
Cairo University

Electronics and Communications Department

Computer Arithmetic:

What is Computer Arithmetic?

Hossam A. H. Fahmy

c© Hossam A. H. Fahmy

What are the arithmetic blocks?

Where do they fit in digital circuits?

x+ y
√
x

x
y

x ∗ y ex

sinx

• Floating point calculations in high-end microprocessors

• Digital signal processors and graphics accelerators

• Program counters, basic ALU, branch target calculation, . . .

1/24

Looking forward

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2006 2008 2010 2012 2014 2016 2018 2020
 0

 10

 20

 30

 40

 50

 60

 70

Te
ch

no
lo

gy
 h

al
f p

itc
h

(n
m

) a
nd

 P
rin

te
d

ga
te

 le
ng

th
 (n

m
)

O
n-

ch
ip

 lo
ca

l c
lo

ck
 (G

H
z)

Year

Frequency
Gate Length

Tech. 1/2 pitch

Predicted transistor gate length and maximum clock frequency

trends in high performance chips. (Original data from

http://public.itrs.net)

2/24

Looking forward

 170

 180

 190

 200

 210

 220

 2006 2008 2010 2012 2014 2016 2018

 5000

 10000

 15000

 20000

 25000

 30000

 35000

P
ow

er
 (W

)

Tr
an

si
st

or
s

in
 m

ill
io

ns

Year

Power
Transistors

Predicted maximum allowable power and number of transistors

trends in high performance chips. (Original data from

http://public.itrs.net)

3/24

What is arithmetic on computers?

Number representations:

Integers, Floating Point, Redundant Representations, Residue

Number System, Logarithmic Number System,. . .

What is the best for the specific application? Why?

Operations:

Addition, Subtraction, Multiplication, Division, Square root, ex-

ponential, log, trigonometric,. . .

Which implementation is better? How do you define better?

We always optimize according to some purpose (application) that

sets the conditions of the problem.

4/24

Finitude

Computers have finite resources (datapath width, memory loca-

tions).

Example 1 In a decimal system with 5 digits after the

point, can you represent 1234567/500000 = 2.469134?

5/24

The REAL issue

• Integer numbers are infinite.

⇒ Upper and lower bound on representable numbers and on

their precision.

⇒ Modular arithmetic.

• Irrational numbers (
√

2, π, e) have infinitely many digits.

⇒ We must map from the infinite to the finite.

⇒ Represent all numbers with “integers”.

6/24

Modular arithmetic: congruence

Two integers N and M are congruent modulo µ (µ is a positive

integer), if and only if there exists an integer K such that

N −M = Kµ.

Hence,

Nmodµ ≡Mmodµ,

where µ is called the modulus.

7/24

Modular arithmetic: properties

If N ′ = Nmodµ and M ′ = Mmodµ, then

(N +M)modµ = (N ′+M ′)modµ

(N −M)modµ = (N ′ −M ′)modµ

(N ×M)modµ = (N ′ ×M ′)modµ

Not for division!

8/24

Mapping the real to integers

• Approximate irrational numbers and rational numbers by some

terminating sequences of digits.

• Operate on all numbers as if they were integers (provided scaling

and rounding are done properly).

9/24

The integers

In our days, humans mainly use the Indo-Arabic weighted positional

number system.

A number N is represented as dn−1 dn−2 dn−3 · · · d1 d0 in radix β.

N =
i=n−1∑

i=0

diβ
i

How do you represent negative numbers? How does the machine

represent them?

10/24

Negative numbers

Sign plus magnitude:

• An additional high-order symbol represents the sign.
• Natural for humans, but unnatural for a modular computer

system.

Complement codes: Two types are commonly used;

Radix Complement code (RC)
Diminished Radix Complement code (DRC)

Complement coding is natural for computers, since no special

sign symbology or computation is required.

In binary arithmetic (base = 2), the RC code is called two’s com-

plement and the DRC is called ones’ complement.

11/24

Radix complement

If N has n digits and RC(N) = βn −N , then

RC(N)modβn = (βn −N)modβn = (−N)modβn

P −N is more accurately (P −N)modβn, and

(P −N)modβn = (Pmodβn −Nmodβn)modβn

=
(
Pmodβn + (βn −N)modβn

)
modβn

12/24

Computation of RC(N) = βn −N

1. Scan the digits of N from the least significant side till you reach

the first non-zero digit. Assume this non-zero digit is at position

i+ 1.

2. The digits of RC(N) are given by

RC(N)j =

0 0 ≤ j ≤ i
β − dj j = i+ 1
β − 1− dj i+ 2 ≤ j ≤ m

Also, RC(N) = DRC(N) + 1 =
(∑i=n−1

i=0 ((β − 1)− di)× βi
)

+ 1.

13/24

Which is better RC or DRC?

The calculation of DRC is much faster. Why?

However, the addition and subtraction in DRC needs some fixing.

(i) P = 47, N = 24:

47
+24
071 71mod100 ≡ 71mod99 = result.

(ii) P = 47, N = 57:

47
+57
104
+1
05

4mod100 ≡ 5mod99 = result.

We also have two “zeros” in DRC.
14/24

Overflow in binary addition

Consider P+N for two’s complement representations with Cn−1 the

carry-in to the sign bit and Cn the carry-out of the sign bit.

Sum
Case P N of Signs Cn−1 Cn Overflow Notes

1a Pos Pos 0 0 0 no
1b Pos Pos 0 1 0 yes
2a Neg Neg 0 1 1 no
2b Neg Neg 0 0 1 yes
3 Pos Neg 1 0 0 no |P | < |N |
4 Pos Neg 1 1 1 no |P | > |N |

OVERFLOW = Cn−1 ⊕ Cn.
(Same for ones’ complement)

15/24

Shifts

A left shift multiplies the number by the radix. A right shift divides

it.

Logical shift: All bits of a word are shifted right or left by the

indicated amount with zeros filling the end bits.

Arithmetic shift: The sign bit is fixed.

For arithmetic right shift, fix the sign bit and fill the higher

order bits with the value of the sign bit.

For arithmetic left shift, fix the sign bit and fill the lower or-

der bits with zeros regardless of the sign bit.

16/24

Multiplication

In unsigned data representation, multiplying two operands, one

with n bits and the other with m bits, requires that the result

will be n+m bits. Can you prove it?

In signed numbers, each n bits, the product requires only 2n−1

bits, since the product has only one sign bit.

Exception: In the two’s complement code, −2n is representable

in n bits but (−2n)×(−2n) = +22n is not representable in 2n−1

bits.

17/24

Division

Division is the most difficult operation of the four basic arithmetic

operations.

1. Overflow: Even when the dividend is n bits long and the divisor

is n bits long, an overflow may occur. A special case is a zero

divisor.

2. Inaccurate results: In most cases, dividing two numbers gives a

quotient that is an approximation to the actual rational number.

By definition,
a
b = q + r

b a dividend q quotient
a = b× q + r b divisor r remainder.

If r = 0, the division is the exact converse of multiplication. Other-

wise, it is not!

18/24

Types of division

A difficulty in division is the multiplicity of valid results depending

upon the sign conventions.

Modular division −7÷m 3 = −3, r = 2.
Signed division −7÷s 3 = −2, r = −1.

As well as other possibilities.

If the hardware provides one and you wish another, you must

make a correction.

19/24

Going far and beyond

It is possible to generalize the formula N =
∑i=n−1
i=0 diβ

i where β is

a positive integer and 0 ≤ di < β.

1. Use N =
∑i=n−1
i=` diβ

i with ` ≤ 0 to get a representation of

fractions.

2. Use β = −2 or β = −1 + j to get special purpose systems.

3. Have more than β possibilities for the digits to get a redundant

representation. ⇒ Leads to carry-free addition!

4. Do not use N =
∑i=n−1
i=` diβ

i!

20/24

Redundant representations

Assume a weighted positional signed digit system with base β where

the digits di are such that α < di < γ with α < 0 < γ and γ−α ≥ β+1.

1. At each position i, form the primary sum pi = xi+ yi of the two

operands x and y.

2. If pi ≥ γ generate a carry ci+1 = 1. If pi ≤ α generate a carry

ci+1 = −1. Otherwise, ci+1 = 0.

3. The intermediate sum at position i is wi = pi − βci+1.

4. The final sum at position i is si = wi + ci.

21/24

Carry-free addition

Example 2 Using β = 10 and di ∈ {−9, . . . ,9}, apply the

previous rules to 202 + 189 and 212 + 189.

Solution: Obviously, the results are 391 and 401 but let

us see the detailed operations:

2 0 2 2 1 2
+1 8 9 +1 8 9

3 8 11 pi ≥ |γ|? 3 9 11

0 1 ci 1 1
3 8 1 wi 3 1̄ 1
3 9 1 si 4 0 1

22/24

Mixed radix

The elapsed time in 2 weeks, 3 days, 2 hours, 23 minutes, and

17 seconds is

Time 2 weeks 3 days 2 hours 23 minutes 17 seconds
Weights 7× 24× 60× 60 24× 60× 60 60× 60 60 1
Value 2× 7× 24× 60× 60 + 3× 24× 60× 60 + 2× 60× 60 + 23× 60 + 17× 1= 1 477 397s.

In mixed radix systems, it is important to clearly specify the possible

set of digit values. In the case of time, the digit values for seconds

and minutes is ∈ {0, . . . ,59} while for hours it is ∈ {0, . . . ,23} or

{1, . . . ,12}.

23/24

Summary

• Arithmetic blocks are everywhere in digital circuits.

• The finitude of computers leads to modular arithmetic.

• Negative numbers are usualy represented in RC.

• It is possible to change the representation in order to ease the

implementation of certain tasks.

24/24

