1 Multiplication by a constant

If each product is done on its own we need 6 adders as follows:

$$
\begin{aligned}
9 X & =8 X+X \\
13 X & =8 X+4 X+X \\
18 X & =16 X+2 X \\
21 X & =16 X+4 X+X
\end{aligned}
$$

When terms are shared many possibilities exist. A design with four adders is:

$$
\begin{aligned}
9 X & =8 X+X \\
13 X & =9 X+4 X \\
18 X & =2(9 X) \\
21 X & =16 X+4 X+X
\end{aligned}
$$

which has a time delay of two adders. Another design is:

$$
\begin{aligned}
9 X & =8 X+X \\
13 X & =9 X+4 X \\
18 X & =2(9 X) \\
21 X & =18 X+2 X+X
\end{aligned}
$$

Note that if the $2 X+X$ part of the the $21 X$ is prepared in parallel with the $9 X$ part then the total delay of the whole system to get the four products is only that of two adders.

A design with three adders only is:

$$
\begin{aligned}
9 X & =8 X+X \\
13 X & =9 X+4 X \\
18 X & =2(9 X) \\
21 X & =13 X+8 X
\end{aligned}
$$

but in this design the critical path delay is three adders.

2 Multipliers with signed digits

1. It is important to understand the logical function implemented by each part and how it leads to a mathematical relation between the inputs and outputs. For example, the multiplexer with i_{1} as its select line and i_{2} and its complement as the inputs yields the output $i_{1} \bar{i}_{2}+\bar{i}_{1} i_{2}=i_{1} \oplus i_{2}$. Similarly, at the bottom of the figure, we get $i_{3} \oplus i_{4}$ then we get $\left(i_{1} \oplus i_{2}\right) \oplus\left(i_{3} \oplus i_{4}\right)$ and finally $s_{1}=c_{\text {in }}^{\prime} \oplus\left(i_{1} \oplus i_{2}\right) \oplus\left(i_{3} \oplus i_{4}\right)$ which is equivalent to a modulo 2 summation of all these inputs. On the other hand, $c_{\text {out }}^{\prime}=i_{3}\left(i_{1} \oplus i_{2}\right)+i_{1} \overline{i_{1} \oplus i_{2}}=i_{3}\left(i_{1} \oplus i_{2}\right)+i_{1} i_{2}$ which is equal to a carry signal for the sum of those three inputs alone and is independent of i_{4} and independent of $c_{\text {in }}^{\prime}$. Similarly, $c_{\text {out }}^{\prime \prime}=c_{\text {in }}^{\prime}\left(\left(i_{1} \oplus i_{2}\right) \oplus\left(i_{3} \oplus i_{4}\right)\right)+i_{4} \overline{\left(i_{1} \oplus i_{2}\right) \oplus\left(i_{3} \oplus i_{4}\right)}=c_{\text {in }}^{\prime}\left(\left(i_{1} \oplus i_{2}\right) \oplus\left(i_{3} \oplus i_{4}\right)\right)+$ $i_{4}\left(i_{1} \oplus i_{2} \oplus i_{3}\right)$ which is a carry signal for $c_{i n}^{\prime}$, i_{4}, and the value $i_{1} \oplus i_{2} \oplus i_{3}$ (the modulo 2 sum of the first three inputs).

So, in general, we are getting a [4:2] compressor out of this circuit. The mathematical relation is thus (here the + sign indicates addition):

$$
\begin{equation*}
2\left(c_{\text {out }}^{\prime \prime}+c_{\text {out }}^{\prime}\right)+s_{1}+s_{2}=i_{1}+i_{2}+i_{3}+i_{4}+c_{\text {in }}^{\prime}+c_{\text {in }}^{\prime \prime} \tag{1}
\end{equation*}
$$

2. The complement of bit i_{1} is equal to $1-i_{1}$. Using this fact to substitute in equation 1 yields the new relation:

$$
\begin{align*}
2\left(c_{\text {out }}^{\prime \prime}+\left(1-c_{\text {out }}^{\prime}\right)\right)+\left(1-s_{1}\right)+s_{2} & =\left(1-i_{1}\right)+i_{2}+\left(1-i_{3}\right)+i_{4}+\left(1-c_{\text {in }}^{\prime}\right)+c_{\text {in }}^{\prime \prime} \\
2\left(c_{\text {out }}^{\prime \prime}-c_{\text {out }}^{\prime}\right)-s_{1}+s_{2} & =-i_{1}+i_{2}-i_{3}+i_{4}-c_{\text {in }}^{\prime}+c_{\text {in }}^{\prime \prime} \tag{2}
\end{align*}
$$

or simply that we have the equivalent of negatively valued bits at the locations of the inverters. This can be used to represent signed digits for example.
3. With vertical connections between the carries we get a row of [4:2] compressors. It is important to note that in this case, there is no need to invert $c_{\text {out }}^{\prime}$ of one compressor and invert again $c_{\text {in }}^{\prime}$ of the following compressor. The two inverters cancel each other.
With horizontal connections, we get a tree of compressors similar to the conventional multiplier trees.
4. If the inverted outputs are connected to inverted inputs then they cancel each other and there is no need for them anywhere inside the tree. Only the inputs and the outputs of the whole tree (but not inside it) may have some inverters.
5. According to the results of this problem, the use of signed digits in multiplication is as simple as the use of unsigned digits since the whole body of the tree is similar and only some additional inverters are needed in some locations at its boundary.

3 A new divider design using multiplication

1. The LSB is padded by a 0 to its right. Pad the MSB with two 0 if n is even and one 0 if n is odd.
2. The Y_{h} part represents normal bits which have a positive mathematical value hence we use a regular recoder.

Original bits				
y_{j+1}	y_{j}	$c_{i n}$	$c_{\text {out }}$	value
0	0	0	0	+0
0	0	1	0	+1
0	1	0	0	+1
0	1	1	0	+2
1	0	0	1	-2
1	0	1	1	-1
1	1	0	1	-1
1	1	1	1	-0

3. In $Y_{h}-Y_{l}$, the Y_{l} part represents bits which have a negative mathematical value hence we may use a recoder with negative values.

Original bits				
y_{j+1}	y_{j}	$c_{\text {in }}$	$c_{\text {out }}$	value
0	0	0	0	-0
0	0	1	0	-1
0	1	0	0	-1
0	1	1	0	-2
1	0	0	-1	+2
1	0	1	-1	+1
1	1	0	-1	+1
1	1	1	-1	+0

4. The boundary region between Y_{h} and Y_{l} depends on whether i (the index of the MSB of Y_{l}) is odd or even.
i even: This means that the number of bits within Y_{l} is odd. Hence, the two "new" bits of the group at the boundary of Y_{l} and Y_{h} are one from Y_{l} and the other from Y_{h}. The carry into this group comes from a group entirely within Y_{l}. We can choose to recode the values as:

Original bits				
y_{i+1}	y_{i}	$c_{\text {in }}$	$c_{\text {out }}$	value
0	0	0	0	-0
0	0	-1	0	-1
0	-1	0	0	-1
0	-1	-1	0	-2
1	0	0	0	+2
1	0	-1	0	+1
1	-1	0	0	+1
1	-1	-1	0	+0

where the $c_{\text {out }}$ signal is always 0 which means that the next higher up group will only have

Original bits				
y_{i+3}	y_{i+2}	$c_{\text {in }}$	$c_{\text {out }}$	value
0	0	0	0	+0
0	1	0	0	+1
1	0	0	1	-2
1	1	0	1	-1

as the possible cases. These are a subset of the cases in the regular recoder of the Y_{h} part.
i odd: This means that the number of bits within Y_{l} is even. Hence, the most significant two bits of Y_{l} are taken within a group using the modified recoder of the last step and may produce a negative carry to the higher up group. However, that higher group is the first two bits of Y_{h} which are positively valued. Similar to what we have just done above, we can choose to recode the values as:

Original bits				
y_{i+2}	y_{i+1}	$c_{i n}$	$c_{\text {out }}$	value
0	0	0	0	-0
0	0	-1	0	-1
0	1	0	0	+1
0	1	-1	0	+0
1	0	0	0	+2
1	0	-1	0	+1
1	1	0	0	+3
1	1	-1	0	+2

where the $c_{\text {out }}$ signal is always 0 which means that the next higher up group will only have

Original bits				
y_{i+4}	y_{i+3}	$c_{\text {in }}$	$c_{\text {out }}$	value
0	0	0	0	+0
0	1	0	0	+1
1	0	0	1	-2
1	1	0	1	-1

as the possible cases. These are a subset of the cases in the regular recoder of the Y_{h} part. However, with this choice of recoding the case of 110 in the boundary group produces a hard multiple of +3 .
In order to avoid that hard multiple, we can recode the boundary group as:

Original bits				
y_{i+2}	y_{i+1}	$c_{\text {in }}$	$c_{\text {out }}$	value
0	0	0	0	-0
0	0	-1	0	-1
0	1	0	0	+1
0	1	-1	0	+0
1	0	0	1	-2
1	0	-1	0	+1
1	1	0	1	-1
1	1	-1	1	-2

where the $c_{\text {out }}$ signal is not a simple function. Specifically, the case 101 must produce a zero carry to the next higher group which can use a regular recoder of the Y_{h} part.

Thus we end up with this table (with d indicating a don't care value)

Y_{l}				Boundary				First Y_{h}		
y_{j+1}	y_{j}	$c_{i n}$	value	value	i even		i odd	i even	i odd	
0	0	0	+0	-0	0	-0	0	-0	+0	+0
0	0	1	+1	-1	0	-1	0	-1	d	+1
0	1	0	+1	-1	0	-1	0	+1	+1	+1
0	1	1	+2	-2	0	-2	0	+0	d	+2
1	0	0	-2	+2	0	+2	1	-2	-2	-2
1	0	1	-1	+1	0	+1	0	+1	d	-1
1	1	0	-1	+1	0	+1	1	-1	-1	-1
1	1	1	-0	+0	0	+0	1	-2	d	-0

4 A different arrangement for partial products

1. Several proofs are possible. Any correct proof gets the full mark. Here is one solution.

Since $\overline{a_{j} x_{i}}=1-\left(a_{j} x_{i}\right)$ then we can rewrite all the elements containing the complement of a bit in this manner to get

which is then rearranged as

The position of those resulting ones is such that they add up to overflow as a carry that is neglected and produce a zero in the range of bits representing the product. Hence, the array is equal to:

where we used the fact that $a_{4} x_{4}=\left(-a_{4}\right)\left(-x_{4}\right)$.
Since in the two's complement format the most significant bit is negatively valued, this resulting array effectively produces the product of two five bits operands.
2. The easiest re-arrangement is to move the location of the constants.

			a_{4}	a_{3}	a_{2}	a_{1}	a_{0}	
		\times	x_{4}	x_{3}	x_{2}	x_{1}	x_{0}	
			1	$\overline{a_{4} x_{0}}$	$a_{3} x_{0}$	$a_{2} x_{0}$	$a_{1} x_{0}$	$a_{0} x_{0}$
			$\overline{a_{4} x_{1}}$	$a_{3} x_{1}$	$a_{2} x_{1}$	$a_{1} x_{1}$	$a_{0} x_{1}$	
		$\overline{a_{4} x_{2}}$	$a_{3} x_{2}$	$a_{2} x_{2}$	$a_{1} x_{2}$	$a_{0} x_{2}$		
1	$a_{4} x_{4}$	$\overline{a_{3} x_{4}}$	$\overline{a_{2} x_{4}}$	$\overline{a_{2} x_{3}}$	$\overline{a_{1} x_{3}}$	$a_{0} x_{3}$		
$p_{0} x_{4}$								
p_{9}	p_{8}	p_{7}	p_{6}	p_{5}	p_{4}	p_{3}	p_{2}	p_{1}

3 . It has $n+1$ rows and $2 n$ columns.
4. The values of i go from 0 to n while the values of j go from 0 to $2 n-1$. The bit $p p_{i, j}$ at row i and column j is given by

$$
\begin{array}{lll}
\text { Range of } i & \text { Range of } j & p p_{i, j} \\
\hline i<n-1 & 0 \leq j<i & 0 \\
& i \leq j<i+n-1 & a_{j-i} x_{i} \\
& j=i+n-1 & \overline{a_{j-i} x_{i}} \\
& i+n-1<j & 0 \\
\hline i=n-1 & 0 \leq j<i & 0 \\
& i \leq j<i+n-1 & \overline{a_{j-i} x_{i}} \\
& j=i+n-1 & a_{j-i} x_{i} \\
& i+n-1<j & 0 \\
\hline i=n & j=n & 1 \\
& j=2 n-1 & 1 \\
& \text { all other } j & 0 \\
\hline
\end{array}
$$

5 Sum of squares

1. With the given specification, $x \in\left\{-2^{n-1}, \cdots,+\left(2^{n-1}-1\right)\right\}$ and hence $x^{2} \in\left\{0, \cdots, 2^{2 n-2}\right\}$. Thus x^{2} is fully represented in $(2 n-1)$ bits. Similarly for y^{2}. The value of z is unsigned so we have

$$
\begin{aligned}
x^{2} & \in\left\{0, \cdots, 2^{2 n-2}\right\} \\
y^{2} & \in\left\{0, \cdots, 2^{2 n-2}\right\} \\
z & \in\left\{0, \cdots, 2^{2 n-1}\right\}
\end{aligned}
$$

and $s \in\left\{0, \cdots, 2^{2 n}\right\}$ which means that s is represented in $2 n+1$ bits.
2. The resulting array when $n=4$ is
$\left.\begin{array}{ccccccc} & & & x_{3} & x_{2} & x_{1} & x_{0} \\ & & \times & x_{3} & x_{2} & x_{1} & x_{0} \\ \hline & & & & \overline{x_{3} x_{0}} & x_{2} x_{0} & x_{1} x_{0}\end{array} x_{0} x_{0}\right)$
which reduces to

then to

				x_{3}	x_{2}	x_{1}	x_{0}
			\times	x_{3}	x_{2}	x_{1}	x_{0}
1	$\overline{x_{3} x_{2}}$	$\overline{x_{3} x_{1}}$	$\overline{x_{3} x_{0}}$	$x_{2} x_{0}$	$x_{1} x_{0}$		x_{0}
	x_{3}		$x_{2} x_{1}$		x_{1}		
			x_{2}				
			1				
p_{7}	p_{6}	p_{5}	p_{4}	p_{3}	p_{2}	p_{1}	p_{0}

and finally to

				x_{3}	x_{2}	x_{1}	x_{0}
			\times	x_{3}	x_{2}	x_{1}	x_{0}
1	$\overline{x_{3} x_{2}}$	$\overline{x_{3} x_{1}}$	$\overline{x_{3} x_{0}}$	$x_{2} x_{0}$	$x_{1} x_{0}$		x_{0}
	x_{3}	$x_{2} x_{1}$	$x_{2} \overline{x_{1}}$		x_{1}		
			1				
p_{7}	p_{6}	p_{5}	p_{4}	p_{3}	p_{2}	p_{1}	p_{0}

3. For s we have

	1	$\overline{x_{3} x_{2}}$	$\overline{x_{3} x_{1}}$	$\overline{x_{3} x_{0}}$	$x_{2} x_{0}$	$x_{1} x_{0}$		x_{0}
		x_{3}	$x_{2} x_{1}$	$x_{2} \overline{x_{1}}$		x_{1}		
				1				
	1	$\overline{y_{3} y_{2}}$	$\overline{y_{3} y_{1}}$	$\overline{y_{3} y_{0}}$	$y_{2} y_{0}$	$y_{1} y_{0}$		y_{0}
		y_{3}	$y_{2} y_{1}$	$y_{2} \overline{y_{1}}$		y_{1}		
				1				
p_{8}	z_{7}	z_{6}	z_{5}	z_{4}	z_{3}	z_{2}	z_{1}	z_{0}
		p_{6}	p_{5}	p_{4}	p_{3}	p_{2}	p_{1}	p_{0}

which reduces to

1		$\overline{x_{3} x_{2}}$	$\overline{x_{3} x_{1}}$	$\overline{x_{3} x_{0}}$	$x_{2} x_{0}$	$x_{1} x_{0}$		x_{0}
		x_{3}	$x_{2} x_{1}$	$x_{2} \overline{x_{1}}$		x_{1}		
			1					
		$\overline{y_{3} y_{2}}$	$\overline{y_{3} y_{1}}$	$\overline{y_{3} y_{0}}$	$y_{2} y_{0}$	$y_{1} y_{0}$		y_{0}
		y_{3}	$y_{2} y_{1}$	$y_{2} \overline{y_{1}}$		y_{1}		
	z_{7}	z_{6}	z_{5}	z_{4}	z_{3}	z_{2}	z_{1}	z_{0}
p_{8}	p_{7}	p_{6}	p_{5}	p_{4}	p_{3}	p_{2}	p_{1}	p_{0}

4. Should be written in the full answer.
