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Evaluating the time delay of a design

1. Modeling at the logic level. Useful for rough comparisons.

2. Transistor level simulation (sizes of transistors and buffers for
the loaded gates). Does not include the long wire delays.

3. Extracted layout simulation (with wire details). Accurate area
and power consumption estimation are also possible at this level.

4. Fabrication and measurement. The ultimate test for a design
with a specific technology process and fabrication facilities.

5. To really show the merit of a proposed idea, simulate it over a
variety of scalable physical design rule sets and fabricate one or
more chips then test them.
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The (r, d) Circuit Model

Winograd presents a model based on:

1. the number of digits (n) in each operand,

2. the maximum fan-in in the circuit (r), and

3. the number of truth values in the logic system (d).

The (r, d) gate evaluates any r-argument d-valued logic function in
unit time.

r lines





(r, d)
... gate Output
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Limitations of this first model

Winograd’s (r, d) model of a logic gate is idealized in many ways:

1. There is zero propagation (wire) delay between logic blocks.

2. The output of any logic block may go to any number of other

logic blocks without affecting the delay (fan-out independent).

3. Any logical decision takes a unit delay.

4. It neglects any other mechanical or electrical considerations.
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Spira’s lemma

A d-valued output depending on n inputs has a time delay:

t ≥ dlogr ne
in units of (r, d) gate delays.

n inputs





n
r

{
... ft−1

... (r, d)
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A simple example

Example 1 For the case of n = 10, r = 4, and d = 2 we

get

dlogr ne = dlog4 10e = d1.65e = 2.

n = 10





(4,2)

f

...← 1 unit delay → ...

...←− 2 unit delays −→ ...
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The maximum modulus in RNS

• For an RNS system up to N numbers, α(N) is the number of

distinct values that the largest modulus represents.

• logdα(N) is the number of d-valued lines required to represent

a number for this modulus.

• An addition circuit for this modulus has 2dlogdα(N)e input lines

and it needs

t ≥ dlogr (2dlogdα(N)e)e ,
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What is α(N)?

In modular arithmetic, we operate with single arguments mod(An).

• If A is prime, then α(N) is simply An.

• If A is composite then A = A1A2 · · ·Am and α(N) is Ani , where
Ai is the largest element composing A.

For example,

α(10n) = 5n;

for a RNS using the set {25,25 − 1,24 − 1,23 − 1},

α(> 216) = 25.
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Optimal moduli selection

Example 2 Suppose we wish to design a residue system

that has M ≥ 247.

• If we select the product of the primes, we get:

2×3×5×7×11×13×17×19×23×29×31×37×41 > 247

The α(> 247) for this selection is 41.

• We can improve the α function by using powers of the

lower order primes.

25×33×52×7×11×13×17×19×23×29×31 > 247

Here, α(> 247) is 25 = 32.
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What about multiplication?

Spira’s bound is applicable. Let us change the representation to

minimize the number of inputs needed.

• Represent the numbers as products of prime factors or powers

of prime factors.

• Add the corresponding prime factor exponents in the two num-

bers you want to multiply. (Subtract to divide!)

• The Logarithmic Number System does just that, if a × b = c,

then log a+ log b = log c.
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The LNS

• A number X is represented by a sign bit (SX) and LX = logX.

• For X < 1, add a bias to logX.

• Now, LXY = LX + LY and LX/Y = LX − LY .

• Addition and subtraction are harder, X + Y = X(1 + Y/X).

It is interesting only in special applications.

10/19

Winograd and multiplication

For multiplication, we define β(N) (akin to the α(N) of addition)

and get:

t ≥ dlogr (2dlogd β(N)e)e
Three cases are recognized:

1. Binary radix: N = 2n with n ≥ 3 ⇒ β(2n) = 2n−2, β(4) = 2,

and β(2) = 1.

2. Prime radix: N = pn ⇒ β(pn) = max
(
pn−1, α(p− 1)

)

3. Composite powers of primes β(N) = max
(
β(pnii )

)
.

We find β(N) < α(N) ⇒ the multiplication is faster than addition!
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Back to reality

• By optimizing the representation for fast addition or multiplica-

tion, a variety of other operations become much slower.

• The binary system is “complete” and comes very close to those

theoretical bounds.

• Even with partial use of redundant representations, the binary

system is very fast. Example: parallel multipliers use carry-save

representations for multi-operand addition.
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Can we just memorize the results?

The size of the table grows exponentially fast with the operand size.

Hence, the table look-up is only feasible for small operands and has

the following delays:
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logr
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We can do better

• With an overlap between the X and Y sections, the time delay

is:

ROM delay = 2 +
⌈
logr

L

2

⌉
+
⌈
logr 2

L
2

⌉
.

• When the ROM is used as a binary operator on n-bit numbers,

then L = 2× n and

ROM delay = 2 + dlogr ne+ dlogr 2ne .

The current modeling ignores the regularity of the memory and its

limited fan-out requirements. Those features are important and

favor the use of memories in some VLSI implementations.
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So, which one to use?

• Except for small operand sizes, a special logic circuit is better

than a table.

• Starting tables are used in division, square root, and other func-

tions.

• More sophisticated table designs (with more than two “dimen-

sions”) yield lower time delays but they become complicated.
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Multiplexers

• A single m-to-1 multiplexer is considered to take only one FO4

delay from its inputs to the output assuming it is realized using

CMOS pass gates. This assumption for the multiplexer is valid

up to a loading limit.

• Small m is the usual case in VLSI design since multiplexers rarely

exceed say a 5-to-1 multiplexer.

• For a single multiplexer the delay from the select lines to the

output is bounded by 2 FO4 delays.
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n-bit multiplexers

• A series of m to 1 multiplexers connected to form a larger n-bit

multiplexer heavily loads its select lines.

• About each four multiplexers should have a buffer and form a

group together.

• Four such groups need yet another buffer and form a super

group and so on.

The delay of the selection is then dlog4(n)e+ 1.
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Shifters

• Combinational shifters are either done by a successive use of

multiplexers or as a barrel shifter realized in CMOS pass tran-

sistors.

• The delay of an n-way shifter from its inputs to its outputs is

dlog2(n)e FO4 delays.

• The select lines are heavily loaded as in the case of multiplexers

but their delay is smaller than the delay from the inputs to the

outputs in the shifter.

18/19

Modeling summary

Part Delay
Multiplexer, input to output 1
Multiplexer, select to output dlog4(n)e+ 1
Shifter dlog2(n)e
Memory 2 +

⌈
logr

n
2

⌉
+
⌈
logr 2

n
2
⌉

Spira’s bound (no design details) dlogr(n)e
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