Computer Arithmetic:

Time bounds

Hossam A. H. Fahmy

1. Modeling at the logic level. Useful for rough comparisons.

- 2. Transistor level simulation (sizes of transistors and buffers for the loaded gates). Does not include the long wire delays.
- 3. Extracted layout simulation (with wire details). Accurate area and power consumption estimation are also possible at this level.
- 4. Fabrication and measurement. The ultimate test for a design with a specific technology process and fabrication facilities.
- 5. To really show the merit of a proposed idea, simulate it over a variety of scalable physical design rule sets and fabricate one or more chips then test them.

1/19

#### Limitations of this first model

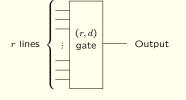
- Winograd's (r, d) model of a logic gate is idealized in many ways:
- 1. There is zero propagation (wire) delay between logic blocks.
- 2. The output of any logic block may go to any number of other logic blocks without affecting the delay (fan-out independent).
- 3. Any logical decision takes a unit delay.
- 4. It neglects any other mechanical or electrical considerations.

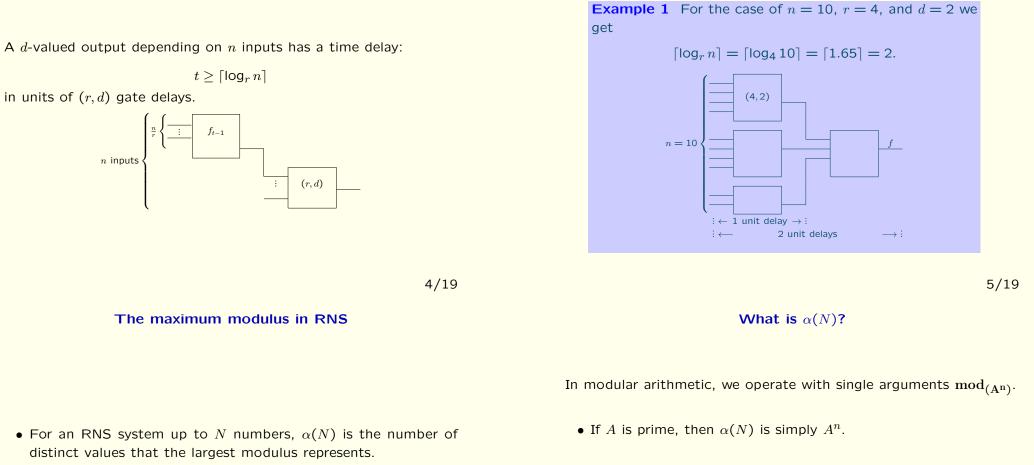
© Hossam A. H. Fahmy

The (r, d) Circuit Model

Winograd presents a model based on:

- 1. the number of digits (n) in each operand,
- 2. the maximum fan-in in the circuit (r), and
- 3. the number of truth values in the logic system (d).
- The (r, d) gate evaluates any *r*-argument *d*-valued logic function in unit time.





- $\log_d \alpha(N)$  is the number of *d*-valued lines required to represent a number for this modulus.
- An addition circuit for this modulus has  $2\lceil \log_d \alpha(N)\rceil$  input lines and it needs

$$t \ge \left\lceil \log_r \left( 2 \left\lceil \log_d \alpha(N) \right\rceil \right) \right\rceil,$$

• If A is composite then  $A = A_1 A_2 \cdots A_m$  and  $\alpha(N)$  is  $A_i^n$ , where  $A_i$  is the largest element composing A.

For example,

$$\alpha(10^n) = 5^n;$$

for a RNS using the set 
$$\{2^5, 2^5 - 1, 2^4 - 1, 2^3 - 1\}$$
,  
 $\alpha(>2^{16}) = 2^5$ .

**Example 2** Suppose we wish to design a residue system that has  $M \ge 2^{47}$ .

• If we select the product of the primes, we get:

 $2\times3\times5\times7\times11\times13\times17\times19\times23\times29\times31\times37\times41>2^{47}$ 

- The  $\alpha(>2^{47})$  for this selection is 41.
- We can improve the  $\alpha$  function by using powers of the lower order primes.

 $2^5 \times 3^3 \times 5^2 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 > 2^{47}$ 

Here,  $\alpha(>2^{47})$  is  $2^5 = 32$ .

Spira's bound is applicable. Let us change the representation to minimize the number of inputs needed.

- Represent the numbers as products of prime factors or powers of prime factors.
- Add the corresponding prime factor exponents in the two numbers you want to multiply. (Subtract to divide!)
- The Logarithmic Number System does just that, if  $a \times b = c$ , then  $\log a + \log b = \log c$ .

9/19

# Winograd and multiplication

For multiplication, we define  $\beta(N)$  (akin to the  $\alpha(N)$  of addition) and get:

 $t \ge \lceil \log_r \left( 2 \lceil \log_d \beta(N) \rceil \right) \rceil$ 

Three cases are recognized:

- 1. Binary radix:  $N = 2^n$  with  $n \ge 3 \Rightarrow \beta(2^n) = 2^{n-2}$ ,  $\beta(4) = 2$ , and  $\beta(2) = 1$ .
- 2. Prime radix:  $N = p^n \Rightarrow \beta(p^n) = \max\left(p^{n-1}, \alpha(p-1)\right)$
- 3. Composite powers of primes  $\beta(N) = \max\left(\beta(p_i^{n_i})\right)$ .

We find  $\beta(N) < \alpha(N) \Rightarrow$  the multiplication is faster than addition! 11/19

10/19

8/19

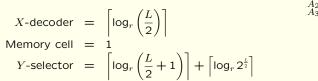
The LNS

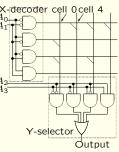
• A number X is represented by a sign bit  $(S_X)$  and  $L_X = \log X$ .

- For X < 1, add a bias to  $\log X$ .
- Now,  $L_{XY} = L_X + L_Y$  and  $L_{X/Y} = L_X L_Y$ .
- Addition and subtraction are harder, X + Y = X(1 + Y/X).
- It is interesting only in special applications.

- By optimizing the representation for fast addition or multiplication, a variety of other operations become much slower.
- The binary system is "complete" and comes very close to those theoretical bounds.
- Even with partial use of redundant representations, the binary system is very fast. Example: parallel multipliers use carry-save representations for multi-operand addition.

The size of the table grows exponentially fast with the operand size. Hence, the table look-up is only feasible for small operands and has the following delays:





13/19



• With an overlap between the X and Y sections, the time delay is:

We can do better

ROM delay = 2 + 
$$\left[\log_r \frac{L}{2}\right] + \left[\log_r 2^{\frac{L}{2}}\right]$$
.

• When the ROM is used as a binary operator on  $n\mbox{-bit}$  numbers, then  $L=2\times n$  and

ROM delay = 
$$2 + \lceil \log_r n \rceil + \lceil \log_r 2^n \rceil$$
.

The current modeling ignores the regularity of the memory and its limited fan-out requirements. Those features are important and favor the use of memories in some VLSI implementations.

- Except for small operand sizes, a special logic circuit is better than a table.
- Starting tables are used in division, square root, and other functions.
- More sophisticated table designs (with more than two "dimensions") yield lower time delays but they become complicated.

12/19

## Multiplexers

- A single *m*-to-1 multiplexer is considered to take only one *FO4* delay from its inputs to the output assuming it is realized using CMOS pass gates. This assumption for the multiplexer is valid up to a loading limit.
- Small *m* is the usual case in VLSI design since multiplexers rarely exceed say a 5-to-1 multiplexer.
- For a single multiplexer the delay from the select lines to the output is bounded by 2 *FO4* delays.

Shifters

- A series of *m* to 1 multiplexers connected to form a larger *n*-bit multiplexer heavily loads its select lines.
- About each four multiplexers should have a buffer and form a group together.
- Four such groups need yet another buffer and form a super group and so on.

The delay of the selection is then  $\lceil \log_4(n) \rceil + 1$ .

17/19

### Modeling summary

- Combinational shifters are either done by a successive use of multiplexers or as a barrel shifter realized in CMOS pass transistors.
- The delay of an *n*-way shifter from its inputs to its outputs is  $\lceil \log_2(n) \rceil$  FO4 delays.
- The select lines are heavily loaded as in the case of multiplexers but their delay is smaller than the delay from the inputs to the outputs in the shifter.

| Part                              | Delay                                                                                               |
|-----------------------------------|-----------------------------------------------------------------------------------------------------|
| Multiplexer, input to output      | 1                                                                                                   |
| Multiplexer, select to output     | $\left\lceil \log_4(n) \right\rceil + 1$                                                            |
| Shifter                           | $\lceil \log_2(n) \rceil$                                                                           |
| Memory                            | $2 + \left\lceil \log_r \frac{n}{2} \right\rceil + \left\lceil \log_r 2^{\frac{n}{2}} \right\rceil$ |
| Spira's bound (no design details) | $\lceil \log_r(n) \rceil$                                                                           |

16/19