Cairo University
Electronics and Communications Department

Computer Arithmetic:
One fast unit for - and /

Hossam A. H. Fahmy

© Hossam A. H. Fahmy

Binomial series

For this we use § = 7z = 1 -z + a2 -3 4 2% -2

(1-2)(1+22)(1+2(1 +25) -

5...

Multiplicative division

Since % = a X %, find the reciprocal and then multiply to get the
division.

=l =1-at+a2—aS 4.

S

e Use series expansion,

e Define f(x) such that f(z) = 0 when z = % and use the method
of Newton-Raphson to get =x.

1/15

Starting with a good estimate

Let us use a starter table to find the first exact 8 bits of %.

We got (1 —z)(1 + 22)(1 + z%) + g with |eg] < 278.

The two's complement of b=142z2is2—-b=2—-1—-x=1—=x

and (14+2)(1—2) =1—z2.

e Now, we multiply by b= (14 z) to get 1 — 28+ beg which yields
1 4 28 — beg after the two’s complement.

Similarly, 2 — (1 —22) =1+ 22 and (1 — 22)(1 + z2) =1 — z*.

We can continue to produce better approximations of% by in-

troducing a new factor at each iteration.

If 0.5 <b<1weget —0.5<z < 0 which means that z?’ starts
(pre-scale

at position —2¢ and only affects the following bits.
for the IEEE range and correct at the end)

Doubles the precision each iteration (quadratic convergence).

2/15

The multiplication gives

(1 — 28 + beg) (1 + 28 — beg) = 1 — 216 4 228beg — b2€3

The new error is e; = 2z8beg — b%e3 = 2(b — 1)8beg — b2€3.

e With £ < b < 1 and ¢g < 278 we get ¢; < 2716, The error
decreases with the rate of increase of quotient bits.
3/15

How big is the table?

e Let us assume that we want the first exact m bits of % i.e.
€0 < 27™. = each entry in the table is m bits.

e We use the first n bits of b to access the table. Hence, each

entry covers the range %—> ﬁ
We want
1 1
——_— | < 2™
’b b—2—n
_o—n
E— D
‘b(b —27n)

o0 or UG L or ey,
0 2
Since £ <b< 1, weget27" <272 je n>m+2.
4/15

Newton-Raphson

We define a function f(z) =0 at % and attempt to find its root.

The iteration in Newton-Raphson method is:

f(xs)
f'(@i)

Ti+1 = T4 —

o For f(z) =} —x we get z; ;1 = ¢ which requires us to calculate
the reciprocal by some other way!

e For f(x) :%—b we get

Tip1 = o — g = (2 — bxy).

6/15

Optimization of the table

e We can treat b =% as a special case outside the table.

e Notice now that for all the other cases b = 0.1bsbzbz---, the
leading bit is always 1.

e Hence, we can reduce n by one bit.

To conclude, for this case, the table has 2m+2 antries each m bits

wide to give eg < 27,

5/15

What is the error term?

If z; = + — ¢; then

Li+1

Hence, ¢;41 = be?. The

1 1
= (-D@=bG—a)

= (1= be) (1 +be)

1
=4#1_#§)
1 2

= g—bez

error decreases quadratically.

7/15

A simple example

Example 1 Find % to at least three decimal digits where
b= 0.75. Include a calculation of the error = e.
Solution: We start by Xg =1 and iterate.

Xo = =1 e, = 0.333334
X1 =1(2-0.75) =125 e» = 0.083334
X5 =1.25(2— (1.25 x 0.75)) = 1.328125 ¢3 = 0.005208

X3 = X5 (2 — (1.328125 x 0.75)) = 1.333313 ¢4 = 0.000021

e Obviously, we can get a better starting estimate by using a small
table.

e If we start with zg =1 in NR we get the same expansion as the
binomial:

r; = 2—-b=(1-(b—1))
2y = (2-b)(2-b(2-b)=(1-(b—1)(1+ (b-1)?)

The NR method and the binomial are different ways of viewing the
same problem with a slight difference in the implementation.
8/15

Remainder issues

e Both algorithms may produce non-terminating sequences for ter-
minating quotients, 1/0.8 = 1.2499999. ..

e Both algorithms produce the quotient but not the remainder
which is required according to IEEE to be positive.

— At the end of the iterations, get 1 — bg (bg is a 2n wide
multiplication) to find the remainder.

— If that value is negative, correct gq.

10/15

Implementation issues

e Size of the table:

— For IEEE, an initial estimate with 13 bits is optimal: in two
iterations: 13 — 26 — 52.

— However, that means a table that has about 21° = 32k en-
tries.

e The NR iteration needs two sequential multiplies.

e The binomial series needs two multiplies as well but they can
be in parallel. (i.e. (1 4+ z*)(1 — z%) in parallel with (1 — z)(1 +
22)(1 4 z%))

e The product (1 —z8)(1 4+ z8) is just an 8 x 8 multiplication. It
is possible to use small multipliers to optimize the hardware.

e Instead of iterating, we can duplicate the hardware (several mul-
tipliers in sequence, this is a large area!) and pipeline it.

9/15

Getting the square root as well

If we use f(z) =b— 2 the NR iteration becomes z; 1 = 5 + .
This involves a division which is slow.

e Find the reciprocal of the square root (%) and then multiply by
b to get the square root.

e Often, it is the reciprocal square root that is needed.

11/15

The reciprocal square root Do we need / in hardware?

With f(z) =b— L we have f'(z) = 2 and
. e The square root and its reciprocal are even less frequent than
Tip1 = 52(3 - bxf) division. (About 9 times less frequent.)

This converges quadratically. It needs three multiplications per it-

eration and no divisions. e With some minimal support in the hardware, the time latency

of the square root can be better than nine times that of division
If the needed function is indeed v/, then a final multiplication is and it will not cause a deterioration to the system performance.
required.

12/15 13/15

Conclusions What to expect?

1. It is possible to implement very fast dividers in a large area!
e Improvements to the FP addition.

2. The multiplication, division, and square root operations can
share the same unit if the effect on the system performance e Recent research (= 10 years) in the field.
is studied carefully.

e Other functions (e*,logz,sinz,---)
3. We need to provide accurate results according to the standard.

14/15 15/15

