Cairo University Electronics and Communications Department

# What are the arithmetic blocks? Where do they fit in digital circuits?

# Computer Arithmetic: What is Computer Arithmetic?

Hossam A. H. Fahmy



- Floating point calculations in high-end microprocessors
- Digital signal processors and graphics accelerators
- Program counters, basic ALU, branch target calculation, ...

© Hossam A. H. Fahmy

Looking forward



Predicted transistor gate length and maximum clock frequency trends in high performance chips. (Original data from <a href="http://public.itrs.net">http://public.itrs.net</a>)





Predicted maximum allowable power and number of transistors trends in high performance chips. (Original data from http://public.itrs.net)

## Number representations:

Integers, Floating Point, Redundant Representations, Residue Number System, Logarithmic Number System,...

What is the best for the specific application? Why?

## **Operations:**

Addition, Subtraction, Multiplication, Division, Square root, exponential, log, trigonometric,...

Which implementation is better? How do you define better?

We always optimize according to some purpose (application) that sets the conditions of the problem.

4/24

The REAL issue

Computers have finite resources (datapath width, memory locations).

**Example 1** In a decimal system with 5 digits after the point, can you represent 1234567/500000 = 2.469134?

5/24

# Modular arithmetic: congruence

• Integer numbers are infinite.

 $\Rightarrow$  Upper and lower bound on representable numbers and on their precision.

 $\Rightarrow$  Modular arithmetic.

- Irrational numbers  $(\sqrt{2}, \pi, e)$  have infinitely many digits.
- $\Rightarrow$  We must map from the infinite to the finite.
- $\Rightarrow$  Represent all numbers with "integers".

Two integers N and M are *congruent* modulo  $\mu$  ( $\mu$  is a positive integer), if and only if there exists an integer K such that

$$N - M = K\mu.$$

Hence,

 $N\mathbf{mod}_{\mu} \equiv M\mathbf{mod}_{\mu},$ 

# where $\mu$ is called the modulus.

If  $N' = N \mod_{\mu}$  and  $M' = M \mod_{\mu}$ , then

(N+M)mod<sub> $\mu$ </sub> = (N'+M')mod<sub> $\mu$ </sub> (N-M)mod<sub> $\mu$ </sub> = (N'-M')mod<sub> $\mu$ </sub>  $(N \times M) \operatorname{mod}_{\mu} = (N' \times M') \operatorname{mod}_{\mu}$ 

Not for division!

number system.

represent them?

- Approximate irrational numbers and rational numbers by some terminating sequences of digits.
- Operate on all numbers as if they were integers (provided scaling and rounding are done properly).



If N has n digits and  $\operatorname{RC}(N) = \beta^n - N$ , then

$$\operatorname{RC}(N)\operatorname{mod}_{\beta^n} = (\beta^n - N)\operatorname{mod}_{\beta^n} = (-N)\operatorname{mod}_{\beta^n}$$

P-N is more accurately (P-N) mod<sub> $\beta$ n</sub>, and

$$(P - N) \operatorname{mod}_{\beta^{n}} = (P \operatorname{mod}_{\beta^{n}} - N \operatorname{mod}_{\beta^{n}}) \operatorname{mod}_{\beta^{n}}$$
$$= (P \operatorname{mod}_{\beta^{n}} + (\beta^{n} - N) \operatorname{mod}_{\beta^{n}}) \operatorname{mod}_{\beta^{n}}$$

- 1. Scan the digits of N from the least significant side till you reach the first non-zero digit. Assume this non-zero digit is at position i + 1.
- 2. The digits of RC(N) are given by

$$\mathbf{RC}(N)_j = \begin{cases} 0 & 0 \le j \le i \\ \beta - d_j & j = i+1 \\ \beta - 1 - d_j & i+2 \le j \le m \end{cases}$$

Also, 
$$\operatorname{RC}(N) = \operatorname{DRC}(N) + 1 = \left(\sum_{i=0}^{i=n-1} ((\beta - 1) - d_i) \times \beta^i\right) + 1$$

13/24

## 12/24

## Which is better RC or DRC?

The calculation of DRC is much faster. *Why*?

However, the addition and subtraction in DRC needs some fixing.

(i) P = 47, N = 24:

$$\begin{array}{c} 47 \\ +24 \\ \hline 071 \\ \end{array} 71 \text{mod}_{100} \equiv 71 \text{mod}_{99} = \text{result.} \end{array}$$

(ii) 
$$P = 47$$
,  $N = 57$ :

$$\begin{array}{c} 47 \\ +57 \\ \hline 104 \\ +1 \\ \hline 05 \end{array} \quad 4 \mod_{100} \equiv 5 \mod_{99} = \text{result.}$$

We also have two "zeros" in DRC.

Consider P+N for two's complement representations with  $C_{n-1}$  the carry-in to the sign bit and  $C_n$  the carry-out of the sign bit.

**Overflow in binary addition** 

|      |     |     | Sum      |           |       |          |         |
|------|-----|-----|----------|-----------|-------|----------|---------|
| Case | P   | N   | of Signs | $C_{n-1}$ | $C_n$ | Overflow | Notes   |
| 1a   | Pos | Pos | 0        | 0         | 0     | no       |         |
| 1b   | Pos | Pos | 0        | 1         | 0     | yes      |         |
| 2a   | Neg | Neg | 0        | 1         | 1     | no       |         |
| 2b   | Neg | Neg | 0        | 0         | 1     | yes      |         |
| 3    | Pos | Neg | 1        | 0         | 0     | no       | P  <  N |
| 4    | Pos | Neg | 1        | 1         | 1     | no       | P  >  N |

OVERFLOW 
$$= C_{n-1} \oplus C_n$$
.

(Same for ones' complement)

#### Shifts

**Multiplication** 

A left shift multiplies the number by the radix. A right shift divides it.

**Logical shift:** *All bits* of a word are shifted right or left by the indicated amount with zeros filling the end bits.

Arithmetic shift: The sign bit is fixed.

- **For arithmetic right shift,** fix the sign bit and fill the higher order bits with the value of the sign bit.
- For arithmetic left shift, fix the sign bit and fill the lower order bits with zeros regardless of the sign bit.

16/24

Division

Division is the most difficult operation of the four basic arithmetic operations.

- 1. *Overflow:* Even when the dividend is *n* bits long and the divisor is *n* bits long, an overflow may occur. A special case is a zero divisor.
- 2. *Inaccurate results:* In most cases, dividing two numbers gives a quotient that is an approximation to the actual rational number.

By definition,  $\begin{array}{ccc} \frac{a}{b} &=& q + \frac{r}{b} & a & \text{dividend} & q & \text{quotient} \\ a &=& b \times q + r & b & \text{divisor} & r & \text{remainder.} \end{array}$ 

If r = 0, the division is the exact converse of multiplication. Otherwise, it is not!

In unsigned data representation, multiplying two operands, one with n bits and the other with m bits, requires that the result will be n + m bits. Can you prove it?

In signed numbers, each n bits, the product requires only 2n-1 bits, since the product has only one sign bit.

Exception: In the two's complement code,  $-2^n$  is representable in *n* bits but  $(-2^n) \times (-2^n) = +2^{2n}$  is not representable in 2n-1 bits.

17/24

Types of division

A difficulty in division is the multiplicity of valid results depending upon the sign conventions.

Modular division  $-7 \div_m 3 = -3$ , r = 2. Signed division  $-7 \div_s 3 = -2$ , r = -1.

As well as other possibilities.

If the hardware provides one and you wish another, you must make a correction.

#### Going far and beyond

#### **Redundant representations**

- It is possible to generalize the formula  $N = \sum_{i=0}^{i=n-1} d_i \beta^i$  where  $\beta$  is a positive integer and  $0 \le d_i < \beta$ .
- 1. Use  $N = \sum_{i=\ell}^{i=n-1} d_i \beta^i$  with  $\ell \leq 0$  to get a representation of fractions.
- 2. Use  $\beta = -2$  or  $\beta = -1 + j$  to get special purpose systems.
- 3. Have more than  $\beta$  possibilities for the digits to get a redundant representation.  $\Rightarrow$  Leads to carry-free addition!
- 4. Do not use  $N = \sum_{i=\ell}^{i=n-1} d_i \beta^i!$

20/24

**Carry-free addition** 

Assume a weighted positional signed digit system with base  $\beta$  where the digits  $d_i$  are such that  $\alpha < d_i < \gamma$  with  $\alpha < 0 < \gamma$  and  $\gamma - \alpha \ge \beta + 1$ .

- 1. At each position *i*, form the primary sum  $p_i = x_i + y_i$  of the two operands *x* and *y*.
- 2. If  $p_i \ge \gamma$  generate a carry  $c_{i+1} = 1$ . If  $p_i \le \alpha$  generate a carry  $c_{i+1} = -1$ . Otherwise,  $c_{i+1} = 0$ .
- 3. The intermediate sum at position *i* is  $w_i = p_i \beta c_{i+1}$ .
- 4. The final sum at position *i* is  $s_i = w_i + c_i$ .

21/24

#### Mixed radix

**Example 2** Using  $\beta = 10$  and  $d_i \in \{-9, \dots, 9\}$ , apply the previous rules to 202 + 189 and 212 + 189. *Solution:* Obviously, the results are 391 and 401 but let us see the detailed operations:

| 2  | 0 | 2  |                      | 2  | 1 | 2  |  |
|----|---|----|----------------------|----|---|----|--|
| +1 | 8 | 9  |                      | +1 | 8 | 9  |  |
| 3  | 8 | 11 | $p_i \ge  \gamma $ ? | 3  | 9 | 11 |  |
|    |   |    |                      |    |   |    |  |
| 0  | 1 |    | $c_i$                | 1  | 1 |    |  |
| 3  | 8 | 1  | $w_i$                | 3  | 1 | 1  |  |
| 3  | 9 | 1  | $s_i$                | 4  | 0 | 1  |  |
|    |   |    |                      |    |   |    |  |

The elapsed time in 2 weeks, 3 days, 2 hours, 23 minutes, and 17 seconds is

| Time    | 2  | weeks                                              | 3 days                              | 2 hours                   | 23 minutes       | 17 seconds                |
|---------|----|----------------------------------------------------|-------------------------------------|---------------------------|------------------|---------------------------|
| Weights | 57 | $\times$ 24 $\times$ 60 $\times$ 60                | $24 \times 60 \times 60$            | $60 \times 60$            | 60               | 1                         |
| Value   | 2  | $\times$ 7 $\times$ 24 $\times$ 60 $\times$ 60 $+$ | $3 \times 24 \times 60 \times 60 +$ | $2 \times 60 \times 60 +$ | $23 \times 60 +$ | $17 \times 1 = 1477397s.$ |

In mixed radix systems, it is important to clearly specify the possible set of digit values. In the case of time, the digit values for seconds and minutes is  $\in \{0, \ldots, 59\}$  while for hours it is  $\in \{0, \ldots, 23\}$  or  $\{1, \ldots, 12\}$ .

# Summary

- Arithmetic blocks are everywhere in digital circuits.
- The finitude of computers leads to modular arithmetic.
- Negative numbers are usualy represented in RC.
- It is possible to change the representation in order to ease the implementation of certain tasks.