Computer Arithmetic Homework 4
20162017 Solutions

1

Multiplication by a constant

If each product is done on its own we need 6 adders as follows:

9X = 8X+X
13X = 8X +4X+ X
18X = 16X +2X
21X = 16X +4X+X

When terms are shared many possibilities exist. A design with four adders is:

9X = 8X+X
13X = 9X +4X
18X = 2(9X)

21X = 16X +4X +X

which has a time delay of two adders. Another design is:

9X = 8X+X

13X = 9X +4X
18X = 2(9X)

21X = 18X +2X + X

Note that if the 2X + X part of the the 21X is prepared in parallel with the 9X part then the total
delay of the whole system to get the four products is only that of two adders.

A design with three adders only is:

9X = 8X+X
13X = 9X 44X
18X = 2(9X)

21X = 13X +8X

but in this design the critical path delay is three adders.

2

Multipliers with signed digits

. It is important to understand the logical function implemented by each part and how it leads to

a mathematical relation between the inputs and outputs. For example, the multiplexer with i,
as its select line and i and its complement as the inputs yields the output 4149 + 9142 = i1 D is.
Similarly, at the bottom of the figure, we get i @ i4 then we get (i1 @ i2) @ (i3 ® i4) and finally
s1= ¢, @ (i1 ®ia) ® (i3 ® i4) which is equivalent to a modulo 2 summation of all these inputs.

On the other hand, ¢}, = i3(i1 @ i) + i1¢1 B t2 = i3(41 D i2) + 4192 which is equal to a carry
signal for the sum of those three inputs alone and is independent of iy and independent of ¢, .
Similarly, C/o/ut = C;n((ll EB Zg) @ (’Lg EB 24)) + i4(i1 @ ZQ) @ (7,3 EB 24) = C;n((ll @ 22) @ (13 EB 24)) +
i4(i1 @ i2 @ i3) which is a carry signal for ¢}, , i4, and the value i1 @ iz @ i3 (the modulo 2 sum
of the first three inputs).




So, in general, we are getting a [4 : 2] compressor out of this circuit. The mathematical relation
is thus (here the + sign indicates addition):

2(Cout T Cour) + 81+ 82 =1 + iz + i3 +is + ¢}, + ¢, (1)

. The complement of bit 7; is equal to 1 — 4;. Using this fact to substitute in equation 1 yields

the new relation:
2cour + (L —cou)) + (L =s1)+s2 = (1—i1) +iz+ (1 —d3) +ia + (1= cf,) + iy
2(Cout = Cout) — 81+ 82 = —iy+iz — iz +isg — C + (2)

or simply that we have the equivalent of negatively valued bits at the locations of the inverters.
This can be used to represent signed digits for example.

. With vertical connections between the carries we get a row of [4 : 2] compressors. It is important

to note that in this case, there is no need to invert ¢}, of one compressor and invert again c},,
of the following compressor. The two inverters cancel each other.

With horizontal connections, we get a tree of compressors similar to the conventional multiplier
trees.

. If the inverted outputs are connected to inverted inputs then they cancel each other and there

is no need for them anywhere inside the tree. Only the inputs and the outputs of the whole tree
(but not inside it) may have some inverters.

. According to the results of this problem, the use of signed digits in multiplication is as simple as

the use of unsigned digits since the whole body of the tree is similar and only some additional
inverters are needed in some locations at its boundary.

3

A new divider design using multiplication

. The LSB is padded by a 0 to its right. Pad the MSB with two 0 if n is even and one 0 if n is

odd.

. The Y}, part represents normal bits which have a positive mathematical value hence we use a

regular recoder.

Original bits

Yj+1 Yj Cin | Cout value
0 0 0 0 +0
0 0 1 0 +1
0 1 0 0 +1
0 1 1 0 +2
1 0 0 1 —2
1 0 1 1 —1
1 1 0 1 —1
1 1 1 1 -0

3. In Yy — YY), the Y] part represents bits which have a negative mathematical value hence we may

use a recoder with negative values.

Original bits

Yj+1 Yj Cin | Cout value
0 0 0 0 —0
0 0 1 0 -1
0 1 0 0 -1
0 1 1 0 —2
1 0 0 -1 +2
1 0 1 -1 +1
1 1 0 -1 +1
1 1 1 -1 +0

4. The boundary region between Y}, and Y; depends on whether i (the index of the MSB of Y}) is

odd or even.



1 even: This means that the number of bits within Y] is odd. Hence, the two “new” bits of the
group at the boundary of Y; and Y}, are one from Y; and the other from Y. The carry into
this group comes from a group entirely within Y;. We can choose to recode the values as:

Original bits

Yitl Yi Cin | Cout Vvalue
0 0 0 0 —0
0 0o -1 0 —1
0 -1 0 0 -1
0 -1 -1 0 —2
1 0 0 0 +2
1 0o -1 0 +1
1 -1 0 0 +1
1 -1 -1 0 +0

where the c,,+ signal is always 0 which means that the next higher up group will only have

Original bits
Yi+3  Yi+2 Cin | Cout value

0 0 0 0 +0
0 1 0 0 +1
1 0 0 1 -2
1 1 0 1 -1

as the possible cases. These are a subset of the cases in the regular recoder of the Y} part.

1 odd: This means that the number of bits within Y; is even. Hence, the most significant two
bits of Y; are taken within a group using the modified recoder of the last step and may
produce a negative carry to the higher up group. However, that higher group is the first
two bits of Y, which are positively valued. Similar to what we have just done above, we
can choose to recode the values as:

Original bits
Yi+2 Yi+l Cin | Cout Vvalue
0 0 0 0 —0
0 0 -1 0 -1
0 1 0 0 +1
0 1 -1 0 +0
1 0 0 0 +2
1 0 —1 0 +1
1 1 0 0 +3
1 1 —1 0 +2

where the ¢, signal is always 0 which means that the next higher up group will only have

Original bits

Yitd Yit3 Cin | Cout Vvalue

g

0 0 0 0 +0
0 1 0 0 +1
1 0 0 1 -2
1 1 0 1 -1

as the possible cases. These are a subset of the cases in the regular recoder of the Y} part.
However, with this choice of recoding the case of 1 1 0 in the boundary group produces a
hard multiple of +3.

In order to avoid that hard multiple, we can recode the boundary group as:

Original bits
Yi+2  Yi+l Cin | Cout value
0 0 0 0 -0
0 0 —1 0 —1
0 1 0 0 +1
0 1 —1 0 +0
1 0 0 1 -2
1 0 -1 0 +1
1 1 0 1 —1
1 1 -1 1 -2

where the c¢,,; signal is not a simple function. Specifically, the case 1 0 1 must produce a
zero carry to the next higher group which can use a regular recoder of the Y}, part.



Thus we end up with this table (with d indicating a don’t care value)

Original bits Yy Y; Boundary First Y},
Yj+1 Yj Cin | value | value | 7 even iodd | 7 even | i odd
0 0 0 +0 -0]0 —-0}|0 -0 +0 +0
0 0 1 +1 -1/0 —-1}]0 -1 d +1
0 1 0 +1 -1]0 —-1]0 +1 +1 +1
0 1 1 +2 -210 =20 40 d +2
1 0 0 -2 +2|0 +2|1 =2 -2 -2
1 0 1 -1 +1|0 4+1]0 +1 d -1
1 1 0 -1 +1|0 +1|1 -1 -1 -1
1 1 1 -0 +0(0 4+0|1 =2 d -0

A different arrangement for partial products

. Several proofs are possible. Any correct proof gets the full mark. Here is one solution.
Since @;7; = 1 — (a;x;) then we can rewrite all the elements containing the complement of a bit

in this manner to get

ag as as ay aop
X Ta T3 T2 T o
1-— a4 aszxo a2 ai1xg apgTo
1 —agxq asrq asxy a1y apri
1—aqxo asTo asTo ai1Tr2 apx2
1- aqxrs as3rs agrs3 ai1xrs apxrs
aqT4y 1- a3 1— a2 4 1-— a1xrag 1— apgra
1 0 0 1
Po ps p7 Pe ps P4 p3 p2 P1 Po
which is then rearranged as
aq as as al ao
X T4 T3 To T xo
—Qa4Xxg azxo a2xq ai1xo apgxo
— Q4] asxry agxq al1xry apry
— Q4T asrz agxr al1xra apgrz
—Qaq4T3 as3xrs a2r3 a1x3 apgrs
aqTa —azTyg —a2x4 —a1T4 —aprag
1 1 1 1
1 1 1 1
1 0 0 1
Po ps pr Pe ps Pa p3 P2 p1 Po

The position of those resulting ones is such that they add up to overflow as a carry that is
neglected and produce a zero in the range of bits representing the product. Hence, the array is

equal to:

a4 as a2 ay ao

X T4 T3 To 1 o

(—asa)ro azwo azxro @1To GoTo

(—aq)x1 azwy azr1  a1r1  aopxi
(—aq)z2 azza azxa aiTz a2
(—as)zs azTs3 a2x3 aiz3 aoT3
(—a4)(=z4) as(=z4) as(=z4) ai(—=z4) ao(=24)
Po ps p7 Pe Ps Pa p3 P2 p1 Po

where we used the fact that aszs = (—a4)(—24).

Since in the two’s complement format the most significant bit is negatively valued, this resulting

array effectively produces the product of two five bits operands.

. The easiest re-arrangement is to move the location of the constants.

Gy as a2 ai Qg
X T4 I3 T Ty o
1 agTo aszro azxg a1To  GpTo
a4T]  G3T1  G2T1  A1T1  QpT1
a4Ty a3Tz G2x2  A1T2  AQT2
a4T3 a3T3 G2T3 G1T3 QT3
1 44 A3T4 A2X4 A1T4 QAOT4
Po D8 pr Pe Ps P4 Pp3 P2 Y41 Po



3. It has n + 1 rows and 2n columns.

4. The values of ¢ go from 0 to n while the values of j go from 0 to 2n — 1. The bit pp; ; at row ¢
and column j is given by

Range of ¢ Range of j DD j
i<n—1 0<j<i 0
1<j<itn-—1 aj_x
j=i+n—1 Qj—iTq
t+n—1<yj 0
i=n—1 0<j<i 0
1<j<i+n-—1 a;57;
j=i14+n—-1 aj—iT;
i+tn—1<j 0
1= j=n 1
j=2n-1 1
all other j 0

Sum of squares

1. With the given specification, z € {—2"71 ... +(2"7! — 1)} and hence 2? € {0,---,22"=2}.
Thus 22 is fully represented in (2n — 1) bits. Similarly for 2. The value of z is unsigned so we
have

2?2 ¢ {0,---,22"72)
g e {0,220
z € {0,---,22"1}
and s € {0,---,22"} which means that s is represented in 2n + 1 bits.
2. The resulting array when n =4 is

I3 T2 I Xo
X I3 T T Zo
T3To T2To T1To ToTo
T3x1 Ta¥1 X1T1 Tk
X3T2 TaTa X1T2 Tox2
r3x3y T2x3 T1Xx3 TQT3
1 1
p7r De Ps y2 b3 b2 Y41 Po

which reduces to

T3 T2 T Lo

21’3530 21’2$0 2[[;1%0 To
2r3T1 2911 T
21‘3332 To

T3
1 1
b7 Pe Ps P4 b3 2 p1 Po
then to
T3 X9 r1 X9
X T3 i) 1 Xo
1 X3y I3x1 I3Xog I2Xy T1Xo Zo
T3 To2X1 X1
€2
1

pr Ps bs P4 ps3 D2 P1 Do



and finally to

I3 X2 r1 X9
X I3 To Tr1 X
1 T3y I3x1 I3xXyg T2Xy9 T1dg ZTo
T3  T2T1 T2T1 T
1
b7 De Ps P4 p3 P2 P1 Po
3. For s we have
1 X3y I3x1 T3Xyg T2Xy T1Xo i)
T3  Tal1 T2T1 Ty
1
1 %392 ¥Usy1 UsYo Y2%0  YiYo Yo
Y3 YY1 Y2U1 N
1
27 26 25 24 Z3 22 Z1 20
bs Pr Ds Ps yZ b3 P2 P1 Do
which reduces to
1 r3xLg T3x1 T3xXog T2Xy T1o To
T3  Ta¥1 T2T1 T
1
Ysy2  Ysyr  Ys¥Yo Y2Y%0 YiYo Yo
Y3 Y21 Yol N
27 26 25 24 23 22 21 20
bs Pt De Ps yZ b3 P2 P1 Do

4. Should be written in the full answer.




