
Cairo University

Electronics and Communications Department

Computer Arithmetic:

Go forth and multiply

Hossam A. H. Fahmy

c© Hossam A. H. Fahmy

What is X × Y ?

• For integers

Product = X + X + · · ·+ X︸ ︷︷ ︸
Y times

• All the computer numbers are represented as integers.

• Depending on the time and resources allowed for this operation,

several implementations are possible.

1/15

Loop on Y

while(Y>0){product = product + X; Y=Y-1; }

• This is the simplest implementation.

• Feasible in both hardware and software.

• If Y has n bits this algorithm takes up to an O(2n) steps.

⇒ Slow and with variable latency

2/15

Loop on the bits of Y

The add and shift method examines the bits of Y .

1. If the bit Y [0] = 1, add X.

2. Shift both the product and Y to the right one bit.

3. Repeat for the n bits of Y .

Fixed latency of O(n).

3/15

Booth recoding

Booth proposed an algorithm based on the fact that

a string of ones · · ·011· · ·110 · · ·
is equal to · · ·100· · ·01̄0 · · ·.

Instead of adding repeatedly, add only twice. The recoding is simple:

1. On a transition from 0 to 1, put 1̄ at the location of the 1.

2. On a transition from 1 to 0, put 1 instead of the 0.

3. Put zeros at all the remaining locations. (i.e. skip groups of
zeros and groups of ones.)

• It has a variable latency but, on average, the use of the Booth
algorithm reduces the time delay.

• The worst case is (01010101 · · · = 11̄11̄11̄11̄)⇒ O(n) delay.

4/15

Types of hardware multipliers

• Sequential: using any of the methods mentioned so far.

• Parallel:

1. Simultaneous generation of all the partial products.

2. Parallel reduction of the partial products to two bit vectors.

3. A final Carry Propagate Adder (CPA).

• Iterative: not fully parallel and not fully sequential.

5/15

PP generation using ROMs

|8 bit operands|
| 4 bits |

XB XA×
YB YA

YA ·XA

YB ·XA

YA ·XB

YB ·XB

YB ·XA

YB ·XB YA ·XA

YA ·XB

| 16 bit products |-�

4 partial products





Rearranging results
in matrix height
of three.

}

Implementation of 8× 8 unsigned multiplication using four 256× 8

ROMs, where each ROM performs 4× 4 multiplication.

6/15

Booth revisited

• For a parallel implementation, we want a fixed number of partial
products. A smaller number is considered better.

• The original Booth algorithm recodes the number in a redundant
format (1̄,0,1) by scanning overlapped groups of 2 bits. The
worst case is n PPs.

• If we scan 2 new bits in each group and use the set {2̄, 1̄,0,1,2}
we get almost n

2 PPs.

Original bits Booth recoding Value
yj+1 yj yj−1 yj+1 yj yj−1

0 0 0 0 0 0 +0
0 0 1 0 1 0 +1
0 1 0 1 1̄ 0 +1
0 1 1 1 0 0 +2
1 0 0 1̄ 0 0 −2
1 0 1 1̄ 1 0 −1
1 1 0 0 1̄ 0 −1
1 1 1 0 0 0 −0

yj−1 = 1 indicates

that it is a string of

ones.

7/15

Another way of looking at it

Let us think that we are converting from a non-redundant represen-
tation to a redundant one.

For each group of two (new) bits we generate a value and a possible
carry into the next higher group.

Original bits
yj+1 yj cin cout value

0 0 0 0 +0
0 0 1 0 +1
0 1 0 0 +1
0 1 1 0 +2
1 0 0 1 −2
1 0 1 1 −1
1 1 0 1 −1
1 1 1 1 −0

We choose cout and the value in this particular manner to make
cout = yj+1 and hence reduce the logic gates needed to generate it.

The values chosen are also easy to generate by a simple shifting of
X or −X.

8/15

Modified Booth 2 algorithm

In the modified version, we produce (n2 + 1) PPs

Algorithm for unsigned numbers:

1. Pad the LSB with one 0.

2. Pad the MSB with two 0 if n is even and one 0 if n is odd.

3. Divide the multiplier into overlapping groups of 3-bits.

4. Determine the scale factor from the recoding table.

5. Select the multiplicand multiples.

6. Sum the partial products.

9/15

The price of Booth 2

• In a direct multiplier, PPj = Xyj =
∑i=n−1

i=0 xiyj2
i. An array of

AND gates is enough.

• In a Booth 2 multiplier, some time is used for recoding and for
selecting the correct multiplicand multiple.

We have less PPs but we spend some time, area, and power:

1. to recode the bit string into the redundant form,

2. to select the correct multiple of the multiplicand using a multi-
plexer whose inputs are 0, X, 2X, and their negatives, and

3. to sign extend the PPs since some of them might be negative
although we are sure that for unsigned numbers the final product
is positive.

10/15

Signed multiplication

If only the multiplicand is signed and represented in 2’s complement

the algorithm works fine. However, for a signed 2’s complement

multiplier we need yet another modification:

1. Pad the LSB with one 0.

2. If n is even do not pad the MSB (n2 PPs) and if n is odd pad

the MSB with one 0 (n+1
2 PPs).

3. Divide the multiplier into overlapping groups of 3-bits.

4. Determine the scale factor from the recoding table.

5. Select the multiplicand multiples.

6. Sum the partial products.

11/15

Negation of X

• To get −X or −2X invert each bit and add one at the LSB.

• If we use Booth 2 as just described, we need this inversion only

if yj+1 = 1 (note that −0 = 111 · · ·111 + 1).

• We are sure that the LSB location is empty in the lower PPs.

a9 a9 a9 a9 a9 a9 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0
b9 b9 b9 b9 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 y1
c9 c9 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0 y3
d9 d8 d7 d6 d5 d4 d3 d2 d1 d0 y5
e7 e6 e5 e4 e3 e2 e1 e0 y7
p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

12/15

Sign extension

Since (sss · · · sss)mod2n = (111 · · ·111+s̄)mod2n then we can reduce

the needed summation to

s̄0 s0 s0 • • • • • • • •
1 s̄1 • • • • • • • • y1

1 s̄2 • • • • • • • • y3
1 s̄3 • • • • • • • • y5

...

13/15

Booth 3

Since the use of two new bits reduced the number of PPs, we might
use three bits and reduce it further.

yj+2 yj+1 yj yj−1 value yj+2 yj+1 yj yj−1 value
0 0 0 0 +0 1 0 0 0 −4
0 0 0 1 +1 1 0 0 1 −3
0 0 1 0 +1 1 0 1 0 −3
0 0 1 1 +2 1 0 1 1 −2
0 1 0 0 +2 1 1 0 0 −2
0 1 0 1 +3 1 1 0 1 −1
0 1 1 0 +3 1 1 1 0 −1
0 1 1 1 +4 1 1 1 1 −0

We get almost n
3 PPs but:

1. the multiple 3X is a hard multiple,

2. the recoding logic is more complex, and

3. there is a need for a bigger multiplexer.

14/15

PP generation conclusions

• The PPs are independent and it is possible to generate them all

in parallel.

• Reducing the number of PPs decreases the cost of their sum-

mation but increases that of their generation.

15/15

