Cairo University What are the elementary functions
Electronics and Communications Department

e For mathematicians, they are elementary. For hardware people,
they are Higher level functions.

Computer Arithmetic: . _
e Originally, calculators and computers only had: sin(z), log(z),

Elementary functions ¥z, tanh(z), ...

ACEERIT £ [l (Feliliny e Now, some DSPs may include other operations such as the

gamma function.

e Simply, they are any functions that can be easily tabulated or
represented in a series, a polynomial, or a ratio of polynomials.

© Hossam A. H. Fahmy 1/25

Implementation steps Reduction and reconstruction

e The range reduction and reconstruction steps are related and
The approximation of an elementary function is more efficient (time they are function-dependent.

delay and area) if the argument is constrained in a small interval.

e There is no single reduction and reconstruction technique that

Hence, there are three main steps in any elementary function cal- . . .
' P y Y is applicable to all functions.

culation:

e The modular reduction is applicable to the exponential and si-
1. range reduction, nusoidal functions, the case of the logarithm is even simpler.

e eNln(2)+y = 2N e¥

2. approximation, and

sin(z) = sin(Nx35+y)
sin(z) = sin(y), Nmody =0
sin(z) = cos(y), Nmody =1
3. reconstruction. sin(z) = —sin(y), Nmody =2
sin(z) = -—cos(y), Nmody =3
log(z) = 10g9(2°? x 1.f) = exp log(2) + log(1.f)

2/25 3/25

The approximation step

The approximation algorithms are classified as:

1. digit recurrence techniques,

2. functional recurrence techniques,

3. polynomial approximation techniques, and

4. rational approximation techniques.

4/25

The polynomial approximation

Polynomial approximation techniques:

e depending on the function and the implementation details, may
converge directly to the required precision.

e use addition, subtraction, multiplication, and table lookup.

e divide the interval of the argument to a number of sub-intervals
where the elementary function is approximated by a polynomial
of a suitable degree. One or more tables contain the coefficients
of the polynomials.

6/25

The digit and functional recurrence

Digit recurrence techniques:

e converge linearly.
e use addition, subtraction, shift, and single digit multiplication.

e restoring/non-restoring division, SRT, Cordic, Briggs and Del-
ugish, ...

Functional recurrence techniques:

e converge quadratically (or better for higher orders).
e use addition, subtraction, multiplication, and table lookup.
e Newton-Raphson of any order.

5/25

The rational approximation

Rational approximation techniques:

e depending on the function and the implementation details, may
converge directly to the required precision.

e use addition, subtraction, multiplication, tables, and division.

e for each sub-interval, approximate the given function by a ratio-
nal function (a polynomial divided by another polynomial).

7/25

Digit recurrence: Cordic

e J. Volder in 1959 developed a digit by digit algorithm to compute
all the trigonometric functions with minimal hardware support.

e The generalized algorithm calculates also the hyperbolic and the
arc functions.

e Cordic has been widely used in calculators and in some proces-

SOrs.

8/25

Derivation of Cordic

We rotate the current vector (z;,y;) by an angle o; = +tan—12-%

v’ = Rcos(¢; + «;)
R(cos ¢; cos a; — sin ¢; sin ;)

x; COSa; — y; Sin

= xz; —y;tanqg;
cos v ’

Tip1 = x —dy2"

10/25

Basic idea of Cordic

(zn, yn)

(z0,¥0)

To reach an angle of 6, we rotate the initial vector in each iteration
by a small angle o; = +tan—127% and watch the error zi = 60 —

? .

At the end (when z, ~ 0), we reach

Tp = xgCOSH
yn = xgSind.
Setting zg = 1, we directly get the cosine and sine functions.
9/25

The simple Cordic iteration

Volder's algorithm is based on

Tiy1 = X — di%‘?*i'
Vit1 = i+ diz2T
Zi4+1 = % — dZ tan_1(2_z)
d;, = 1ifz >0,
d; = —1 otherwise.

Notice that, with each iteration,

e the magnitude of z; is decreasing by |ay;| and

e the magnitude of the vector is increasing due to the division by
COS «;.

i |o| 1 | 2] 3] 4|56] 7]8]09
a; (degrees) [45 [26.6 |14 |7.1|36|1.8[09[04[02]0.1

11/25

Compensation

Since a; = £tan~1 27 then i =/14 272\ Let us define

o0 .
k=[] V1+27% =1.646760258 -

i=0
and start from

Ty = = 0.60725293- -
Yo

20

|
D O |+

Is there a maximum for 7 What is it? What if you want to calculate
for a larger angle?

12/25

Polynomial approximations

e To improve the precision, it is better to divide the domain of
the input to sub-intervals and to have a specific polynomial for
each sub-interval.

e Many different polynomials may approximate the same function,
how do we choose the best? = How do we define best?

e How do we actually make the calculation? What is the best
way?

14/25

Concluding Cordic

e What we have just explained is the rotation mode of the circular

type. There is also a vectoring mode and two other types:l/inear,
and hyperbolic.

With the generalized Cordic, it is possible to compute many
functions with minimal hardware support (three additions and a
comparison).

Cordic is slow but area efficient. It has been used in calculators
and in the 8087 coprocessor.

13/25

Different polynomials

Taylor series are available for most functions if we know their
derivatives. However, such series do not provide the minimum
error term.

Chebyshev polynomials minimize the maximum error (mini-max)
in the domain of the approximation. However, the calculation of
the coefficients of the polynomial may take some effort. Note
that we actually use truncated coefficients so we need to com-
pensate for that.

Instead of saving the coefficients in a table, we can save the
values of the function at various points and interpolate.

— How many points? Which points?

— How to interpolate between those points?

15/25

Evaluating a polynomial

It is possible to optimize the evaluation of a polynomial f(x) =
cnx™ 4 12" 1 4 ... 4+ ¢ in order to minimize the hardware or to
increase the speed.

For Hardware: use Horner's rule

f(x) = (- (((enz +cpn-1)r+cp2)x+)z + co)
and iterate. This might be even driven and controlled by soft-
ware.

For Speed:

e use parallel powering units to reach the required precision in
one iteration if possible.

e use the PPA of a multiplier.

16/25

Using the PPA of a multiplier

In 1993, Eric Schwarz proposed to use the PPA to evaluate the
reciprocal. It is possible to generalize the idea for any polynomial.

e Write the operation in terms of the bits and expand the poly-
nomial symbolically.

e Group the terms with the same power of 2 numerical weight
and write them in columns.

e The resulting matrix is similar to the partial products. Hence,
we add the rows of this matrix using the reduction tree and the
carry propagate adder of the multiplier.

18/25

Rational approximations

If a polynomial approximation requires too many terms, there might
be a rational function R(z) = ggg of a lower degree that gives a
good approximation.

P (z2)

e To reduce the calculation order, you may use Rmn = 25" -
n

e Typically, Rya is enough for over sixty bits of precision. However,
some functions require higher degrees.

e Rational approximations are “better” for double or extended
precisions, Cordic is preferred for single precision.

17/25

Reciprocal with PPA

If we want to calculate g such that b x ¢ = 0.1111-.-- = 1.0 where
b = 0.1byb3bs - - - we write

0. 1 bo b3 ba bs oo =b
X q0 q1 q2 q3 q4 B - =49

G4 qab> qabz qabs qabs
g3 q3b2 q3bs q3ba q3bs
G2 q2b> qabs qobs qabs - --
a1 qiba qibs qiba qibs .-
go qob2 qobs goba qobs - --
0. 1 1 1 1 1 1 1 1 1 1 =~1

and use redundant digits for the g; to make each column indepen-
dent. Hence,

q0
q1 + qob2
g2 + q1b2 + qob3

|
=

19/25

Steps of PPA implementation

e Solve the equations:
0 =1
g1 = 1—gqobp=1—-0b2

@2 = 1—q1bo—qobz3 =103

e Put in a PPA form:

qo0 q1 q2 q3 q4
—by —bs

—bz 2babsy

2bobs —by

—b2 —b3z —bx —bab3

1 1 1 1 1

20/25

The rest of the steps

After applying the reduction rules,

e Compensate for any approximation errors to improve the accu-
racy.

e Complement the negative elements and subtract one (remember
thata=1—a).

e Reduce all the constants.

9o ¢ @2 g q4
1

bs

1 bobsbs

[Boba b4

1 (bbORD3) b3 (boORD3)
Reducing all of this, we get a non-redundant representation of the

quotient.
22/25

Reduction rules for the PPA evaluation

1. Any M x a = (X k;2))a. For example 5a = (a,0,a) over three
columns.

2. Algebraic reductions. For example, 2a — a = a.

3. Boolean reductions:
e a—ab=a(l—0b)= ab.
ea+b—ab=a+ab= aORb.

e a+b—2ab=a®db.

21/25

Other functions using the PPA

If the function is expressed as a polynomial, we represent the coef-
ficients and the parameter using their bits and expand symbolically.
For example, let us evaluate P(h) = cg + c1h + coh? where

h = h12 2+ hp27°

co = coo+co12 7t

1 = cioten27!

o = cop+e27!
We expand P(h) symbolically and group the terms:
P(h) = coo+ co127 ' + c10h127° + (c10h2 + c11h1)27°

+ 1172277 + (co0h1 + c20h1h2)2710 + (co1h1 + co1h1h2)27H
4+ c20h2271? o1 ho27 13

then write them in the form of a partial product array:

coo c01 0 0 O ciph1 cipghz citha O O cophy co1hl copho c21ho
c11h1 cooh1ho co1hiho

23/25

Conclusion on the use of PPA Summary of elementary functions

The PPA of a multiplier is modified by adding a multiplexer and
some logic gates to generate the required bit patterns for the
function.
e We presented a general classification of how to implement them.

That minimal hardware allows us to compute many functions at
the speed of a multiplication. e What is “best” depends on the goal of the specific unit.

Almost all the elementary functions can be computed (usually e It is possible to have hardware intensive and extremely fast eval-
to within 12—20 bits of precision). uation. On the opposite spectrum, it is possible to delegate the
computations to software.

The reconfiguration of the multiplier may be done in less than
a clock cycle.

24/25 25/25

