
Cairo University

Electronics and Communications Department

Computer Arithmetic:

Division

Hossam A. H. Fahmy

c© Hossam A. H. Fahmy

What is division and why do we care about it?

The division is defined as

a = bq +R

where a is the dividend, b is the divisor , q is the quotient, and R is

the remainder . It is more complicated than addition, subtraction,

or multiplication. Hence,

1. How much hardware do we devote to division?

2. Can we share that hardware between the division and other func-

tions such as the multiplication or the square root? Should we

share it?

3. How long is the time taken by division?

1/23

Some answers and other issues

• Depending on the algorithm used a division can have between 3

and 20 times the delay of a multiplication.

• Although the divide instruction is not very frequent, if the divi-

sion unit is too slow it can cause a large performance degradation

for the whole system.

1. How frequently do we encounter a division?

2. What is “slow”?

2/23

Frequency of operations

Here are the frequency of floating point instructions on the MIPS

architecture for five programs of the benchmark SPECfp2000.

FP instruction applu art equake lucas swim average % to FP instructions
Load 11.4 12.0 19.7 16.2 16.8 15.22 0.35
Store 4.2 4.5 2.7 18.2 5.0 6.92 0.16
add 2.3 4.5 9.8 8.2 9.0 6.76 0.16
subtract 2.9 0 1.3 7.6 4.7 3.30 0.08
multiply 8.6 4.1 12.9 9.4 6.9 8.38 0.19
divide 0.3 0.6 0.5 0 0.3 0.34 0.01
other 0.7 2.4 1.8 5.0 0.9 2.16 0.05

In an older study, the add and subtract instructions are about 40%

of the floating point instructions. The multiply is 37%, the divide is

3% and the square root is 0.33%. The moving instructions in that

older study are about 10%.

3/23



Why is there a difference?

The most important factor seems to be the compiler used and the

kind of optimizations it made.

1. Optimizations decrease the number of Load and Store and in-

crease the frequency of arithmetic operations (including divide).

2. Optimizations move the code and handle the dependencies bet-

ter to minimize the stall time of the instructions waiting for their

inputs.

4/23

What can we do then?

It is clear that:

• Add/Sub unit is the most important,

• Mul is second,

• we cannot slack too much on Div and Sqrt, most importantly
in multiple issue processors.

– The higher the issue rate, the higher CPI delay due to Div.

⇒We should attempt to equalize the weighted delay of the different
instructions.

Hardware sharing between the different instructions is possible as
long as we can manage the conflict for resources.

5/23

How do we divide?

Three basic approaches are in use:

1. Table lookup.

2. Subtractive methods: (digit recurrence, converge linearly)

(a) Restoring
(b) Non-restoring
(c) Shift over 0’s
(d) Brute force (multiple subtractors)
(e) SRT
(f) High radix

3. Multiplicative methods: (converge quadratically)

(a) Newton-Raphson
(b) Series expansion
(c) Higher order series

6/23

Restoring division

Similar to our manual division. For a divisor b with bits up to the
2n−1 position, we get the quotient bits one at a time.

1. The partial remainder at the start is Rn = a and we start our counter i = n−1.
2. Then, Ri = Ri+1 − 2i × b. If Ri ≥ 0 (i.e. Ri+1 ≥ 2ib) then qi = 1. Otherwise,

qi = 0.
3. The correct remainder is Ri = Ri+1 − qi × 2i × b. For qi = 0, we must restore

Ri = Ri+1.
4. Decrement i and continue the loop till all the bits are checked.

Notes:

• For the restoration, we save the previous R or do an addition.

• We need to shift the divisor and have an adder as wide as the

dividend.

7/23



Integer example

Example 1 Let us illustrate the restoring division process

for a binary division of 29/3:

29− 3× 24 = −19 q4 = 1

−19 + 3× 24 = +29 restore q4 = 0

29− 3× 23 = +5 q3 = 1

+5− 3× 22 = −7 q2 = 1

−7 + 3× 22 = +5 restore q2 = 0

+5− 3× 21 = −1 q1 = 1

−1 + 3× 21 = +5 restore q1 = 0

+5− 3× 20 = +2 q0 = 1

8/23

FP algorithm

Usualy division is done on FP numbers and not on integers. Here,

we use:

1. The partial remainder at the start is R1 = a
2 and we start our

counter i = 0.

2. Then, Ri = 2×Ri+1−b. If Ri ≥ 0 (i.e. 2×Ri+1 ≥ b) then qi = 1.

Otherwise, qi = 0.

3. The correct remainder is Ri = 2× Ri+1 − qi × b. For qi = 0, we

must restore Ri = 2×Ri+1.

4. Decrement i and continue the loop till all the bits are checked.

9/23

FP example, restoring

Example 2 For a = 01.1000110 and b = 01.0010000 then

C(b) = 10.1110000

R0 = a− b = 01.1000110+10.1110000 = 00.0110110 q0 = 1
R1̄ = 2R0 − b = 00.1101100+10.1110000 = 11.1011100 q1̄ = 0

restore R1̄ = 00.1101100
R2̄ = 2R1̄ − b = 01.1011000+10.1110000 = 00.1001000 q2̄ = 1
R3̄ = 2R2̄ − b = 01.0010000+10.1110000 = 00.0000000 q3̄ = 1

We get 01.1000110 = 01.0010000× 1.011 + 0.

Can we skip the restoration step?

10/23

The issues of subtractive division

In the general case (base β), we are doing three steps. We

1. compare β ×Ri+1 with b and its multiples to find qi,

2. generate the correct multiple qi × b, and

3. subtract to get Ri = β ×Ri+1 − qi × b.

If we make each of these steps simpler we get a faster division.

11/23



From restoring to non-restoring division

In the case of binary restoring division, we have this diagram:

-

6

2×Ri+1

Ri

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

b

qi = 1qi = 0

If we do not restore when Ri becomes negative, then in the following

step we must set qi−1 = 1̄. In effect, qiqi−1 = 11̄ = 01 which is

equivalent to restoring and then subtracting in the following lower

significance. In the non-restoring case we get this diagram:

-

6

2×Ri+1

Ri

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

b−b

qi = 1qi = 1̄

12/23

Non-restoring algorithm

1. The partial remainder at the start is R1 = a
2 and we start our

counter i = 0.

2. If 2×Ri+1 ≥ 0 then qi = 1. Otherwise, qi = −1.

3. Then, Ri = 2×Ri+1 − qi × b.

4. Decrement i and continue the loop till all the bits are checked.

13/23

FP example, non-restoring

Example 3 For a = 01.1000110 and b = 01.0010000 then

C(b) = 10.1110000

R0 = a− b = 01.1000110+10.1110000 = 00.0110110 q0 = 1
R1̄ = 2R0 − b = 00.1101100+10.1110000 = 11.1011100 q1̄ = 1
R2̄ = 2R1̄ + b = 11.0111000+01.0010000 = 00.1001000 q2̄ = −1
R3̄ = 2R2̄ − b = 01.0010000+10.1110000 = 00.0000000 q3̄ = 1

We get q = 1.11̄1 = 1.011 as before.

14/23

From {1̄,1} → {0,1}

1. Shift left by one bit position and put 1 as the new LSB.

2. Convert every 1̄ to 0 and leave each 1 as is.

3. Invert the MSB(the sign bit of the two’s complement).

For the previous example we have

Input 1. 1 1̄ 1
Shift 1 1. 1̄ 1 1
Convert 1 1. 0 1 1
Invert 0 1. 0 1 1← Output

(Hint for the proof: use pi = qi+1
2 or qi = 2pi − 1.)

15/23



Skiping steps to improve the speed

Example 4 For a = 1.0100101 and b = 1.010000, we get:

R0 = a− b = 01.0100101+10.110000 = 00.0000101 q0 = 1

The following bits in the final quotient are all zeros till we

shift enough to get 2R4̄ = 1.01 and q5̄ = 1.

• Instead of an addition in every cycle, we shift over groups of
zeros or groups of ones.

• This gives a variable latency algorithm that is fast on the aver-
age.

-

6

2×Ri+1

Ri

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

b−b

qi = 1

qi = 1̄

qi = 0

16/23

Getting faster by brute force

1. Form several multiples of the divisor, for example: (1.00)b,
(1.01)2b = (5

4)10b, (1.10)2b = (3
2)10b, and (1.11)2b = (7

4)10b.

2. Choose the one that is the closest to the remainder.

3. Subtract to get the next remainder and record 3 bits for the
quotient.

• Either use several multipliers by those fixed constants with sev-
eral hardware comparators, or

• use a lookup table with the first few bits of the divisor and the
partial remainder as the index to get the quotient bits.

The larger the hardware resources you put, the higher the radix you
can use, and the faster the operation becomes.

17/23

Redundancy gives you more

In these steps:

1. compare β ×Ri+1 with b and its multiples to find qi,

2. generate the correct multiple qi × b, and

3. subtract to get Ri = β ×Ri+1 − qi × b.

• use a larger radix to get more quotient bits each iteration,

• simplify the comparison,

• simplify the generation of qib, and

• use redundancy to make the subtraction faster.

18/23

Simple SRT

Sweeney of IBM, Robertson of University of Illinois, and Tocher of
Imperial College independently proposed similar procedures that we
now call SRT.

• The quotient is represented by a redundant set.

• A higher radix is used sometimes.

• Inspect only a few bits to decide on the next quotient digit.

-

6

2×Ri+1

Ri

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

b−b

qi = 1

qi = 1̄

qi = 0

19/23



Simplify the comparison

Since it is possible to use either digit in the overlapping regions,

we choose the border to make the comparison easier. For example,

compare 2Ri+1 ≥ 00.1 by looking at the first three bits only.

-

6

2×Ri+1

Ri

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

b−b

qi = 1

qi = 1̄

qi = 0

−1
2

1
2

20/23

Make the subtraction faster, use CSAs

• Form only the needed most significant bits in Ri for the com-

parison.

• Leave the rest as two bit vectors (sum and carry) to be added

in the next iteration to −qib.

21/23

Go for a higher radix

• We want more than one bit per iteration.

• Radix-4 gives two bits.

• We can use {−3,−2,−1,0,1,2,3} or {−2,−1,0,1,2} or some-

thing else.

• The trade-off is between the amount of overlap which simplifies

the selection and the generation of qib.

22/23

Conclusion of subtractive division

• For high speed, SRT is the most widely used.

• SRT with radix-8 is also possible at the price of hard multiples.

• Subtractive algorithms provide both the quotient and the re-

mainder as required by the IEEE standard.

• Subtractive algorithms converge linearly.

23/23


