
Computer Arithmetic Homework 1
2016–2017 Solutions

1 Addition in different encodings

The result should be in the same format as the inputs. With A = 010101012 and B = 101001102, the
answers for the additions are:

A B A+B

2′s complement 8510 −9010

010101012
101001102
111110112 = −510

1′s complement 8510 −8910

010101012
101001102
111110112 = −410

sign magnitude 8510 −3810

010101012
110110102 (2’s complement of magnitude)
001011112 = 4710

While for the subtraction the answers are:

A −B A−B

2′s complement 8510 9010 = 010110102

010101012
010110102
101011112 = −8110 = (17510)mod256

(an overflow occured)

1′s complement 8510 8910 = 010110012

010101012
010110012
101011102 = −8110 = (17410)mod255

(an overflow occured)

sign magnitude 8510 3810 = 001001102

010101012
001001102
011110112 = 12310

2 A non-contiguous digit set

The system in this problem has β = 10 and the number of digits in the set is also 10. The redundancy
index ρ is thus equal to zero and the system is not redundant.

The important idea here is to find out the weights of the radix that allow you to represent all the
numbers from 0 to 99. Obviously, there is no need to go beyond β2 = 100. However, we are faced
with the simple question of how to represent a number such as 2 or 3?

The solution is to use three digits so that a number represented by d1d0d−1 has the value d1×β1 +
d0×β0+d−1×β−1. An implicit fraction point exists between d0 and d1. With that choice, the number
2 is represented as (0)(0).(20) = 20× 10−1 while 3 is represented as (0)(1).(20) = 1× 100 + 20× 10−1.
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The requested numbers are represented as:

0= (0)(0).( 0)
1= (0)(1).( 0)
2= (0)(0).(20)
3= (0)(1).(20)
4= (0)(0).(40)
5= (0)(1).(40)
6= (0)(0).(60)
7= (0)(1).(60)
8= (0)(0).(80)
9= (0)(1).(80)

10= (1)(0).( 0)
11= (1)(1).( 0)
12= (1)(0).(20)
13= (1)(1).(20)
14= (1)(0).(40)
15= (1)(1).(40)
16= (1)(0).(60)
17= (1)(1).(60)
18= (1)(0).(80)
19= (1)(1).(80)

20= (0)(20).( 0)
21= (0)(21).( 0)
22= (0)(20).(20)
23= (0)(21).(20)
24= (0)(20).(40)
25= (0)(21).(40)
26= (0)(20).(60)
27= (0)(21).(60)
28= (0)(20).(80)
29= (0)(21).(80)

30= (1)(20).( 0)
31= (1)(21).( 0)
32= (1)(20).(20)
33= (1)(21).(20)
34= (1)(20).(40)
35= (1)(21).(40)
36= (1)(20).(60)
37= (1)(21).(60)
38= (1)(20).(80)
39= (1)(21).(80)

40= (0)(40).( 0)
41= (0)(41).( 0)
42= (0)(40).(20)
43= (0)(41).(20)
44= (0)(40).(40)
45= (0)(41).(40)
46= (0)(40).(60)
47= (0)(41).(60)
48= (0)(40).(80)
49= (0)(41).(80)

50= (1)(40).( 0)
51= (1)(41).( 0)
52= (1)(40).(20)
53= (1)(41).(20)
54= (1)(40).(40)
55= (1)(41).(40)
56= (1)(40).(60)
57= (1)(41).(60)
58= (1)(40).(80)
59= (1)(41).(80)

60= (0)(60).( 0)
61= (0)(61).( 0)
62= (0)(60).(20)
63= (0)(61).(20)
64= (0)(60).(40)
65= (0)(61).(40)
66= (0)(60).(60)
67= (0)(61).(60)
68= (0)(60).(80)
69= (0)(61).(80)

70= (1)(60).( 0)
71= (1)(61).( 0)
72= (1)(60).(20)
73= (1)(61).(20)
74= (1)(60).(40)
75= (1)(61).(40)
76= (1)(60).(60)
77= (1)(61).(60)
78= (1)(60).(80)
79= (1)(61).(80)

80= (0)(80).( 0)
81= (0)(81).( 0)
82= (0)(80).(20)
83= (0)(81).(20)
84= (0)(80).(40)
85= (0)(81).(40)
86= (0)(80).(60)
87= (0)(81).(60)
88= (0)(80).(80)
89= (0)(81).(80)

90= (1)(80).( 0)
91= (1)(81).( 0)
92= (1)(80).(20)
93= (1)(81).(20)
94= (1)(80).(40)
95= (1)(81).(40)
96= (1)(80).(60)
97= (1)(81).(60)
98= (1)(80).(80)
99= (1)(81).(80)

3 Unsigned subtraction

1. The effect of complementing the bits of B and adding the carry-in signal is to form the two’s
complement of B. Hence the result of the addition is in fact

Sum = A+ (2n −B) (1)

= 2n + (A−B) (2)

If (A− B) is positive the 2n term leads to an output carry. On the other hand, when (A− B)
is negative it subtracts from the 2n and no carry is generated. Hence, the absence of a carry
indicates a negative result.

2. It is in two’s complement.

4 A subtracter

1. The truth table is
ai bi ci ti+1 si
0 0 0 0 0
0 0 1 0 1
0 1 0 1 1
0 1 1 0 0
1 0 0 1 1
1 0 1 0 0
1 1 0 1 0
1 1 1 1 1

and the logical equations are ti+1 = aibi ∨ aic̄i ∨ bic̄i and si = ai ⊕ bi ⊕ ci.

2. We put n cells in a row and label them from 0 at the least significant side to n− 1 at the most
significant side. The bits of Y should be connected to the c input and the t output of a cell
should be connected to the b input of the adjacent cell of the higher mathematical weight.

The input b0 is set to zero. R has n + 1 bits: all the s bits from the n cells and the t output
from the most significant cell.

2



3. The bits of R are all negatively valued except for the most significant bit. Hence the equation
is R = rn2n −

∑n−1
i=0 ri2

i.

5 Multiply by 2 and 5

1. In the following truth table, ‘d’ indicates a don’t care value, t4 is the carry into the higher digit
in the case of multiplicaition by 2, and f6f5f4 are the bits indicating the carry into the higher
digit in the case of multiplication by 5.

Original bits Multiplied by 2 Multiplied by 5
b3b2b1b0 t4 t3t2t1t0 f6f5f4 f3f2f1f0

0000 0 0000 000 0000
0001 0 0010 000 0101
0010 0 0100 001 0000
0011 0 0110 001 0101
0100 0 1000 010 0000
0101 1 0000 010 0101
0110 1 0010 011 0000
0111 1 0100 011 0101
1000 1 0110 100 0000
1001 1 1000 100 0101
1010 d dddd ddd dddd
1011 d dddd ddd dddd
1100 d dddd ddd dddd
1101 d dddd ddd dddd
1110 d dddd ddd dddd
1111 d dddd ddd dddd

2. Based on the above table and using the don’t care values for logic minimization,

t4 = b3 + b2b1 + b2b0 (3)

t3 = b3b0 + b2b̄1b̄0 (4)

t2 = b1b0 + b̄2b1 + b3b̄0 (5)

t1 = b̄3b̄2b0 + b2b1b̄0 + b3b̄0 (6)

t0 = 0 (7)

f6 = b3 (8)

f5 = b2 (9)

f4 = b1 (10)

f3 = 0 (11)

f2 = b0 (12)

f1 = 0 (13)

f0 = b0 (14)

(15)

3. It is evident that in the case of multiplication by 2, the least significant bit of a digit is always
zero. Hence, the carry into a digit can be directly added to this bit position without generating
further carries into higher bit positions.

Thus the total delay for the multiplication by 2 for any number of digits is just the delay of the
above logic equations. This delay is about 3 gate delays (inverter, 3-input AND, 3-input OR).

For the multiplication by 5, the three bits f6f5f4 representing the carry into a digit may be
added to either 0000 or 0101 depending on bit b0 of that digit, i.e. they are added to b00b0. It
is important to note that the carry bits are just the most significant three bits of the adjacent
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lower digit without any logic involved to compute them. The time delay of the addition is that
of a three bit adder. If the time delay of one full adder is estimated to be 2 gate delays then the
total delay is at most 6 gate delays.

A shorter delay may be achieved by using a direct gate implementation for this very specific
addition:

f6 f5 f4
+ 0 b0 0 b0

f6b0 + f5f4b0 f6 ⊕ b0 ⊕ (f5f4b0) f5 ⊕ (f4b0) f4 ⊕ b0

This direct implementation may take only 2 gate delays (3-input AND then an XOR) to produce
the multiplication by 5 for any number of digits.
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