Computer Arithmetic:

Decimal and the 'fine print' of the standard

Hossam A. H. Fahmy

(C) Hossam A. H. Fahmy

Humans and decimal numbers

If both measurements are normalized to 5×10^{-2} and stored in a format with 16 digits as $\left(5.000000000000000 \times 10^{-2}\right)$ they are

- indistinguishable and
- give the incorrect impression of a much higher accuracy (0.050000000000000 kg).

To maintain the distinction, we should store

$$
\begin{array}{ll}
0.000000000000050 \times 10^{12} & \text { first measurement } \\
0.000000000000005 \times 10^{13} & \text { second measurement }
\end{array}
$$

with all those leading zeros. Both are members of the same cohort.
$(1 / 10)_{\beta=10}=(0.1)_{\beta=10}$ but in binary it is $(0.000110011001100 \ldots)_{\beta=2}$ which the computer rounds into a finite representation.

For a computer using binary64, if $y=0.30$ and $x=0.10$ then $3 x-y=5.6 \times 10^{-17}$. Furthermore, $2 x-y+x=2.8 \times 10^{-17}$. Leading to the wonderful surprise that

$$
\left.\frac{3 x-y}{2 x-y+x}\right|_{(x=0.1, y=0.3)}=2!
$$

For a human, is $0.050 \mathrm{~kg}=0.05 \mathrm{~kg}$?

IEEE decimal formats

Sign	Combination	Trailing Significand
\pm	exponent and MSD	$t=10 J$ bits

64 bits: 1 bit 13 bits, bias $=398 \quad 50$ bits, $15+1$ digits 128 bits: 1 bit 17 bits, bias $=6176 \quad 110$ bits, $33+1$ digits IEEE decimal64 and decimal128 formats.

Note that $(-1)^{s} \times \beta^{e} \times m=(-1)^{s} \times \beta^{q} \times c$ when

$$
\begin{aligned}
m & =d_{0} \cdot d_{-1} d-2 \ldots d_{p-1} \\
c & =d_{0} d_{-1} d-2 \ldots d_{p-1}, \text { and } \\
q & =e-(p-1)
\end{aligned}
$$

The combination field encodes the exponent q and four significand bits.

Decimal examples:

$$
+\begin{aligned}
& 1.324 \times 10^{5} \\
& +1.576 \times 10^{3}
\end{aligned} \begin{cases}1.324 & \times 10^{5} \\
+0.01576 & \times 10^{5} \\
\hline 1.33976 & \times 10^{5} \\
\approx 1.340 & \times 10^{5}\end{cases}
$$

Decimal examples:

$$
\begin{array}{r}
1.324 \times 10^{5} \\
+1.576 \times 10^{3} \begin{cases}1.324 & \times 10^{5} \\
+\begin{array}{ll}
0.01576 & \times 10^{5}
\end{array} \\
1.33976 & \times 10^{5} \\
1.340 & \times 10^{5}\end{cases} \\
+\begin{array}{r}
9.853 \times 10^{7} \\
+
\end{array} .466 \times 10^{6} \begin{cases}9.853 & \times 10^{7} \\
+\begin{array}{ll}
0.1466 & \times 10^{7}
\end{array} \\
\hline 1.9996 & \times 10^{7} \\
1.000 & \times 10^{8}\end{cases}
\end{array}
$$

Multiplication

Decimal examples:

$$
\begin{aligned}
& \begin{array}{r}
1.324 \times 10^{5} \\
+1.576 \times 10^{3}
\end{array} \begin{cases}1.324 & \times 10^{5} \\
+0.01576 & \times 10^{5} \\
\hline 1.33976 & \times 10^{5} \\
\approx 1.340 & \times 10^{5}\end{cases} \\
& \begin{array}{r}
9.853 \times 10^{7} \\
+1.466 \times 10^{6}
\end{array}\left\{\begin{array}{r}
9.853 \\
+\begin{array}{ll}
0.1466 & \times 10^{7} \\
\hline 9.9996 & \times 10^{7} \\
\approx 1.000 & \times 10^{8}
\end{array}
\end{array}\right. \\
& -1.324 \times 10^{3} \begin{array}{r}
1.321 \times 10^{3}
\end{array}\left\{\begin{array}{r}
1.324 \times 10^{3} \\
+\begin{array}{l}
8.679 \times 10^{3}
\end{array} \\
\hline 0.003 \times 10^{3} \\
\stackrel{?}{=} 3.000 \times 10^{0}
\end{array}\right.
\end{aligned}
$$

1. No alignment is necessary.
2. Multiply the significands.
3. Add the exponents.
4. The sign bit of the result is the $X O R$ of the two operand signs.

Is it really that simple?

1. No alignment is necessary
2. Divide the significands.
3. Subtract the exponents
4. The sign bit of the result is the $X O R$ of the two operand signs

You know it is not that simple!

8/19

Humans add $1 / 2$ of the $L S D$ position of the desired precision to the MSD of the portion to be discarded.

For a sign-magnitude representation this gives RNA but not RNE:

```
38.5 X X X X\leftarrowNumber to be rounded
    0.50 0 0 0 \leftarrowAdd 0.5
39.0 X X X X \leftarrowResult
39 \leftarrowTruncate
```

The sticky bit is the $O R$ function of all the bits we want to check.

The round digit is the MSD of the discarded part.

M.	L	G	R	S
\leftarrow	desired precision \rightarrow			

Example 1 Let us see the importance of the sticky bit to

 Directed Upward Rounding when we round to the integer in the following two cases.Case 1: No sticky bit is used;

$$
38.00001 \rightarrow 38
$$

$38.00000 \rightarrow 38$
Case 2: Sticky bit is used:

$$
\begin{array}{ll}
38.00001 \rightarrow 39 & \text { (sticky bit }=1) \\
38.00000 \rightarrow 38 & \text { (sticky bit }=0 \\
& \text { exact number) }
\end{array}
$$

When the sticky bit is one and we neglect using it, the result is incorrect

The IEEE standard specifies five exceptional conditions that may arise during an arithmetic operation:

1. invalid operation, $(\infty-\infty, \infty \times 0, \sqrt{-3}, \ldots)$
2. division by zero,
3. overflow,
4. underflow, and
5. inexact result.
$12 / 19$

Gradual underflow

The gradual underflow preserves an important mathematical property: if M is the set of representable numbers according to the standard then

$$
\forall x, y \in M, \quad x-y=0 \Longleftrightarrow x=y
$$

Example 2 Assume that a system uses the single precision format
of IEEE but without denormalized numbers. In such a system, what is the result of $1.0 \times 2^{-120}-1.1111 \cdots 1 \times 2^{-121} ?$ Solution: The exact result is obviously

$$
\begin{array}{ll}
1.000 \cdots 0 & \times 2^{-120} \\
0.111 \cdots 1 \mid 1 & \times 2^{-120} \\
\hline 0.000 \cdots 0 \mid 1 & \times 2^{-120}=2^{-144}
\end{array}
$$

which is not representable in this system. Hence the returned result is zero although the two numbers are not equal.

The overflow flag is raised whenever the magnitude of what would be the result exceeds max in the destination format.

In default exception handling, the rounding mode and the sign of the intermediate result determine the final result:

	RNE	RNA	RZ	RP	RM
+ ve	$+\infty$	$+\infty$	$+\max$	$+\infty$	$+\max$
- ve	$-\infty$	$-\infty$	$-\max$	$-\max$	$-\infty$

Furthermore, under default exception handling for overflow, the overflow flag shall be raised and the inexact exception shall be signaled.
$13 / 19$

Going for the speed: Cray

As before, the format $(\beta=2)$ consists of sign bit, biased exponent and fraction (mantissa):

where

$$
\begin{aligned}
& S=\text { sign bit of fraction } \\
& E=\text { biased exponent } \\
& F=\text { fraction }
\end{aligned}
$$

then

$$
\begin{aligned}
& e=\text { true exponent }=E \text {-bias } \\
& f=\text { true mantissa }=0 . F
\end{aligned}
$$

A normalized nonzero number X is

$$
\begin{equation*}
X=(-1)^{S} \times 2^{E-b i a s} \times(0 . F) \tag{0.F}
\end{equation*}
$$

with a bias $=2^{14}=16384$.

- $\max =2^{2^{13}-1}\left(1-2^{-48}\right)=2^{8191}\left(1-2^{-48}\right)$
- Any result with an exponent containing two leading ones indicates overflow.
- $\min =2^{-\left(2^{13}\right)} \cdot 2^{-1}=2^{-8193}$
- Any result with an exponent containing two leading zeros indicates underflow. (Flush to zero)
- Testing for over and underflow is done before normalization.
- Inputs are not tested.

Does it really matter?

- In 3D graphics animation, an error in a few pixels in a frame that flashes on the screen is tolerable.
- In general, audio and video signal processing tolerates a number of errors.
- However, if fast and inaccurate results are delivered in scientific or financial computations catastrophes might occur.

A number $s<\min$ can participate in computations:

- $(\min +s)-\min =s$, where s is 2^{-2} to 2^{-48} times min, since $\min +s>\min$ before postnormalization.

The machine normalizes such results producing a number up to 2^{-48} smaller than min. This number is not set to zero.

- $s \times Y=0$ if the exponent of Y is not positive enough to bring $\exp (s)+\exp (Y)$ into range.
- $s \times Y=s \times Y$ if $\exp (s)+\exp (Y) \geq \exp (\min)$.
- Comparison of the different systems
- Rounding
- Is $\frac{1}{3} \times 3=1$?
- Does $(x-y=0) \Rightarrow(x=y)$?
- Penalty for speeding!

