Computer Arithmetic:

Tables and series for many functions

Hossam A. H. Fahmy

The series expansion of a function

In general,

$$
\begin{aligned}
f\left(x_{0}+\Delta x\right)= & f\left(x_{0}\right)+\left.\Delta x \frac{d f(x)}{d x}\right|_{x_{0}}+\left.\frac{(\Delta x)^{2}}{2!} \frac{d^{2} f(x)}{d x^{2}}\right|_{x_{0}} \\
& +\left.\frac{(\Delta x)^{3}}{3!} \frac{d^{3} f(x)}{d x^{3}}\right|_{x_{0}}+\cdots
\end{aligned}
$$

For the reciprocal of b where $b=b_{h}+b_{l}$ we get:

$$
\frac{1}{b}=\frac{1}{b_{h}}-b_{l}\left(\frac{1}{b_{h}}\right)^{2}+b_{l}^{2}\left(\frac{1}{b_{h}}\right)^{3}+\cdots
$$

Three basic approaches are in use:

1. Table lookup.
2. Subtractive methods: (digit recurrence, converge linearly)
(a) Restoring
(b) Non-restoring
(c) Shift over 0's
(d) Brute force (multiple subtractors)
(e) SRT
(f) High radix
3. Multiplicative methods: (converge quadratically)
(a) Newton-Raphson
(b) Series expansion
(c) Higher order series

A simple approach first

An interpolation table contains the approximate values of $\frac{1}{b_{h}}$. The hardware uses b_{h} to read two consecutive values and calculated the reciprocal as:

$$
\frac{1}{b}=\frac{1}{b_{h}}-b_{l}\left(\frac{1}{b_{h}}-\frac{1}{b_{h}+1 u l p}\right)
$$

Hence, with just a table and an adder we get a division. This is fast

- For an n bit operand, the table has about $2^{\frac{n}{2}}$ entries depending on how many bits there is in b_{h} and b_{l}.
- While discussing multiplicative division, we found that the accuracy of the result from the table depends on how many bits are used to index it. Hence, with only $\frac{n}{2}$ input bits, we get only about $\frac{n}{2}$ accurate output bits.

This approach is useful mainly with short precisions and when the accuracy of the results is not very critical. (example: 3D graphics).

4/16

- uses two tables to get two approximations: the first term and the second terms of the reciprocal expansion $\left(\frac{1}{b} \approx \frac{1}{b_{h}}-b_{l}\left(\frac{1}{b_{h}}\right)^{2}\right)$.
- divides the operand b into three parts: \qquad
- indexes the first table with $b_{1}+b_{2}$ and the second table with $b_{1}+b_{3}$. (b_{3} defines the derivative in the region of b_{1}.)

The bipartite is more accurate than the interpolation but with more hardware.

5/16

High radix division

In SRT, we produce 2 or 3 bits in each iteration. The high radix algorithms (Wong 1992) are able to produce about 14 bits per iteration.

The first algorithm uses the m most significant bits of b to get $\frac{1}{b_{h}}$ from a table then:

$$
\begin{aligned}
a^{\prime} & =a-a_{h} \frac{1}{b_{h}} b \\
q^{\prime} & =q+\frac{a_{h}}{b_{h} \times 2^{j-k}}
\end{aligned}
$$

(b_{h} here is slighlty different from the earlier definition and $j-k$ is a shift amount to correctly align the quotient bits.)

- With an m bit lookup, we get $m-2$ bits per iteration.
- We can use a redundant format to keep the dividend and quotient.

The third algorithm combines the first two terms of the expansion together and requires one table.

$$
\begin{aligned}
\frac{a}{b} & =\frac{a}{b_{h}+b_{l}} \\
& =\frac{a}{b_{h}}\left(1-\left(\frac{b_{l}}{b_{h}}\right)+\left(\frac{b_{l}}{b_{h}}\right)^{2}-\left(\frac{b_{l}}{b_{h}}\right)^{3}+\cdots\right) \\
& \approx \frac{a\left(b_{h}-b_{l}\right)}{b_{h}^{2}}
\end{aligned}
$$

- While looking up the table to find out $\frac{1}{b_{h}^{2}}$, multiply $a\left(b_{h}-b_{l}\right)$. With one more multiplication, the result is ready.
- With an m bit lookup, we get $\approx 2 m$ bits per iteration.

A look at the expansions

With $d=1-b x_{0}$ and $x_{0} \approx \frac{1}{b}, y_{0} \approx \frac{1}{\sqrt{b}}$, and $z_{0} \approx \sqrt{b}$ then:

Reciprocal : $\frac{1}{b}=x_{0}\left(1+d+d^{2}+d^{3}+\cdots\right)$

Square root $: \sqrt{b}=y_{0}\left(1-\frac{1}{2} d-\frac{1}{8} d^{2}-\frac{1}{16} d^{3}-\frac{15}{128} d^{4}-\cdots\right)$

Reciprocal square root : $\frac{1}{\sqrt{b}}=z_{0}\left(1+\frac{1}{2} d+\frac{3}{8} d^{2}+\frac{5}{16} d^{3}+\frac{35}{128} d^{4}+\cdots\right)$
A

位

Reciprocal $: \frac{1}{b}=x_{0}\left(1+d+d^{2}+d^{3}+\cdots\right)$

So far, we only considered the Newton-Raphson iteration of the first order with a quadratic convergence:

$$
0 \approx f\left(x_{i}\right)+\left(x_{i+1}-x_{i}\right) f^{\prime}\left(x_{i}\right)
$$

Higher order series yield faster convergence but require the parallel calculation of the square, cube, and higher powers of the operand.

A general purpose unit

The unit calculates the powers of $\left(1-b x_{0}\right)$ in parallel.

$$
\begin{aligned}
e^{x} & =1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\cdots \\
\ln (1+x) & =x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+\cdots \\
\cos (x) & =1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\cdots \\
\sin (x) & =x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\cdots
\end{aligned}
$$

With parallel powering units, it is possible to build a fast and accurate general unit.

12/16

With bit manipulations, we reach a unit much smaller than a direct multiplier.

In the series, each higher order power is multiplied by a smaller constant.

- Only the most significant part of the square, cube, or higher power is needed.
- For a single precision, the needed part of the cube PPA is 8 bits wide and 12 bits high. This is less than 10% of a direct multiply!
- The squaring unit can be truncated too.
- A detailed analysis tells you how much to truncate from each power term to keep the total error term within the accepted bounds.

Conclusions about division and elementary functions

- For a high speed and high accuracy double precision, the required time delay is that of a lookup table, two multiplications, and one addition.
- Such a unit may be pipelined into just four cycles.
- The hardware cost of such a unit is not very large.

