
Cairo University

Electronics and Communications Department

Computer Arithmetic:

One fast unit for ÷ and
√

Hossam A. H. Fahmy

c© Hossam A. H. Fahmy

Multiplicative division

Since a
b = a × 1

b , find the reciprocal and then multiply to get the

division.

• Use series expansion, 1
b = 1

1+x = 1− x+ x2 − x3 + · · ·

• Define f(x) such that f(x) = 0 when x = 1
b and use the method

of Newton-Raphson to get x.

1/15

Binomial series

• For this we use 1
b = 1

1+x = 1 − x + x2 − x3 + x4 − x5 · · · =

(1− x)(1 + x2)(1 + x4)(1 + x8) · · ·

• The two’s complement of b = 1 + x is 2− b = 2− 1− x = 1− x
and (1 + x)(1− x) = 1− x2.

• Similarly, 2− (1− x2) = 1 + x2 and (1− x2)(1 + x2) = 1− x4.

• We can continue to produce better approximations of 1
b by in-

troducing a new factor at each iteration.

• If 0.5 ≤ b < 1 we get −0.5 ≤ x < 0 which means that x2i starts

at position −2i and only affects the following bits. (pre-scale

for the IEEE range and correct at the end)

• Doubles the precision each iteration (quadratic convergence).

2/15

Starting with a good estimate

Let us use a starter table to find the first exact 8 bits of 1
b .

• We got (1− x)(1 + x2)(1 + x4) + ε0 with |ε0| < 2−8.

• Now, we multiply by b = (1 + x) to get 1− x8 + bε0 which yields
1 + x8 − bε0 after the two’s complement.

• The multiplication gives

(1− x8 + bε0)(1 + x8 − bε0) = 1− x16 + 2x8bε0 − b2ε20

• The new error is ε1 = 2x8bε0 − b2ε20 = 2(b− 1)8bε0 − b2ε20.

• With 1
2 ≤ b < 1 and ε0 < 2−8 we get ε1 < 2−16. The error

decreases with the rate of increase of quotient bits.

3/15

How big is the table?

• Let us assume that we want the first exact m bits of 1
b , i.e.

ε0 < 2−m. ⇒ each entry in the table is m bits.

• We use the first n bits of b to access the table. Hence, each
entry covers the range 1

b →
1

b−2−n.

We want
∣∣∣∣
1

b
− 1

b− 2−n

∣∣∣∣ < 2−m
∣∣∣∣∣
−2−n

b(b− 2−n)

∣∣∣∣∣ < 2−m

2−n < 2−mb2 − 2−n−mb
2−n < 2−mb2

Since 1
2 ≤ b < 1, we get 2−n < 2−m−2, i.e. n > m+ 2.

4/15

Optimization of the table

• We can treat b = 1
2 as a special case outside the table.

• Notice now that for all the other cases b = 0.1b2̄b3̄b4̄ · · ·, the

leading bit is always 1.

• Hence, we can reduce n by one bit.

To conclude, for this case, the table has 2m+2 entries each m bits

wide to give ε0 < 2−m.

5/15

Newton-Raphson

We define a function f(x) = 0 at 1
b and attempt to find its root.

The iteration in Newton-Raphson method is:

xi+1 = xi −
f(xi)

f ′(xi)
.

• For f(x) = 1
b − x we get xi+1 = 1

b which requires us to calculate

the reciprocal by some other way!

• For f(x) = 1
x − b we get

xi+1 = xi −
1
x − b
−1
x2

= xi(2− bxi).

6/15

What is the error term?

If xi = 1
b − εi then

xi+1 = (
1

b
− εi)(2− b(1

b
− εi))

=
1

b
(1− bεi)(1 + bεi)

=
1

b
(1− b2ε2i)

=
1

b
− bε2i

Hence, εi+1 = bε2i . The error decreases quadratically.

7/15

A simple example

Example 1 Find 1
b to at least three decimal digits where

b = 0.75. Include a calculation of the error = ε.

Solution: We start by X0 = 1 and iterate.
X0 = = 1 ε1 = 0.333334
X1 = 1(2− 0.75) = 1.25 ε2 = 0.083334
X2 = 1.25 (2− (1.25× 0.75)) = 1.328125 ε3 = 0.005208
X3 = X2 (2− (1.328125× 0.75)) = 1.333313 ε4 = 0.000021

• Obviously, we can get a better starting estimate by using a small
table.

• If we start with x0 = 1 in NR we get the same expansion as the
binomial:

x1 = 2− b = (1− (b− 1))

x2 = (2− b)(2− b(2− b)) = (1− (b− 1))(1 + (b− 1)2)

The NR method and the binomial are different ways of viewing the
same problem with a slight difference in the implementation.

8/15

Implementation issues

• Size of the table:

– For IEEE, an initial estimate with 13 bits is optimal: in two
iterations: 13→ 26→ 52.

– However, that means a table that has about 215 = 32k en-
tries.

• The NR iteration needs two sequential multiplies.

• The binomial series needs two multiplies as well but they can
be in parallel. (i.e. (1 + x4)(1− x4) in parallel with (1− x)(1 +
x2)(1 + x4))

• The product (1− x8)(1 + x8) is just an 8× 8 multiplication. It
is possible to use small multipliers to optimize the hardware.

• Instead of iterating, we can duplicate the hardware (several mul-
tipliers in sequence, this is a large area!) and pipeline it.

9/15

Remainder issues

• Both algorithms may produce non-terminating sequences for ter-

minating quotients, 1/0.8 = 1.2499999 · · ·

• Both algorithms produce the quotient but not the remainder

which is required according to IEEE to be positive.

– At the end of the iterations, get 1 − bq (bq is a 2n wide

multiplication) to find the remainder.

– If that value is negative, correct q.

10/15

Getting the square root as well

If we use f(x) = b − x2 the NR iteration becomes xi+1 = xi
2 + b

2xi
.

This involves a division which is slow.

• Find the reciprocal of the square root (1√
b
) and then multiply by

b to get the square root.

• Often, it is the reciprocal square root that is needed.

11/15

The reciprocal square root

With f(x) = b− 1
x2 we have f ′(x) = 2

x3 and

xi+1 =
xi
2

(3− bx2
i)

This converges quadratically. It needs three multiplications per it-

eration and no divisions.

If the needed function is indeed
√
b, then a final multiplication is

required.

12/15

Do we need
√

in hardware?

• The square root and its reciprocal are even less frequent than

division. (About 9 times less frequent.)

• With some minimal support in the hardware, the time latency

of the square root can be better than nine times that of division

and it will not cause a deterioration to the system performance.

13/15

Conclusions

1. It is possible to implement very fast dividers in a large area!

2. The multiplication, division, and square root operations can

share the same unit if the effect on the system performance

is studied carefully.

3. We need to provide accurate results according to the standard.

14/15

What to expect?

• Improvements to the FP addition.

• Recent research (≈ 10 years) in the field.

• Other functions (ex, logx, sinx, · · ·)

15/15

