
Computer Arithmetic Homework 4
2016–2017 Solutions

1 Multiplication by a constant

If each product is done on its own we need 6 adders as follows:

9X = 8X + X

13X = 8X + 4X + X

18X = 16X + 2X

21X = 16X + 4X + X

When terms are shared many possibilities exist. A design with four adders is:

9X = 8X + X

13X = 9X + 4X

18X = 2(9X)

21X = 16X + 4X + X

which has a time delay of two adders. Another design is:

9X = 8X + X

13X = 9X + 4X

18X = 2(9X)

21X = 18X + 2X + X

Note that if the 2X + X part of the the 21X is prepared in parallel with the 9X part then the total
delay of the whole system to get the four products is only that of two adders.

A design with three adders only is:

9X = 8X + X

13X = 9X + 4X

18X = 2(9X)

21X = 13X + 8X

but in this design the critical path delay is three adders.

2 Multipliers with signed digits

1. It is important to understand the logical function implemented by each part and how it leads to
a mathematical relation between the inputs and outputs. For example, the multiplexer with i1
as its select line and i2 and its complement as the inputs yields the output i1ī2 + ī1i2 = i1 ⊕ i2.
Similarly, at the bottom of the figure, we get i3 ⊕ i4 then we get (i1 ⊕ i2)⊕ (i3 ⊕ i4) and finally
s1 = c′in ⊕ (i1 ⊕ i2)⊕ (i3 ⊕ i4) which is equivalent to a modulo 2 summation of all these inputs.

On the other hand, c′out = i3(i1 ⊕ i2) + i1i1 ⊕ i2 = i3(i1 ⊕ i2) + i1i2 which is equal to a carry
signal for the sum of those three inputs alone and is independent of i4 and independent of c′in.

Similarly, c′′out = c′in((i1 ⊕ i2) ⊕ (i3 ⊕ i4)) + i4(i1 ⊕ i2)⊕ (i3 ⊕ i4) = c′in((i1 ⊕ i2) ⊕ (i3 ⊕ i4)) +
i4(i1 ⊕ i2 ⊕ i3) which is a carry signal for c′in, i4, and the value i1 ⊕ i2 ⊕ i3 (the modulo 2 sum
of the first three inputs).

1



So, in general, we are getting a [4 : 2] compressor out of this circuit. The mathematical relation
is thus (here the + sign indicates addition):

2(c′′out + c′out) + s1 + s2 = i1 + i2 + i3 + i4 + c′in + c′′in (1)

2. The complement of bit i1 is equal to 1 − i1. Using this fact to substitute in equation 1 yields
the new relation:

2(c′′out + (1− c′out)) + (1− s1) + s2 = (1− i1) + i2 + (1− i3) + i4 + (1− c′in) + c′′in

2(c′′out − c′out)− s1 + s2 = −i1 + i2 − i3 + i4 − c′in + c′′in (2)

or simply that we have the equivalent of negatively valued bits at the locations of the inverters.
This can be used to represent signed digits for example.

3. With vertical connections between the carries we get a row of [4 : 2] compressors. It is important
to note that in this case, there is no need to invert c′out of one compressor and invert again c′in
of the following compressor. The two inverters cancel each other.

With horizontal connections, we get a tree of compressors similar to the conventional multiplier
trees.

4. If the inverted outputs are connected to inverted inputs then they cancel each other and there
is no need for them anywhere inside the tree. Only the inputs and the outputs of the whole tree
(but not inside it) may have some inverters.

5. According to the results of this problem, the use of signed digits in multiplication is as simple as
the use of unsigned digits since the whole body of the tree is similar and only some additional
inverters are needed in some locations at its boundary.

3 A new divider design using multiplication

1. The LSB is padded by a 0 to its right. Pad the MSB with two 0 if n is even and one 0 if n is
odd.

2. The Yh part represents normal bits which have a positive mathematical value hence we use a
regular recoder.

Original bits
yj+1 yj cin cout value
0 0 0 0 +0
0 0 1 0 +1
0 1 0 0 +1
0 1 1 0 +2
1 0 0 1 −2
1 0 1 1 −1
1 1 0 1 −1
1 1 1 1 −0

3. In Yh − Yl, the Yl part represents bits which have a negative mathematical value hence we may
use a recoder with negative values.

Original bits
yj+1 yj cin cout value
0 0 0 0 −0
0 0 1 0 −1
0 1 0 0 −1
0 1 1 0 −2
1 0 0 −1 +2
1 0 1 −1 +1
1 1 0 −1 +1
1 1 1 −1 +0

4. The boundary region between Yh and Yl depends on whether i (the index of the MSB of Yl) is
odd or even.

2



i even: This means that the number of bits within Yl is odd. Hence, the two “new” bits of the
group at the boundary of Yl and Yh are one from Yl and the other from Yh. The carry into
this group comes from a group entirely within Yl. We can choose to recode the values as:

Original bits
yi+1 yi cin cout value
0 0 0 0 −0
0 0 −1 0 −1
0 −1 0 0 −1
0 −1 −1 0 −2
1 0 0 0 +2
1 0 −1 0 +1
1 −1 0 0 +1
1 −1 −1 0 +0

where the cout signal is always 0 which means that the next higher up group will only have

Original bits
yi+3 yi+2 cin cout value
0 0 0 0 +0
0 1 0 0 +1
1 0 0 1 −2
1 1 0 1 −1

as the possible cases. These are a subset of the cases in the regular recoder of the Yh part.

i odd: This means that the number of bits within Yl is even. Hence, the most significant two
bits of Yl are taken within a group using the modified recoder of the last step and may
produce a negative carry to the higher up group. However, that higher group is the first
two bits of Yh which are positively valued. Similar to what we have just done above, we
can choose to recode the values as:

Original bits
yi+2 yi+1 cin cout value
0 0 0 0 −0
0 0 −1 0 −1
0 1 0 0 +1
0 1 −1 0 +0
1 0 0 0 +2
1 0 −1 0 +1
1 1 0 0 +3
1 1 −1 0 +2

where the cout signal is always 0 which means that the next higher up group will only have

Original bits
yi+4 yi+3 cin cout value
0 0 0 0 +0
0 1 0 0 +1
1 0 0 1 −2
1 1 0 1 −1

as the possible cases. These are a subset of the cases in the regular recoder of the Yh part.
However, with this choice of recoding the case of 1 1 0 in the boundary group produces a
hard multiple of +3.
In order to avoid that hard multiple, we can recode the boundary group as:

Original bits
yi+2 yi+1 cin cout value
0 0 0 0 −0
0 0 −1 0 −1
0 1 0 0 +1
0 1 −1 0 +0
1 0 0 1 −2
1 0 −1 0 +1
1 1 0 1 −1
1 1 −1 1 −2

where the cout signal is not a simple function. Specifically, the case 1 0 1 must produce a
zero carry to the next higher group which can use a regular recoder of the Yh part.

3



Thus we end up with this table (with d indicating a don’t care value)

Original bits Yh Yl Boundary First Yh

yj+1 yj cin value value i even i odd i even i odd
0 0 0 +0 −0 0 −0 0 −0 +0 +0
0 0 1 +1 −1 0 −1 0 −1 d +1
0 1 0 +1 −1 0 −1 0 +1 +1 +1
0 1 1 +2 −2 0 −2 0 +0 d +2
1 0 0 −2 +2 0 +2 1 −2 −2 −2
1 0 1 −1 +1 0 +1 0 +1 d −1
1 1 0 −1 +1 0 +1 1 −1 −1 −1
1 1 1 −0 +0 0 +0 1 −2 d −0

4 A different arrangement for partial products

1. Several proofs are possible. Any correct proof gets the full mark. Here is one solution.

Since ajxi = 1− (ajxi) then we can rewrite all the elements containing the complement of a bit
in this manner to get

a4 a3 a2 a1 a0

× x4 x3 x2 x1 x0

1− a4x0 a3x0 a2x0 a1x0 a0x0

1− a4x1 a3x1 a2x1 a1x1 a0x1

1− a4x2 a3x2 a2x2 a1x2 a0x2

1− a4x3 a3x3 a2x3 a1x3 a0x3

a4x4 1− a3x4 1− a2x4 1− a1x4 1− a0x4

1 0 0 1
p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

which is then rearranged as

a4 a3 a2 a1 a0

× x4 x3 x2 x1 x0

−a4x0 a3x0 a2x0 a1x0 a0x0

−a4x1 a3x1 a2x1 a1x1 a0x1

−a4x2 a3x2 a2x2 a1x2 a0x2

−a4x3 a3x3 a2x3 a1x3 a0x3

a4x4 −a3x4 −a2x4 −a1x4 −a0x4

1 1 1 1
1 1 1 1

1 0 0 1
p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

The position of those resulting ones is such that they add up to overflow as a carry that is
neglected and produce a zero in the range of bits representing the product. Hence, the array is
equal to:

a4 a3 a2 a1 a0

× x4 x3 x2 x1 x0

(−a4)x0 a3x0 a2x0 a1x0 a0x0

(−a4)x1 a3x1 a2x1 a1x1 a0x1

(−a4)x2 a3x2 a2x2 a1x2 a0x2

(−a4)x3 a3x3 a2x3 a1x3 a0x3

(−a4)(−x4) a3(−x4) a2(−x4) a1(−x4) a0(−x4)
p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

where we used the fact that a4x4 = (−a4)(−x4).

Since in the two’s complement format the most significant bit is negatively valued, this resulting
array effectively produces the product of two five bits operands.

2. The easiest re-arrangement is to move the location of the constants.

a4 a3 a2 a1 a0
× x4 x3 x2 x1 x0

1 a4x0 a3x0 a2x0 a1x0 a0x0

a4x1 a3x1 a2x1 a1x1 a0x1

a4x2 a3x2 a2x2 a1x2 a0x2

a4x3 a3x3 a2x3 a1x3 a0x3

1 a4x4 a3x4 a2x4 a1x4 a0x4

p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

4



3. It has n + 1 rows and 2n columns.

4. The values of i go from 0 to n while the values of j go from 0 to 2n− 1. The bit ppi,j at row i
and column j is given by

Range of i Range of j ppi,j
i < n− 1 0 ≤ j < i 0

i ≤ j < i + n− 1 aj−ixi

j = i + n− 1 aj−ixi

i + n− 1 < j 0
i = n− 1 0 ≤ j < i 0

i ≤ j < i + n− 1 aj−ixi

j = i + n− 1 aj−ixi

i + n− 1 < j 0
i = n j = n 1

j = 2n− 1 1
all other j 0

5 Sum of squares

1. With the given specification, x ∈ {−2n−1, · · · ,+(2n−1 − 1)} and hence x2 ∈ {0, · · · , 22n−2}.
Thus x2 is fully represented in (2n− 1) bits. Similarly for y2. The value of z is unsigned so we
have

x2 ∈ {0, · · · , 22n−2}
y2 ∈ {0, · · · , 22n−2}
z ∈ {0, · · · , 22n−1}

and s ∈ {0, · · · , 22n} which means that s is represented in 2n + 1 bits.

2. The resulting array when n = 4 is

x3 x2 x1 x0

× x3 x2 x1 x0

x3x0 x2x0 x1x0 x0x0

x3x1 x2x1 x1x1 x0x1

x3x2 x2x2 x1x2 x0x2

x3x3 x2x3 x1x3 x0x3

1 1
p7 p6 p5 p4 p3 p2 p1 p0

which reduces to

x3 x2 x1 x0

× x3 x2 x1 x0

2x3x0 2x2x0 2x1x0 x0

2x3x1 2x2x1 x1

2x3x2 x2

x3

1 1
p7 p6 p5 p4 p3 p2 p1 p0

then to
x3 x2 x1 x0

× x3 x2 x1 x0

1 x3x2 x3x1 x3x0 x2x0 x1x0 x0

x3 x2x1 x1

x2

1
p7 p6 p5 p4 p3 p2 p1 p0

5



and finally to
x3 x2 x1 x0

× x3 x2 x1 x0

1 x3x2 x3x1 x3x0 x2x0 x1x0 x0

x3 x2x1 x2x1 x1

1
p7 p6 p5 p4 p3 p2 p1 p0

3. For s we have
1 x3x2 x3x1 x3x0 x2x0 x1x0 x0

x3 x2x1 x2x1 x1

1
1 y3y2 y3y1 y3y0 y2y0 y1y0 y0

y3 y2y1 y2y1 y1
1

z7 z6 z5 z4 z3 z2 z1 z0
p8 p7 p6 p5 p4 p3 p2 p1 p0

which reduces to

1 x3x2 x3x1 x3x0 x2x0 x1x0 x0

x3 x2x1 x2x1 x1

1
y3y2 y3y1 y3y0 y2y0 y1y0 y0
y3 y2y1 y2y1 y1

z7 z6 z5 z4 z3 z2 z1 z0
p8 p7 p6 p5 p4 p3 p2 p1 p0

4. Should be written in the full answer.

6


