• For integers **Computer Arithmetic:** $\mathsf{Product} = \underbrace{X + X + \dots + X}_{Y \text{ times}}$ Go forth and multiply • All the computer numbers are represented as integers. Hossam A. H. Fahmy • Depending on the time and resources allowed for this operation, several implementations are possible. © Hossam A. H. Fahmy 1/15Loop on the bits of YLoop on Ywhile(Y>0){product = product + X; Y=Y-1; } The *add and shift* method examines the bits of Y. 1. If the bit Y[0] = 1, add X. • This is the simplest implementation. 2. Shift both the product and Y to the *right* one bit. • Feasible in both hardware and software. • If Y has n bits this algorithm takes up to an $\mathcal{O}(2^n)$ steps. 3. Repeat for the n bits of Y. \Rightarrow Slow and with variable latency Fixed latency of $\mathcal{O}(n)$.

Booth proposed an algorithm based on the fact that

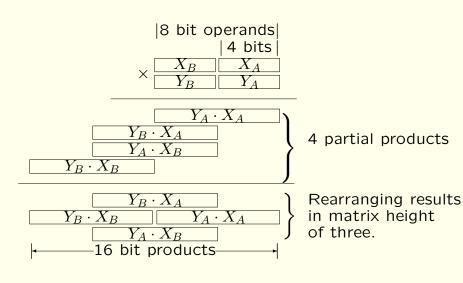
a string of ones $\cdots 011 \cdots 110 \cdots$ is equal to $\cdots 100 \cdots 0\overline{1}0 \cdots$.

Instead of adding repeatedly, add only twice. The recoding is simple:

- 1. On a transition from 0 to 1, put $\overline{1}$ at the location of the 1.
- 2. On a transition from 1 to 0, put 1 instead of the 0.
- 3. Put zeros at all the remaining locations. (i.e. skip groups of zeros and groups of ones.)
- It has a variable latency but, on average, the use of the Booth algorithm reduces the time delay.
- The worst case is $(01010101 \cdots = 1\overline{1}1\overline{1}1\overline{1}1\overline{1}1) \Rightarrow \mathcal{O}(n)$ delay.

4/15

PP generation using ROMs



Implementation of 8 \times 8 *unsigned* multiplication using four 256 \times 8 ROMs, where each ROM performs 4 \times 4 multiplication.

- Sequential: using any of the methods mentioned so far.
- Parallel:
 - 1. Simultaneous generation of all the partial products.
 - 2. Parallel reduction of the partial products to two bit vectors.
 - 3. A final Carry Propagate Adder (CPA).
- Iterative: not fully parallel and not fully sequential.

5/15

Booth revisited

- For a parallel implementation, we want a fixed number of partial products. A smaller number is considered better.
- The original Booth algorithm recodes the number in a redundant format $(\bar{1}, 0, 1)$ by scanning overlapped groups of 2 bits. The worst case is n PPs.
- If we scan 2 *new* bits in each group and use the set {2,1,0,1,2} we get almost $\frac{n}{2}$ PPs.

Orig	inal	bits	Boot	Value		
y_{j+1}	y_j	y_{j-1}	y_{j+1}	y_j	y_{j-1}	
0	0	0	0	0	0	+0
0	0	1	0	1	0	+1
0	1	0	1	ī	0	+1
0	1	1	1	0	0	+2
1	0	0	1	0	0	-2
1	0	1	1	1	0	-1
1	1	0	0	ī	0	-1
1	1	1	0	0	0	-0

 $y_{j-1} = 1$ indicates that it is a string of ones.

Let us think that we are converting from a non-redundant representation to a redundant one.

For each group of two (new) bits we generate a value and a possible carry into the next higher group.

Origi	nal	bits		
y_{j+1}	y_j	c_{in}	c_{out}	value
0	0	0	0	+0
0	0	1	0	$^{+1}$
0	1	0	0	+1
0	1	1	0	+2
1	0	0	1	-2
1	0	1	1	-1
1	1	0	1	-1
1	1	1	1	-0

We choose c_{out} and the value in this particular manner to make $c_{out} = y_{i+1}$ and hence reduce the logic gates needed to generate it.

The values chosen are also easy to generate by a simple shifting of X or -X.

8/15

The price of Booth 2

- In a direct multiplier, $PP_j = Xy_j = \sum_{i=0}^{i=n-1} x_i y_j 2^i$. An array of *AND* gates is enough.
- In a Booth 2 multiplier, some time is used for recoding and for selecting the correct multiplicand multiple.

We have less PPs but we spend some time, area, and power:

- 1. to recode the bit string into the redundant form,
- 2. to select the correct multiple of the multiplicand using a multiplexer whose inputs are 0, X, 2X, and their negatives, and
- 3. to sign extend the PPs since some of them might be negative although we are sure that for unsigned numbers the final product is positive.

In the modified version, we produce $(\frac{n}{2}+1)$ PPs

Algorithm for *unsigned* numbers:

- 1. Pad the *LSB* with one 0.
- 2. Pad the MSB with two 0 if n is even and one 0 if n is odd.
- 3. Divide the multiplier into overlapping groups of 3-bits.
- 4. Determine the scale factor from the recoding table.
- 5. Select the multiplicand multiples.
- 6. Sum the partial products.

9/15

Signed multiplication

If only the multiplicand is signed and represented in 2's complement the algorithm works fine. However, for a signed 2's complement multiplier we need yet another modification:

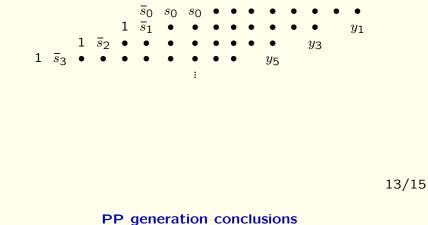
- 1. Pad the *LSB* with one 0.
- 2. If *n* is even do not pad the MSB $\binom{n}{2}$ PPs) and if *n* is odd pad the MSB with one 0 $\binom{n+1}{2}$ PPs).
- 3. Divide the multiplier into overlapping groups of 3-bits.
- 4. Determine the scale factor from the recoding table.
- 5. Select the multiplicand multiples.
- 6. Sum the partial products.

Negation of X

- To get -X or -2X invert each bit and add one at the LSB.
- If we use Booth 2 as just described, we need this inversion only if $y_{i+1} = 1$ (note that $-0 = 111 \cdots 111 + 1$).
- We are sure that the *LSB* location is empty in the lower PPs.

-	-	-	-	-	a_9	-	-	•	-	-		-	-	a_1	-
-	-	-	-	-	b_8		-	-		-		v_1	-		y_1
c_9	-		-		c_6 d_4	-		_		сŢ	$\frac{v_0}{y_5}$		y_3		
e7	-		-	-	e_2	-		ω ₁	u_0 u_7		95				
$\frac{p_{15}}{p_{15}}$			•		$\frac{p_{10}}{p_{10}}$	-		<i>p</i> ₇	01	p_{5}	$p_{\mathcal{A}}$	p_{R}	p_2	p_1	p_{\cap}
115	1 1 4	1 15	1 12		1 10	15	10	11	10	13	1 -	10			10

Since $(sss \cdots sss) \mod_{2^n} = (111 \cdots 111 + \overline{s}) \mod_{2^n}$ then we can reduce the needed summation to



Since the use of two new bits reduced the number of PPs, we might use three bits and reduce it further.

Booth 3

y_{i+2}	y_{i+1}	y_{j}	y_{j-1}	value	y_{i+2}	y_{i+1}	y_j	y_{j-1}	value	
0	0	0	0	+0	1	0	0	0	-4	
0	0	0	1	+1	1	0	0	1	-3	
Ō	Õ	1	Ō	+1	1	Ō	1	Ō	-3	
0	0	1	1	+2	1	0	1	1	-2	
0	1	0	0	+2	1	1	0	0	-2	
0	1	0	1	+3	1	1	0	1	$^{-1}$	
0	1	1	0	+3	1	1	1	0	$^{-1}$	
0	1	1	1	+4	1	1	1	1	-0	

We get almost $\frac{n}{3}$ PPs but:

- 1. the multiple 3X is a hard multiple,
- 2. the recoding logic is more complex, and
- 3. there is a need for a bigger multiplexer.

-

- The PPs are independent and it is possible to generate them all in parallel.
- Reducing the number of PPs decreases the cost of their summation but increases that of their generation.

12/15