Computer Arithmetic:

Tables and series for many functions

Hossam A. H. Fahmy

Three basic approaches are in use:

- 1. Table lookup.
- 2. Subtractive methods: (digit recurrence, converge linearly)
 - (a) Restoring
 - (b) Non-restoring
 - (c) Shift over 0's
 - (d) Brute force (multiple subtractors)
 - (e) SRT
 - (f) High radix
- 3. Multiplicative methods: (converge quadratically)
 - (a) Newton-Raphson
 - (b) Series expansion
 - (c) Higher order series

© Hossam A. H. Fahmy

The series expansion of a function

1/16

A simple approach first

In general,

$$f(x_0 + \Delta x) = f(x_0) + \Delta x \frac{df(x)}{dx} \Big|_{x_0} + \frac{(\Delta x)^2}{2!} \frac{d^2 f(x)}{dx^2} \Big|_{x_0} + \frac{(\Delta x)^3}{3!} \frac{d^3 f(x)}{dx^3} \Big|_{x_0} + \cdots$$

For the reciprocal of *b* where $b = b_h + b_l$ we get:

$$\frac{1}{b} = \frac{1}{b_h} - b_l \left(\frac{1}{b_h}\right)^2 + b_l^2 \left(\frac{1}{b_h}\right)^3 + \cdots.$$

An interpolation table contains the approximate values of $\frac{1}{b_h}$. The hardware uses b_h to read two consecutive values and calculated the reciprocal as:

$$\frac{1}{b} = \frac{1}{b_h} - b_l \left(\frac{1}{b_h} - \frac{1}{b_h + 1ulp} \right)$$

Hence, with just a table and an adder we get a division. This is fast!

How good is interpolation

- For an *n* bit operand, the table has about $2^{\frac{n}{2}}$ entries depending on how many bits there is in b_h and b_l .
- While discussing multiplicative division, we found that the accuracy of the result from the table depends on how many bits are used to index it. Hence, with only $\frac{n}{2}$ input bits, we get only about $\frac{n}{2}$ accurate output bits.

This approach is useful mainly with short precisions and when the accuracy of the results is not very critical. (example: 3D graphics).

4/16

High radix division

In SRT, we produce 2 or 3 bits in each iteration. The high radix algorithms (Wong 1992) are able to produce about 14 bits per iteration.

The first algorithm uses the *m* most significant bits of *b* to get $\frac{1}{b_h}$ from a table then:

$$a' = a - a_h \frac{1}{b_h} b$$
$$q' = q + \frac{a_h}{b_h \times 2^{j-1}}$$

 $(b_h$ here is slightly different from the earlier definition and j - k is a shift amount to correctly align the quotient bits.)

- With an m bit lookup, we get m-2 bits per iteration.
- We can use a redundant format to keep the dividend and quotient.

- uses two tables to get two approximations: the first term and the second terms of the reciprocal expansion $\left(\frac{1}{b} \approx \frac{1}{b_h} b_l \left(\frac{1}{b_h}\right)^2\right)$.
- divides the operand b into three parts: b_1 b_2 b_3 .
- indexes the first table with $b_1 + b_2$ and the second table with $b_1 + b_3$. (b_3 defines the derivative in the region of b_1 .)

The bipartite is more accurate than the interpolation but with more hardware.

5/16

Second high radix algorithm

The second algorithm uses the *m* most significant bits of *b* to index several tables and get, simultaneously, $\frac{1}{b_h}$, $\frac{1}{b_h^2}$, $\frac{1}{b_h^3}$, ... then calculate $1 \quad \Delta b \quad (\Delta b)^2 \quad (\Delta b)^3$

$$B = \frac{1}{b_h} - \frac{\Delta b}{b_h^2} + \frac{(\Delta b)^2}{b_h^3} - \frac{(\Delta b)^3}{b_h^4} + \cdots$$

The new dividend and quotient are calculated as:

$$a' = a - a_h Bb$$

 $q' = q + a_h B \frac{1}{2^{j-k}}$

With an *m* bit lookup and *t* terms in the expansion, we get (mt - t - 1) bits per iteration.

The third algorithm combines the first two terms of the expansion together and requires one table.

a

$$\frac{a}{b} = \frac{a}{b_h + b_l}$$

$$= \frac{a}{b_h} \left(1 - \left(\frac{b_l}{b_h}\right) + \left(\frac{b_l}{b_h}\right)^2 - \left(\frac{b_l}{b_h}\right)^3 + \cdots \right)$$

$$\approx \frac{a(b_h - b_l)}{b_h^2}$$

- While looking up the table to find out $\frac{1}{b_h^2}$, multiply $a(b_h b_l)$. With one more multiplication, the result is ready.
- With an m bit lookup, we get $\approx 2m$ bits per iteration.

8/16

A look at the expansions

With
$$d = 1 - bx_0$$
 and $x_0 \approx \frac{1}{b}$, $y_0 \approx \frac{1}{\sqrt{b}}$, and $z_0 \approx \sqrt{b}$ then:

Reciprocal : $\frac{1}{b} = x_0(1 + d + d^2 + d^3 + \cdots)$

Square root $:\sqrt{b} = y_0(1 - \frac{1}{2}d - \frac{1}{8}d^2 - \frac{1}{16}d^3 - \frac{15}{128}d^4 - \cdots)$

Reciprocal square root : $\frac{1}{\sqrt{b}} = z_0(1 + \frac{1}{2}d + \frac{3}{8}d^2 + \frac{5}{16}d^3 + \frac{35}{128}d^4 + \cdots)$

So far, we only considered the Newton-Raphson iteration of the first order with a quadratic convergence:

$$0 \approx f(x_i) + (x_{i+1} - x_i)f'(x_i)$$

Higher order series yield faster convergence but require the parallel calculation of the square, cube, and higher powers of the operand.

9/16

A general purpose unit

The unit calculates the powers of $(1 - bx_0)$ in parallel.

$$e^{x} = 1 + x + \frac{1}{2}x^{2} + \frac{1}{6}x^{3} + \cdots$$

$$n(1+x) = x - \frac{1}{2}x^{2} + \frac{1}{3}x^{3} - \frac{1}{4}x^{4} + \cdots$$

$$\cos(x) = 1 - \frac{1}{2}x^{2} + \frac{1}{24}x^{4} - \cdots$$

$$\sin(x) = x - \frac{1}{6}x^{3} + \frac{1}{120}x^{5} - \cdots$$

With parallel powering units, it is possible to build a fast and accurate general unit.

					a_5	a_4	a_3	a_2	a_1	a_0
×					a_5	a_4	a_3	a_2	a_1	a
					$a_{5}a_{0}$	a_4a_0	a_3a_0	$a_2 a_0$	$a_1 a_0$	a
				$a_{5}a_{1}$	$a_4 a_1$	$a_{3}a_{1}$	$a_2 a_1$	a_1	$a_0 a_1$	
			$a_{5}a_{2}$	$a_4 a_2$	$a_{3}a_{2}$	a_2	$a_1 a_2$	$a_0 a_2$		
		a_5a_3	a_4a_3	a_3	$a_{2}a_{3}$	$a_{1}a_{3}$	a_0a_3			
	$a_{5}a_{4}$	a_4	$a_{3}a_{4}$	$a_2 a_4$	$a_1 a_4$	$a_0 a_4$				
a_5	$a_{4}a_{5}$	$a_{3}a_{5}$	$a_2 a_5$	$a_1 a_5$	$a_0 a_5$					
$a_{5}a_{4}$	$a_{5}a_{3}$	$a_{5}a_{2}$	$a_{5}a_{1}$	$a_{5}a_{0}$	a_4a_0	a_3a_0	$a_2 a_0$	$a_1 a_0$		a
a_5		a_4a_3	$a_4 a_2$	$a_4 a_1$	$a_{3}a_{1}$	$a_2 a_1$		a_1		
		a_4		$a_{3}a_{2}$		a_2				
				a_3						

With bit manipulations, we reach a unit much smaller than a direct multiplier.

13/16

Truncation

In the series, each higher order power is multiplied by a smaller constant.

- Only the most significant part of the square, cube, or higher power is needed.
- For a single precision, the needed part of the cube PPA is 8 bits wide and 12 bits high. This is less than 10% of a direct multiply!
- The squaring unit can be truncated too.
- A detailed analysis tells you how much to truncate from each power term to keep the total error term within the accepted bounds.

A parallel cubing unit

							a_3	a_2	a_1	a_0
×							a_3	a_2	a_1	a_0
×							a_3	a2	a_1	<i>a</i> ₀
							$a_{3}a_{0}a_{0}$	$a_2 a_0 a_0$	$a_1 a_0 a_0$	$a_0 a_0 a_0$
						$a_{3}a_{0}a_{1}$	$a_2 a_0 a_1$	$a_1 a_0 a_1$	$a_0 a_0 a_1$	
						$a_{3}a_{1}a_{0}$	$a_2a_1a_0$	$a_1 a_1 a_0$	$a_0 a_1 a_0$	
					$a_{3}a_{2}a_{0}$	$a_2 a_2 a_0$	$a_1 a_2 a_0$	$a_0 a_2 a_0$		
					$a_3a_1a_1$	$a_2 a_1 a_1$	$a_1a_1a_1$	$a_0 a_1 a_1$		
					$a_{3}a_{0}a_{2}$	$a_2 a_0 a_2$	$a_1 a_0 a_2$	$a_0 a_0 a_2$		
				$a_{3}a_{3}a_{0}$	$a_2 a_3 a_0$	$a_1 a_3 a_0$	$a_0a_3a_0$			
				$a_{3}a_{2}a_{1}$	$a_2 a_2 a_1$	$a_1 a_2 a_1$	$a_0 a_2 a_1$			
				$a_{3}a_{1}a_{2}$	$a_2a_1a_2$	$a_1 a_1 a_2$	$a_0 a_1 a_2$			
				$a_{3}a_{0}a_{3}$	$a_2 a_0 a_3$	$a_1 a_0 a_3$	$a_0 a_0 a_3$			
			$a_{3}a_{3}a_{1}$	$a_2 a_3 a_1$	$a_1a_3a_1$	$a_0 a_3 a_1$				
			$a_{3}a_{2}a_{2}$	$a_2 a_2 a_2$	$a_1a_2a_2$	$a_0 a_2 a_2$				
			$a_3a_1a_3$	$a_2 a_1 a_3$	$a_1a_1a_3$	$a_0 a_1 a_3$				
		$a_{3}a_{3}a_{2}$	$a_2 a_3 a_2$	$a_1 a_3 a_2$	$a_0 a_3 a_2$					
		$a_{3}a_{2}a_{3}$	$a_2 a_2 a_3$	$a_1 a_2 a_3$	$a_0 a_2 a_3$					
	$a_{3}a_{3}a_{3}$	$a_2 a_3 a_3$	$a_1 a_3 a_3$	$a_0 a_3 a_3$						
$1 \times$	a ₃			a2			a_1			a_0
3×		$a_{3}a_{2}$	$a_{3}a_{1}$	a_3a_0	$a_{3}a_{1}$	$a_2 a_0$	a_3a_0	$a_2 a_0$	$a_1 a_0$	
3×			$a_{3}a_{2}$	$a_{3}a_{2}a_{0}$	a_2a_1	a_2a_1		$a_1 a_0$		
			$a_{3}a_{2}a_{1}$		$a_{3}a_{1}a_{0}$	$a_2 a_1 a_0$				

The unit sums the $3\times$ terms together and reduces them to a carry and sum vectors. Then it reduces those with the $1\times$ terms and a final CPA gives the result.

12/16

- For a high speed and high accuracy double precision, the required time delay is that of a lookup table, two multiplications, and one addition.
- Such a unit may be pipelined into just four cycles.
- The hardware cost of such a unit is not very large.

16/16