
Computer Arithmetic Homework 2
2016-2017 Solutions

1 Residues for the range ±32
The range ±32 requires 2×32+1 = 65 different representations. We add one to count the number ‘0’.
If only moduli of the form 2k and (2k)− 1 are allowed then the solution that gives the minimum time
delay (minimum number of bits in the largest modulus) and minimizes the total number of bits is:

7× 4× 3 = 84.

I am not going to write down all the tables needed here. The complete solution should include them.
The operation is carried by first finding the representations in the tables:

3 = (3, 3, 0)

−3 = (4, 1, 0)

2 = (2, 2, 2)

7 = (0, 3, 1)

then the multiplication is performed as:

−3× 2 = (8mod7, 2, 0) = (1, 2, 0).

Finally, the addition

−3× 2 + 7 = (1, 2, 0) + (0, 3, 1)

= (1, 5mod4, 1)

= (1, 1, 1).

By checking the tables, the last representation corresponds to 1 which is the result of −3× 2 + 7.

2 Parity and error checking

1. Any addition of numbers that generates an odd number of carries works as a counter example.

Operand Parity
0101 0

+ 0001 1
0110 0 6= P(01) = 1

2. One method is to use a residue check. In this method, P (A), P (B), and P (S) are the residue
modµ of the m bit numbers. For all m bits to affect the residue we choose µ to be relatively
prime to the radix. Therefore, to get the best coverage using n bits for each residue we should
choose µ = 2n − 1. Residue checks work in general because:

(A[+,−, ∗]B)modµ = ((Amodµ)[+,−, ∗](Bmodµ))modµ

3. Since S is an m bit number there are 2m total representations. Assume that there are no errors
in the calculation of the checksum. There are at most d 2

m

µ e values which give the same modµ
value. There is only 1 correct solution. Therefore, the probability of an undetected error is as
follows:

Prob =
d 2

m

µ e − 1

2m
≈ 1

µ
(for m� n)

1

4. We notice from the first part that P (PA + PB) 6= PS only for the cases where A + B produces
an odd number of carries. Therefore, we create a sum check that works properly by including
the parity of the carry bits.

P [P (A), P (B), P (Carry)] = P (S)

Example:

Parity
Carry 0010 1

0101 0
+ 0001 1

0110 0 = P(101)

3 Table-lookup versus logic

1. A lookup table for z uses the two 8 bit values for x and y as address bits, so that L = 16 address
lines.

ROM delay = 2 + dlogr L/2e+
⌈
logr 2L/2

⌉
= 2 + dlog4 8e+

⌈
log4 28

⌉
= 2 + 2 + 4

= 8 gate delays

2. A table to find 1/x has L = 8 address lines only.

ROM delay = 2 + dlogr L/2e+
⌈
logr 2L/2

⌉
= 2 + dlog4 4e+

⌈
log4 24

⌉
= 2 + 1 + 2

= 5 gate delays

We must add the delay of an 8 bit adder:

t = 4 dlogr 2ne
t = 4 dlog4 2(8)e
t = 8 gate delays.

Total delay = 5 + 8 = 13 gate delays

3. Now it is possible to compare the delay functions from the first two parts ignoring the ceiling
functions to decide on when to use a lookup table. A single table lookup is better when

2 + logr(n) + logr(2
n) < 2 + logr

(n
2

)
+ logr(2

n/2) + 4 logr(2n)

log4(n) + n log4(2) < log4(n) + log4

(
1

2

)
+
n

2
log4(2) + 4 log4(2) + 4 log4(n)

n

2
log4(2) < 4 log4(n) + log4

(
1

2

)
+ 4 log4(2)

n

4
< 4 log4(n) + 1.5

n < 16 log4(n) + 6

n ≤ 51 bits.

2

Another solution that requires less steps is:

2 + logr(n) + logr(2
n) < 2 + logr

(n
2

)
+ logr(2

n/2) + 4 logr(2n)

logr(n× 2n) < logr

(n
2
× 2n/2 × (2n)4

)
n× 2n < 8n5 × 2n/2

2n/2 < 8n4

n ≤ 51 bits.

Despite the above calculation, from a practical point of view, when n is in the range of 8 to
10 bits many designers will switch to logic gates instead of using a table. Beyond that range the
large size of the memory (22n entries) is prohibitive.

In the field of computer arithmetic in general, tables are better for operands represented by a small
number of bits. As the operand sizes get larger the use of logic to perform the operations becomes
more efficient.

4 RNS and clocks

The required range to represent the hours is 24 while that for the minutes and seconds is 60. If any
integer modulus is permitted then the sets are chosen as:

Hours 8× 3 = 24
Minutes 5× 4× 3 = 60
Seconds 5× 4× 3 = 60

These sets represent the required range exactly, use the minimum total number of bits for each
range, and minimize the longest carry propagation delay.

The operation
hours minutes seconds

13 10 55
+ 10 12 04

23 22 59

is performed as:
hours minutes seconds
(5, 1) (0, 2, 1) (0, 3, 1)

+ (2, 1) (2, 0, 0) (4, 0, 1)
(7, 2) (2, 2, 1) (4, 3, 2)

The results of the RNS operation correspond to 23h 22m 59s. If large numbers are added then an
overflow may occur and a carry from the seconds to the minutes or the minutes to the hours might
be needed. This overflow is not easily detected in residue number systems.

In CMOS circuits, any node that switches its value consumes power. The limited carry propagation
in RNS reduces the amount of node switching and hence is suitable for low power applications. From
another point of view, a system that is inherently faster than another one (RNS faster than binary)
can be run at a lower clock frequency to achieve the same results while consuming less power.

Note: Some of you suggested the use of 7× 4 = 28 for the hours. This set uses the minimum total
number of bits and minimizes the longest carry propagation delay. However, it does not represent
the required range exactly. This complicates the circuits slightly since we must implement a block for
modulo M=24. Otherwise, 15 + 10 = 25 and not 1 as expected in the hours of a clock. I accepted this
solution from those who wrote it but I would like to remind you that the exact representation of the
range has its own merit.

3

5 Modulus is µ = 2k + 2k−1

1. Basically, when Y < µ (i.e. ykyk−1 6= 11) the result of Ymodµ = Y . When Y ≥ µ (i.e.
ykyk−1 = 11) the result of Ymodµ = Y − µ = 00yk−2 . . . y0.

This means that in both cases the bits yk−2 . . . y0 are not changed while if ykyk−1 = 11 both of
them are turned to zeros. A simple AND gate detects that they are both 1 and its output is
XORed with the values of the two bits to give the required result.

2. For the case i = 0, 20modµ = 1modµ = 1 which is equal to (2k−1)0 and the relation is verified.

For i = 1, 2k+1modµ = (2k + 2k−1 + 2k−1)modµ = (µ + 2k−1)modµ = (2k−1)modµ which
validates the relation as well.

For i > 1,

2i(k+1)modµ = ((2k+1)i)modµ (1)

= (((2k+1)modµ)i)modµ (2)

= (2k−1)imodµ. (3)

3. We divide the bits of X to groups each with k + 1 bits such that

X =
∑

Yi2
i(k+1).

Now,

Xmodµ =
∑

(Yi2
i(k+1))modµ

=
∑

(Yimodµ(2k−1)imodµ)modµ

If the number of bits n within X is not a multiple of k+1, we pad X with zeros on the MSB side
if it is unsigned to make the total number of bits a multiple of k + 1. If X is a signed number
then slight modifications are needed at the most significant k + 1 block of bits.

4

