
Cairo University

Electronics and Communications Department

Computer Arithmetic:

Tables and series for many functions

Hossam A. H. Fahmy

c© Hossam A. H. Fahmy

How do we divide?

Three basic approaches are in use:

1. Table lookup.

2. Subtractive methods: (digit recurrence, converge linearly)

(a) Restoring
(b) Non-restoring
(c) Shift over 0’s
(d) Brute force (multiple subtractors)
(e) SRT
(f) High radix

3. Multiplicative methods: (converge quadratically)

(a) Newton-Raphson
(b) Series expansion
(c) Higher order series

1/16

The series expansion of a function

In general,

f(x0 + ∆x) = f(x0) + ∆x
df(x)

dx

∣∣∣∣∣
x0

+
(∆x)2

2!

d2f(x)

dx2

∣∣∣∣∣
x0

+
(∆x)3

3!

d3f(x)

dx3

∣∣∣∣∣
x0

+ · · · .

For the reciprocal of b where b = bh + bl we get:

1

b
=

1

bh
− bl

(
1

bh

)2

+ b2
l

(
1

bh

)3

+ · · · .

2/16

A simple approach first

An interpolation table contains the approximate values of 1
bh

. The

hardware uses bh to read two consecutive values and calculated the

reciprocal as:

1

b
=

1

bh
− bl

(
1

bh
− 1

bh + 1ulp

)

Hence, with just a table and an adder we get a division. This is

fast!

3/16

How good is interpolation

• For an n bit operand, the table has about 2
n
2 entries depending

on how many bits there is in bh and bl.

• While discussing multiplicative division, we found that the ac-

curacy of the result from the table depends on how many bits

are used to index it. Hence, with only n
2 input bits, we get only

about n
2 accurate output bits.

This approach is useful mainly with short precisions and when the

accuracy of the results is not very critical. (example: 3D graphics).

4/16

Bipartite tables

• uses two tables to get two approximations: the first term and

the second terms of the reciprocal expansion (1
b ≈

1
bh
− bl

(
1
bh

)2
).

• divides the operand b into three parts: b1 b2 b3 .

• indexes the first table with b1 + b2 and the second table with

b1 + b3. (b3 defines the derivative in the region of b1.)

The bipartite is more accurate than the interpolation but with more

hardware.

5/16

High radix division

In SRT, we produce 2 or 3 bits in each iteration. The high radix
algorithms (Wong 1992) are able to produce about 14 bits per
iteration.

The first algorithm uses the m most significant bits of b to get 1
bh

from a table then:

a′ = a− ah
1

bh
b

q′ = q +
ah

bh × 2j−k

(bh here is slighlty different from the earlier definition and j − k is
a shift amount to correctly align the quotient bits.)

• With an m bit lookup, we get m− 2 bits per iteration.

• We can use a redundant format to keep the dividend and quo-
tient.

6/16

Second high radix algorithm

The second algorithm uses the m most significant bits of b to index

several tables and get, simultaneously, 1
bh

, 1
b2
h

, 1
b3
h

, . . . then calculate

B =
1

bh
−∆b

b2
h

+
(∆b)2

b3
h

− (∆b)3

b4
h

+ · · ·

The new dividend and quotient are calculated as:

a′ = a− ahBb

q′ = q + ahB
1

2j−k

With an m bit lookup and t terms in the expansion, we get (mt −
t− 1) bits per iteration.

7/16

Reduce the number of tables

The third algorithm combines the first two terms of the expansion

together and requires one table.

a

b
=

a

bh + bl

=
a

bh

1−

(
bl
bh

)
+

(
bl
bh

)2

−
(
bl
bh

)3

+ · · ·

≈ a(bh − bl)

b2
h

• While looking up the table to find out 1
b2
h

, multiply a(bh − bl).

With one more multiplication, the result is ready.

• With an m bit lookup, we get ≈ 2m bits per iteration.

8/16

Higher order series

So far, we only considered the Newton-Raphson iteration of the first

order with a quadratic convergence:

0 ≈ f(xi) + (xi+1 − xi)f
′(xi)

Higher order series yield faster convergence but require the parallel

calculation of the square, cube, and higher powers of the operand.

9/16

A look at the expansions

With d = 1− bx0 and x0 ≈ 1
b , y0 ≈ 1√

b
, and z0 ≈

√
b then:

Reciprocal :1
b = x0(1 + d + d2 + d3 + · · ·)

Square root :
√
b = y0(1− 1

2d−
1
8d

2 − 1
16d

3 − 15
128d

4 − · · ·)

Reciprocal square root : 1√
b

= z0(1+ 1
2d+ 3

8d
2 + 5

16d
3 + 35

128d
4 + · · ·)

10/16

A general purpose unit

coeficients
and inverts for negative
Mux selects weighting

(1−bX)
2 3

(1−bX)
4

mux

mux

mux

(1−bX)

mux

*

*

b
n

n

~n/(k+1)

1−bX

LUT (X = 1/b)
n/(k+1) x n/(k+1)~2

~2 ~2n/(k+1) n/(k+1)

n n

1/sqrt(b) sqrt(b)
LUTLUT

n

a/b
sqrt(b)
1 / sqrt(b)

q =

1 + sum

mux

n
a

The unit calculates the powers of (1− bx0) in parallel.

11/16

Elementary functions expansions

ex = 1 + x +
1

2
x2 +

1

6
x3 + · · ·

ln(1 + x) = x− 1

2
x2 +

1

3
x3 − 1

4
x4 + · · ·

cos(x) = 1− 1

2
x2 +

1

24
x4 − · · ·

sin(x) = x− 1

6
x3 +

1

120
x5 − · · ·

With parallel powering units, it is possible to build a fast and accu-

rate general unit.

12/16

A parallel squaring unit

a5 a4 a3 a2 a1 a0

× a5 a4 a3 a2 a1 a0

a5a0 a4a0 a3a0 a2a0 a1a0 a0

a5a1 a4a1 a3a1 a2a1 a1 a0a1

a5a2 a4a2 a3a2 a2 a1a2 a0a2

a5a3 a4a3 a3 a2a3 a1a3 a0a3

a5a4 a4 a3a4 a2a4 a1a4 a0a4

a5 a4a5 a3a5 a2a5 a1a5 a0a5

a5a4 a5a3 a5a2 a5a1 a5a0 a4a0 a3a0 a2a0 a1a0 a0

a5 a4a3 a4a2 a4a1 a3a1 a2a1 a1

a4 a3a2 a2

a3

With bit manipulations, we reach a unit much smaller than a direct

multiplier.

13/16

A parallel cubing unit

a3 a2 a1 a0
× a3 a2 a1 a0
× a3 a2 a1 a0

a3a0a0 a2a0a0 a1a0a0 a0a0a0
a3a0a1 a2a0a1 a1a0a1 a0a0a1
a3a1a0 a2a1a0 a1a1a0 a0a1a0

a3a2a0 a2a2a0 a1a2a0 a0a2a0
a3a1a1 a2a1a1 a1a1a1 a0a1a1
a3a0a2 a2a0a2 a1a0a2 a0a0a2

a3a3a0 a2a3a0 a1a3a0 a0a3a0
a3a2a1 a2a2a1 a1a2a1 a0a2a1
a3a1a2 a2a1a2 a1a1a2 a0a1a2
a3a0a3 a2a0a3 a1a0a3 a0a0a3

a3a3a1 a2a3a1 a1a3a1 a0a3a1
a3a2a2 a2a2a2 a1a2a2 a0a2a2
a3a1a3 a2a1a3 a1a1a3 a0a1a3

a3a3a2 a2a3a2 a1a3a2 a0a3a2
a3a2a3 a2a2a3 a1a2a3 a0a2a3

a3a3a3 a2a3a3 a1a3a3 a0a3a3
1× a3 a2 a1 a0
3× a3a2 a3a1 a3a0 a3a1 a2a0 a3a0 a2a0 a1a0

a3a2 a3a2a0 a2a1 a2a1 a1a0
3× a3a2a1 a3a1a0 a2a1a0

The unit sums the 3× terms together and reduces them to a carry
and sum vectors. Then it reduces those with the 1× terms and a

final CPA gives the result.

14/16

Truncation

In the series, each higher order power is multiplied by a smaller
constant.

• Only the most significant part of the square, cube, or higher
power is needed.

• For a single precision, the needed part of the cube PPA is 8 bits
wide and 12 bits high. This is less than 10% of a direct multiply!

• The squaring unit can be truncated too.

• A detailed analysis tells you how much to truncate from each
power term to keep the total error term within the accepted
bounds.

15/16

Conclusions about division and elementary functions

• For a high speed and high accuracy double precision, the required

time delay is that of a lookup table, two multiplications, and one

addition.

• Such a unit may be pipelined into just four cycles.

• The hardware cost of such a unit is not very large.

16/16

