
Cairo University

Electronics and Communications Department

Computer Arithmetic:

Are there any limits?

Hossam A. H. Fahmy

c© Hossam A. H. Fahmy

Limits on what and why look for them?

Time indicates how quickly the operation executes.

Area (gate count) indicates how large the circuit is. This trans-

lates into initial cost in design, managing the complexity, testing,

and fabrication.

Power represents the running cost to operate the circuit and to

cool it.

The three are linked and the figure of merit is

merit = T aAbP c

1/15

Why are there limits?

• Fundamental issues:

Time: Carry propagation, Leading One Detection, Sticky bit,

Steps of FP add,. . . (sequential → parallel)
Power: Is there really any fundamental minimum amount of

energy for computation? (The answer is ‘no’, the practical

answer is ‘yes’.)

• Practical issues:

Time: Switching speed of the transistors, capacitance and re-

sistance of the wires, maximum fan-in for gates, . . .
Area: How large are the chips that we can currently fabricate?

(Price, yield, mechanical issues, . . . )
Power: Can the package dissipate that much heat? Can the

source supply that much power?

2/15

The Residue Number System

RNS uses relatively prime positional bases, for example: (2,3,5)

and (4,5,7,9).

Any number is represented by its residues after dividing the num-

ber by the base.

Example 1 To convert the decimal number 29 to a residue number
with the bases 5,3,2, we compute:

R5 = 29mod5 = 4
R3 = 29mod3 = 2
R2 = 29mod2 = 1

and say that the decimal number 29 is represented by [4,2,1].

The Chinese Remainder Theorem ensures that each number less

than (5× 3× 2) has a unique representation.

3/15



Why RNS?

There are no carries between columns in addition and multiplication.

Remember the properties of modular arithmetic: if N ′ = Nmodµ
and M ′ = Mmodµ, then

(N +M)modµ = (N ′+M ′)modµ

(N −M)modµ = (N ′ −M ′)modµ

(N ×M)modµ = (N ′ ×M ′)modµ

Arithmetic is closed (done completely) within each residue position.

For subtraction we use complement coding so that Xc = [xci ].

4/15

As simple as that

Example 2 In the 5,3,2 residue system, M = 30, integer

representations 0 through 14 are positive, and 15 through

29 are negative (i.e., represent numbers −15 through −1).

Calculate (8)c and (9)c as well as 8− 9.

Solution: The representations of 8 and 9 are

8 = [3,2,0],

9 = [4,0,1]

So, (8)c = [2,1,0] i.e. 5− 3,3− 2, and (2− 0)mod2 while

(9)c = [1,0,1].

8 = 8 = [3,2,0]
−9 = (9)c = +[1,0,1]
−1 [4,2,1] = 29 or − 1

5/15

Selection of the Moduli

• Considerations:

– Relatively prime

– Minimise the largest modulus

– Efficient in their binary representation: using n bits, are we
representing almost 2n numbers? (5,3,2) and (8,7)

– Compatibility with binary ALUs.

• Two systems:

Optimal: minimizes the largest modulus

“Binary”: moduli of the form 2k1, 2k1 − 1, 2k2 − 1, . . .2kn − 1
(k1, k2, . . . , kn are integers)

6/15

Binary (or Merrill) RNS

Merrill suggests the largest be of the form 2k1 and the second largest

of the form 2k1 − 1, k1 the same.

The remaining moduli should avoid common factors.

Moduli Prime Factors
3 —
7 —

15 3,5
31 —
63 3,7

127 —
255 3,5
511 7,73

1023 3,11,31
2047 23,89
4095 3,5,7,13
8191 —

2k (k = 1,2,3,4 . . .) 2

7/15



Why those Merrill moduli?

• “Compatible” with binary ALUs.

• Almost the capacity of 2n where n = k1 +
∑
ki.

Bits to represent Moduli set
17 32, 31, 15, 7
25 128, 127, 63, 31
28 256, 255, 127, 31

In the 17-bit case, instead of 217 code points, we have

25(25 − 1)(24 − 1)(23 − 1) = 217 −O(214).

That is less than 1 bit of representational capability.

8/15

Operations with General Moduli

Example 3 A table of 1024 or 210 entries is used for

moduli up to 32, or 25; i.e., if xi and yi are 5-bit ar-

guments, then their concatenated 10-bit value forms an

address into a table of results.

5 bits5 bits
xi yi

address

Memory
(1024 entries)

result

sum or product
In this case, addition, subtraction, and multiplication are

accomplished in one access time to the table.

9/15

Conversion to RNS with general moduli

Let us compute the residue mod7 of the radix 10 integer 1826.

We begin by decomposing the number

1826 = 1× 1000 + 8× 100 + 2× 10 + 6

= a3 × 103 + a2 × 102 + a1 × 10 + a0

and note that

10mod7 = 3

100mod7 = (10mod7 × 10mod7)mod7 = 2

1000mod7 = (100mod7 × 10mod7)mod7 = 6.

10/15

Thus, we have the following table and get

1826mod7 = (6 + 2 + 6 + 6)mod7 = 6.

a3 xj3 a2 xj2 a1 xj1 a0 xj0
0 0 0 0 0 0 0 0
1 6 1 2 1 3 1 1
2 5 2 4 2 6 2 2
3 4 3 6 3 2 3 3
4 3 4 1 4 5 4 4
5 2 5 3 5 1 5 5
6 1 6 5 6 4 6 6
7 0 7 0 7 0 7 0
8 6 8 2 8 3 8 1
9 5 9 4 9 6 9 2

11/15



Conversion to RNS with “Binary” moduli

A binary number Xmod2n with the value

Xbase2 = xn−12n−1 + xn−22n−2 + · · ·+ x0,

where xi has value 0 or 1, is rewritten as:

Xbase2k = Xm−1 (2k)
m−1

+Xm−2 (2k)
m−2

+ · · ·+X0,

where Xi has values {0,1, . . .2k − 1}.

Then, Xmod2k = X0 and

Xmod2k−1 =



m−1∑

i=0

Xi(2k)
i
mod2k−1


 mod2k−1.

12/15

From RNS back to conventional binary

1. Find the weight of modulus mj: the residue representation that

has a “1” in the jth residue position and zero for all other

residues.

2. To recover the integer X from its residue representation, we

sum the weighted residue modulo M :

XmodM =
(∑

(xjwj)
)
modM.

13/15

Can we always use RNS?

The difficulties in using a residue number system are:

1. the long conversion times,

2. the complexity of number comparisons,

3. the difficulty of overflow detection, and

4. the indirect division process.

However, in an algorithm that relies heavily on addition and mul-

tiplication and does not need to convert or compare often (as in

signal processing and cryptography) residues have their place!

14/15

Other uses: Error checking

If, in an n-bit binary system:

amod2n
+bmod2n
cmod2n

then it also follows that:

amod2k−1
+bmod2k−1
cmod2k−1

Since 2n and 2k−1 are relatively prime, it is possible to use a small

k-bit adder (n� k) to check the operation of the n-bit adder.

15/15


