
Computer Arithmetic Homework 6
2016–2017 Solutions

1 Double rounding

I will try here to provide additional explanations since most students face problems while solving this
question. I do not expect the students to write all this.

1. In regular binary floating point, the RZ mode is equivalent to a truncation. If we truncate once
at a wider precision then again at a narrower precision this will not be different from a single
truncation directly at the narrower precision. Hence, double rounding is not a problem for RZ
in regular binary.

For the RNA, we may get an example as 1.10010 and we want to round to two bits only but
round first to three bits then to two bits. The first rounding leads to 1.101 which is then rounded
to 1.11. A single rounding leads to 1.10. Hence, double rounding may lead to an error for RNA.

Similarly, for RNE the same example but with 1.10011 shows that double rounding may lead to
an error in RNE.

On the other hand, for RP and RM, double rounding will not lead to a problem. To prove it
for RP, we can enumerate the different cases when we round at t′ bits then later to t bits.

x.

t′ bits︷ ︸︸ ︷
xxxxx . . . xx︸ ︷︷ ︸

t bits

xxx . . . xx xxxxx . . . xxxx︸ ︷︷ ︸
discarded part

(a) For a negative result, the RP for regular binary is equivalent to a truncation. Hence, a
truncation at t′ to remove the discarded part followed by another at t gives the same result
as a direct truncation at t.

(b) For a positive result:

• If the discarded part beyond the t′ bits has no bits of value one, i.e. all the bits are
zero and the sticky bit is zero. Hence, the rounding to t′ does not change the value. A
second rounding to t yields the correct result.

• If there are any bits equal to one in the discarded part, the sticky is one and the value
is incremented when rounded to t′.

i. If the part between t and t′ is all ones, the incrementation leads to a carry propa-
gation all the way to the t part and makes all the bits beyond t equal to zero. A
second rounding at t does not change the value. A direct rounding to t yields the

1



same result.

Before rounding to t′ x.

t′ bits︷ ︸︸ ︷
xxxxx . . . xx︸ ︷︷ ︸

t bits

111 . . . 11xxx1x . . . xxxx︸ ︷︷ ︸
discarded part

After rounding to t′ x.

t′ bits︷ ︸︸ ︷
xxxxx . . . xx

+1︸ ︷︷ ︸
t bits

000 . . . 00

After the second rounding to t x. xxxxx . . . xx
+1︸ ︷︷ ︸

t bits

Before a direct rounding to t x.

t′ bits︷ ︸︸ ︷
xxxxx . . . xx︸ ︷︷ ︸

t bits

111 . . . 11xxx1x . . . xxxx︸ ︷︷ ︸
discarded part

After the direct rounding to t x. xxxxx . . . xx
+1︸ ︷︷ ︸

t bits

ii. If the part between t and t′ is not all ones, then the rounding at t′ will just
increment this part. The following rounding to t takes that incrementation in
effect in its sticky bit. That means that any bits that are discarded after the t′ are
taken into account later in the rounding to t and hence the result is correct.

These various cases show that a second rounding to t yields the correct result always for RP.
Since RM(x)=-RP(-x), we are sure that double rounding does not lead to a problem in RM
either in the regular binary representations.

To conclude, double rounding does not lead to any problems in RZ, RP, or RM. Double rounding
may lead to mistakes in the two RN (RNA and RNE). It is important to stress here that we are
deriving all these results for the regular binary representations. If the numbers are represented
using signed digits or in any other way, the results may be different.

2. In the addition or subtraction of floating point numbers, we align the significands by shifting
the significand of the smaller operand to the right. The shift amount is equal to the difference
of the exponents of the two operands. Let us analyze the possibility of rounding the result of
an addition or subtraction to t′ ≥ 2t+ 2. Due to the alignment shift, the result may have many
bits to the right of the rounding position t.

(a) If the number of those bits is smaller than t the result is represented accurately within t′

and double rounding will not cause a problem.

x.

t′ bits︷ ︸︸ ︷
xxxxx . . . xx︸ ︷︷ ︸

t bits

xxx . . . xx︸ ︷︷ ︸
<t bits

000 . . . 000

(b) If the number of bits is equal to t,

x.

t′ bits︷ ︸︸ ︷
xxxxx . . . xx︸ ︷︷ ︸

t bits

xxx . . . xx︸ ︷︷ ︸
t bits

00

the use of t′ is still sufficient to represent an accurate result and to preform a later rounding.

2



(c) If the number of bits is equal to t + 1,

x.

t′ bits︷ ︸︸ ︷
xxxxx . . . xx︸ ︷︷ ︸

t bits

xxxx . . . xx︸ ︷︷ ︸
t+1 bits

0

this means that the smaller operand has been shifted completely out of the range of bits
for the larger operand and that the G position for the rounding is equal to the integer bit
of the smaller operand (either the hidden one or zero if it was a subnormal number). The
use of t′ is still sufficient.

(d) If the number of bits is equal to t + 2,

x.

t′ bits︷ ︸︸ ︷
xxxxx . . . xx︸ ︷︷ ︸

t bits

0xxxx . . . xx︸ ︷︷ ︸
t+2 bits

this means that the G is zero and the R position holds the value of the integer bit. The
use of t′ is still sufficient.

(e) If the number of bits is larger than t + 2,

x.

t′ bits︷ ︸︸ ︷
xxxxx . . . xx︸ ︷︷ ︸

t bits

00xxx . . . xx︸ ︷︷ ︸
t+2 bits

xxxxx . . . xxxx︸ ︷︷ ︸
discarded part

this means that the G and R positions are both zeros. In this case, rounding in any of the
IEEE modes is dependent on the sticky bit (and the sign bit for RP and RM). However, the
effect of a rounding at t′ will take into effect any bits in the discarded part similar to what
we have seen earlier. Even in the case that the rounding at t′ causes a carry propagation,
that carry will stop at the R position and will not affect the G position. Hence, a second
rounding to t gives the same result as a direct rounding.

In conclusion, t′ ≥ 2t + 2 is a sufficient condition to guarantee that double rounding does not
lead to a problem for addition and subtraction.

3. With the inclusion of a hidden one, each of the two operands has t + 1 bits. The multiplication
of two t+1 bit numbers produces a number with at most 2t+2 bits. Hence, the use of t′ ≥ 2t+2
guarrantees that we can represent the result accurately without any loss. A later rounding to t
will thus produce the correctly rounded result.

4. Double precision has t′ = 52 while single precision has t = 23. Since 52 ≥ 2 × 23 + 2 then,
according to the proofs just presented, double rounding is not a problem. In real processors that
support both precisions, the designers actually use one FPU for the double precision and round
the result to the single precision when needed. The proofs in this question are the reason they
can do it.

2 Division in IEEE 754-2008

1. Let us assume that c = a/b and that c has p + 1 bits in its significand. This means that

c =
∑p+`

i=` c−i2
−i and the least significant bit of c is of the value c−p−` at the weight of 2−p−`

with c−p−` = 1 while c−` = 1 in order to fill p + 1 bits.

Because the operation is division, we know that b 6= 0. Hence, b has one or more bits of value ‘1’.
Let us assume the most significant non-zero bit of b is at position −j with weight 2−j and the
least significant non-zero bit is at position −k with weight 2−k. If b is a normalized number then
−j = 0 while if b is subnormal then −j < 0. If b has only one non-zero bit then j = k, otherwise

3



−j > −k. The value of b spans the positions from −j to −k and the number of significant bits
in b is thus −j + k + 1.

The least significant bit of the product b× c is of weight 2−k × 2−p−` = 2−k−p−` while the most
significant bit is of weight 2−j × 2−` = 2−j−`. Hence, the number of bits in the product b × c,
with the given assumption on the number of bits in c, is (−j+k+p+1). However, we know that
a has at most p bits only which proves that our assumption that c has p + 1 bits is impossible.

The tie case occurs when there is exactly only one bit equal to one followed by all bits equal to
zero as in

←− p digits −→ 1000 . . .

which is a number represented in p+1 bits. We have just proven that an exact result of p+1 bits
can never occur, hence the tie case can never occur.

2. By definition, the different round to nearest directions differ only in the tie case. Since the tie
case never occurs for the binary division operation then all the rounding to nearest directions
are equivalent. Moreover, for positive results, the RTZ is equivalent to RMI since both tend to
reduce the magnitude of a positive number and the RAZ is equivalent to RPI since both tend
to increase the magnitude of a positive number. For negative results, RTZ is equivalent to RPI
while RAZ is equivalent to RMI.

3. A simple example is enough to prove this statement. If a = 200 · · · 01 × 108 (p digits) and
b = 00 · · · 02 × 103 (also p digits) then a/b = 100 · · · 005 × 105 in p + 1 digits and it gives the
exact tie case.

3 Square root in IEEE 754-2008

1. Obviously, the invalid flag may be raised if the input is sNaN while the inexact flag may be raised
if a rounding is needed as in the case of

√
2. This operation is not division so the divide by zero

flag is not raised. Furthermore, the exponent of the result in the square root operation is half
the exponent of the input. Since the input is representable within the range of the decimal64
format then the result is definitely within the range. Hence, the overflow and underflow flags
are never raised. In conclusion, the statement is true.

2. Let us assume that c2 = d and that c has p + 1 digits in its significand. This means that
c =

∑p
i=0 c−i10−i and the least significant digit of c is of the value c−p at the weight of 10−p

with 0 < c−p < 10. For c2, the least significant digit will thus be of value c2−p10−2p. Since the
radix of the system 10 = 5 × 2 does not contain any square terms in its factors then c2−p can
never be a multiple of 10 meaning that the least significant digit of c2 is not zero. Similarly, the
most significant digit of c2 (c20100) is not zero. Hence, c2 should have at least 2p+ 1 digits in the
significand. However, we know that d has at most p digits only so c cannot have p + 1 digits.

The tie case occurs when there is exactly only one digit equal to five followed by all digits equal
to zero as in

←− p digits −→ 5000 . . .

which is a number represented in p + 1 digits. We have just proven that an exact result of
p + 1 digits can never occur, hence the tie case can never occur.

3. By definition, the different round to nearest directions differ only in the tie case. Since the tie
case never occurs for the square root operation then all the rounding to nearest directions are
equivalent. Moreover, since the result is always positive, the RTZ is equivalent to RMI since
both tend to reduce the magnitude of a positive number and the RAZ is equivalent to RPI since
both tend to increase the magnitude of a positive number.

4



4 Integrated Rounding

1. The table is
L G S Cr

0 0 0 x
0 0 1 x
0 1 0 0
0 1 1 1
1 0 0 x
1 0 1 x
1 1 0 1
1 1 1 1

2. The table in the case of one bit right shift is

Without right shift After 1-bit right shift
N ′ L′ G′ (R′ + S′) Cr(pre) L G S Cr(post)

0 0 0 0 x 0 0 0 x
0 0 0 1 x 0 0 1 x
0 0 1 0 0 0 0 1 x
0 0 1 1 1 0 0 1 x
0 1 0 0 x 0 1 0 0
0 1 0 1 x 0 1 1 1
0 1 1 0 1 0 1 1 1
0 1 1 1 1 0 1 1 1
1 0 0 0 x 1 0 0 x
1 0 0 1 x 1 0 1 x
1 0 1 0 0 1 0 1 x
1 0 1 1 1 1 0 1 x
1 1 0 0 x 1 1 0 1
1 1 0 1 x 1 1 1 1
1 1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1

3. We choose all the don’t care cases to be equal to 1 except for the rows when L′G′(R′+S′) = 010
and N ′L′G′(R′ + S′) = 0100. In these rows, both Cr(pre) and Cr(post) are set to 0. Hence the
equation is

Cr(pre) = L′G′(R′ + S′) + N ′L′G′ (R′ + S′)

= (L′ + G′ + R′ + S′)(N ′ + L′ + G′ + R′ + S′)

= N ′L′ + L′G′ + N ′G′ + L′G′ + R′ + S′

= N ′(L′ + G′) + L′ ⊕G′ + R′ + S′.

5



4. The table in the case of one bit left shift is

Without leftt shift After 1-bit left shift
L′ G′ R′ S′ Cr(pre) L G S Cr(post)

0 0 0 0 x 0 0 0 x
0 0 0 1 x 0 0 1 x
0 0 1 0 x 0 1 0 0
0 0 1 1 x 0 1 1 1
0 1 0 0 0 1 0 0 x
0 1 0 1 1 1 0 1 x
0 1 1 0 1 1 1 0 1
0 1 1 1 1 1 1 1 1
1 0 0 0 x 0 0 0 x
1 0 0 1 x 0 0 1 x
1 0 1 0 x 0 1 0 0
1 0 1 1 x 0 1 1 1
1 1 0 0 0 1 0 0 x
1 1 0 1 1 1 0 1 x
1 1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1 1

We choose all the don’t care cases to be equal to 1 except for the rows when L′G′R′S′ = 0010,
0100, 1010, or 1100. In these rows, both Cr(pre) and Cr(post) are set to 0. Hence the equation
is

Cr(pre) = S′ + G′R′.

5. The combination gives

Cr(pre) = sub(N ′L′ + L′G′ + R′ + S′) + sub(S′ + G′R′)

= S′ + sub(N ′L′ + L′G′ + R′) + subG′R′

5 Hypotenus function

1. The value of a2 = 9× 10320 overflows beyond the maximum representable value in binary64 but
remains representable in decimal64. Similarly for b2 = 16× 10320. Hence, in binary64 the result
is +∞ while in decimal64 the result is 5× 10160.

2. This modified code correctly handles the overflow cases and also avoids dividing by zero. The
result for decimal64 is 5 × 10160 as before. The result for binary64 is close to the correct re-
sult but suffers from the rounding errors in representing both a and b in binary64 as well as
the other calculated values. In fact, a is represented by a slightly smaller number starting
with 299999999999999986349 . . . while b is represented by a slightly larger number starting with
400000000000000002611 . . .. The final result starts with 500000000000000018872946624114074 . . .

3. The previous code already handles the case of both inputs being zero through the check on the
value of x. The following code attempts to handle the other mentioned cases

if(isNaN(a) and isInfinite(b)) c=+inf;

else if(isInfinite(a) and isNaN(b)) c=+inf;

else { x = maxabs(a,b);

n = minabs(a,b);

c = (x == 0.0) ? 0.0 : x*sqrt(1 + (n/x)^ 2);

}

4. For both inputs being qNaN , the result is qNaN without signaling any exceptions. While for
one or both inputs being sNaN , the result is qNaN and the invalid operation exception is

6



signaled. The following code handles the above NaN cases as well as the case of one qNaN with
another finite input. Notice the order of checking the different cases.

if(isSignaling(a) or isSignaling(b)) {c=qNaN; signal invalid;}
else if(isNaN(a) and isNaN(b)) c=qNaN;

else if(isNaN(a) and isInfinite(b)) c=+inf;

else if(isInfinite(a) and isNaN(b)) c=+inf;

else if(isNaN(a) and isFinite(b)) c=qNaN;

else if(isFinite(a) and isNaN(b)) c=qNaN;

else { x = maxabs(a,b);

n = minabs(a,b);

c = (x == 0.0) ? 0.0 : x*sqrt(1 + (n/x)^ 2);

}

7


