
Cairo University

Electronics and Communications Department

Computer Arithmetic:

(Re)Learning the multiplication

Hossam A. H. Fahmy

c© Hossam A. H. Fahmy

The fused multiply add

Since the multiplication involves repeated additions, can ab + c be

performed in one step? Why?

• In the calculation of scalar products, matrix multiplications, or

polynomial evaluation we often iterate on a an instruction such

as (sum = sum + aibi).

• Making this instruction a single operation that is both faster

and more accurate is beneficial.

• If there is no hardware support for the division and square root,

then the presence of a FMA instruction speeds the software

implementations of those two operations.

• We can also get the “lower” part of a multiplication using the

FMA: H = ab + 0.0, L = ab−H.

1/14

Is FMA faster?

It is faster than two separate operations.

• The additional input is just another bit vector that can be easily

summed at the end of the reduction tree.

• If the number of PPs does not completely fill the tree then

summing that additional vector “should not” increase the time

delay.

2/14

Is FMA good for everything?

The FMA raises some issues.

• Does the instruction format support having three inputs and a

separate destination? If not, then an instruction such as c =

c + ab might be appropriate for most applications.

• The architecture must supply the FMA unit with three inputs

⇒ increased wiring.

• Do the increased wiring and control lines to reconfigure the

unit slow down the normal addition (a× 1 + c) or multiplication

(a× b + 0)?

3/14



Is FMA more accurate?

Doing two separate operations yields two roundings, for example:

1. RNE(a× b) followed by

2. RNE(RNE(a× b) + c).

On the other hand, a single FMA yields RNE(a × b + c). The two

results are not always equal.

The result of FMA is mathematically better. However, the IEEE

standard of 1985 requires the separate roundings. The current re-

vision of the standard includes the FMA as a single operation.

4/14

Practical issues and the datapath width

• In the normal binary FP adder, we shift the smaller number to

the right. why?

• In the FMA, the result of the multiplication might be the smaller.

We do not want to wait till that result is ready to shift it.

⇒ Allow a much wider datapath where the addend operand c may

be shifted to the left with respect to the product if c is larger.

In effect, we get a datapath that is 3n bits wide for n bits operands.

On top of that, subnormal numbers represent special cases. (See

the paper describing the zSeries floating point unit.)

5/14

Back to the CPA of normal multipliers

Looking back at

s̄0 s0 s0 • • • • • • • •
1 s̄1 • • • • • • • • y1

1 s̄2 • • • • • • • • y3
1 s̄3 • • • • • • • • y5

...

we see that the arrival times of the bits to the final CPA are not

equal.

6/14

The final CPA

Rather than a straight adder of size 2n, there is an opportunity to

reach a more area-time effective implementation:

• If the lower part is needed (as in a FMA) use a ripple carry

adder.

• If the lower part is not needed just generate the bits needed for

correct rounding.

• Use a carry select for the most significant bits.

7/14



The price of Booth recoding

• In a direct non-Booth multiplier, PPj = Xyj =
∑i=n−1

i=0 xiyj2
i.

An array of AND gates is enough.

• In a Booth 2 multiplier, less PPs exist but we spend some time,

area, and power:

1. to recode the bit string into the redundant form, and

2. to select the correct multiple of the multiplicand using a mul-

tiplexer whose inputs are 0, X, 2X, and their negatives.

• In a Booth 3 multiplier, we get a smaller number of PPs with a

slightly more complicated recoding and selection. However, we

have hard multiples.

8/14

Use redundancy once more

It is possible to eliminate the hard multiple by using redundancy:

instead of calculating 3X introduce 2X and X into the PP array.

• The hardware does not know a priori which PP will be 3X.

Hence, for each PP the multiplier must have two bit vectors.

• The number of rows becomes ≈ n
3 × 2 which is worse than the

Booth 2.

9/14

Partial redundancy is better

While the Booth recoder and the selection is going, a reduction of

the 3X takes place. (Bewick 1994)

· · · • • • • • • • • ← 2X
· · · • • • • • • • • ← X

⇓
· · · • • • • • • • •
· · · • •

We get a full bit vector and a sparse bit vector for each hard multiple.

How is the sparse vector better?

10/14

How many bits is the digit?

• The sparse PPs should not align otherwise the array height will

increase.

⇒ For a redundant Booth 3, do not use a digit size that is a

multiple of 3.

⇒ The alignment will occur at the least common multiple of

the digit size and the order of the Booth algorithm used.

• The longer the digit, the longer it will take to generate it. That

time must balance the time of the recoding and selection oth-

erwise, it will slow the multiplier.

11/14



What about −3X?

• If we complement the full and sparse vectors we get instead of

the sparse vector a vector full of ones with a few zeros.

• A simple solution is to bias all the multiples to make them posi-

tive, i.e. use k−3X, k−2X, k−X, k, k+X, k+ 2X, and k+ 3X

where k is the bias.

• Then compensate for all the biases by a single constant equal

to −k multiplied by the number of the PPs and add that com-

pensation constant as one additional row in the array.

• The calculation of this compensation occurs at design time not

at run time.

12/14

Remember the wires

• Arrays use less wires than trees.

• If the technology and logic family restrict the number of wires

per bit pitch then a higher order array is probably the best choice,

otherwise a tree is faster.

• With technologies below 100nm, the wires dominate the delay

not the gates.

• According to Al-Twaijry (1997):

– Redundant Booth has longer wires and is affected by that.
– At 100nm, wires represent 70% of the multiplier delay.
– With a higher Booth, the problems of wires are less.
– A procedure may be developed to connect the outputs of the

previous compressors to the inputs of the following ones to

balance the delays.

13/14

Conclusions

• Go ahead and optimize the FMA!

• Booth 2 is fast while Booth 3 uses less area.

• Redundant Booth is a good idea but it does not achieve a very

large advantage to the point of adapting it in the industry. (Real

companies run on profits!)

• Procedures to balance the delays (in general, not necessarily for

multipliers) are incorporated in more CAD tools now.

14/14


