Computer Arithmetic: One *fast* unit for \div and $\sqrt{}$

Hossam A. H. Fahmy

Since $\frac{a}{b} = a \times \frac{1}{b}$, find the reciprocal and then multiply to get the division.

- Use series expansion, $\frac{1}{b} = \frac{1}{1+x} = 1 x + x^2 x^3 + \cdots$
- Define f(x) such that f(x) = 0 when $x = \frac{1}{b}$ and use the method of Newton-Raphson to get x.

© Hossam A. H. Fahmy

Binomial series

- For this we use $\frac{1}{b} = \frac{1}{1+x} = 1 x + x^2 x^3 + x^4 x^5 \cdots = (1-x)(1+x^2)(1+x^4)(1+x^8)\cdots$
- The two's complement of b = 1 + x is 2 b = 2 1 x = 1 xand $(1 + x)(1 - x) = 1 - x^2$.
- Similarly, $2 (1 x^2) = 1 + x^2$ and $(1 x^2)(1 + x^2) = 1 x^4$.
- We can continue to produce better approximations of $\frac{1}{b}$ by introducing a new factor at each iteration.
- If $0.5 \le b < 1$ we get $-0.5 \le x < 0$ which means that x^{2i} starts at position -2i and only affects the following bits. (pre-scale for the IEEE range and correct at the end)
- Doubles the precision each iteration (quadratic convergence).

1/15

Starting with a good estimate

Let us use a starter table to find the first exact 8 bits of $\frac{1}{h}$.

- We got $(1-x)(1+x^2)(1+x^4) + \epsilon_0$ with $|\epsilon_0| < 2^{-8}$.
- Now, we multiply by b = (1 + x) to get $1 x^8 + b\epsilon_0$ which yields $1 + x^8 b\epsilon_0$ after the two's complement.
- The multiplication gives

$$(1 - x^8 + b\epsilon_0)(1 + x^8 - b\epsilon_0) = 1 - x^{16} + 2x^8b\epsilon_0 - b^2\epsilon_0^2$$

- The new error is $\epsilon_1 = 2x^8b\epsilon_0 b^2\epsilon_0^2 = 2(b-1)^8b\epsilon_0 b^2\epsilon_0^2$.
- With $\frac{1}{2} \leq b < 1$ and $\epsilon_0 < 2^{-8}$ we get $\epsilon_1 < 2^{-16}$. The error decreases with the rate of increase of quotient bits.

How big is the table?

- Let us assume that we want the first exact m bits of $\frac{1}{b}$, i.e. $\epsilon_0 < 2^{-m}$. \Rightarrow each entry in the table is m bits.
- We use the first *n* bits of *b* to access the table. Hence, each entry covers the range $\frac{1}{b} \rightarrow \frac{1}{b-2^{-n}}$.

We want

$$\begin{aligned} \frac{1}{b} - \frac{1}{b - 2^{-n}} &< 2^{-m} \\ \left| \frac{-2^{-n}}{b(b - 2^{-n})} \right| &< 2^{-m} \\ \frac{2^{-n}}{2^{-n}} &< 2^{-m} b^2 - 2^{-n - m} b \\ 2^{-n} &< 2^{-m} b^2 \end{aligned}$$

Since $\frac{1}{2} \le b < 1$, we get $2^{-n} < 2^{-m-2}$, i.e. n > m + 2.

4/15

Newton-Raphson

• We can treat
$$b = \frac{1}{2}$$
 as a special case outside the table.

- Notice now that for all the other cases $b = 0.1b_{\bar{2}}b_{\bar{3}}b_{\bar{4}}\cdots$, the leading bit is always 1.
- Hence, we can reduce n by one bit.

To conclude, for this case, the table has 2^{m+2} entries each m bits wide to give $\epsilon_0 < 2^{-m}$.

We define a function f(x) = 0 at $\frac{1}{h}$ and attempt to find its root.

The iteration in Newton-Raphson method is:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

- For $f(x) = \frac{1}{b} x$ we get $x_{i+1} = \frac{1}{b}$ which requires us to calculate the reciprocal by some other way!
- For $f(x) = \frac{1}{x} b$ we get

$$x_{i+1} = x_i - \frac{\frac{1}{x} - b}{\frac{-1}{x^2}} = x_i(2 - bx_i).$$

If
$$x_i = \frac{1}{b} - \epsilon_i$$
 then

$$\begin{aligned} x_{i+1} &= (\frac{1}{b} - \epsilon_i)(2 - b(\frac{1}{b} - \epsilon_i)) \\ &= \frac{1}{b}(1 - b\epsilon_i)(1 + b\epsilon_i) \\ &= \frac{1}{b}(1 - b^2\epsilon_i^2) \\ &= \frac{1}{b} - b\epsilon_i^2 \end{aligned}$$

Hence, $\epsilon_{i+1} = b\epsilon_i^2$. The error decreases quadratically.

Example 1 Find $\frac{1}{b}$ to at least three decimal digits where b = 0.75. Include a calculation of the error $= \epsilon$. Solution: We start by $X_0 = 1$ and iterate. $X_0 = 1$ $\epsilon_1 = 0.333334$

	F .
$X_1 = 1(2 - 0.75) = 1.25 \epsilon_2 = 0.083334$	Ļ į
$X_2 = 1.25 \left(2 - (1.25 \times 0.75)\right) = 1.328125 \epsilon_3 = 0.005208$	3
$X_3 = X_2 \left(2 - (1.328125 \times 0.75) \right) = 1.333313 \epsilon_4 = 0.000021$	_

- Obviously, we can get a better starting estimate by using a small table.
- If we start with $x_0 = 1$ in NR we get the same expansion as the binomial:

$$\begin{aligned} x_1 &= 2 - b = (1 - (b - 1)) \\ x_2 &= (2 - b)(2 - b(2 - b)) = (1 - (b - 1))(1 + (b - 1)^2) \end{aligned}$$

The NR method and the binomial are different ways of viewing the same problem with a slight difference in the implementation.

8/15

Remainder issues

- Size of the table:
 - For IEEE, an initial estimate with 13 bits is optimal: in two iterations: $13 \rightarrow 26 \rightarrow 52$.
 - However, that means a table that has about $2^{15} = 32k$ entries.
- The NR iteration needs two *sequential* multiplies.
- The binomial series needs two multiplies as well but they can be in parallel. (i.e. $(1 + x^4)(1 x^4)$ in parallel with $(1 x)(1 + x^2)(1 + x^4)$)
- The product $(1 x^8)(1 + x^8)$ is just an 8×8 multiplication. It is possible to use small multipliers to optimize the hardware.
- Instead of iterating, we can duplicate the hardware (several multipliers in sequence, this is a large area!) and pipeline it.

9/15

Getting the square root as well

- Both algorithms may produce non-terminating sequences for terminating quotients, $1/0.8 = 1.24999999\cdots$
- Both algorithms produce the quotient but not the remainder which is required according to IEEE to be positive.
 - At the end of the iterations, get 1 bq (bq is a 2n wide multiplication) to find the remainder.
 - If that value is negative, correct q.

If we use $f(x) = b - x^2$ the NR iteration becomes $x_{i+1} = \frac{x_i}{2} + \frac{b}{2x_i}$. This involves a division which is slow.

- Find the reciprocal of the square root $(\frac{1}{\sqrt{b}})$ and then multiply by b to get the square root.
- Often, it is the reciprocal square root that is needed.

With $f(x) = b - \frac{1}{r^2}$ we have $f'(x) = \frac{2}{r^3}$ and

$$x_{i+1} = \frac{x_i}{2}(3 - bx_i^2)$$

This converges quadratically. It needs three multiplications per iteration and no divisions.

If the needed function is indeed \sqrt{b} , then a final multiplication is required.

Conclusions

- The square root and its reciprocal are even less frequent than division. (About 9 times less frequent.)
- With some minimal support in the hardware, the time latency of the square root can be better than nine times that of division and it will not cause a deterioration to the system performance.

13/15

- 1. It is possible to implement very fast dividers in a large area!
 - 2. The multiplication, division, and square root operations can share the same unit if the effect on the system performance is studied carefully.
 - 3. We need to provide accurate results according to the standard.

- Improvements to the FP addition.
- Recent research (\approx 10 years) in the field.
- Other functions $(e^x, \log x, \sin x, \cdots)$

12/15