
Cairo University

Electronics and Communications Department

Computer Arithmetic:

Elementary functions

Hossam A. H. Fahmy

c© Hossam A. H. Fahmy

What are the elementary functions

• For mathematicians, they are elementary. For hardware people,

they are Higher level functions.

• Originally, calculators and computers only had: sin(x), log(x),
n
√
x, tanh(x), . . .

• Now, some DSPs may include other operations such as the

gamma function.

• Simply, they are any functions that can be easily tabulated or

represented in a series, a polynomial, or a ratio of polynomials.

1/25

Implementation steps

The approximation of an elementary function is more efficient (time

delay and area) if the argument is constrained in a small interval.

Hence, there are three main steps in any elementary function cal-

culation:

1. range reduction,

2. approximation, and

3. reconstruction.

2/25

Reduction and reconstruction

• The range reduction and reconstruction steps are related and
they are function-dependent.

• There is no single reduction and reconstruction technique that
is applicable to all functions.

• The modular reduction is applicable to the exponential and si-
nusoidal functions, the case of the logarithm is even simpler.

ex = eN ln(2)+y = 2N × ey
sin(x) = sin(N × π

2
+ y)

sin(x) = sin(y), Nmod4 = 0
sin(x) = cos(y), Nmod4 = 1
sin(x) = − sin(y), Nmod4 = 2
sin(x) = − cos(y), Nmod4 = 3
log(x) = log(2exp × 1.f) = exp log(2) + log(1.f)

3/25

The approximation step

The approximation algorithms are classified as:

1. digit recurrence techniques,

2. functional recurrence techniques,

3. polynomial approximation techniques, and

4. rational approximation techniques.

4/25

The digit and functional recurrence

Digit recurrence techniques:

• converge linearly.

• use addition, subtraction, shift, and single digit multiplication.

• restoring/non-restoring division, SRT, Cordic, Briggs and DeL-
ugish, . . .

Functional recurrence techniques:

• converge quadratically (or better for higher orders).

• use addition, subtraction, multiplication, and table lookup.

• Newton-Raphson of any order.

5/25

The polynomial approximation

Polynomial approximation techniques:

• depending on the function and the implementation details, may

converge directly to the required precision.

• use addition, subtraction, multiplication, and table lookup.

• divide the interval of the argument to a number of sub-intervals

where the elementary function is approximated by a polynomial

of a suitable degree. One or more tables contain the coefficients

of the polynomials.

6/25

The rational approximation

Rational approximation techniques:

• depending on the function and the implementation details, may

converge directly to the required precision.

• use addition, subtraction, multiplication, tables, and division.

• for each sub-interval, approximate the given function by a ratio-

nal function (a polynomial divided by another polynomial).

7/25

Digit recurrence: Cordic

• J. Volder in 1959 developed a digit by digit algorithm to compute

all the trigonometric functions with minimal hardware support.

• The generalized algorithm calculates also the hyperbolic and the

arc functions.

• Cordic has been widely used in calculators and in some proces-

sors.

8/25

Basic idea of Cordic

-�
�
�
�
�
�
���

θ
(x0, y0)

(xn, yn)

To reach an angle of θ, we rotate the initial vector in each iteration
by a small angle αi = ± tan−1 2−i and watch the error zi = θ −∑i
j=0αj.

At the end (when zn ≈ 0), we reach

xn = x0 cos θ

yn = x0 sin θ.

Setting x0 = 1, we directly get the cosine and sine functions.

9/25

Derivation of Cordic

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
��

xi xi+1

yi
yi+1

φiαi

We rotate the current vector (xi, yi) by an angle αi = ± tan−1 2−i.

x′ = R cos(φi + αi)

= R(cosφi cosαi − sinφi sinαi)

= xi cosαi − yi sinαi
x′

cosαi
= xi − yi tanαi

xi+1 = xi − diyi2−i

10/25

The simple Cordic iteration

Volder’s algorithm is based on

xi+1 = xi − diyi2−i
yi+1 = yi + dixi2

−i

zi+1 = zi − di tan−1(2−i)
di = 1 if zi ≥ 0,

di = −1 otherwise.

Notice that, with each iteration,

• the magnitude of zi is decreasing by |αi| and

• the magnitude of the vector is increasing due to the division by
cosαi.

i 0 1 2 3 4 5 6 7 8 9
αi (degrees) 45 26.6 14 7.1 3.6 1.8 0.9 0.4 0.2 0.1

11/25

Compensation

Since αi = ± tan−1 2−i then 1
cosαi

=
√

1 + 2−2i. Let us define

k =
∞∏

i=0

√
1 + 2−2i = 1.646760258 · · ·

and start from

x0 =
1

k
= 0.60725293 · · ·

y0 = 0

z0 = θ.

Is there a maximum for θ? What is it? What if you want to calculate

for a larger angle?

12/25

Concluding Cordic

• What we have just explained is the rotation mode of the circular

type. There is also a vectoring mode and two other types:linear ,

and hyperbolic.

• With the generalized Cordic, it is possible to compute many

functions with minimal hardware support (three additions and a

comparison).

• Cordic is slow but area efficient. It has been used in calculators

and in the 8087 coprocessor.

13/25

Polynomial approximations

• To improve the precision, it is better to divide the domain of

the input to sub-intervals and to have a specific polynomial for

each sub-interval.

• Many different polynomials may approximate the same function,

how do we choose the best? ⇒ How do we define best?

• How do we actually make the calculation? What is the best

way?

14/25

Different polynomials

• Taylor series are available for most functions if we know their
derivatives. However, such series do not provide the minimum
error term.

• Chebyshev polynomials minimize the maximum error (mini-max)
in the domain of the approximation. However, the calculation of
the coefficients of the polynomial may take some effort. Note
that we actually use truncated coefficients so we need to com-
pensate for that.

• Instead of saving the coefficients in a table, we can save the
values of the function at various points and interpolate.

– How many points? Which points?

– How to interpolate between those points?

15/25

Evaluating a polynomial

It is possible to optimize the evaluation of a polynomial f(x) =
cnxn + cn−1x

n−1 + · · ·+ c0 in order to minimize the hardware or to
increase the speed.

For Hardware: use Horner’s rule

f(x) = (· · · (((cnx+ cn−1)x+ cn−2)x+ · · ·)x+ c0)

and iterate. This might be even driven and controlled by soft-
ware.

For Speed:

• use parallel powering units to reach the required precision in
one iteration if possible.

• use the PPA of a multiplier.

16/25

Rational approximations

If a polynomial approximation requires too many terms, there might

be a rational function R(x) = P (x)
Q(x) of a lower degree that gives a

good approximation.

• To reduce the calculation order, you may use Rm,n = xPm(x2)
Qn(x2)

.

• Typically, R4,4 is enough for over sixty bits of precision. However,

some functions require higher degrees.

• Rational approximations are “better” for double or extended

precisions, Cordic is preferred for single precision.

17/25

Using the PPA of a multiplier

In 1993, Eric Schwarz proposed to use the PPA to evaluate the

reciprocal. It is possible to generalize the idea for any polynomial.

• Write the operation in terms of the bits and expand the poly-

nomial symbolically.

• Group the terms with the same power of 2 numerical weight

and write them in columns.

• The resulting matrix is similar to the partial products. Hence,

we add the rows of this matrix using the reduction tree and the

carry propagate adder of the multiplier.

18/25

Reciprocal with PPA

If we want to calculate q such that b × q = 0.1111 · · · ≈ 1.0 where
b = 0.1b2b3b4 · · · we write

0. 1 b2 b3 b4 b5 · · · = b
× q0 q1 q2 q3 q4 q5 · · · = q

...
q4 q4b2 q4b3 q4b4 q4b5 · · ·

q3 q3b2 q3b3 q3b4 q3b5 · · ·
q2 q2b2 q2b3 q2b4 q2b5 · · ·

q1 q1b2 q1b3 q1b4 q1b5 · · ·
q0 q0b2 q0b3 q0b4 q0b5 · · ·

0. 1 1 1 1 1 1 1 1 1 1 ≈ 1

and use redundant digits for the qi to make each column indepen-
dent. Hence,

q0 = 1
q1 + q0b2 = 1

q2 + q1b2 + q0b3 = 1

19/25

Steps of PPA implementation

• Solve the equations:

q0 = 1

q1 = 1− q0b2 = 1− b2
q2 = 1− q1b2 − q0b3 = 1− b3

• Put in a PPA form:

q0 q1 q2 q3 q4 · · ·
−b4 −b5

−b3 2b2b4 · · ·
2b2b3 −b4

−b2 −b3 −b2 −b2b3

1 1 1 1 1

20/25

Reduction rules for the PPA evaluation

1. Any M × a ⇒ (
∑
ki2

i)a. For example 5a ⇒ (a,0, a) over three

columns.

2. Algebraic reductions. For example, 2a− a⇒ a.

3. Boolean reductions:

• a− ab = a(1− b)⇒ āb.

• a+ b− ab = a+ āb⇒ aOR b.

• a+ b− 2ab⇒ a⊕ b.

21/25

The rest of the steps

After applying the reduction rules,

• Compensate for any approximation errors to improve the accu-
racy.

• Complement the negative elements and subtract one (remember
that ā = 1− a).

• Reduce all the constants.

q0 q1 q2 q3 q4 · · ·
1
b̄5 · · ·

1 b̄2b3b4

b̄2 b̄2b̄4 b̄4

1 (b2OR b̄3) b̄3 (̄b2OR b̄3)

Reducing all of this, we get a non-redundant representation of the
quotient.

22/25

Other functions using the PPA

If the function is expressed as a polynomial, we represent the coef-

ficients and the parameter using their bits and expand symbolically.

For example, let us evaluate P (h) = c0 + c1h+ c2h
2 where

h = h12−5 + h22−6

c0 = c00 + c012−1

c1 = c10 + c112−1

c2 = c20 + c212−1

We expand P (h) symbolically and group the terms:

P (h) = c00 + c012−1 + c10h12−5 + (c10h2 + c11h1)2−6

+ c11h22−7 + (c20h1 + c20h1h2)2−10 + (c21h1 + c21h1h2)2−11

+ c20h22−12 + c21h22−13

then write them in the form of a partial product array:

c00 c01 0 0 0 c10h1 c10h2 c11h2 0 0 c20h1 c21h1 c20h2 c21h2
c11h1 c20h1h2 c21h1h2

23/25

Conclusion on the use of PPA

• The PPA of a multiplier is modified by adding a multiplexer and

some logic gates to generate the required bit patterns for the

function.

• That minimal hardware allows us to compute many functions at

the speed of a multiplication.

• Almost all the elementary functions can be computed (usually

to within 12–20 bits of precision).

• The reconfiguration of the multiplier may be done in less than

a clock cycle.

24/25

Summary of elementary functions

• We presented a general classification of how to implement them.

• What is “best” depends on the goal of the specific unit.

• It is possible to have hardware intensive and extremely fast eval-

uation. On the opposite spectrum, it is possible to delegate the

computations to software.

25/25

