Cairo University The fused multiply add
Electronics and Communications Department

Since the multiplication involves repeated additions, can ab+ ¢ be
performed in one step? Why?

e In the calculation of scalar products, matrix multiplications, or

Computer Arithmetic: polynomial evaluation we often iterate on a an instruction such
. o . as (sum = sum + a;b;).

(Re)Learning the multiplication

e Making this instruction a single operation that is both faster

Hossam A. H. Fahmy and more accurate is beneficial.

e If there is no hardware support for the division and square root,
then the presence of a FMA instruction speeds the software
implementations of those two operations.

e We can also get the “lower” part of a multiplication using the
FMA: H=ab+ 0.0, L =ab— H.

© Hossam A. H. Fahmy 1/14

Is FMA faster? Is FMA good for everything?

The FMA raises some issues.

It is faster than two separate operations.
e Does the instruction format support having three inputs and a
separate destination? If not, then an instruction such as ¢ =
e The additional input is just another bit vector that can be easily ¢+ ab might be appropriate for most applications.
summed at the end of the reduction tree.
e The architecture must supply the FMA unit with three inputs

e If the number of PPs does not completely fill the tree then = increased wiring.
summing that additional vector ‘“should not” increase the time
delay. e Do the increased wiring and control lines to reconfigure the
unit slow down the normal addition (a x 1 4 ¢) or multiplication
(axb+4+0)7

2/14 3/14



Is FMA more accurate?

Doing two separate operations yields two roundings, for example:

1. RNE(a x b) followed by

2. RNE(RNE(a x b) + ¢).

On the other hand, a single FMA yields RNE(a x b+ ¢). The two
results are not always equal.

The result of FMA is mathematically better. However, the IEEE
standard of 1985 requires the separate roundings. The current re-
vision of the standard includes the FMA as a single operation.

4/14

Back to the CPA of normal multipliers

Looking back at

SO Sg Sg e e o o
1 51 o o o @ ° Y1
1 50 ¢ o o o o o o o Y3
1l s3 ¢ o o o o o o o Ys

we see that the arrival times of the bits to the final CPA are not
equal.

6/14

Practical issues and the datapath width

e In the normal binary FP adder, we shift the smaller number to
the right. why?

e In the FMA, the result of the multiplication might be the smaller.
We do not want to wait till that result is ready to shift it.

= Allow a much wider datapath where the addend operand ¢ may
be shifted to the left with respect to the product if ¢ is larger.

In effect, we get a datapath that is 3n bits wide for n bits operands.
On top of that, subnormal numbers represent special cases. (See
the paper describing the zSeries floating point unit.)

5/14

The final CPA

Rather than a straight adder of size 2n, there is an opportunity to
reach a more area-time effective implementation:

e If the lower part is needed (as in a FMA) use a ripple carry
adder.

e If the lower part is not needed just generate the bits needed for
correct rounding.

e Use a carry select for the most significant bits.

7/14



The price of Booth recoding

e In a direct non-Booth multiplier, PP; = Xy,; = Zﬁi@‘lxiyj?.
An array of AND gates is enough.

e In a Booth 2 multiplier, less PPs exist but we spend some time,
area, and power:

1. to recode the bit string into the redundant form, and

2. to select the correct multiple of the multiplicand using a mul-
tiplexer whose inputs are 0, X, 2X, and their negatives.

e In a Booth 3 multiplier, we get a smaller number of PPs with a
slightly more complicated recoding and selection. However, we
have hard multiples.

8/14

Partial redundancy is better

While the Booth recoder and the selection is going, a reduction of
the 3X takes place. (Bewick 1994)

e o 0o o e o o —2X
e o o o e o 0o <+ X

e o o o

We get a full bit vector and a sparse bit vector for each hard multiple.
How is the sparse vector better?

10/14

Use redundancy once more

It is possible to eliminate the hard multiple by using redundancy:
instead of calculating 3X introduce 2X and X into the PP array.

e The hardware does not know a priori which PP will be 3X.
Hence, for each PP the multiplier must have two bit vectors.

e The number of rows becomes =~ % x 2 which is worse than the
Booth 2.

9/14

How many bits is the digit?

e The sparse PPs should not align otherwise the array height will
increase.

= For a redundant Booth 3, do not use a digit size that is a
multiple of 3.

= The alignment will occur at the least common multiple of

the digit size and the order of the Booth algorithm used.

e The longer the digit, the longer it will take to generate it. That
time must balance the time of the recoding and selection oth-
erwise, it will slow the multiplier.

11/14



What about —-3X7?

If we complement the full and sparse vectors we get instead of
the sparse vector a vector full of ones with a few zeros.

A simple solution is to bias all the multiples to make them posi-
tive, i.e.use k—3X, k—2X,k— X, k, k+ X, k+2X, and k+3X
where k is the bias.

Then compensate for all the biases by a single constant equal
to —k multiplied by the number of the PPs and add that com-
pensation constant as one additional row in the array.

The calculation of this compensation occurs at design time not
at run time.

12/14

Conclusions

Go ahead and optimize the FMA!

Booth 2 is fast while Booth 3 uses less area.

Redundant Booth is a good idea but it does not achieve a very
large advantage to the point of adapting it in the industry. (Real
companies run on profits!)

Procedures to balance the delays (in general, not necessarily for
multipliers) are incorporated in more CAD tools now.

14/14

Remember the wires

Arrays use less wires than trees.

If the technology and logic family restrict the number of wires
per bit pitch then a higher order array is probably the best choice,
otherwise a tree is faster.

With technologies below 100nm, the wires dominate the delay
not the gates.

According to Al-Twaijry (1997):

— Redundant Booth has longer wires and is affected by that.
— At 100nm, wires represent 70% of the multiplier delay.

— With a higher Booth, the problems of wires are less.

A procedure may be developed to connect the outputs of the
previous compressors to the inputs of the following ones to

balance the delays.

13/14



