)
38.00000→ 38 (sticky bit = 0,

exact number).
When the sticky bit is one and we neglect using it, the

result is incorrect.

11/19



Exceptions

The IEEE standard specifies five exceptional conditions that may

arise during an arithmetic operation:

1. invalid operation, (∞−∞, ∞× 0,
√−3,. . . )

2. division by zero,

3. overflow,

4. underflow, and

5. inexact result.

12/19

Overflow and infinities

The overflow flag is raised whenever the magnitude of what would

be the result exceeds max in the destination format.

In default exception handling, the rounding mode and the sign of

the intermediate result determine the final result:

RNE RNA RZ RP RM
+ve +∞ +∞ +max +∞ +max

-ve −∞ −∞ -max -max −∞

Furthermore, under default exception handling for overflow, the

overflow flag shall be raised and the inexact exception shall be sig-

naled.

13/19

Gradual underflow

The gradual underflow preserves an important mathematical prop-

erty: if M is the set of representable numbers according to the

standard then

∀x, y ∈M, x− y = 0⇐⇒ x = y.

Example 2 Assume that a system uses the single precision format
of IEEE but without denormalized numbers. In such a system, what
is the result of 1.0× 2−120 − 1.1111 · · ·1× 2−121?
Solution: The exact result is obviously

1.000 · · ·0 ×2−120

− 0.111 · · ·1|1 ×2−120

0.000 · · ·0|1 ×2−120 = 2−144

which is not representable in this system. Hence the returned result
is zero although the two numbers are not equal.

14/19

Going for the speed: Cray

As before, the format (β = 2) consists of sign bit, biased exponent
and fraction (mantissa):

S E F
1 ← 15→ ← 48 →

where

S = sign bit of fraction
E = biased exponent
F = fraction

then

e = true exponent = E-bias
f = true mantissa = 0.F

A normalized nonzero number X is

X = (−1)S × 2E−bias × (0.F )

with a bias = 214 = 16384.
15/19



Cray: overflow and underflow

• max = 2213−1(1− 2−48) = 28191(1− 2−48)

• Any result with an exponent containing two leading ones indi-
cates overflow.

• min = 2−(213) · 2−1 = 2−8193

• Any result with an exponent containing two leading zeros indi-
cates underflow. (Flush to zero)

• Testing for over and underflow is done before normalization.

• Inputs are not tested.

16/19

Penalty for speeding

A number s < min can participate in computations:

• (min + s) −min = s, where s is 2−2 to 2−48 times min, since

min + s > min before postnormalization.

The machine normalizes such results producing a number up to

2−48 smaller than min. This number is not set to zero.

• s × Y = 0 if the exponent of Y is not positive enough to bring

exp(s) + exp(Y ) into range.

• s× Y = s× Y if exp(s) + exp(Y ) ≥ exp(min).

17/19

Does it really matter?

• In 3D graphics animation, an error in a few pixels in a frame

that flashes on the screen is tolerable.

• In general, audio and video signal processing tolerates a number

of errors.

• However, if fast and inaccurate results are delivered in scientific

or financial computations catastrophes might occur.

18/19

Looking back

• Comparison of the different systems

• Rounding

• Is 1
3 × 3 = 1?

• Does (x− y = 0)⇒ (x = y)?

• Penalty for speeding!

19/19


