
 VERIFICATION OF DECIMAL FLOATING-POINT
OPERATIONS

by

Amr Abdel-Fatah Ramdan Sayed-Ahmed

A Thesis Submitted to the

 Faculty Of Engineering at Cairo University

in Partial Fulfillment of the

 Requirements for the Degree of

 MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS

 FACULTY OF ENGINEERING, CAIRO UNIVERSITY,

GIZA, EGYPT

 2011.

 VERIFICATION OF DECIMAL FLOATING-POINT
OPERATIONS

by

Amr Abdel-Fatah Ramdan Sayed-Ahmed

A Thesis Submitted to the

 Faculty Of Engineering at Cairo University

in Partial Fulfillment of the

 Requirements for the Degree of

 MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS

Under the Supervision of

Hossam. A. H. Fahmy

 Associate Professor

Elec. And Com. Dept.

 FACULTY OF ENGINEERING, CAIRO UNIVERSITY,

GIZA, EGYPT

 2011.

 VERIFICATION OF DECIMAL FLOATING-POINT
OPERATIONS

by

Amr Abdel-Fatah Ramdan Sayed-Ahmed

A Thesis Submitted to the

 Faculty Of Engineering at Cairo University

in Partial Fulfillment of the

 Requirements for the Degree of

 MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS

Approved by the

Examining Committee:

--

Associate. Prof. Dr: Hossam A. H. Fahmy, Thesis Main Adviser.

Prof. Dr : Ashraf M. Salem, Member.

--

Associate. Prof. Dr: Ibrahim M. Qamar, Member.

 FACULTY OF ENGINEERING, CAIRO UNIVERSITY,

GIZA, EGYPT

 2011.

Contents

List of Figures iii

List of tables iii

Acknowledgments iv

Abstract v

1 Introduction 1

 1.1 Formal Verification...2

 1.2 Simulation based Verification...3

 1.3 Our Verification Work..4

 1.4 Main Definitions...6

 1.5 Thesis Layout..7

 1.6 Publications out of This Work...8

2 Engine and Models of Decimal Addition-Subtraction Operation 9

 2.1 The Addition-Subtraction Engine...11

 2.1.1 The Addition Algorithm...12

 2.2 The Main Ideas of the Addition-Subtraction Models.....................................14

 2.3 Previous work...19

 2.4 Comparison...20

 2.5 Summary...21

3 Engine and Models of Decimal Multiplication Operation 22

 3.1 The Multiplication Engine..23

 3.1.1 The Multiplication Algorithm...24

 3.2 The Main Ideas of the Multiplication Models..29

 3.3 Previous work...33

 i

 3.4 Comparison...34

 3.5 Summary...34

4 Engine and Models of Decimal Fused-Multiply-Add Operation 36

 4.1 The FMA Engine..38

 4.2 The Main Ideas of the FMA Models..41

 4.3 Summary...52

5 Engine and Models of Decimal Square Root Operation 53

 5.1 The Square Root Engine...55

 5.1.1 The Square Root Most Digits Constraints Algorithm............................57

 5.1.2 The Square Root Least Digits Constraints Algorithm............................60

 5.2 Decimal Square Root Rounding Boundaries..64

 5.3 The Main Ideas of the Square Root Models..66

 5.4 Summary...70

6 Engine and Models of Decimal Division Operation 71

 6.1 The Division Engine...73

 6.1.1 The Division Most Digits Constraints Algorithm...................................76

 6.1.2 The Division Least Digits Constraints Algorithm...................................79

 6.2 Decimal Division Rounding Boundaries...83

 6.3 The Main Ideas of the Division Models..85

 6.4 Previous Work..90

 6.5 Comparison...91

 6.6 Summary..91

7 Conclusions 93

Appendix A Test Vectors Syntax 95

References 96

 ii

List of Figures

Figure 1. Our Verification Work Environment for DUT(Design Under Test)....5

Figure 2. The Addition of two Input Significands assuming Precision 8...................12

Figure 3. The Products of the Multiplication Operation assuming Precision 8.........25

Figure 4. The Squarer of the Intermediate Result assuming Precision 16.................56

Figure 5. The Squarer of the Intermediate Result with Constraint of Series

of Zeros on the Least Digits...62

Figure 6. The Squarer of the Intermediate Result with a series of zeros equals

p−1 . …..65

Figure 7. The Multiplication of the Intermediate Result with the Divisor assuming

Precision 16 ...75

Figure 8. The Multiplication of the Intermediate Result with the Divisor at

Constraints of Series of Zeros on the Least Digits..81

Figure 9. The Multiplication of the Divisor with the Intermediate result that has a

series of zeros equals p1 . …..84

List of tables

Table 1. Combinations of Inputs Types Lists..42

Table 2. The Time Performance of The Square Root Engine....................................53

Table 3. The Time Performance of The Division Engine..72

 iii

Acknowledgments

The thesis is a part from the project “Promoting Egypt as the First Decimal

Arithmetic Intellectual Property Cores Provider for Financial Applications in

the World” (grant number C2/S1/163) funded by the RDI programme through

the EU Egypt Innovation Fund (EEIF). The RDI programme is a program of

the Egyptian Ministry of Higher Education and Scientific Research funded by

the European Union.

I want to thank Dr. Hossam. A. H. Fahmy for his favors in all what I did. Many

Thanks to Dr. Mike Cowlishaw and SilMinds engineers for their cooperation

and their acceptance to publish the verification results.

 iv

Abstract

Decimal floating-point designs require a verification process to prove that the

design is in compliance with the IEEE Standard for Floating-Point Arithmetic

(IEEE Std 754-2008). Our work is a decimal floating-point verification using

simulation based verification, which a simulation method based on coverage

models to cover corner cases of a certain decimal floating-point operation.

Our work represents five engines, the first engine for the verification of

decimal addition-subtraction operation, the second for the verification of

decimal multiplication operation, the third for the verification of decimal

fused-multiply-add operation, the fourth for the verification of decimal square

root operation, and the fifth for the verification of decimal division operation.

Each engine solves constraints describing corner cases of the operation, and

generates test vectors to verify these corner cases in the tested design. We also

represent the coverage models of each operation solved by the engines. The

generated test vectors have discovered bugs in commercial hardware designs

reported and in commercial software designs reported. The verification of

decimal fused-multiply-add operation and the verification of decimal square

root operation are the first published work.

 v

Chapter 1

 Introduction

Decimal floating-point implementations perform the arithmetic operation using

the numbers in base ten. Decimal floating-point implementations as software or

hardware based designs have many advantages over binary floating-point

especially in the financial and commercial applications. Simple decimal

fractions such as 1/10 which might represent a tax amount or a sales discount

yield an infinitely recurring number if converted to a binary representation.

Hence, a binary number system with a finite number of bits cannot accurately

represent such fractions. When an approximated representation is used in a

series of computations, the final result may deviate from the correct result

expected by a human. In a large billing application such an error may be up to

$5 million per Year[7].

As decimal floating-point is newly defined in the IEEE Standard for Floating-

Point Arithmetic (IEEE Std754-2008)[21], new verification technologies are

needed to verify the compliance of the decimal floating-point designs with the

standard.

As most applications (from aircraft control systems to weather forecasting) use

floating-point approximation, and these applications are often used in

monitoring and controlling physical systems, the consequence of bugs in the

result of these applications can be catastrophic. An example is the destruction

of Ariane 5 rocket after the take off in 1996, owing to uncaught floating-point

exception. Also, the costly and embarrassing error of Intel in the floating-point

division instruction of some early Intel Pentium processors in 1994. Intel set

aside approximately $475M to cover costs arising from this issue [10].

An amount of effort has been applied on the formal verification of binary

 1

floating-point, in Intel[12], AMD[14], and IBM[17], and on the simulation

based verification of binary floating-point in IBM [2,3,9,19,20].

The verification of decimal floating-point using simulation based verification

[1,8] was recently presented but the proposed algorithms do not guarantee to

find the solution of certain cases. They cannot solve simultaneous constraints

on inputs and the intermediate result, and cannot solve constraints on an

unbounded intermediate result. Also there are no algorithms before our own

research to solve constraints of the FMA and the square root operations.

Furthermore, there is no previous work in the formal verification of decimal

floating-point.

1.1 Formal Verification

The hardware design starts with high-level specifications, formal verification

uses mathematical methods to verify that the design meets all or parts of its

specification. The main idea of formal hardware verification is to prove the

function correctness of the design which the design simulation using test

vectors cannot do.

There are two formal verification scenarios: (1) Equivalence Checking to make

sure the equivalence of two given circuit descriptions by translating both of

them to an internal format and establishing the correspondence between both of

them in a matching phase, (2) Model checking (property checking) where a

given circuit and its properties are formulated to a given verification language,

then it is proven that all properties hold under all circumstances.

Formal verification has a lot of difficulties with arithmetic circuits using

normal techniques like Binary Decision Diagram (BDD) or Boolean

Satisfiability Problem (SAT) [5]. Word-level approaches (such as Binary

Moment Diagram (BMD), Hybrid Decision Digram (HDD), etc.) have been

used, but it is often difficult to integrate in a fully arithmetic tool [5]. The

normal techniques represent the circuit in binary states which cause the state

 2

explosion problem with the arithmetic circuits while the word approaches

represent the circuit in high level states.

1.2 Simulation based Verification

Another approach to the verification is simulation based verification, which is a

simulation method based on coverage models to verify corner cases of decimal

or binary floating-point operations.

The approach represents the specifications of a certain floating-point operation

in terms of constraints on the inputs, the output, and some internal signals of

the operation. Each specification has a coverage model, the coverage model

consists of tasks, each task represents the constraints of a certain case from the

cases that test this specification. These constraints are solved by an engine that

generates a test vector to verify the case in a decimal floating-point design

using simulation. The coverage model is a set of related tasks targeting a

certain floating point area or features of the floating-point operation, and it is

defined using a Cartesian product between two lists or among more lists of

constraints while ignoring the impossible combinations.

Simulation based technique can be applied regardless of the state space size,

and can be quite effectively in discovering bugs, but it cannot prove the

absence of bugs, because it expresses the specifications in terms of some

signals of the implementation. On other hand, Formal techniques can prove the

absence of bugs in an implementation, because they prove that all the

specification properties hold under all circumstances of the implementation

states. However, they require a significant investment in the machines and

manual work time, and are limited to small defined implementation fragments.

In verification of decimal floating-point, IBM has developed its verification

tool FPgen [3] to verify the decimal FP implemented in millicode in IBM

System Z9 [6] and in the verification of decimal FP hardware in IBM power6.

It uses the simulation based verification in the verification of decimal and

 3

binary floating-point unites.

FPgen uses multiple engines in solving constraints. It has two types of engines,

(1) Analytical engines, which are based on mathematical algorithms and

guaranteed to find the solution in a reasonable amount of time. (2) Search

engines, which are based on search methods and do not guarantee to find the

solution in a reasonable amount of time. Since the search engines may not find

the solution, although one may exit. The search engines are used when the

analytical engines cannot solve the constraints and generate test vectors.

According to [1], FPgen decimal mathematical algorithms (1) may not be

suitable for some corner cases (eg. When the inputs are subnormal numbers),

(2) they cannot solve simultaneous constraints on inputs and the intermediate

result, and cannot solve constraints on the unbounded intermediate result, (3)

there are no algorithms to solve constraints of the FMA and the square root

operations. FPgen coverage models are described in [22].

1.3 Our Verification Work

Our decimal floating-point verification method is simulation based verification,

which a simulation method based on coverage models to cover all corner cases

of a certain decimal floating-point operation. The method guarantees that the

simulation covers the interesting cases of the operation. On the other hand the

random simulation does not guarantee a good coverage due to the large space

of the inputs that is equal to 10n∗p . Where  p=16∨p=34 is the maximum

number of digits in each operand for IEEE 745-2008 decimal FP formats, and

n is the number of the operation operands.

We represent the standard specifications of each operation(eg: Overflow,

Underflow, Rounding, ...) as coverage models using the models generation

block as shown in Figure 1, which is a C++ code that generates the tasks of

each model. The behavior of the models generation block of each operation is

explained in the next chapters under the title “The main ideas of the operation

 4

models”.

Figure 1. Our Verification Work Environment for DUT(Design Under Test)

The constraints of each task is solved using a software engine that takes a task

as input and generates a test vector as output. The test vector consists of value

of the input operands of the operation and the output of the operation compliant

with the standard.

The test vectors are used to verify the different implementations of the

operation using simulation. The simulation environment is determined

according to the type of the design implementation, as shown in Figure 1, it

enters the test vector inputs to the design implementation and compares the

output of the design implementation with the output of the test vector, if there is

a mismatching, it is a bug in the design implementation.

The test vectors are represented as ASCII characters, the syntax of the test

vectors is the IBM syntax which is explained in Appendix A. The simulation

tools of system on chip designs read the test vectors encoded based on DPD

(Densely Packed Decimal) decimal floating-point, or based on BID (Binary

Integer Decimal) decimal floating-point [21]. Therefore, free software tools

like the tool in [7] are needed to encode the test vectors. While, we test the

software implementation designs of the decimal floaing-point libraries, using

the generated test vectors directly, without encoding.

The Addition-Subtraction, Multiplication, Fused-Multiply-Add (FMA), Square

root, and Division engines are our software engines to solve constraints on

inputs, intermediate result, and specific features related to the operation. Each

 5

Engine DUT

Comparing

Models Generation
Specifications Models

Bugs

Design
Output

Test Vectors
Output

Test vectors
Inputs

Consist
of

Tasks, each task consists of
constraints on inputs, output, and
other internal signals.

eg: Overflow, Underflow, Rounding,...

Simulation
Environment

engine uses algorithms allowing the engines to solve all the constraints

numerically including simultaneous constraints on inputs and the intermediate

result, and constraints on the unbounded intermediate result. The engines find

the solution of most cases if the solution exits, the cases that the engines may

not solve it, will be explained in the next chapters.

The fives engines are used for the verification of SilMinds decimal floating-

point hardware implementations[7,13,15], and research decimal floating-point

designs at Cairo university[18]. The generated test vectors have proven the

efficiency of the engines in discovering bugs in the different operations. The

generated test vectors also have discovered bugs in the FMA and the square

root operations of the DecNumber library from IBM (Decimal floating-point

library used in gcc)[23].

1.4 Main Definitions

The FP standard [21] defines, the precision p as the maximum number of

digits in the significand. emax is the maximum exponent, and emin=1−emax

is the minimum exponent.

In our work, decimal floating-point numbers are represented in the

unnormalized format. A number is defined as −1 sd P−1d P−2d P−3 ...d 010q where

s is the sign, d P−1d P−2⋯d0 is the significand where di ∈{0,1,⋯, 9}, and the

exponent is bounded by qmin≤q≤qmax , where qmax=emax−p1 and

qmin=emin−p1 .

We define a “mask” for a number of digits as all the possible values that such

digits may take. For the minimum values we use the subscript N while the

maximum values have The subscript M . For example, the mask of p digits

significand d P−1d P−2⋯d0 represents the minimum and the maximum of each

digit in the significand. If 0≤di≤9 then the mask consists of two numbers,

the first number represents the minimum absolute values of each digit in the

significand d NP−1
d N P−2

⋯dN 0
=00⋯0 and the second number represents the

 6

maximum absolute values of each digit in the significand

d M P−1
d MP−2

⋯d M 0
=99⋯9 . If in another case there is a constraint on d0 to be

exactly 5 then d N0
=d M0

=5 and the remaining digits may take any values from 0

to 9, then the mask is d NP−1
⋯d N1

d N0
=0⋯05 to d M P−1

⋯d M1
d M0

=9⋯95 .

The intermediate result is the result of the operation when the precision of the

significand or the exponent is unbounded; i.e. the result before the rounding or

the normalization processes.

The Rounding mode is one from five modes defined in the standard : Round

ties to even, Round ties to away, Round toward zero, Round toward positive,

and Round toward negative. We do the rounding process to all the digits that

follow a point called fractional point, to the right of the digit d0 .

The fused-multiply-add (FMA) operation is a multiplication operation followed

by an addition-subtraction operation. The addition intermediate result is the

result of the addition-subtraction operation when the precision of the

significand or the exponent is unbounded, and the multiplication intermediate

result is the result of the multiplication operation when the precision of the

significand or the exponent is unbounded.

All input types list is a list from the standard types [21], which are Normal

numbers, Zeros, Subnormal numbers, Infinities, quiet NaN (qNaN), and

signaling NaN (sNaN).

1.5 Thesis layout

In each of the following chapters, we represent the main steps of the engine for

one operation and the coverage models that have been solved by that engine.

Chapter 2 discusses the addition-subtraction while chapter 3 explains the

multiplication. The engines and the models presented for these two operations

are compared to the previous research.

Chapter 4 presents the main steps of the FMA, and chapter 5 deals with the

 7

square root. To our knowledge this the first published work on these two

operations.

Finally, chapter 6 describes the division, and chapter 7 concludes the work.

1.6 Publications out of This Work

1. A. Sayed-Ahmed, H. A. H. Fahmy, M. Y. Hassan, “Three Engines to Solve

Verification Constraints of Decimal Floating-Point operations,” in Forty-Four

Asilomar Conference on Signals, Systems, and Computers, Nov 2010.

2. A. Sayed-Ahmed, Hossam. A. H. Fahmy, R. Samy “Verification of Decimal

Floating-Point Fused-Multiply-Add Operation,” in The ACS/IEEE

International Conference on Computer Systems and Applications (AICCSA),

Egypt, 2011.

 8

Chapter 2

Engine and Models of Decimal Addition-Subtraction

Operation

The addition-subtraction engine is a software tool, generates addition

-subtraction test vectors to cover corner cases that verify the compliance of

software or hardware implementations of the decimal floating-point addition-

subtraction operation with the IEEE standard (754-2008) for Floating Point

Arithmetic, it takes coverage models as inputs and generates test vectors as

outputs.

The addition-subtraction engine solved the coverage models one time and

generated about 136000 test vectors in Decimal64, the test vectors have proved

their efficiency by discovering bugs in Silminds design[7].

The generated test vector is a decimal vector that has five sets. The first set is

type of the operation (add or subtract), number of the precision (64 or 128), and

the rounding mode. The second set is sign, significand, and exponent of the

first input. The third set is sign, significand, and exponent of the second input.

The fourth set is sign, significand, and exponent of the output. Finally the fifth

set is one or two of three flags(invalid, inexact, and overflow). The simulation

enviroment enters the first three sets to the implementation and verifies the

implementation output against the last two sets.

The task given to the addition-subtraction engine is the set of constraints on six

elements, (1) the significand of the first input Sx that is set as the smaller

exponent input, (2) the significand of the second input Sy that is set as the

larger exponent input, (3) the significand of the intermediate result Sz , (4)

the right shift value to significand of the smaller exponent input, (5) the

intermediate result exponent at which the addition_subtraction operation

 9

occurs, and (6) the rounding mode.

The constraint on Sx is a mask starting from the minimum number Nx to

the maximum number Mx . The constraint on Sy is a mask starting from the

minimum number Ny to the maximum number My. Each number in the

previous masks has p digits. Similarly, the mask on Sz consists of two

numbers Nz and Mz , each number has 2p1 digits, p1 digits before

the fractional point and p digits after it. The addition intermediate result

exponent and the rounding direction are either given explicitly in the task or

left to the engine to choose randomly.

The ability of the engine to choose randomly within the range of the mask or to

choose the intermediate result exponent and the rounding direction empowers

the engine to generate test vectors discovering more bugs.

An example to explain the format of the decimal addition-subtraction task at

p=16 is as follows:

64+T : −1 −9999999999999999 −1000000000000000 −9999999999999999

−9999999999999999p9000000000000000 −9999999999999999p9999999999999999
R R 4

This multiplication task means that Nx=−1, Mx=−9999999999999999,

Ny=−1000000000000000, My=−9999999999999999,

Nz=−9999999999999999p9000000000000000 Mz=−9999999999999999p9999999999999999.

Also, it means that the engine chooses randomly the right shift value, and the

exponent of the intermediate result, while the rounding mode is(Round to

Negative).

One of the solutions of this task is the test vector

d64- < −2837171276486938E137 9997162828723513E140 -> −1000000000000000E141 X .

The d64 means decimal64, the - means subtraction operation, the following

< means that the rounding mode is Round to Negative, the first input is

x=−2837171276486938∗10137 , the second input is y=9997162828723513∗10140 ,

the rounded result is z=−1000000000000000∗10141 , and the following X

indicates that the inexact flag is high, because the exact result is

 10

−9999999999999999.938∗10140 . The rounding mode causes a carry in the

intermediate result and increases the exponent by one.

2.1 The Addition-Subtraction Engine

The engine determines the number of digits of the first input significand px

from the interval [no of digitsof Nx , no of digits of Mx] , and number of digits of the

second input significand p y from the interval

[no of digitsof Ny ,no of digits of My] .

The engine chooses randomly the right-shift value to the significand of the

smaller exponent input sr x either from the interval [1, p] or from the interval

[p1, qmax−qmin]. If sr x is equal zero, it will choose randomly left-shift

value to the significand of the larger exponent input sl y from the interval

[0, p−p y], otherwise if sr x is larger than zero, sl y is equal to p− py . Then,

it shifts to left both Ny and My , with the value of sl y , and shifts to right

both Nx and Mx , with the value of sr x .

After the shifting process, the engine uses the Addition Algorithm to get the

first input significand Sx , the second input significand Sy , and the

intermediate result significand Sz. After getting the signifigands, the engine

shifts Sx to the left with value of sr x , and shifts to right Sy with a value of

sl y .

The engine gets the input exponents and the result exponent that achieve the

right shift sr x and the left shift sl y . The intermediate result exponent Ez

either has explicit value or is chosen using qminsr x≤Ez≤qmax−sl y . The first

input exponent is calculated using Ex=Ez−sr x , and the second input

exponent is calculated using Ey=Ezsl y .

In the case that, the intermediate result significand has cancellation digits and

sr x is larger than zero, the engine shifts Sz to left and decreases Ez with

the value scn=min srx , p−noof digits before point  .

In the case that, the intermediate result significand has a carry digit, the engine

 11

shifts Sz one digit to the right and increases Ez by one.

The engine rounds the intermediate result according to the standard. The

rounding process may generate a carry, which forces the engine to shift Sz

one digit to the right and increase Ez by one.

In the case that, Ez is larger than qmax , it is an overflow case, its result is

according to the rounding mode.

2.1.1 The Addition Algorithm

The algorithm is based on solving the linear equations that can be estimated

from Figure 2, where each column represents one linear equation. The figure

shows the addition of the two input significands at p=8 , where Sx i denotes

the first input significand digit of weight 10i , Sy i denotes the second input

significand digit of weight 10i , and Sz i denotes the intermediate result

significand digit of weight 10i .

+
Sx 7

Sy 7

Sx6

Sy6

Sx5

Sy5

Sx 4

Sy 4

Sx 3

Sy 3

Sx2

Sy2

Sx1

Sy1

Sx0

Sy0

Sx−1

Sy−1

Sx−2

Sy−2

Sx−3

Sy−3

Sx−4

Sy−4

Sx−5

Sy−5

Sx−6⋯

Sy−6⋯

Sz8 Sz7 Sz6 Sz5 Sz4 Sz3 Sz2 Sz1 Sz0 Sz−1 Sz−2 Sz−3 Sz−4 Sz−5 Sz−6⋯

Figure 2. The Addition of two Input Significands assuming Precision 8

The algorithm iterates to solve the linear equations from left to right. As shown

in Figure 2, the first linear equation from left is Sz 7−Sx 7−Sy 7=br7 where br7 is

the value of carries that transfer from the previous weights to the weight of

107 , or the borrow generated from this weight to lower weights. The second

and the third linear equations are Sz 610∗br 7−Sx6−Sy 6=br 6 and

Sz 510∗br 6−Sx 5−Sy5=br5 . In general the linear equation for the column of index

n is:

 br n=Sz n10∗br n1−Sxn−Syn . (2.1)

To start the solution, the algorithm attempts to solve the first three linear

equations (representing columns 7 to 5) together based on the range of carries

that may transfer from the next lower significant column. The algorithm

chooses the digits Sz8 , Sz7 , and Sz6 randomly from their intervals, and

 12

replaces Sz7 with Sz 710∗Sz8 . Then since the ranges of borrow digit br5 ,

the digit Sx5 , and the digit Sy 5 are known as

Nx4Ny 4−Mz4/10≤br5≤Mx4My4−Nz4/10 , Nx5≤Sx5≤Mx5 , and

Ny5≤Sy5≤My5. The algorithm transforms the third linear equation to the

inequality condition:

Nx4Ny 4−Mz4

10
Nx5Ny 5≤Sz 510∗br 6≤Mx5My5

Mx4My4−Nz4

10
. (2.2)

 Finally, it searches randomly on the combination values of

Sx 7 , Sx6 , Sy7 , Sy 6 , Sz 5 that satisfy the first linear equation, the second linear

equation and the Inequality 2.2 . The steps taken so far constitute the first outer

iteration that gets the final values of Sx 7 , Sy7 , Sz8 , Sz7 , Sz 6 , Sz 5 and estimates

the values of Sx 6, Sy6 that may be refined in the following iteration. In the

second iteration, the algorithm transforms the fourth linear equation

Sz 410∗br5−Sx4−Sy4=br 4 to the inequality:

Nx3Ny3−Mz3

10
Nx4Ny4≤Sz410∗br 5≤Mx4My4

Mx3My3−Nz3

10
,

and searches randomly on the values of Sx 6 , Sx5 , Sy6 , Sy 5 , Sz 4 that achieve the

second linear equation, the third linear equation and the inequality condition,

where the digits Sx 7 , Sy7 , br 6 , Sz 7, Sz 6 , Sz5 are known from the previous

iteration. The algorithm does this procedure in all the iterations and gets all

digits of Sx , Sy , and Sz.

In general, the algorithm gets randomly the digits Sz p , Szp−1 , and Sz p−2 ,

from their intervals, and replaces Sz p−1 with Sz p−110∗Sz p . It does several

iterations of index i , from i=p−1 to i=−p , to get in each iteration the

digits Sx i, Syi , Sz i−2 , and estimates the digits Sx i−1 , Syi−1 , such that the

combination values of these digits achieves the general two linear equations

and the inequality condition. The general form of the two linear equations and

the inequality condition are:

 br i=Szi−Sxi−Syi (2.3)

 br i−1=Szi−110∗bri−Sxi−1−Syi−1 (2.4)

 13

Nx i−3Ny i−3−Mzi−3

10
Nx i−2Ny i−2≤Szi−210∗br i−1≤Mx i−2Myi−2

Mx i−3My i−3−Nzi−3

10
. (2.5)

2.2 The Main Ideas of the Addition-Subtraction Models

The models are defined using a Cartesian product between two or more lists of

constraints with ignoring the impossible combinations, and allowing the other

constraints to be chosen randomly.

 All the model proposal ideas are in [22], except the ideas of the carry and

borrow model. However we describe all the ideas in the form of our engine

constraints.

A) Inputs Types Model
The model aims to verify all possible combinations of the input types. The

proposal ideas of the model are in [22]. We separate the model into three sub-

models as follows:

1. It verifies the design when one of the inputs is Zero using, (1) a list of the

first input significand is equal to zero, (2) a list of the first input exponent from

the interval [qmin ,qmax], (2) all input types list of the second input.

2. It verifies the design when one of the inputs is Infinity, sNaN, or qNaN

using, (1) a list of the first or the second input from the Infinities, sNaN, and

qNaN, (2) all input types list of the other input.

3. It verifies the design in solving the other input types using, (1) a list of the

first or the second input from the minimum Subnormal, the maximum

Subnormal, the minimum Normal, and the maximum Normal, (2) a list of the

other input exponent from the interval [qmin, qmax].

B) Result Types Model

The model aims to verify the ability of the design to generate different types of

the final result. The proposal ideas of the model are in [22]. We separate the

model into five sub-models as follows:

1.It verifies all the result exponents using, (1) a list of the intermediate result

 14

exponent from the interval [qmin ,qmax], (2) a list of right shift from the

intervals {0,[1, p], [p1,qmax−qmin]}.

2.It verifies the generation of the first hundred Subnormal numbers, the last

hundred Subnormal numbers, and the first hundred Normal numbers using, (1)

the intermediate result exponent is equal to qmin , (2) a list of the intermediate

result significands from the intervals {[2,100], [10 p−1−100,10 p−1100]}.

3.It verifies the generation of numbers from One to 100 using, (1) the

intermediate result exponent is equal to zero, (2) a list of the intermediate result

significands from the interval [1,100].

4. It verifies the last hundred Normal numbers using, (1) the intermediate result

exponent is equal to qmax , (2) a list of the intermediate result significand

from the interval [10p−100,10 p−1].

5. It verifies the generation of Zero result due to cancellation at the effective

subtraction operation using, (1) the intermediate result significand is equal to

zero due to cancellation, (2) a list of the intermediate result exponent from the

interval [qmin , qmax].

C) Rounding Model
The model aims to verify the rounding process. The proposal ideas of the

model are in [22]. We separate the model into three sub-models as follows:

1. It verifies the rounding process using, (1) a list from the five rounding

modes, (2) a list of intermediate result significand that consists of the cross

product of the guard digit interval [0,9] , the least significand digit interval

[0,9] , the sticky bit interval [0,1] .

2.It verifies the possible carry propagation due to rounding process using, (1) a

list from the five rounding modes, (2) a list of intermediate result significand

from the cross product of the guard digit interval [0,9] , the sticky bit interval

[0,1] , and the patterns {99⋯9
p

, {0−8}9⋯9
p

, X {0−8}9⋯9
p

,⋯, XX⋯X {0−8}
p

}. (3) a

list of the intermediate result exponent that consists of

{qmax ,emin , random number }.

 15

3. It verifies the sticky bit calculations using, (1) a list of right shift from the

interval [1,qmax−qmin] , (2) number of digits list of the smallest exponent

input significand that consists of {1, randomnumber}.

D)Shift Model
 The model aims to verify all the possible shifting of the input significands.

The proposal ideas of the model are also in [22].

1. It verifies the possible shifting to the input significands using, (1) a list of left

shift values of the largest exponent input from the interval [0, p−1] , (2) a list

of right shift values to the smallest exponent input from the interval

[0, qmax−qmin].

E) Trailing and Leading Zeros Model

The model verifies all the possible trailing and leading zeros in the input

siginficands and the intermediate result significand. The proposal ideas of the

model are also in [22]. We separate the model into three sub-models as follows:

1.It verifies all possible trailing and leading zeros in the input significands

using, (1) a list of the first input significand, (2) a list of the second input

significand same like previous list, that consists of the patterns

{1−9}00⋯00
P

, 0{1−9}00⋯00
P

,⋯, 00⋯0 {1−9}
P

{1−9}{1−9}0⋯00
P

,0 {1−9}{1−9}0⋯00
P

,⋯, 00⋯0{1−9}{1−9}
P

{1−9}X {1−9}0⋯00
P

, 0{1−9}X {1−9}0⋯00
P

,⋯,00⋯0{1−9}X {1−9}
P

⋮

{1−9}XX⋯X {1−9 }
P

2.It verifies all possible trailing and leading zeros in the intermediate result

significand using, (1) a list of the intermediate result sigificand similar to the

previous list, (2) right shift value is equal to zero.

3.It verifies the last carry in the intermediate result significand using, (1) the

right shift from the interval [0, p−1] , (2) a list of the intermediate result

sigificand from the patterns

 16

1{1−9}00⋯00
p1

,10 {1−9}00⋯00
p1

,⋯,100⋯0{1−9}
p1

,100⋯00
p1

1{1−9}{1−9}0⋯00
p1

,10 {1−9}{1−9}0⋯00
p1

,⋯, 100⋯0 {1−9}{1−9}
p1

1{1−9}X {1−9}0⋯00
p1

, 10{1−9}X {1−9}0⋯00
p1

,⋯,100⋯0 {1−9}X {1−9}
p1

⋮

1 XX⋯X {1−9}
p1

F) Cancellation Model

The model verifies the cancellation digits in the intermediate result significand

when the operation is effective subtraction. The proposal ideas of the model are

also in [22]. We separate the model into three sub-models as followss:

1. It verifies all possible number of the cancellation digits using, (1) a list of

number of digits of the intermediate result significand from the interval [1, p] ,

(2) a list of right shift from the interval [0,1] , (3) a list of left shift from the

interval [0, p−1].

2. It verifies the cancellation case at the other values of right shift using, (1)

One cancellation digit in the intermediate result significand, (2) a list of the

right shift from the interval [2,qmax−qmin] , (3) a list of left shift from the

interval [0, p−1].

3.It verifies the cases of Subnormal result due to cancellation using, (1) a list of

number of digits of the intermediate result significand from the interval [1, p] ,

(2) a list of right shift from interval [0,intermediate result exponent−qmin] , (3) a list

of left shift from the interval [0, p−1] , (4) a list of the intermediate result

exponent from the interval [qmin , emin].

G) Overflow Model
The model verifies the overflow cases. The proposal ideas of the model are

also in [22]. We separate the model into three sub-models as follows:

1. It verifies the overflow cases due to the final carry at the effective addition

operation using, (1) the intermediate result exponent is equal to qmax , (2)the

intermediate result significand has a carry digit that is equal to one, (3) a list of

right shift from the interval [0, p−1] , (4) a list of left shift from the interval

 17

[0, p−1].

2. It verifies the overflow cases due to the rounding process using, (1) the

intermediate result exponent is equal to qmax , (2) the right shift value is equal

to p , (3) a list of the intermediate result significand that consists of the guard

digit interval [5,9] , (4) a list from two rounding modes Round ties to even and

Round ties to away, (5) the significand of the largest exponent input is equal to

10 p−1.

3. It verifies also the overflow cases due to the rounding process using, (1) the

intermediate result exponent is equal to qmax , (2) a list of right shift from the

interval [p1, qmax−qmin] , (3) a list from two rounding modes, Round toward

positive and Round toward negative, (4) the significand of the largest exponent

input is equal to 10 p−1 .

H) Carry and Borrow Model

The model verifies all the possible propagations of carries and borrows that

occur during the effective addition or effective subtraction operations. The

proposal ideas of the model are all new. We separate the model into two sub-

models as follows:

1. It verifies all patterns of the borrow propagation at the effective subtraction

operation using, (1) a list of right shift values from the interval [1, p] , (2) a

list of the largest exponent input significand that consists of the patterns

{1−9}00⋯0 X
p

, {1−9}00⋯0XX
p

,⋯, {1−9}X⋯XX
p

X {1−9}0⋯0 X
p

, X {1−9}0⋯0XX
p

,⋯, X {1−9}X⋯XX
p

X X {1−9}0⋯0 X
p

, X X {1−9}0⋯0XX
p

,⋯, X X {1−9}X⋯XX
p

⋮

XXX⋯X {1−9}
p

2. It verifies all patterns of the carry propagation at the effective addition

operation using, (1) a list of right shift values from the interval [1, p] , (2) a

list of the largest exponent input significand that consists of the patterns

 18

{1−9}99⋯99
p

, {1−9}99⋯99X
p

, {1−9}99⋯9XX
p

,⋯,{1−9}X⋯XX
p

X {1−9}99⋯99
p

, X {1−9}99⋯99X
p

, X {1−9}99⋯9XX
p

,⋯, X {1−9}X⋯XX
p

XX {1−9}99⋯99
p

, {1−9}99⋯99X
p

, XX {1−9}99⋯9XX
p

,⋯, XX {1−9}X⋯XX
p

⋮

XXX ⋯X {1−9}
p

2.3 Previous work

The Fpgen addition-subtraction algorithm by IBM [1] is given a specific

intermediate result and the difference d between the actual and the preferred

exponents, to provide two inputs that yield the specified result. The algorithm

denotes the addend significand with the smaller exponent by S x and the

addend significand with the larger exponent by S y , and the significand of the

intermediate result is denoted by S z .

The algorithm divides the problem into four sub cases :

Case 1: The result is exact and the actual exponent is equal to the preferred

exponent, the algorithm selects random S x less than S z and calculates

S y=Sz−S x , where the exponents of them same like the intermediate result

exponent. Next, it selects the operand that has possible shift right or left

according to the leading or the trailing zeros of the operand, and select one of

possible shifting.

Case 2: The result is exact and the actual exponent differs from the preferred

exponent, the algorithm tests, if there is carry or not, where carry is possible if

10p−1≤S z /10≤10p−110p−d−2.

If there is no carry, it chooses S x /10d≤S z−10 p−1 that has d trailing zeros, and

subtracts it from S z to get S y , that has p digits. If there is a carry, it

chooses S x using 10 S z−10 p≤S x /10d−1≤min10 p−d1−1,10 Sz−10p−1 that has at least

d −1 trailing zeros, then computes S y= Sz−S x , such that S z has p+ d

digits and S y has p+ d −1 digits.

Case 3: The result is inexact but the sticky bit is zero, and d > 0 . In this case,

 19

S z has p+ d digits including d −1 digits. According to the carry condition,

if there is no carry, S y has at least d trailing zero, the algorithm chooses S x

using S z−10 p1≤Sx/10d−110 p−d , and computes S y= Sz−S x . Otherwise, if there

is a carry, S y has at least d −1 trailing zeros, and the algorithm gets S x , and

S y as before.

Case 4: The result is inexact, the sticky bit is one, and d ≥2 ,there are three

sub-cases:

1. At d > p and the guard digit is equal to zero, the algorithm separates S z

that has p+ d digits into three substrings, the head of digits of S z is assigned

to S y , the tail of digits is assigned to S x , and in middle there are zero digits.

2. At d = p , if S y has the same digits as S z , the algorithm solves this case

as the previous case. Otherwise, the addition operation has a carry which

occurs at S y=99⋯9y
p

, S z=100⋯0
p1

z⋯z , and the most significant digit of

S x is greater than the guard digit.

3.At d < p , if S y has the same digits as S z , the algorithm chooses S x

using S z−10 pdS x≤min10 p−1, S z−10pd−1 . Otherwise it chooses S x using

S z−10 pd−1Sx≤10 p , and computes S y= Sz−S x .

2.4 Comparison

The Fpgen addition-subtraction algorithm divides the operation into cases and

sub-cases and uses different inequalities to each one. Our engine uses one

procedure to solve all the cases which are based on the values of right shift to

the smaller exponent input significand and the values of left shift to the larger

exponent input significand. Our engine can solve all the simultaneous

constraints on the inputs and the unbounded intermediate result using the

Addition Algorithm, while Fpgen addition-subtraction algorithms solve the

simultaneous constraints on the inputs and the final result, also they solve

constraints on the intermediate result.

The value of the Addition Algorithm will appear clearly in the fused-multiply-

 20

add(FMA) as shown in chapter 4.

2.5 Summary

This chapter represents the main steps that the addition_subtraction engine uses

to solve all the constraints numerically. It also describes the main ideas of the

coverage models that have been solved by the engine to generate test vectors

can verify all the corner cases in the hardware or software implementations of

the decimal floating-point addition-subtraction operation.

The engine solved the coverage models one time and generated about 136000

test vectors in Decimal64, the test vectors have proved their efficiency by

discovering bugs in Silminds design, most of the bugs appear from the

cancellation model and the overflow model.

 21

Chapter 3

Engine and Models of Decimal Multiplication Operation

The multiplication engine is a software tool, it generates multiplication test

vectors to cover corner cases that verify the compliance of software or

hardware implementations of the decimal floating-point multiplication

operation with the IEEE standard (754-2008) for Floating Point Arithmetic.

The multiplication engine solved the coverage models one time and generated

about 96000 test vectors in Decimal64, the test vectors have proved efficiency

by discovering bugs in Silminds design[13].

The generated test vector is a decimal vector that has five sets. The first set is

the operation type (multiplication), number of the precision (64 or 128), and the

rounding mode. The second set is sign, significand, and exponent of the first

input. The third set is sign, significand, and exponent of the second input. The

fourth set is sign, significand, and exponent of the result. Finally the fifth set is

one or two of four flags (invalid, inexact, underflow and overflow). The

designer enters first three sets to his implementation and verifies the

implementations output against last two sets.

The task given to the multiplication engine is the set of constraints on six

elements: (1) the significand of the first input Sx , (2) the significand of the

second input Sy , (3) the significand of the intermediate result Sz , (4) the

exponent of the first input, (5) the intermediate result exponent which is the

sum of the two inputs exponents, and (6) the rounding mode.

The constraint on Sx is a mask starting from the minimum number Nx to

the maximum number Mx . The constraint on Sy is a mask starting from the

minimum number Ny to the maximum number My. Each number in the

previous two masks has p digits. Similarly, the mask on Sz consists of two

 22

numbers Nz and Mz , each number consists of 2 p digits. The first input

exponent, intermediate result exponent and the rounding direction are either

given explicitly in the task or left to the engine to choose randomly.

An example to explain the format of the decimal multiplication task at p=16

is as follows:

64*T : 1 9999999999999999 −1 −9999999999999999

−0p2000000000000000 −9999999999999990p2999999999999999
R R 0

This multiplication task means that Nx=1, Mx=9999999999999999,

Ny=−1, My=−9999999999999999,

Nz=−0p2000000000000000 Mz=−9999999999999990p2999999999999999. Also, it

means that the engine chooses randomly the exponent of the first input, the

exponent of the intermediate result, and the rounding mode is(Round Ties to

Even).

One of the solutions of this task is the test vector

d64∗ =0 377203339734945E41 −7473476140447729E-358 -> −2819020159606310E-302 X .

The d64 means decimal64, the * means multiplication operation, the

following =0 means that the rounding mode is Round Ties to Even, the first

input is x=377203339734945∗1041 , the second input is

y=−7473476140447729∗10−358 , the rounded result is

z=−2819020159606310∗10−302 , and the following X indicates that the inexact

flag is high, because the exact result is

−2819020159606310.255808487189905∗10−302.

3.1 The Multiplication Engine

The engine uses the Multiplication Algorithm to get, the first input significand

Sx , the second input significand Sy , and the intermediate result significand

Sz . Then, it gets the input exponents and the intermediate result exponent.

The intermediate result exponent Ez either is chosen from the interval

[qmin ,qmax], or is given explicitly. The first input exponent is chosen using

 23

max qmin ,Ez−qmax≤Ex≤minqmax , Ez−qmin , or is given explicitly. The second

input exponent is calculated using Ey=Ez−Ex .

The engine shifts the intermediate result significand to right with a value

srz=max 0, pz− p , and the intermediate result exponent Ez is replaced with

Ezsrz .

In case of clamping, where Ezqmax ∧ Ezpz≤qmax p , the engine shifts to

left Sz with a value that is equal to Ez−qmax , and replaces Ez with

qmax .

At special case of under flow, where Ezqmin and Ezpz≥qmin , it shifts to

right Sz with a value that is equal to qmin−Ez , and replaces Ez with

qmin .

The engine rounds the intermediate result according to the standard. The

rounding process may generate a carry, which forces the engine to shift Sz

one digit to right and increase Ez by one.

Finally, if Ez is larger than qmax , it is an overflow case. If Ez is smaller

than qmin , it is an underflow case Sz. The cases result is according to the

rounding mode.

3.1.1 The Multiplication Algorithm

The algorithm is based on solving the nonlinear equations that can be estimated

from Figure 3, where each column represents one nonlinear equation. The

figure shows the multiplication of two inputs significands at p=8 , where

Sz i denotes the multiplication intermediate significand digit of weight 10i ,

Sx i denotes the first input digit of weight 10i , and Sy i denotes the second

input digit of weight 10i . The sum of digits in each column in addition to any

carries from previous columns lead to one nonlinear equation.

The algorithm uses two methods to solve the non-linear equations, it chooses

the proper method according to the constraints on the intermediate result. The

first method is used, if the intermediate result constraints are on the least p

 24

digits, the method solves the nonlinear equation from right to left as shown in

Figure 3. The second method is used, if the intermediate result constraints are

on the most p digits and some or all the least digits,the method solves the

nonlinear equation from left to right as shown in Figure 3.

* Sx7

Sy7

Sx6

Sy6

Sx5

Sy5

Sx4

Sy4

Sx3

Sy3

Sx2

Sy2

Sx1

Sy1

Sx0

Sy0

Sx7 Sy7

Sx7 Sy6

Sx6 Sy7

Sx7 Sy5

Sx6 Sy6

Sx5 Sy7

Sx7 Sy4

Sx6 Sy5

Sx5 Sy6

Sx4 Sy 7

Sx 7 Sy3

Sx 6 Sy4

Sx 5 Sy5

Sx 4 Sy6

Sx 3 Sy7

Sx7 Sy2

Sx6 Sy3

Sx5 Sy 4

Sx4 Sy5

Sx3 Sy 6

Sx2 Sy 7

Sx7 Sy 1

Sx6 Sy 2

Sx5 Sy 3

Sx4 Sy 4

Sx3 Sy 5

Sx2 Sy 6

Sx1 Sy7

Sx7 Sy0

Sx6 Sy1

Sx5 Sy2

Sx 4 Sy3

Sx 3 Sy4

Sx2 Sy5

Sx1 Sy6

Sx0 Sy7

Sx6 Sy0

Sx5 Sy1

Sx4 Sy2

Sx3 Sy3

Sx2 Sy 4

Sx1 Sy 5

Sx0 Sy6

Sx5 Sy0

Sx4 Sy 1

Sx3 Sy2

Sx2 Sy3

Sx1 Sy4

Sx0 Sy5

Sx4 Sy0

Sx 3 Sy1

Sx 2 Sy2

Sx 1 Sy3

Sx0 Sy 4

Sx3 Sy0

Sx2 Sy1

Sx1 Sy2

Sx0 Sy3

Sx2 Sy 0

Sx1 Sy 1

Sx0 Sy 2

Sx 1 Sy0

Sx 0 Sy1

Sx0 Sy0

Sz 15 Sz14 Sz 13 Sz12 Sz11 Sz 10 Sz9 Sz8 Sz7 Sz6 Sz 5 Sz4 Sz3 Sz2 Sz 1 Sz0

Figure 3. The Products of the Multiplication Operation assuming Precision 8.

In the two methods, the algorithm achieves the constraint of each digit Sx i ,

Sy i , or Sz i , by choosing each digit from its interval [Nxi , Mxi],

[Ny i , Myi], and [Nzi , Mz i].

A) The First Method

In the first method, as shown in Figure 3, the algorithm attempts to solve the

first two nonlinear equations from right which are cr0=Sx0 Sy0−Sz0 and

cr1=Sx 0Sy 1Sx1 Sy0cr0/10−Sz 1. The algorithm chooses randomly the digit Sz0

from its interval, therefore Sz0 is known, then it searches randomly on the

combination of the digits Sx 0 , Sy0 , Sx1, Sy1 , Sz1 that achieves the two conditions

cr0 Mod10=0 and cr1 Mod10=0 . The steps taken so far constitute the first

outer iteration that gets the final values of Sz 1, Sx0 , Sy0 , and estimates the

values of Sx 1, Sy1 that may be refined in the following iteration.

In the second iteration, the algorithm attempt to solve the second and the third

nonlinear equations which are cr1=Sx 0Sy 1Sx1 Sy0cr0/10−Sz 1 , and

cr2=Sx 0 Sy2Sx2 Sy 0Sx1 Sy1cr1/10−Sz2 . It searches randomly on the combination

of the digits Sx1 , Sy1 , Sx2 , Sy2 , Sz 2 that achieves the two conditions

cr1Mod10=0 and cr2 Mod10=0 , where the digits cr0, Sx 0 , Sy0 , Sz0 , Sz1, are

known from the previous iteration. The algorithm does this procedure in the

next iterations, until it find all digits of Sx and Sy . then, it multiply Sx

with Sy to get the all digits of Sz .

 25

In general, the algorithm determines the maximum number of digits of the first

input significand min p z−no of digitsof My , p ≤px≤no of digits of Mx , and the

maximum number of digits of the second input significand p y= pz− px ,

where pz is number of digits of the intermediate result, which solve the

problem of the leading zero digits in the intermediate result significand.

It chooses randomly the digit Sz0 from its interval, and does outer iterations of

index i , where 0≤i≤ p−1 . In each iteration, it gets the digits

Sz i1 , Sxi , Syi , and estimates the digits Sxi1 , Sy i1 , such that the

combination of the previous digits achieves the conditions cr i mod10=0 and

cr i1mod10=0 .

The general form of the two nonlinear equations that each iteration attempt to

solve are:

 cr i=∑
j=0

j= i

Sxi− j Sy j−Szi (3.1)

 cri1= ∑
j=0

j=i1

Sxi− j1 Sy jcri /10−Szi1 (3.2)

In the last of each outer iteration, Sz i1 is replaced by Sz i1−cr i /10 , such that

the nonlinear equations are in the previous general form.

Finally, after getting all digits of Sx and Sy , it calculates the intermediate

result significand Sz=Sx∗Sy , to get all digits of Sz. The engine chooses

different p x and p y and repeats all the iterations, if one of the conditions in

any iteration is not achieved.

B) The Second method

In the second method, the algorithm iterates to solve the nonlinear equations

from left to right. As shown in Figure 3, for p=8, the first nonlinear equation

from left is Sz 14−Sx7 Sy7=br 14 where br14 is the value of carries that transfer

from previous weights to the weight of 1014 , or the borrow generated from

this weight to lower weights. The second and the third non linear equations are

Sz 1310∗br 14−Sx 7 Sy6−Sx6 Sy7=br 13 , and Sz 1210∗br 13−Sx7 Sy 5−Sx6 Sy 6−Sx 6Sy 7=br 12 .

In general the nonlinear equation for the column of index n , where n≤p−1 ,

 26

is :

 br n=Sz n10∗br n−1− ∑
j=n−p1

j=p−1

Sy j Sxn− j , (3.3)

To start the solution, the algorithm attempts to solve the first three nonlinear

equations (representing columns 7 to 5) together based on the range of carries

that may transfer from the next lower significant columns. The algorithm

chooses randomly the digits Sz15 , Sz14 , and Sz13 , from their intervals, and

replaces the digit Sz14 with the value Sz1410∗Sz15 . Then since the ranges of

borrow digit br12 , the digit Sx 5 , and the digit Sy 5 are known as

Ncr13≤br13≤Mcr13 , Nx5≤Sx5≤Mx5 , and Ny5≤Sy5≤My5 , where Ncr12
 and

Mcr12 are equal to

 Ncr12=
∑
j=6

j=7

Sy j Nx11− j∑
j=4

j=5

Ny jSx11− j

10

∑
j=6

j=7

Sy j Nx10−j∑
j=3

j=4

Ny j Sx10− jNy5 Nx5

100

 Mcr12=
∑
j=6

j=7

Sy j Mx11− j∑
j=4

j=5

My jSx11− j

10

∑
j=6

j=7

Sy j Mx10− j∑
j=3

j=4

My j Sx10− jMy5 Mx5

100

The algorithm transforms the third nonlinear equation to the inequality

condition:

 Ncr12Nx5 Sy 7Sx7 Ny5≤Sz1210∗br 13−Sx 6 Sy6≤Mcr12Mx5 Sy7Sx7 My5 . (3.4)

 Finally, it searches randomly on the combination of the values of

Sx 7 , Sy7 , Sx6 , Sy 6 , Sz 13 that satisfy the first nonlinear equation, the second

nonlinear equation and the Inequality 3.4. The steps taken so far constitute the

first outer iteration that gets the final values of Sx 7 , Sy7 , Sz13 , and estimates the

values of Sx 6, Sy6 which may be refined in the next iteration.

In the second iteration, the algorithm transforms the fourth nonlinear equation

Sz 1110∗br 12−Sx7∗y 4−Sx 6 Sy5−Sx5 Sy6−Sx4 Sy7=br11 to the inequality condition:

 Ncr11Nx4∗Sy7Sx7∗Ny 4≤Sz 1110∗br 12−Sx6 Sy5−Sx5 Sy6≤Mcr11Mx4 Sy7Sx7 My4 .

It searches randomly on the combination of values of Sx6 , Sy6 , Sx5 , Sy5 , Sz12 that

achieves the second nonlinear equation, the third nonlinear equation and the

inequality condition, where the digits Sx7 , Sy7 , br14 , Sz14 , Sz13 are known from the

 27

previous iteration. The algorithm does this procedure in all the iterations and

gets all digits of Sx and Sy.

In general, the algorithm gets the digits Sz2 p−1 , Sz2 p−2 , and Sz2 p−3 from their

intervals, and replaces Sz2 p−2 with Sz2 p−210∗Sz2p−1 . It does number of

iterations of index i , from i=p−1 to i=0 . It gets in each iteration the digits

Sx i , Sy i , Szip−3 , and estimates the digits Sx i−1 , Sy i−1 , such that this

combination of digits achieves two nonlinear equations and the inequality

condition. The general form of the two nonlinear equations and the inequality

condition are:

 br ip−1=Szip−1− ∑
j=i

j=p−1

Sx j Sy i− jp−1 (3.5)

 br ip−2=Szip−210∗brip−1− ∑
j= i−1

j=p−1

Sx j Sy i− jp−2 (3.6)

Ncrip−3Sx p−1 Ny i−2Nx i−2 Sy p−1≤Szip−310∗br i p−2− ∑
j= i−1

j=p−2

Sx j∗Sy i− j p−3≤

Sx p−1 Myi−2Mx i−2 Sy p−1Mcr ip−3.
(3.7)

Note that, Ncrip−3 and Mcrip−3 are the minimum and the maximum carries

that generated from the columns that follow the column of index ip−3 .

Since the column that has the maximum product sum, is the column of index

p−1 , where the maximum product sum at p=34 is equal to

33∗9∗9=2673 . This number means that a carry from any column, at p≤34,

may affect the previous three columns directly by a value more than one and

affects the higher columns indirectly by a value less than or equal to one. Based

on that, the algorithm determines the range of carries that transfer to the

column ip−3 from the next three columns ip−4, ip−5, ip−6. The

general form of the carries equations are:

Ncri p−3= ∑
j= p−2

j= p−1

Sy j Nx i p− 4−j ∑
j=i−3

j=i−2

Ny j Sx ip−4− j ∑
j=i−1

j= p−3

Sy j Sxip−4− j/10

 ∑
j= p−3

j= p−1

Sy j Nx i p−5− j ∑
j=i−4

j=i−2

Ny j Sx i p−5− j ∑
j=i−1

j= p−4

Sy j Sx i p−5− j/100

 ∑
j= p−4

j= p−1

Sy j Nx i p−6− j ∑
j=i−5

j=i−2

Ny j Sx i p−6− j ∑
j=i−1

j=p−5

Sy j Sxip−6− j/1000

 (3.6)

 28

Mcri p−3= ∑
j= p−2

j= p−1

Sy j Mx i p−4− j ∑
j=i−3

j=i−2

My j Sx i p− 4−j ∑
j=i−1

j= p−3

Sy j Sx i p− 4−j /10

 ∑
j= p−3

j= p−1

Sy j Mx i p−5− j ∑
j=i−4

j=i−2

My j Sx i p−5− j ∑
j=i−1

j= p−4

Sy j Sx i p−5−j /100

 ∑
j= p− 4

j= p−1

Sy j Mx i p−6− j ∑
j=i−5

j=i−2

My j Sx i p−6− j ∑
j=i−1

j= p−5

Sy j Sx ip−6− j/1000

 (3.7)

The values of Sx and Sy calculated so far achieve only the most significand

digits of Sz . The algorithm must alter correlates the values of Sx and Sy ,

such that they achieve all the constraints on the digits of Sz .

The algorithm calculates the intermediate result using Sz =Sx∗Sy , and gets

Sz by assign to it Sz with replacing the digits that do not achieve the

constraints with one that achieve. It checks that either condition 1

∣Sz− Sz ∣mod x≤maxerror is achieved, or condition 2

∣Sz− Sz ∣mod y≤maxerror is achieved. If condition 1 is achieved, it replaces

Sx with Sx
Sz− Sz −Sz− Sz mod Sy

Sy
.

 Otherwise, if condition 2 is achieved, it replaces Sy with

Sy
Sz−Sz −Sz− Sz mod Sx

Sx
. If the two conditions are not achieved the

algorithm repeats all the iterations to get new values of Sx and Sy , until one

of the conditions is achieved. The algorithm does not guarantee that the

conditions is achieved. In this case, it refines the constraints which leads to

refine the maximum error, which the case that the engine may not solve.

Finally the algorithm gets the final value of the intermediate result using

Sz=Sx∗Sy .

3.2 The Main Ideas of the Multiplication Models

 The models are defined using a Cartesian product between two or more lists of

constraints with ignoring the impossible combinations, and allowing the other

constraints to be chosen randomly.

All the proposal ideas of the models are in [22], however we describe the ideas

in the form of the engine constraints.

 29

A) Inputs Types Model

The model verifies the possible combinations of input types, we separate the

model into four sub-models as follows:

1. It verifies the design when one of the inputs is Zero using, (1) the significand

of one of the inputs is equal to zero, (2) a list of zero significand input that

consists of the exponent interval [qmin ,qmax], (3) a list from all input types of

the other input.

2. It verifies the design when one of the inputs is Infinity, sNaN, or qNaN

using, (1) a list of one of the inputs from the Infinities, sNaN, and qNaN, (2)

all input types list of the other input.

3. It verifies the design in solving other types of input using, (1) a list of one of

the inputs from the minimum Subnormal, the maximum Subnormal, the

minimum Normal, and the maximum Normal, (2) a list of the other input from

the exponent interval [qmin , qmax].

4. It verifies the design when one of the inputs is equal to One using, (1) one of

the inputs is equal to One, (2) a list of the other input from the exponent

interval [qmin , qmax].

B) Result Types Model

The model verifies the generation of different types of the final result. We

separate the model into four sub-models as follows:

1.It verifies all the result exponents using, (1) a list of the intermediate result

exponent from the interval [qmin, qmax].

2. It verifies the generation of the first hundred Subnormal numbers, the last

hundred Subnormal numbers, and the first hundred Normal numbers using, (1)

the intermediate result exponent is equal to qmin , (2) a list of the intermediate

result significand from the intervals {[2,100], [10 p−1−100,10 p−1100]}.

3. It verifies the generation of numbers from one to 100 using, (1) the

intermediate result exponent is equal zero, (2) a list of the intermediate result

significand from the interval [1,100].

 30

4. It verifies the last hundred Normal numbers using, (1) the exponent

intermediate result is equal to qmax , (2) a list of the intermediate result

significand from the interval [10P−1,10P−100].

C)Rounding model

The model verifies the rounding process. We separate the model into four sub-

models as follows:

1. It verifies the rounding process using, (1) a list from the five rounding

modes, (2) a list of the intermediate result significand from the cross product of

the guard digit interval [0,9] , the least significand digit interval [0,9] , the

sticky bit interval [0,1] , and number of digits of the intermediate result

interval [1,2 p] .

2. It verifies all possible carry propagations in the intermediate result

significand due to the rounding process using, (1) a list from the five rounding

modes, (3) a list of the intermediate result exponent that consists of

{qmax ,emin , zero , random number }, (2) a list of intermediate result significand

from the cross product of the guard digit interval [0,9] , the sticky bit interval

[0,1] , number of digits of the intermediate result interval [p ,2 p] , and the

patterns {99⋯9
p

X⋯X , {0−8}9⋯9
p

X⋯X , X {0−8}9⋯9
p

X⋯X ,⋯, XX⋯X {0−8}
p

X⋯X }.

3. It verifies the sticky bit calculations using, (1) a list of the intermediate result

significand from the cross product of number of digits interval [p ,2 p] , and

the patterns {XX⋯X
p1

0{1−9}XX⋯X , XX⋯ X
p1

0 0{1−9}XX⋯X ,⋯, XX⋯X
p1

00⋯0{1−9}} .

D)Trailing and Leading Zeros Model

The model verifies the trailing and leading zeros in the input significands and

the intermediate result significand. We separate the model into two sub -models

as follows:

1.It verifies the patterns of zeros in the input significands using, (1) a list of the

first input significand, (2) a list of the second input same like previous list, the

list consists of

 31

{{1−9}00⋯00

P

, 0{1−9}00⋯00
P

,⋯, 00⋯0{1−9}
P

}

{{1−9}{1−9}0⋯00
P

,0{1−9}{1−9}0⋯00
P

,⋯, 00⋯0{1−9}{1−9}
P

}

{{1−9}X {1−9}0⋯00
P

, 0{1−9}X {1−9}0⋯00
P

,⋯, 00⋯0{1−9}X {1−9}
P

}

⋮

{{1−9}XX ⋯X {1−9}
P

}

2. It verifies the trailing and leading zeros in the intermediate result significand

using, (1) a list of the intermediate result sigificand from the patterns

{{1−9}00⋯00
P1

,0{1−9}00⋯00
P1

,⋯, 00⋯0{1−9}
P1

}

{{1−9}{1−9}0⋯00
P1

,0{1−9}{1−9}0⋯00
P1

,⋯, 00⋯0{1−9}{1−9}
P1

}

{{1−9}X {1−9}0⋯00
P1

, 0{1−9}X {1−9}0⋯00
P1

,⋯, 00⋯0{1−9}X {1−9}
P1

}

⋮

{{1−9}XX⋯X {1−9}
P1

}

E) Overflow Model

The model verifies the overflow cases. We separate the model into five sub-

models as follows:

1. It verifies the overflow cases when the result exponent is larger than qmax ,

using, a list of the intermediate result exponent from the interval

[qmax−p−1,2qmax] .

2. It verifies the overflow and the near-overflow cases due to the rounding

process using, (1) the intermediate result significand is equal to 1016−1 , and

has the guard digit interval [5,9] , (2) the two rounding modes Round ties to

even and Round ties to away, (3) a list of the intermediate result exponent from

the interval [qmax−p−1, qmax−1] .

3. The intermediate result significand is equal to 1016−1 , with a list of guard

digit in the interval [1 , 9] at the two rounding modes, Round to positive and

Round to negative, with a list of the intermediate result exponent in the interval

[qmax− p−1 ,qmax−1] , to verify the overflow and the near-overflow cases due

to the rounding process.

4. It verify the overflow cases due to number of digits of the intermediate result

significand using, (1) a list of the intermediate result exponent from the interval

 32

[qmax− p−1 ,qmax] , (2) a list of number of digits of the intermediate result

significand from the interval [p ,2 p].

5. It verifies the near-overflow cases which need to shift the intermediate result

significand to left using, (1) a list of the intermediate result exponent from the

interval [qmax ,qmax p−1] , (2) a list of number of digits of the intermediate

result significand from the interval [1, p] .

F)Underflow Model
The model verifies the underflow cases. We separate the model into four sub-

models as follows:

1. It verifies the underflow cases when the intermediate result exponent is less

than qmin using, (1) a list of the intermediate result exponent from the interval

[2qmin ,qmin].

2. It verifies the underflow and the near-underflow cases when the intermediate

result significand is shifted to right and the result is inexact using, (1) a list of

the intermediate result exponent from the interval [qmin−2 p ,qmin] , (2) a list of

number of digits of the intermediate result from the interval [1,2 p].

3. It verifies the underflow and the near-underflow cases when the intermediate

result significand is shifted to right and the result is exact using, (1) a list of the

intermediate result exponent from the interval [qmin−2 p ,qmin] , (2) a list of

the intermediate result significand that consists of the patterns

{{1−9}00⋯0 , X {1−9}00⋯0 ,⋯ , XX ⋯X {1−9}} ,

4. It verifies the near-underflow cases and the subnormals numbers using, (1) a

list of the intermediate result exponent from the interval [qmin , qmin p−1] , (2)

a list of number of digits of the intermediate result from the interval [1,2 p].

3.3 Previous work

 The Fpgen multiplication algorithm by IBM [1] is given the constraints on the

intermediate result S z which has up to 2 p digits, and on the difference

0≤d ≤p between the actual and the preferred exponents.

 33

The algorithm represents the problem into two cases:

Case 1: The sticky bit is zero and d −1 trailing zeros after the guard digit

exist, the algorithm factorizes S z=S z .10d−1 to its prime factors, then selects

random factors for S x and S y such that the value of each is smaller than

10 p , then selects random exponent e x , e y such that exe y=ez−d.

Case 2: The sticky bit is one and d2 , the algorithm uses the following

procedure: (1) it computes the range of possible values of S z using

S z .10d−1≤Sz≤Sz1 .10d−1 , (2) it selects randomly the number of digits

∣S y∣≤ p and the value of S y using S y≤
S z

10 p−1
, (3) it chooses S x using

(
S z .10d−1

S y

≤S x≤
(S z+ 1).10d−1

S y

) , if a decimal value is founded in that range, this

mean that the solution exists, otherwise the algorithm returns to step two. On

the average the algorithm can find a solution for S x within 10 trials.

3.4 Comparison

The Fpgen multiplication algorithm cannot solve simultaneous constraints on

the inputs significand and the intermediate result significand, and cannot solve

all the constraints on the digits that follow the guard digit of the intermediate

result significand, while our engine solves these constraints numerically. Both

of them cannot find the solution from the first trail, but they find the solution in

practical time.

3.5 Summary

This chapter represents the main steps that the multiplication engine uses to

solve all the constraints numerically. It also describes the main ideas of the

coverage models that have been solved by the engine to generate test vectors

can verify all the corner cases in the hardware or software implementations of

the decimal floating-point multiplication operation.

The engine solved the coverage models one time and generated about 96000

test vectors in Decimal64, the test vectors have proved efficiency by

 34

discovering bugs in Silminds design. The bugs are appeared in the input types

model.

 35

Chapter 4

Engine and Models of Decimal Fused Multiply Add (FMA)

Operation

The fused-multiply-add(FMA) engine generates FMA test vectors to cover all

corner cases, to verify a tested implementation of decimal fused-multiply-add

(FMA) operation to achieve the compliance with the IEEE standard (754-2008)

for Floating Point Arithmetic.

The FMA engine solved the coverage models one time and generated about

425000 test vectors in Decimal64, the test vectors have proved their efficiency

by discovering bugs in Silminds design[15] and FMA DecNumber

implementation [23].

The generated test vector is a decimal vector that has six sets. The first set is

the operation type (FMA), number of the precision (64 or 128), and the

rounding mode. The second set is sign, significand, and exponent of the first

input. The third set is sign, significand, and exponent of the second input. The

fourth set is sign, significand, and exponent of the second input. The fifth set is

sign, significand, and exponent of the result. Finally the sixth set is one or two

of four flags(invalid, inexact, underflow and overflow). The designer enters the

input sets to his implementation and verifies the implementation output against

last two sets.

The FMA operation x∗y±b=c multiplies the first two inputs, and adds

without rounding the result of the multiplication operation to the third input.

The task given to the fused-multiply-add(FMA) engine is the set of constraints

on eleven elements, (1) the significand of the first input Sx , (2) the

significand of the second input Sy , (3) the significand of the third input Sb ,

(4) the multiplication intermediate result Sz , (5) the addition intermediate

result Sc , (6) the exponent of the first input, (7) the multiplication

 36

intermediate result exponent which is the sum of the first two inputs exponents,

(8) identifier number sid to determine the smaller exponent input of the

addition operation (i.e the exponent of third input or the exponent of the

multiplication intermediate result), such that the engine determines which

significand will be shifted to right, (9) right shift value of the smaller exponent

addition input. (10) the addition intermediate result exponent at which the

addition_subtraction operation occurs, (11) the rounding mode.

The constraint on Sx is a mask starting from the minimum number Nx to the

maximum number Mx. The constraint on Sy is a mask starting from the

minimum number Ny to the maximum number My. The constraint on Sb is

a mask starting from the minimum number Nb to the maximum number

Mb. Each number in the previous masks has p digits. Similarly, the mask

on Sz consists of two numbers Nz and Mz , each number has 2 p digits,

Also, the mask on Sc consists of two numbers Nc and Mc , each number

has 2 p1 digits, p1 digits before the fractional point and p digits after

it. The first input exponent, the multiplication intermediate result exponent, the

addition intermediate result exponent and the rounding direction are either

given explicitly in the task or left to the engine to choose randomly.

The ability of the engine to choose randomly within the range of the mask or to

choose the input exponents and the rounding direction empowers the engine to

generate test vectors discovering more bugs.

An example to explain the format of the decimal FMA task at p=16 is as

follows:

64∗T : −1 −9999999999999999 −1 −9999999999999999 −100000 −999999

100000000000000 99999999999999999999999999999999
−999999999999999.9000000000000000 −999999999999999.9999999999999999

R R 0 6 R R

This task means that Nx=−1, Mx=−9999999999999999,

Ny=−1, My=−9999999999999999, Nb=−100000, Mb=−999999,

Nz=100000000000000, Mz=99999999999999999999999999999999,

Nc=−999999999999999.9000000000000000, Mc=−999999999999999.9999999999999999 .

 37

Also, it means that the engine chooses randomly the exponent of the first input,

the exponent of the multiplication intermediate result, the exponent of the

addition intermediate result, and the rounding mode. The engine determines

from the task that the third input is the smaller addition exponent, and the

significand of the smaller addition exponent (the third input exponent) will be

shifted to right six digits.

One of the solutions of this task is the test vector

d64*+ =0 −9046436700100791E−59 −11054076131311 E 127 −81183 E 76 -> 9999999999999999 E 81 X .

The d64 means decimal64, the *+ means FMA operation(i.e multiplication

operation followed by addition operation), the following =0 means that the

rounding mode is Round ties to even, the first input is

x=−9046436700100791∗10−59 , the second input is y=−11054076131311∗10127 , the

third input is b=−81183∗1076 , the rounded result is c=9999999999999999∗1081 ,

and the following X indicates that the inexact flag is high, because the exact

result is 9999999999999999.2782750967001∗1081 .

4.1 The FMA engine

 The engine determines the number of digits of the multiplication intermediate

result p z from the interval [no of digits of Nz ,no of digits of Mz] , as 0≤p z≤2 p, and

number of digits of the third input pb from the interval

[no of digits of Nb ,no of digits of Mb] . The engine shifts to right both Nz and Mz

with the value srm z , to be in the format of maximum p digits before the

fractional point.

According to the value of sid , the engine determines the smaller exponent

input of the addition operation. Therefore, the engine chooses between two

procedures, (1) procedure 1, the multiplication intermediate result exponent is

the smaller exponent input of the addition operation, therefore the

multiplication intermediate result significand is shifted to right and the third

input significand is shifted to left, (2) procedure 2, the third input exponent is

 38

the smaller exponent input of the addition operation, therefore the third input

significand is shifted to right and the multiplication intermediate result

significand is shifted to left.

In procedure 1, the engine chooses randomly the right-shift value sr z , either

from the intervals [1, p] or [p1, qmax−2∗qmin]. If sr z is equal to zero, it

will choose randomly the left-shift value slb , from the interval [0, p−pb].

Otherwise, if sr z is larger than zero, slb is equal to p− pb . The engine

shifts to left both Nb and Mb with the value of sl b , and shifts to right both

Nz and Mz with the value of sr z . Then, the engine uses the Addition

Algorithm (in 2.1.1) to get the third input significand Sb , the multiplication

intermediate result significand Sz , and the addition intermediate result of

Sc. After that, the engine shifts to left the significand Sz with the value of

sr zsrmz , and factorizes Sz to the two inputs significands Sx and Sy

using the Multiplication Algorithm (in 3.1.1).

The engine recalculates the new value of Sc by replacing Sc with SzSb ,

as the Multiplication Algorithm changes some digits in Sz. It shifts to right the

third input significand Sb , with the value of sl b , and calculates the input

exponents that achieve the values of sl b and sr z .

 To calculate the exponents, the engine chooses the addition intermediate result

exponent Ec from the interval [max srzsrm z2∗qmin ,qmin ,qmax−sl b] , then it

calculates the exponent of the multiplication intermediate result

Ez=Ec−sr z−srmz , and the third input exponent Eb=Ecslb . It chooses the

first input exponent Ex using max qmin ,Ez−qmax≤Ex≤minqmax , Ez−qmin , or

Ex is given explicitly, and it calculates the second input exponent using

Ey=Ez−Ex .

However, if Ez is given explicitly to the engine, the engine gets the first input

exponent Ex using max qmin , Ez−qmax≤Ex≤min qmax , Ez−qmin , or Ex is given

explicitly, and it gets the second input exponent using Ey=Ez−Ex . The

exponent of the addition intermediate result Ec is equal to Ezsr zsrmz , and

the third input exponent Eb is equal to Ecslb .

 39

In procedure 2, the engine chooses randomly the right-shift value sr b , either

from the intervals [1,2 p], [p1,qmax−qmin] , or [qmax1−qmin , 2∗qmax−qmin].

If sr b is equal to zero, it will choose randomly the left-shift value sl z , from

the interval [0, p−p z] . Otherwise, if sr b is larger than zero, sl z is equal to

p− pz . The engine shifts to left both Nz and Mz with the value of sl z ,

and shifts to right both Nb and Mb with the value of sr b . Then, the engine

uses the Addition Algorithm (in 2.1.1) to get the third input significand Sb ,

the multiplication intermediate result significand Sz , and the addition

intermediate result of Sc. After that, the engine shifts to right Sz with the

value srm z and shifts to left Sz with value sl z . It factorizes Sz to the two

inputs significands Sx and Sy using the Multiplication Algorithm(in 3.1.1).

The engine recalculates the new value of Sc by replacing Sc with SzSb ,

as the Multiplication Algorithm changes some digits in Sz. It shifts to left the

third input significand Sb , with the value of sr b , and calculates the input

exponents that achieve the values sr b and sl z .

The engine chooses the addition intermediate result Ec from the interval

[qminsrb , qmax] , it calculates the multiplication intermediate result exponent

using Ez=Ecsl z−srm z , and the third input exponent using Eb=Ec− srb . The

engine gets the first input exponent Ex , either from the interval

[maxqmin , Ez−qmax ,min qmax , Ez−qmin] , or Ex is given explicitly, and it

calculates the second input exponents using Ey=Ez−Ex .

However, if Ez is given to the engine, the engine gets the first input exponent

Ex , either from the interval [max qmin , Ez−qmax  ,min qmax ,Ez−qmin] , or Ex

is given explicitly, and it gets the second input exponent using Ey=Ez−Ex .

The exponent of the addition intermediate result Ez is equal to Ez−sl zsrmz ,

and the third input exponent Eb is equal to Ec−srb .

The addition intermediate result may have cancellation digits, in that case the

engine shifts Sc to left and decreases Ec with a value

scn=minEc−Ez , p−no of digits before point  .

The addition intermediate result may have a carry digit, in that case the engine

 40

shifts Sc one digit to the right and increases Ec by one.

At clamping, where Ecqmax ∧ Ec pc≤qmax p , the engine shifts to left Sc

with the value Ec−qmax and replaces Ec with qmax .

At special case of underflow, where Ecqmin and Ecpc≥qmin , it shifts to

right Sc with the value qmin−Ec and replaces Ec with qmin .

The engine rounds the addition intermediate result according to the standard.

The rounding process may generate a carry to force the engine to shift Sc one

digit to right and increase Ec by one.

Finally, if Ec is larger than qmax , it is an overflow case, and if Ec is

smaller than qmin , it is an underflow case. The result of these cases are

according to the rounding mode.

4.2 The Main Ideas of the FMA Models

 The models are defined using a Cartesian product between two or more lists of

constraints while ignoring the impossible combinations and allowing the other

constraints to be chosen randomly.

Some of the model proposal ideas are also in [22]. We write down during the

explanation of these ideas that they are in [22]. However we describe these

ideas in the form of our engine constraints. The other ideas are new ideas to

verify new corner cases in the different FMA implementations. In total we

present 42 sub-models of which 23 sub-model ideas are in [22] and 19 sub-

model ideas are new.

A) Inputs Types Model

The model aims to verify the ability of the design to solve all possible

combinations of the input types. The proposal ideas of the model are in [22].

We separate the model into three sub-models as follows:

1. It verifies the handling of Normal and Subnormal types of the first two

inputs, using the following lists of constraints, (1) a first input list consists of

 41

the minimum Subnormal, the maximum Subnormal, and the maximum Normal,

(2) a second input exponent list consists of all the exponent values in the

interval [qmin , qmax].

2. It verifies the remaining of Normal and Subnormal types of the third input,

using the following lists of constraints, (1) a third input list consists of the

minimum Subnormal, the maximum Subnormal, and the maximum Normal, (2)

a list of the multiplication intermediate result exponent consists of the

exponent values in the interval [2∗qmin ,2∗qmax].

3. It verifies the input types Zero, Infinities, sNaN, or qNaN; using the four

combinations of lists in Table 1.

TABLE 1.COMBINATIONS OF INPUTS TYPES LISTS

Id
The Contents of The lists
First Input Second Input Third input

1
Zero with all possible

exponents
All input types list All input types list

2 All input types list All input types list
Zero with all possible

exponents

3
 Infinities, sNaN, and

qNaN
All input types list All input types list

4 All input types list All input types list
 Infinities, sNaN, and

qNaN

B) Result Types Model

The model aims to verify the ability of the design to generate all the result

types that has not been generated in the previous model. The proposal ideas of

the model are also in [22]. We separate the model into four sub-models as

follows:

1. It verifies all the result exponents using, (1) a list of the addition intermediate

result exponents consists of the interval [qmin , qmax].

2. It verifies the generation of the first hundred Subnormal numbers, the last

hundred Subnormal numbers, the first hundred Normal numbers, and numbers

 42

from One to 100 using, (1) a list of the addition intermediate result significand

consists of the intervals {[1,100] ,[10P−1−100,10P−1100]}, (2) a list of the addition

intermediate result exponent consists of zero and qmin .

3. It verifies the last hundred Normal numbers using, (1) a list of the addition

intermediate result significand consists of the interval [10P−1,10P−100] , (2) the

addition intermediate result exponent is equal to qmax .

C) Rounding Model

The model aims to verify the rounding process in the design. Some of the

proposal ideas of the model are in [22], while the other ideas are new. We

separate the model into eight sub-models as follows:

1. It verifies the rounding process at all combinations of the guard digit, the

least significand digit, and the sticky bit using, (1) a list from the five rounding

modes, (2) a list of the addition intermediate significand consists of, the guard

digit interval [0,9] , the least digit interval [0,9] , and the sticky bit interval

[0,1] , (3) a list from the two values of sid that determines the smaller

exponent input of the addition operation. The proposal idea of this sub-model is

also in [22].

2. It verifies the possible carry propagation due to rounding process using, (1)

a list from the five rounding modes, (2)a list from two values of sid , (3) a list

of the addition intermediate result significand consists of, the guard digit

interval [0,9] , the sticky bit interval [0,1] , and the patterns

{99⋯99, {0−8}99⋯99, X {0−8}9⋯99,⋯, XX⋯X {0−8}}. The proposal idea of this

sub-model is in [22].

3. It verifies the sticky bit calculations using, (1) a list of right shift to the third

input consists of the interval [2 ,qmax−qmin] , (2) sid indicates that the third

input exponent is the smaller exponent input of the addition operation, (3) the

number of digits of the third input significand is equal to one. The proposal

idea of this sub-model is in [22].

4.It verifies the sticky bit calculations using, (1) a list of right shifts to the

 43

multiplication intermediate result from the interval [2 ,qmax−2∗qmin] , (2)

sid indicates that the multiplication intermediate result exponent is the

smaller exponent input of the addition operation, (3) the number of digits of the

multiplication intermediate result significand is equal to one. The proposal idea

of this sub-model is in [22].

5. It verifies the rounding process when the right shift is less than p using; (1)

a list from the five rounding modes, (2) a list of number of digits of the third

input significand consists of the interval [1, p] , (3) sid indicates that the

third input exponent is the smaller exponent input of the addition operation, (4)

a list of the right shift consists of the interval [1, p] .

6. It verifies the rounding process when the right shift is less than p using, (1)

a list from the five rounding modes, (2) a list of number of digits of the

multiplication intermediate result significand consists of the interval [1,2 p],

(3) sid indicates that the multiplication intermediate result exponent is the

smaller exponent input of the addition operation, (4) a list of the right shift

consists of the interval [1, p] .

7. It verifies the sticky bit when the right shift value is less than p using, (1)

the right shift value is less than p , (2) sid indicates that the multiplication

intermediate result exponent is the smaller exponent input of the addition

operation, (3) a list of the multiplication intermediate result significand consists

of the pattern

{1−9}00⋯0
p1

{1−9}X⋯X
p−1

, X {1−9 }00⋯0
p1

{1−9}X⋯X
p−1

,⋯, X⋯X {1−9}
p1

{1−9}X⋯X
p−1

,

{1−9}00⋯0
p1

0{1−9}X⋯X
p−1

, X {1−9}00⋯0
p1

0{1−9}X ⋯X
p−1

,⋯, X⋯X {1−9}
p1

0{1−9} X⋯X
p−1

,

{1−9}00⋯0
p1

00{1−9}X⋯X
p−1

, X {1−9}00⋯0
p1

00 {1−9}X⋯X
p−1

,⋯, X⋯X {1−9}
p1

00 {1−9 }X⋯X
p−1

,

⋮

{1−9}00⋯0
p1

00⋯0{1−9}
p−1

, X {1−9}00⋯0
p1

00⋯0{1−9}
p−1

,⋯, X⋯X {1−9}
p1

00⋯0 {1−9}
p−1

8. It verifies the sticky bit when the right shift value is less than p using, (1)

the right shift value is less than p , (2) sid indicates that the third input

sigificand is the smaller exponent input of the addition operation, (3) the

multiplication intermediate result significand has zero digits after the most p

 44

digits, (4) the third input significand has the pattern

{1−9}00⋯0 X
p

, X {1−9}00⋯0 X
p

,⋯, X⋯X {1−9}0 X
p

.

D)Shift Model

 The model aims to verify all the possible shifting of the input significands.

The proposal ideas of the model are also in [22]. We separate the model into

two sub-models as follows:

1. It verifies all the possible shifting to the third input significand using, (1) a

list of right shift to the third input consists of the interval [1, qmax−qmin], (2)

sid indicates that the third input exponent is the smaller exponent input of the

addition operation.

2. It verifies all the possible shifting to the multiplication intermediate result

significand using, (1) a list of right shift to the multiplication intermediate

result consists of the interval [1, qmax−2∗qmin], (2) sid indicates that the

multiplication intermediate result exponent is the smaller exponent input of the

addition operation.

E) Trailing and Leading Zeros Model

 The model aims to verify all the possible trailing and leading zeros in the

input significands and the addition intermediate result significand. The proposal

ideas of the model are also in [22]. We separate the model into three sub-

models as follows:

1. It verifies the different patterns of digits of the input significands using, (1) a

list is from two values of sid , (2) a list of the third input significand, (3) a

similar list of the multiplication intermediate result significand that has 2 p

digits. The second and the third lists have the same pattern

 45

{1−9}00⋯00
p

,0{1−9}00⋯00
p

,⋯, 00⋯0{1−9}
p

,

{1−9}{1−9}0⋯00
p

,0{1−9}{1−9}0⋯00
p

,⋯, 00⋯0{1−9}{1−9}
p

,

{1−9}X {1−9}0⋯00
p

,0{1−9}X {1−9}0⋯00
p

,⋯ ,00⋯0{1−9}X {1−9}
p

,

⋮

{1−9}XX⋯X {1−9}
p

2. It verifies different patterns of digits of the addition intermediate result

significands using (1) a list of the addition intermediate result significand of

p digits before fractional point, consists of similar pattern of the previous

sub-model.

 3. It verifies the final carry with different pattern of zeros in the addition

intermediate result significand using, (1) a list of the addition intermediate

result sigificand consists of the following patterns

1{1−9}00⋯00
p1

,10{1−9}00⋯00
p1

,⋯,100⋯0 {1−9}
p1

,100⋯00
p1

,

1{1−9}{1−9}0⋯00
p1

,10 {1−9}{1−9}0⋯00
p1

,⋯, 100⋯0{1−9}{1−9}
p1

,

1 {1−9}X {1−9}0⋯00
p1

,10{1−9}X {1−9}0⋯00
p1

,⋯ ,100⋯0{1−9}X {1−9}
p1

,

⋮

1 XX⋯X {1−9}
p1

F) Carry and Borrow model

 The model aims to verify all the possible propagation of carries and borrows

in the addition operation. The Ideas of the model are all new. We separate the

model into four sub-models as follows:

1. It verifies all patterns of the borrow propagation when the addition operation

is effective subtraction using, (1) a list of right shift values to the third input

consists of the interval [1,2 p], (2) sid indicates that the third input exponent

is the smaller exponent input of the addition operation, (3) a list of the

multiplication intermediate result significand consists of the following pattern

 46

{1−9}00⋯0 X
2p

,{1−9}00⋯0XX
2p

,⋯ ,{1−9}X⋯XX
2p

,

X {1−9}0⋯0 X
2p

, X {1−9}0⋯0XX
2p

,⋯, X {1−9}X⋯XX
2p

,

X X {1−9}0⋯0 X
2p

, X X {1−9}0⋯0XX
2p

,⋯, X X {1−9}X⋯XX
2p

,

⋮

XXX ⋯X {1−9}
2p

2. It verifies all patterns of the borrow propagation when the addition operation

is effective subtraction using, (1) a list of right shift to the multiplication

intermediate result consists of the interval [1, p] , (2) sid indicates that the

multiplication intermediate result exponent is the smaller exponent input of the

addition operation, (3) a list of the third input significand consists of similar

pattern to the pattern in sub-model 1, but with p digits.

3. It verifies all patterns of the carry propagation when the addition operation is

effective addition using, (1) a list of right shift values to the third input in the

interval [1,2 p], (2) sid indicates that the third input exponent is the smaller

exponent input of the addition operation, (3) a list of the multiplication

intermediate result significand consists of the following pattern.

{1−9}99⋯99
2p

,{1−9}99⋯99X
2p

,{1−9}99⋯9XX
2p

,⋯, {1−9}X⋯XX
2p

,

X {1−9}99⋯99
2p

, X {1−9}99⋯99X
2p

, X {1−9}99⋯9XX
2p

,⋯ , X {1−9}X⋯XX
2p

,

XX {1−9}99⋯99
2p

,{1−9}99⋯99X
2p

, XX {1−9}99⋯9XX
2p

,⋯, XX {1−9}X⋯XX
2p

,

⋮

XXX ⋯X {1−9}
2p

4. It verifies all patterns of the carry propagation when the operation is effective

addition using, (1) a list of right shift values to the multiplication result

consists of the interval [1, p] . (2) sid indicates that the multiplication

intermediate result exponent is the smaller exponent input of the addition

operation, (3) a list of the third input significand of similar pattern to the pattern

in sub-model 3, but with p digits.

G) Overflow Model

 The model aims to verify all the overflow and the near overflow cases. We

 47

separate the model into four sub-models as follows:

1.It verifies the overflow cases due to the rounding process using, (1) the

addition intermediate result significand is equal to 10 p−1 , with a guard digit

consists of the interval [5,9] , (2) the addition intermediate result exponent is

equal to qmax , (3) a list is from two rounding modes Round ties to even and

Round ties to away,(4) a list of the multiplication intermediate result exponent

consists of the interval [qmax−p, qmax].

2.It verifies the overflow cases due to the rounding process using, (1) the

addition intermediate result significand is equal to 10 p−1 , with a guard digit

consists of the interval [1,9] , (2) the addition intermediate result exponent is

equal to qmax , (3) two rounding modes are Round to positive and Round to

negative, (4) a list of the multiplication intermediate result exponent consists

of the interval [qmax−p, qmax].

3. It verifies the overflow cases due to the final carry at the effective addition

operation using, (1) the number of digits before fractional point of the addition

intermediate result significand is equal to p1 , (2) the addition intermediate

result exponent is equal to qmax , (3) a list of the multiplication intermediate

result exponent consists of the interval [qmax−p, qmax] , (4) a list of number

of digits of the third input significand consists of the interval [1, p] .

4. It verifies the overflow cases due to the result of the multiplication operation

using, (1) a list of the multiplication intermediate result exponent consists of

the interval [qmax−p , 2∗qmax]. The proposal idea of this sub-model is in [22].

H) Clamping Model

The clamping occurs when the intermediate result exponent is larger than

qmax , and the number of digits of the intermediate result significand is less

than p , such that the sum of the intermediate result exponent to the number

of digits of the intermediate result significand is less than or equal to

qmaxp . At that case, the engine shifts to left the intermediate result

significand and reduces the number of leading zeros.

 48

 The model aims to verify all clamping cases. We separate the model into two

sub-models as follows:

1. It verifies the clamping case using, (1) a list of the multiplication

intermediate result exponent consists of the interval [qmax1,qmaxp−1] , (2)

a list of number of digits of the multiplication intermediate result significand

consists of the interval [1, p] , (3) the multiplication intermediate result

exponent to the number of digits of the multiplication intermediate result

signicand is less than or equal to qmaxp , (4) a list of third input significand

consists of {zero ,random number}, (5) the third input exponent is equal to

qmax .

2. It verifies the cases of left shift to the addition intermediate result significand

due to the preferred exponent condition using, (1) a list of the multiplication

intermediate result exponent consists of the interval [qmin1,qmaxp] , (2) a

random value of number of digits of the multiplication intermediate result

significand from the interval [1, p] , (3) the third input significand is equal to

zero, (4) the third input exponent is less than the multiplication intermediate

result exponent.

I) Underflow Model

 The model aims to verify all the underflow and the near underflow cases. We

separate the model into three sub-models as follows:

1. It verifies the underflow due to the result of the multiplication operation

using, (1) a list of the multiplication intermediate result exponents consists of

the interval [2∗qmin , qmin], (2) a list of third input significand consists of

{zero ,random number}. The proposal idea of this sub-model is in [22].

2. It verifies the underflow flag when the result is inexact and the result

exponent is equal to qmin using, (1) a list of the multiplication intermediate

result exponent consists of the interval [qmin−2p , qmin] , (2) a list of number of

digits of the multiplication intermediate result consists of the interval [1,2 p],

(3) the third input significand is equal to zero.

 49

3. It verifies the underflow flag when the result is exact and the result exponent

is equal to qmin using, (1) a list of the multiplication intermediate result

exponent consists of the interval [qmin−2p , qmin] , (2) a list of the

multiplication intermediate result significand consists of the pattern

{{1−9}00⋯0 , X {1−9}00⋯0,⋯, XX⋯X {1−9}}, (3) the third input significand is

equal to zero.

J) Cancellation Model

 The model aims to verify all the cancellation cases, which has cancellation

digits in the most digits of the addition intermediate result due to the effective

subtraction operation. We separate the model into ten sub-models as follows:

1. It verifies the cases of all possible number of the cancellation digits using,

(1) a list of the addition intermediate result significand consists of an interval

of number of digits before the fractional point [1, p−1] , and an interval of

number of digits after the fractional point [1, p−1] at zero value before the

fractional point, (2) a list of right shift consists of the interval [0,1] , (3) a list

of number of digits of the multiplication intermediate result significand consists

of the interval [1,2 p], (4) sid identifies the third input exponent as the

smaller addition exponent. The proposal idea of this sub-model is in [22].

2. It verifies the cases of all possible number of the cancellation digits, (1) a list

of the addition intermediate result significand similar to the list in sub-model

1, (2) a list of right shifts consists of the interval [0,1] , (3) a list of number of

digits of the third input significand consists of the interval [1, p] , (4) sid

identifies the multiplication intermediate result exponent as the smaller

exponent. The proposal idea of this sub-model is in [22].

3. It verifies the zero result due to cancellation using, (1) the addition

intermediate result significand is equal to zero value, (2) the right shift is zero,

(3) a list of number of digits of the multiplication intermediate result

significand consists of the interval [1,2 p]. The proposal idea of this sub-

model is in [22].

 50

4. It verifies the cases when the result is exact due to cancellation using, (1) the

addition intermediate result significand has zero value after the fractional point,

(2)a list of the multiplication intermediate result significand consists of the

pattern

{1−9}XX⋯X

p

000⋯0
p−1

{1−9},{1−9}XX⋯X
p

00⋯0
p−2

{1−9}X ,

{1−9}XX⋯X
p

00⋯0
p−3

{1−9}XX ,⋯, {1−9}XX⋯X
p

{1−9}XX⋯X

(3) a list of right shift to the third input significand consists the interval

[p ,2p−1] , (4) sid identifies the third input exponent as the smaller addition

exponent.

5. It verifies the cases when the result is exact due to the cancellation using, (1)

the addition intermediate result significand has zero value after point, (2) a list

of the multiplication intermediate result significand consists of the pattern

{1−9}XX⋯X

p

{1−9}00⋯0 , {1−9}XX⋯X
p

X {1−9}00⋯0,

{1−9}XX⋯X
p

XX {1−9}00⋯0 ,⋯, {1−9}XX⋯X
p

XX⋯X {1−9}

(3) a list of right shift to the third input significand from the interval [1, p] , (4)

sid identifies the third input exponent as the smaller addition exponent.

6. It verifies the underflow cases due to cancellation using, (1) a list of the

addition intermediate result significand consists of the interval of number of

digits before fractional point [1, p−1] , and the interval of number of digits

after point [1, p] , (2) a list of values of the addition intermediate result

exponent in the interval [qmin, qmin p−1], (3) a list of right shift consists of

the interval [0,1] . The proposal idea of this sub-model is in [22].

7. It verifies the underflow due to cancellation using, (1) One cancellation digit

in the addition intermediate result significand (2) the addition intermediate

result exponent is equal to qmin , (3) a list of the multiplication intermediate

result exponent consists of the interval [2∗qmin , qmin1] .

8. It verifies the near overflow cases with cancellation using, (1) a list of the

addition intermediate result significand consists of the interval of number of

 51

digits before point [1, p−1] , (2) a right shift is equal to one, (3) the addition

intermediate result exponent is equal to qmax1 .

9. It verifies the cancellation cases with one digit using, (1) one cancellation

digit in the addition intermediate result significand, (2) a list of right shift from

the interval [2, qmax−2∗qmin], (3) sid identifies the multiplication result

exponent as the smaller exponent. The proposal idea of this sub-model is in

[22].

10. It verifies the cancellation cases with one digit using, (1) one cancellation

digit in the addition intermediate result significand, (2) a list of right shift from

the interval [2, qmax−qmin], (3) sid identifies the third input exponent as the

smaller exponent. The proposal idea of this sub-model is in [22].

4.3 Summary

This chapter represents the main steps of the first FMA engine to solve all the

constraints numerically. It also describes the main ideas of the coverage

models that have been solved by the engine to generate test vectors can verify

all the corner cases in the hardware or software implementations of the decimal

floating-point FMA operation.

The engine cannot find the solution from the first trial, and may not solve all

the constraints on the least digits of the multiplication intermediate result that

have weight less than 10p−1 .

The engine solved the coverage models one time and generated about 425000

test vectors in Decimal64, the test vectors have proved their efficiency by

discovering bugs in Silminds design and FMA DecNumber implementation.

The DecNumber bugs are discovered using the carry and borrow model, while

most of Silminds bugs are discovered using the overflow and the underflow

models.

 52

Chapter 5

Engine and Models of Decimal Square Root Operation

The square root engine is a software tool written in C++ to generate square root

test vectors can cover all corner cases, to verify a tested implementation of

decimal square root operation to achieve the compliance with the IEEE

standard (754-2008) for Floating Point Arithmetic, it takes coverage models as

inputs and generates test vectors as outputs.

The engine generates the test vectors in two formats of the IEEE standard:

Decimal64 and Decimal128. The engine time to generate one test vector

depends on the constraints that have been solved to generate it and the factor of

randomization that the engine needed. The engine generates as many test

vectors as the user wants. Every time the engine runs, it generates new test

vectors. The verification engine value is neither in the time needed to generate

the test vector, if this time is practical, nor in the number of the generated test

vectors, but rather in the functionality of the cases that the test vector covers.

The engine solved the coverage models one time and generated about 50000

test vectors in Decimal64 and about 199000 test vectors in Decimal128, the test

vectors have proved an efficiency by discovering bugs in DecNumber

library[23] and Silminds design [7]. Table 2 shows the maximum and the

minimum times that the engine needed to solve a task of the existing

constraints and generate one test vector, on Intel(R) Pentium(R) 4 CPU

3.20GHZ with g++ (Ubuntu 4.4.3) compiler.

TABLE 2. THE TIME PERFORMANCE OF THE SQUARE ROOT ENGINE

Test vector Format Minimum Time Maximum Time

Decimal 64 0.006 seconds 37 seconds

Decimal 128 0.017 seconds 2.35 minutes

Although the engine solves constraints on the input and the intermediate result

 53

only, it managed to discover some faults inside the operation in two designs by

forcing the engine to solve constraints on patterns of zeros and nines in the

intermediate result significand.

The generated test vector is a decimal vector that has three sets, The first set is

type of the operation square root, number of the precision (64 or 128), and the

rounding mode. The second set is sign, significand, and exponent of the input.

The third set is sign, significand, and exponent of the result. Finally the fourth

set is one of two flags(invalid, inexact). The designer enters the input set to his

implementation and verifies his output against the last two sets.

The task given to the square root engine is the set of constraints on four

elements, the significand of the input Sx , the intermediate result significand

Sz , the exponent of the input, and the rounding mode. The constraint on Sx

is a mask starting from the minimum number Nx to the maximum number

Mx. Similarly, the mask on Sz consists of two numbers Nz and Mz. The

input exponent and the rounding direction are either given explicitly in the task

or left to the engine to choose randomly.

An example to explain the format of the decimal square root task at p=16 is

as follows:

64V T : 1000000000 9999999999

0000000000009999.600000000000000000000000
9999999999999999.699999999999999999999999 R R

 This task means that Nx=1000000000, Mx=9999999999,

Nz=0000000000009999.600000000000000000000000,

Mz=9999999999999999.699999999999999999999999, the engine chooses randomly

the exponent of the input, and it chooses randomly the rounding mode.

One of the solutions of this task is the test vector

d64V 0 3425834081E146 -> 5853062515469999E62 X . The d64 means decimal64,

the V means the square root operation, the following 0 means that the

rounding mode is Round toward Zero, the input is x=3425834081∗10146 , the

rounded result is z=5853062515469999∗1062, and the following X indicates

 54

 that the inexact flag is high, because the exact result is

5853062515469999659210807209389743301409⋯.

We represent the intermediate result with length 2.5 p digits not including the

leading zeros to guarantee that the engine can generate all the possible hardest-

to-round cases, where the hardest-to round case needs only 2p−1 digits not

including leading zeros to do the rounding process according to the standard.

5.1 The Square Root Engine

The inverse operation of the square root is the multiplication of the

intermediate result with itself which gives the input of the square root

operation. The engine is based on solving the non linear equations that result

from multiplying the intermediate result with itself. We can estimate these non

linear equations from Figure 4, where each column represents one nonlinear

equation. The figure shows the squarer of the intermediate result at p=16 ,

where Sz i denotes the intermediate result digit of weight 10i , and Sx i

denotes the input digit of weight 10i .

 The engine uses 2.5 p digits only for the intermediate result significand

Sz. Hence, if the infinity precise square root of the input significand Sx has

more digits, then Sz is truncated, i.e. it is slightly less than the infinitely

precise square root. The square of Sz will thus be Sx− with 0≤10−L

where L depends on the number of digits of Sz. This explains the series of

nines that follows Sx0−1 as seen in Figure 4. Also if the input exponent is

odd, the engine shifts the input significand one digit to the left which explains

that Sx p may exist. For example if the input is x=8116261898426249∗10351 which

has 16 digits in the input significand, the engine solves it as

x=81162618984262490∗10350 which has 17 digits.

The square of the most significant digit of Sz such as in Figure 4 should be on

a column with an even index for Sx. If Sz84 , that squaring does not

generate a carry into a higher position. Otherwise, if Sz8≥4 , its square

generates a carry into position Sx17 . Note that even if Sz8=3 (the square is 9)

a carry into the position of Sz8 Sz8 will lead to a carry out into the position of

 55

Sx 17. So, in general, if the position formula w x of the most significant

nonzero digit Sxw x
of the input is odd then, Sxw x

is a carry from the first

nonlinear equation.

The engine steps begin by choosing the input exponent formula Ex according

to its constraints. If the input exponent is odd, the engine shifts Nx and Mx

by one digit to the left, and subtracts one from Ex .

Then, the engine gets the intermediate result significand Sz and the input

significand Sx that achieve the constraints. It achieves the constraint on each

digit Sx n or Szn by choosing the digit from its interval formula [Nxn , Mxn] or

formula [Nzn , Mzn]. It solves the significands constraints using one of two

algorithms, the first algorithm is the Square-Root-Most-Digits-Constraints-

Algorithm to solve the constraints on the most significant p digits of the

intermediate result significand and the p1 digits of the input significand,

Figure 4. The squarer of the Intermediate Result assuming Precision 16

the second algorithm is the Square-Root-Least-Digits Constraints-Algorithm to

solve the constraints on the least significant digits that follow the highest p

digits of the intermediate result significand.

After the engine gets the significand value of Sx and Sz it shifts to left the

significand formula Sz by p−w x/2 and calculates the result exponent

formula E z=Ex/2−pwx/2 , if the result is inexact. If the input exponent is

odd, the engine shifts Sx by one digit to right and increases Ex by one.

 56

∗
Sz8

Sz8

Sz7

Sz7

Sz6

Sz6

Sz5

Sz5

Sz4

Sz4

Sz 3

Sz 3

Sz 2

Sz 2

Sz 1

Sz 1

Sz 0

Sz 0

Sz−1⋯

Sz−1⋯

Sz 8Sz 8 Sz 8 Sz 7

Sz 7 Sz 8

Sz 8 Sz 6

Sz 7 Sz 7

Sz 6 Sz 8

Sz 8 Sz 5

Sz 7 Sz 6

Sz 6 Sz 7

Sz 5 Sz 8

Sz 8 Sz 4

Sz 7 Sz 5

Sz 6 Sz 6

Sz 5 Sz 7

Sz 4 Sz 8

Sz 8Sz 3

Sz 7 Sz 4

Sz 6Sz 5

Sz 5Sz 6

Sz 4Sz 7

Sz 3Sz 8

Sz 8 Sz 2

Sz 7 Sz 3

Sz 6Sz 4

Sz 5 z 5

Sz 4 Sz 6

Sz 3Sz 7

Sz 2Sz 8

Sz 8 Sz 1

Sz 7 Sz 2

Sz 6 Sz 3

Sz 5 Sz 4

Sz 4 Sz 5

Sz 3 Sz 6

Sz 2 Sz 7

Sz 1 Sz 8

Sz 8 Sz 0

Sz 7 Sz 1

Sz 6 Sz 2

Sz 5 Sz 3

Sz 4 Sz 4

Sz 3 Sz 5

Sz 2 Sz 6

Sz 1 Sz 7

Sz 0 Sz 8

Sz 8Sz−1

Sz 7Sz 0

Sz 6Sz 1

Sz 5Sz 2

Sz 4 Sz 3

Sz 3Sz 4

Sz 2Sz 5

Sz 1Sz 6

Sz 0Sz 7

Sz−1Sz 8

Sz 8 Sz−2

Sz 7 Sz−1

Sz 6 Sz 0

Sz 5 Sz 1

Sz 4 Sz 2

Sz 3 Sz 3

Sz 2 Sz 4

Sz 1 Sz 5

Sz 0 Sz 6

Sz−1 Sz 7

Sz−2 Sz 8

Sz 8 Sz−3

Sz 7 Sz−2

Sz 6 Sz−1

Sz 5 Sz 0

Sz 4 Sz 1

Sz 3 Sz 2

Sz 2 Sz 3

Sz 1 Sz 4

Sz 0 Sz 5

Sz−1Sz 6

Sz−2Sz 7

Sz−3Sz 8

Sz 8Sz−4

Sz 7Sz−3

Sz 6z−2

Sz 5Sz−1

Sz 4 Sz 0

Sz 3Sz 1

Sz 2Sz 2

Sz 1Sz 3

Sz 0Sz 4

Sz−1 Sz 5

Sz−2 Sz 6

Sz−3 Sz 7

Sz−4 Sz 8

Sz 8 Sz−5

Sz 7 Sz−4

Sz 6 Sz−3

Sz 5 Sz−2

Sz 4 Sz−1

Sz 3 Sz 0

Sz 2Sz 1

Sz 1 Sz 2

Sz 0 Sz 3

Sz−1 Sz 4

Sz−2Sz 5

Sz−3Sz 6

Sz−4Sz 7

Sz−5Sz 8

Sz 8Sz −6

Sz 7Sz −5

Sz 6Sz−4

Sz 5Sz −3

Sz 4 Sz−2

Sz 3Sz −1

Sz 2 Sz 0

Sz 1 Sz 1

Sz 0 Sz 2

Sz−1 Sz 3

Sz−2 Sz 4

Sz−3 Sz 5

Sz−4 Sz 6

Sz−5 Sz 7

Sz−6 Sz 8

Sz 8 Sz−7

Sz 7 Sz−6

Sz 6 Sz−5

Sz 5 Sz−4

Sz 4 Sz−3

Sz 3 Sz−2

Sz 2Sz−1

Sz 1Sz 0

Sz 0Sz 1

Sz−1Sz 2

Sz−2Sz 3

Sz−3Sz 4

Sz−4Sz 5

Sz−5Sz 6

Sz−6Sz 7

Sz−7Sz 8

Sz 8 Sz−8

Sz 7 Sz−7

Sz 6 Sz−6

Sz 5 Sz−5

Sz 4 Sz−4

Sz 3 Sz−3

Sz 2 Sz−2

Sz 1 Sz−1

Sz 0 Sz 0

Sz−1 Sz 1

Sz−2 Sz 2

Sz−3 Sz 3

Sz−4 Sz 4

Sz−5 Sz 5

Sz−6 Sz 6

Sz−7 Sz 7

Sz−8 Sz 8

Sz 8 Sz−9⋯

Sz 7Sz−8⋯
Sz 6Sz−7⋯

Sz 5Sz−6⋯
Sz 4Sz−5⋯

Sz 3Sz−4⋯

Sz 2Sz−3⋯
Sz 1Sz−2⋯

Sz 0Sz−1⋯

Sz−1Sz 0⋯

Sz−2 Sz 1⋯

Sz−3 Sz 2⋯

Sz−4 Sz 3⋯

Sz−5Sz 4⋯

Sz−6 Sz 5⋯
Sz−7 Sz 6⋯

Sz−8 Sz 7⋯

Sz−9 Sz 8⋯

Sx16 Sx15 Sx 14 Sx13 Sx12 Sx 11 Sx 10 Sx9 Sx8 Sx7 Sx 6 Sx5 Sx4 Sx3 Sx 2 Sx1 Sx0 −1 9 ⋯

 5.1.1The Square Root Most Digits Constraints Algorithm

 The algorithm iterates to solve the nonlinear equations from left to right. As

shown in Figure 4, for p=16, the first non linear equation from left is

 Sx 16−Sz8∗Sz8=br16 (5.1)

where br16 is the value of carries that transfer from previous weights to the

weight of 1016 , or the borrow generated from this weight to lower weights.

The second and the third non linear equations are:

 Sx 1510∗br16−2∗Sz7∗Sz8=br15 (5.2)

 Sx 1410∗br15−2∗Sz6∗Sz8−Sz7∗Sz7=br14 . (5.3)

In general the nonlinear equation for the column of index n is :

 brn=Sxn10∗brn1− ∑
j=n−wx /2

w x/2

Sz j∗Szn− j , (5.4)

To start the solution, the algorithm attempts to solve equations 5.1 to 5.3

(representing columns 16 to 14) together based on the range of carries that may

transfer from the next lower significant columns. The algorithm chooses the

digit Sx 16 and the digit Sx 15 randomly from their intervals. Then since the

ranges of borrow digit br14 and the digit Sz6 are known as

Ncr14≤br14≤Mcr14 and Nz6≤Sz6≤Mz6 , the algorithm transforms Equation 5.3

to the inequality condition:

 Ncr142∗Nz6∗Sz8≤Sx 1410∗br15−Sz7∗Sz7≤Mcr142∗Mz6∗Sz8 . (5.5)

 Finally, it searches randomly on the values of Sz8 , Sz7 , Sx14 that satisfy

Equation 5.1, Equation 5.2 and the Inequality 5.5. The steps taken so far

constitute the first outer iteration that gets the final values of

Sz8 , Sx16 , Sx15 , Sx14 and estimates the value of Sz7 that may be refined in the

following iteration.

 In the second iteration, the algorithm transforms the fourth nonlinear equation

Sx 1310∗br14−2∗Sz5∗Sz8−2∗Sz6∗Sz7=br13 to

 Ncr132∗Nz5∗Sz8≤Sx 1310∗br14−2∗Sz6∗Sz7≤Mcr132∗Mz5∗Sz8 ,

 57

and searches randomly on the values of Sz7 , Sz6 , Sx13 that achieve the second

nonlinear equation, the third nonlinear equation and the inequality condition,

where the digits Sz8 , Sb16 , Sx16 , Sx 15, Sx 14 , are known from the previous

iteration. The algorithm does this procedure in all the iterations and gets all

digits of Sx and Sz.

 In general, for any precision, the algorithm gets randomly the first two digits

of Sx , which are Sxw x
and Sxw x−1 from their intervals. If w x is odd, it gets

randomly the digit Sxw x−2 , replaces Sxw x−1 with Sxw x−110∗Sxwx
, and

replaces w x with w x−1 .

 Then, it loops through a number of outer iterations equal to the number of

nonlinear equations(i.e number of columns). The index of the outer iterations

goes from formula 1≤i≤2.5p . The algorithm gets in iteration i the values of

Szw x /2−i1 and Sxw x− i−1 and estimates the value of Szw x /2−i . Then, in the next

iteration it gets the values of Szw x /2−i and Sxw x− i−2 and estimates Szw x /2−i−1 ,

and so on.

 The general form of Equation 5.1, at iteration i , is

 brw x− i1=Sxw x−i1− ∑
j=w x/2− i1

w x/2

Sz j∗Szw x− i1− j . (5.6)

Equation 5.6 calculates the borrow from the column of index w x−i1 . The

equation has one unknown brw x− i1 (i.e the borrow of the column), while the

other elements of the equation are known from the previous iterations and the

value Szw x /2−i1 .

 The general form of Equation 5.2, at iteration formula i , is

 brw x− i=Sxwx−i10∗brwx−i1− ∑
j=w x/2−i

wx/ 2

Sz j∗Szwx−i− j , (5.7)

which calculates the borrow from the column of index w x−i . The equation

has one unknown brw x− i (i.e the borrow of the column), while the other

elements of the equation are known from the previous iterations, the values of

Szw x /2−i1 , Szw x/2−i , and the value of brw x− i1 from Equation 5.6.

 58

 Similarly, the general form of Equation 5.3, at iteration formula i , is

 brw x− i−1=Sxw x−i−110∗brw x−i− ∑
j=wx /2− i−1

w x/2

Sz j∗Szw x−i−1− j . (5.8)

As the ranges of brw x− i−1 and Szw x /2−i−1 are known, the algorithm transforms

Equation 5.8 to inequality 5.9, which is the general form of inequality 5.5.

Ncrw x−i−2Ncrw x−i−3Ncrw x− i−42∗Szw x/2
∗Nzw x/2−i−1≤

Sxw x−i−110∗brw x−i− ∑
j=wx /2− i

w x /2−1

Sz j∗Szw x−i−1− j

≤2∗Szwx /2
∗Mzwx /2−i−1Mcrw x−i−2Mcrw x−i−3Mcr wx−i−41

 (5.9)

 Within each outer iteration, the engine does a second level of iterations to get

the values of Sxw x− i−1 , Szw x/2−i1 , Szwx / 2−i that achieve at each outer iteration

inequality 5.9. At this second level of iterations, the engine just chooses random

numbers from the intervals of Sxw x− i−1 , Szw x /2−i1 , Szwx/ 2−i . If these numbers do

not satisfy inequality 5.9, it chooses another combination of numbers, and so

on until it finds a set of numbers that satisfy this inequality.

 The range of brw x− i−1 is the range of the carries that transfer from the

columns following the column w x−i−1 . Since the algorithm solves only 2.5 p

columns, the maximum product sum of any column at p=34 is equal to

2.5∗34∗9∗9=6685 . This number means that a carry from any column,at

p≤34, may affect the previous three columns directly by a value more than

one and affects the higher columns indirectly by a value less than or equal to

one. Based on that, the algorithm determines the range of carries that transfer to

the column formula w x−i−1 from the next three columns formula

w x−i−2, w x−i−3, w x−i−4.

Equation 5.10 and Equation 5.11 get the maximum and the minimum carries

formula Mcrw x−i−2 , Ncrwx−i−2 from the column of index formula w x−i−2 to the

column of index formula w x−i−1 .

Mcrw x−i−2=

∑
j=w x/2−1

w x/2

2∗Sz j∗Mzwx−i−2− j ∑
j=wx / 2−i

w x /2−2

Sz j∗Szw x− i−2− j

10
,

 (5.10)

 59

Ncrwx−i−2=

∑
j=wx /2−1

w x/2

2∗Sz j∗Nz wx−i−2− j ∑
j=wx/ 2−i

w x/2−2

Sz j∗zw x− i−2− j

10
,

 (5.11)

Equation 5.12 and Equation 5.13 get the maximum and the minimum carries

formula Mcrw x−i−3 , Ncrwx−i−3 from the column of index formula w x−i−3 to the

column of index formula w x−i−1 .

Mcrw x−i−3=

∑
j=w x/2−2

wx/ 2

2∗Sz j∗Mzwx−i−3− j ∑
j=wx /2− i

w x/2−3

Sz j∗Szw x−i−3− j

100
,

 (5.12)

Ncrwx−i−3=

∑
j=wx /2−2

w x/2

2∗Sz j∗Nzwx−i−3− j ∑
j=wx /2−i

w x/2−3

Sz j∗Szw x−i−3− j

100
,

 (5.13)

Equation 5.14 and Equation 5.15 get the maximum and the minimum carries

formula Mcrw x−i−4 , Ncrw x− i−4 from the column of index formula w x−i−4 to the

column of index formula w x−i−1 .

Mcrw x− i−4=

∑
j=w x /2−3

w x /2

2∗Sz j∗Mzw x−i−4− j ∑
j=w x/2− i

w x /2−4

Sz j∗Szw x−i−4− j

1000
,

 (5.14)

Ncrwx−i−4=

∑
j=w x/2−3

wx/ 2

2∗Sz j∗Nzw x−i−4− j ∑
j=wx /2− i

w x /2−4

Sz j∗Szw x−i−4− j

1000
,

 (5.15)

After getting the iteration values Sxw x− i−1 , Szw x /2−i1 , Szwx/ 2−i , the algorithm

propagates the borrows between the digits of Sx to be in the form of the

general Equations 6.15 to 8.15 It replaces formula Sx w x−i1 with formula

Sx w x−i1−brw x−i1 , formula Sxw x− i with formula Sx w x−i10∗brw x−i1−brw x−i , and

formula Sx w x− i−1 with formula Sx w x− i−110∗brw x− i . Then, the algorithm begins

the next outer iteration using the same procedure, and so on until it gets all

digits of Sx and Sz.

5.1.2The Square Root least Digits Constraints Algorithm

The previous algorithm gets the digits of Sx that satisfy the constraints on the

most significant digits of Sz and do not take the constraints of the least digits

of Sz in its calculations. Hence, in case there are constraints on the least

 60

significant digits of the intermediate result significand Sz (that have weight

less than 10w x/2− p), the previous algorithm alone will not succeed to get a

solution in some hard constraints. An example of the hard constraints is a series

of zeros or nines in the least digits of Sz , which are needed to verify the

rounding process in the different designs.

The Square Root least digits algorithm gives the value of the input significand

Sx , which yields the needed hard constraints in the intermediate result

significand Sz. This algorithm solves the series of zeros constraint and the

series of nines constraint in similar ways starting from right (least significant)

to left.

As shown in Figure 5, the intermediate result significand Sz has a series of

zeros from the weight 10−9 to 10−19 , due to this series of zeros, the elements

are decreased in the columns of indexes from −2 to −12 . The algorithm

solves the nonlinear equations of the columns of indexes from −12 to −1 , to

get the digits of Sz from Sz−8 to Sz7 .

The algorithm gets randomly the elements of the products in the column of

index −12 , which are Sz−8 , Sz−7 , Sz−6 , Sz−5 , and Sz−4 from their intervals.

It calculates the carries cr−12 , cr−13 , and cr−14 of the columns of indexes

−12, −13 , and −14 , then replaces cr−12 with cr−12cr−13/10cr−14/100 ,

such that formula cr−12mod10=0 .

Then, the algorithm attempts to solve the non linear equations of the columns

of indexes −11, −10, −9 . It searches randomly on the combination of values

of Sz−3 , Sz−2 , Sz−1 that achieves the conditions cr−11mod10=0, cr−10 mod10=0,

and cr−9 mod10=0 . Up to now, the algorithm does the first iteration, gets the

digit Sz−3 , and estimates the digits Sz−2 , Sz−1 . In the second iteration, it

searches randomly on the values of Sz−2 , Sz−1 , Sz0 that achieve the nonlinear

equations of the columns of indexes −10, −9, −8 , to get the digit value of

z−2 , and estimates the digits Sz−1 , Sz0 . The algorithm does this procedure

in all iterations to get the remaining digits of Sz , from Sz−1 to Sz7 .

The general form of the nonlinear equations is:

 61

 crn= ∑
j=n−w x/2

wx /2

Sz j∗Szn− jcrn−1/10−Sxn , (5.16)

In general, the algorithm determines the series of zeros after the most p digits

in the mask of the intermediate result significand formula Mz , Nz . The weight

of the first zero from the left is denoted by formula 10Fw and the weight of

the last zero in the series is denoted by formula 10Lw . It gets the digits from

Sz Fw1 , to Szw x /2−1−FwLw , which are the elements of the products of the

column of index formula W x /2Lw .

Equation 5.17 gets the value of the carry generated from the column of index

formula W x /2Lw .

Figure 5. The Squarer of the Intermediate Result with Constraint of Series of Zeros on the Least Digits

the carry from the column of index formula W x /2Lw−1 , and the carry from

the column of index formula W x /2Lw−2 . The carry from the column of

index formula W x /2Lw−1 to the column of index formula W x /2+ Lw , is the

products sum of the column formula W x /2Lw−1 divided by 10. The carry

from the column of index formula W x /2Lw−2 to the column of index formula

W x /2Lw , is the products sum of the column formula W x /2Lw−2 divided

by 100.

 62

∗


10

w
x
/2
=107

Sz 7⋯Sz 1

Sz 7⋯Sz 1

Sz 0

Sz 0

Sz−1

Sz−1

Sz−2

Sz−2

Sz−3

Sz−3

Sz−4

Sz−4

Sz−5

Sz−5

Sz−6

Sz−6

Sz−7

Sz−7

Sz−8

Sz−8


10Fw =10−9

0
0

0
0

0
0

0
0

0
0

0
0


10Lw=10−19

⋯0 Sz−20⋯

⋯0 Sz−20⋯

⋯Sz 7 Sz−7

⋯Sz 6 Sz−6

⋯Sz 5 Sz−5

⋯Sz 4 Sz−4

⋯Sz 3 Sz−3

⋯Sz 2 Sz−2

⋯Sz 1 Sz−1

⋯Sz 0 Sz 0

⋯Sz−1Sz 1

⋯Sz−2Sz 2

⋯Sz−3Sz 3

⋯Sz−4 Sz 4

⋯Sz−5Sz 5

⋯Sz−6Sz 6

⋯Sz−7 Sz 7

⋯x 0−1

Sz 7 Sz−8

Sz 6 Sz−7

Sz 5 Sz−6

Sz 4 Sz−5

Sz 3 Sz−4

Sz 2 Sz−3

Sz 1 Sz−2

Sz 0 Sz−1

Sz−1Sz 0

Sz−2Sz 1

Sz−3Sz 2

Sz−4Sz 3

Sz−5 Sz 4

Sz−6Sz 5

Sz−7 Sz 6

Sz−8 Sz 7

9

0
Sz 6 Sz−8

Sz 5 Sz−7

Sz 4 Sz−6

Sz 3 Sz−5

Sz 2Sz−4

Sz 1 Sz−3

Sz 0 Sz−2

Sz−1 Sz−1

Sz−2 Sz 0

Sz−3 Sz 1

Sz−4 Sz 2

Sz−5 Sz 3

Sz−6 Sz 4

Sz−7 Sz 5

Sz−8 Sz 6

9

0
0

Sz 5Sz−8

Sz 4 Sz−7

Sz 3Sz−6

Sz 2Sz−5

Sz 1Sz−4

Sz 0Sz−3

Sz−1 Sz−2

Sz−2 Sz−1

Sz−3 Sz 0

Sz−4 Sz 1

Sz−5 Sz 2

Sz−6 Sz 3

Sz−7 Sz 4

Sz−8 Sz 5

9

0
0
0

Sz 4 z−8

Sz 3Sz−7

Sz 2Sz−6

Sz 1Sz−5

Sz 0Sz−4

Sz−1Sz−3

Sz−2Sz−2

Sz−3 Sz−1

Sz−4 Sz 0

Sz−5 Sz 1

Sz−6 Sz 2

Sz−7 Sz 3

Sz−8 Sz 4

9

0
0
0
0

Sz 3Sz−8

Sz 2Sz−7

Sz 1Sz−6

Sz 0Sz−5

Sz−1Sz−4

Sz−2Sz−3

Sz−3Sz−2

Sz−4 Sz−1

Sz−5 Sz 0

Sz−6 Sz 1

Sz−7 Sz 2

Sz−8 Sz 3

9

0
0
0
0
0

Sz 2Sz−8

Sz 1Sz−7

Sz 0Sz−6

Sz−1Sz−5

Sz−2Sz−4

Sz−3Sz−3

Sz−4 Sz−2

Sz−5Sz−1

Sz−6 Sz 0

Sz−7 Sz 1

Sz−8 Sz 2

9

0
0
0
0
0
0

Sz 1Sz−8

Sz 0Sz−7

Sz−1Sz−6

Sz−2Sz−5

Sz−3Sz−4

Sz−4 Sz−3

Sz−5 Sz−2

Sz−6 Sz−1

Sz−7 Sz 0

Sz−8 Sz 1

9

0
0
0
0
0
0
0

Sz 0 Sz−8

Sz−1 Sz−7

Sz−2 Sz−6

Sz−3 Sz−5

Sz−4 Sz−4

Sz−5 Sz−3

Sz−6 Sz−2

Sz−7 Sz−1

Sz−8 Sz 0

9

0
0
0
0
0
0
0
0

Sz−1 Sz−8

Sz−2 Sz−7

Sz−3 Sz−6

Sz−4 Sz−5

Sz−5 Sz−4

Sz−6 Sz−3

Sz−7 Sz−2

Sz−8 Sz−1

9

0
0
0
0
0
0
0
0
0

Sz−2Sz−8

Sz−3 Sz−7

Sz−4 Sz−6

Sz−5Sz−5

Sz−6 Sz−4

Sz−7 Sz−3

Sz−8Sz−2

9

0
0
0
0
0
0
0
0
0
0

Sz−3Sz−8

Sz−4Sz−7

Sz−5Sz−6

Sz−6Sz−5

Sz−7 Sz−4

Sz−8Sz−3

9

0
0
0
0
0
0
0
0
0
0
0

Sz−4Sz−8

Sz−5Sz−7

Sz−6Sz−6

Sz−7Sz−5

Sz−8Sz−4

9

2∗Sz 7Sz−20

0
0
0
0
0
0
0
0
0
0
0

Sz−5Sz−8

Sz−6 Sz−7

Sz−7 Sz−6

Sz−8 Sz−5

9

2∗Sz 7Sz−21 ⋯
2∗Sz 6Sz−20 ⋯

0 ⋯

0 ⋯
0 ⋯

0 ⋯
0 ⋯

0 ⋯

0 ⋯
0 ⋯

0 ⋯
0 ⋯
0 ⋯

Sz−6 Sz−8⋯
Sz−7 Sz−7⋯

Sz−8 Sz−6⋯

9 ⋯


w

x
/2Lw=−12


w

x
/2Lw−2=−14

cr wx / 2Lw= ∑
j=Fw1

w x/2−1−FwLw

Sz j∗Szwx /2Lw− j−9

∑
j=Fw1

w
x
/ 2−2−FwLw

Sz j∗Szw x/2−1Lw− j

10


∑
j=Fw1

w
x
/2−3−FwLw

Sz j∗Szwx / 2−2Lw− j

100
,

 (5.17)

 Note that the column of index W x /2Lw−1 has two unknown products

2∗Szw x/2
∗SzLw−1 , and the column of index W x /2Lw−2 has four unknown

products 2∗Szw x /2
∗SzLw−2 , 2∗Szw x/2−1∗Sz Lw−1 . The engine assumes the sum value

of these unknown products 2∗zw x /2
∗zLw−1/102∗zw x /2

∗z Lw−22∗zw x /2−1∗zLw−1/100 ,

to be equal to 10−cr wx/ 2Lwmod10 , and replaces crw x /2Lw with

crw x/2Lw10−crw x /2Lwmod10 , in case of a series of zeros, such that

crwx /2 Lwmod10=0.

In case of a series of nines, the algorithm solves it in the same way like the

series of zeros by adding one to the weight of the last nine in the series of nines

of the intermediate result significand mask, and replaces formula crw x /2Lw

with formula crw x/2Lw−crw x/2Lwmod10 , such that formula cr wx/ 2Lwmod10=0.

Then, the algorithm iterates on the iteration indexes formula Lw1≤i≤Fw1

to get in each iteration the value of a new digit formula Szw x /2−1−Fwi , and

estimates the digits formula Szw x /2−Fwi , Szw x /2−Fwi1 which may be refined in

next iterations. Then, it does another number of iterations from formula

Fw2≤i≤−1−w x/2 to check that the previous chosen digits value of Sz will

make formula Sxw x/2i=9 for all Fw2≤i≤−1−w x/2 .

 Each iteration on formula Lw1≤i≤Fw1 , it searches randomly on the values

of formula Szw x /2−Fwi−1 , Szw x /2−Fwi , and Szw x/2−Fwi1 . It calculates the carry

generated from the columns of index formula w x /2i , w x/2i1, w x /2i2,

using Equation 5.18, Equation 5.19 and Equation 5.20, and checks that the

carries satisfy the conditions cr wx / 2i mod10=0, cr wx / 2i1mod10=0 , and

cr wx / 2i2mod10=0 .

 crw x/2i=crw x/2i−1/10 ∑
j=Fw1

w x/2−1−Fwi

Sz j∗Szwx/ 2i− j−9 , (5.18)

 63

 crw x/2i1=crw x/2i /10 ∑
j=Fw1

w x/2−Fwi

Sz j∗Szwx /2 i1− j−9 , (5.19)

 crw x/2i2=crw x/2i1/10 ∑
j=Fw1

wx /21−Fw i

Sz j∗Szw x/2i2− j−9 , (5.20)

The algorithm repeats all the iterations, if the check in any iteration is not

achieved. As in the first, the algorithm chooses randomly the digits in the

column of index formula W x /2Lw , and the nonlinear equations in the next

iterations depend on this values. This combination of these digits may fail to

satisfy the conditions in the next iteration.

 In the iterations of Lw1≤i≤Fw1 , the algorithm gets digits of Sz from

Szw x /2Lw−Fw to Szw x /2
. The algorithm does other iterations on

Fw+ 2≤i≤−1−w x/2 to calculate in each iteration the carry generated from the

column of index w x /2i , using Equation 5.21, and checks that

cr wx/ 2i mod10=0 . This check may make the algorithm fail to get any solution

as the number of these iterations increase. As the algorithm has chosen all

digits of Sz in the previous iterations without taking in its considerations the

nonlinear equations in the iterations of Fw2≤i≤−1−w x/2 . In this case the

engine refines the constraints to get the best solution.

 crw x/2i=crw x/2i−1/10∑
j=i

w x/2

Sz j∗Szwx/2i− j−9, (5.21)

After getting the needed digits of Sz , the least digits algorithm squares Sz to

get Sx . Then it uses the most digits algorithm to get all digits of Sz using

the digits of Sx .

5.2 Decimal Square Root Rounding Boundaries

We use the engine also to get the hardest-to-round cases and determine the

number of digits needed to do the correct rounding according to the standard.

The problem termed as “table-maker's-dilemma”[11] appears when the result is

inexact and the intermediate result has a series of zeros after p digits, or after

p1 digits. At this case we do not know the value of the sticky bit, therefore

we cannot do correct rounding.

We use the engine to find the largest number of zeros that follow p digits. We

 64

find that the largest number of zeros at p6 is p−2 . The engine generates

cases at p=16 with 14 zeros, and at p=34 with 32 zeros. Two examples

from these cases are : (1) at p=16 , when the input exponent is even and

Sx=6693849239557175 , the result is Sz=8181594734253937000000000000001894 , (2)

at p=34 , when the input exponent is even and

Sx=3011112066528974958465370408325306 , the intermediate result is

Sz=5487360081613903855754351956764089000000000000000000000000000000007198 .

∗ Sz7⋯Sz−8 0 ⋯0
Sz7⋯Sz−8 0 ⋯0

0
0

0
0

0
0

0
0

0 ⋯0 Sz−24⋯

0 ⋯0 Sz−24⋯

⋯0
⋯0

⋯0
⋯0
⋯0
⋯0
⋯0
⋯0
⋯0
⋯0

⋯Sz−3 Sz−8

⋯Sz−4 Sz−7

⋯Sz−5 Sz−6

⋯Sz−6 Sz−5

⋯Sz−7 Sz−4

⋯Sz−8 Sz−3

0
0

0
0
0
0
0
0
0
0

0
Sz−4 Sz−8

Sz−5 Sz−7

Sz−6 Sz−6

Sz−7 Sz−5

Sz−8 Sz−4

0
0

0
0
0
0
0
0
0
0

0
0

Sz−5 Sz−8

Sz−6 Sz−7

Sz−7 Sz−6

Sz−8 Sz−5

0
0

0
0
0
0
0
0
0
0

0
0
0

Sz−6 Sz−8

Sz−7 Sz−7

Sz−8 Sz−6

0
0

0
0
0
0
0
0
0
0

0
0
0
0

Sz−7 Sz−8

Sz−8 Sz−7

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

Sz−8 Sz−8⋯

⋯ 9 9 9 9 9 9 ⋯


w x−2p

Figure 6. The squarer of the intermediate result with a series of zeros equals p−1 .

 Lemma 1: In the decimal square root operation, number of trailing zeros

after p digits in the intermediate result significand Sz that might be followed

by a non-zero digit cannot be more than or equal to p−1 , for all p6 .

 Proof: Let us assume that p−1 zeros or more exist that followed by a non

zero digit, and p6 , as shown in Figure 6. The figure shows that the sum of

the elements must equal to the formula d7 d6 999999 , where 0≤di9 . The sum

of the elements can be represented using Equation 5.22.

ElementsSum=crSzwx /2−p∗Szw x /2−p∗1002∗Szw x /2−p∗Szw x /2−p1∗101

2∗Szw x /2−p∗Szw x /2− p2Szw x /2−p1∗Sz w x /2−p1∗102

2∗Szw x/2− p∗Szw x/2− p32∗Szw x /2−p1∗Szw x /2−p2∗103

2∗Szw x /2−p∗Szw x /2−p42∗Szw x /2−p1∗Szw x /2−p3Szw x /2−p2∗Sz w x/2− p2∗104


2∗Szw x /2−p∗Szw x /2−p52∗Sz w x /2− p1∗Szw x /2−p42∗Szw x /2−p2∗Szw x /2−p3∗105 .

 (5.22)

Where 0≤cr≤2∗9∗9 /104∗9∗9 /1001 is the carry that propagates from the

columns of next lower weights to the digit of weight 10w x−2p , and each of the

 65

six digits zw x/2− p , zw x /2−p1 , zw x /2− p2 , zw x /2−p3 , zw x /2−p4 , zw x /2−p5 has an interval [0,9] .

Note that, for p≤6 , Equation 5.22 is not exit, which means that number of

trailing zeros may be more than p−2 , however number of trailing zeros will

not be more than p zeros.

The condition that the sum of the elements is equal to formula d7 d6 999999 ,

can be represented as the formula ElementsSum−999999 mod 1000000=0 .

An exhaustive search for all the values of

cr , zw x /2−p , zw x /2−p1 , zw x /2−p2, zw x /2− p3 , zw x /2−p4 , zw x/2− p5 , indicates that the condition

ElementsSum−999999 mod 1000000=0 cannot be achieved. Hence the assumption of

p−1 zeros or more is invalid and the lemma is proven.

 Theorem 1: Only 2p−1 digits not including leading zeros are sufficient to

do the correct rounding to Decimal Floating-Point Square Root operation, at

p6 .

 Proof: Based on the previous lemma, no more than p−1 digits are needed

after the rounding position to ensure the correct calculation of the sticky bit.

Hence the total number of digits is p p−1=2p−1.

5.3 The Main Ideas of the Square Root Models

The models are defined using a Cartesian product between two or more lists of

constraints with ignoring the impossible combinations, and allowing the other

constraints to be chosen randomly.

All the model proposal ideas are in [22], except the ideas of the nines and zeros

model. However we describe all the ideas in the form of our engine constraints.

A) Inputs Types Model
The model aims to verify the ability to solve all possible combinations of the

input types. The proposal ideas of the model are in [22]. We separate the model

into three sub-models as follows:

1. It verifies the Zero input using, (1) a list of the input exponent from the

 66

interval [qmin , qmax] , (2) the input significand is equal to zero (3) a list from

the two types of the input sign.

2. It verifies the design when the input is Infinity, sNaN, or qNaN using, (1) a

list of input from the Infinities, sNaN, and qNaN, (2) a list from the two types

of the input sign.

3. It verifies the design in solving the other input types using, (1) a list of the

input from the minimum Subnormal, the maximum Subnormal, the minimum

Normal , and the maximum Normal, (2) a list from the two types of the input

sign.

B) Result Types Model
The model aims to verify the generation of the different types of the final

result. The proposal ideas of the model are in [22]. We separate the model into

four sub-models as follows:

1. It verifies all the result exponents using, (1) a list of the input exponents from

the interval [qmin , qmax].

2. It verifies the generation of the first hundred numbers and the last hundred

subnormal numbers, and the first hundred normal numbers using, (1) the input

exponent is equal to qmin , (2) a list of the intermediate result significand that

consists of the intervals {[2,100], [10 p−1−100,10 p−1100]}.

3. It verifies the generation of numbers from One to 100 using, (1) the input

exponent is equal zero, (2) a list of the intermediate result significand from the

interval [1,100].

4. It verifies the last hundred Normal numbers using, (1) the input exponent is

equal to qmax , (2) a list of the intermediate result significands from the

interval [10 p−100,10 p−1].

C) Rounding Model

 The model aims to verify the rounding process in the design. The proposal

ideas of the model are in [22]. We separate the model into three sub-models as

follows:

 67

1. It verifies the rounding process at the all combinations from the guard digit,

the least significand digit, and the sticky bit using, (1) a list from the five

rounding modes, (2) a list of the intermediate result significand consists of the

cross products of the guard digit interval [0,9] , the least significand digit

interval [0,9] .

2. It verifies the possible carry propagation due to rounding process using, (1) a

list from the five rounding modes, (2) a list of the intermediate result

significand consists of the guard digit interval [0 ,9] , and the patterns

{99⋯9
p

, {0−8}9⋯9
p

, X {0−8}9⋯9
p

,⋯, XX⋯X {0−8}
p

}.

3. It verifies the sticky bit calculations using, (1) a list of the intermediate result

significand that consists of the patterns

{1−9}x⋯x
P

0 x⋯x ,{1−9}x⋯x
P

00 x⋯ x ,⋯, {1−9}x⋯x
P

00⋯00
p x−2

x⋯x

0{1−9}x⋯x
P

0 x⋯x ,0 {1−9}x ⋯x
P

00 x⋯ x ,⋯,0 {1−9}x⋯x
P

00⋯00
px−2

x⋯x

00 {1−9}x⋯x
P

0 x⋯x , 00 {1−9}x⋯x
P

0 0 x⋯x ,⋯, 00 {1−9}x⋯x
P

00⋯00
px−2

x⋯x

⋮

0⋯0
p/2

{1−9}x⋯x
P

0 x⋯x , 0⋯0
p /2

{1−9}x⋯x
P

00 x⋯x ,⋯, 0⋯0
p /2

{1−9}x⋯x
P

00⋯00
px−2

x⋯x

D)Trailing and Leading Zeros Model

 The model aims to verify all the possible trailing and leading zeros in the input

significand and the intermediate result significand. The proposal ideas of the

model are also in [22]. We separate the model into two sub-models as follows:

1. It verifies the possible trailing and leading zeros the input significand using,

(1) a list of the first input significand that consists of the patterns

{1−9}00⋯00
P

, 0{1−9}00⋯00
P

,⋯, 00⋯0 {1−9}
P

{1−9}{1−9}0⋯00
P

,0 {1−9}{1−9}0⋯00
P

,⋯, 00⋯0{1−9}{1−9}
P

{1−9}X {1−9}0⋯00
P

, 0{1−9}X {1−9}0⋯00
P

,⋯,00⋯0{1−9}X {1−9}
P

⋮

{1−9}XX⋯X {1−9 }
P

2.A list of the intermediate result sigificand, to verify the generation of the

 68

trailing and leading zeros in the intermediate result significand, it consists of

{1−9}00⋯00
p

, 0{1−9}00⋯00
p

,⋯, 00⋯0{1−9 }
p

,

{1−9}{1−9}0⋯00
p

,0 {1−9}{1−9}0⋯00
p

,⋯, 00⋯0{1−9}{1−9}
p

{1−9}X {1−9}0⋯00
p

, 0{1−9}X {1−9}0⋯00
p

,⋯,00⋯0{1−9}X {1−9}
p

⋮

XX⋯X {1−9}
p

E) Zeros and Nines Model

 The model aims to verify all the possible patterns of zeros and nines in the

input significands and the intermediate result significand. The proposal ideas of

the model are all new. We separate the model into four sub-models as follows:

1. It verifies the patterns of zeros in the intermediate result significand using,

(1) a list of the intermediate result significand that consists of the patterns

{1−9}00⋯0 X

2p−1

, {1−9}00⋯0XX
2p−1

,⋯, {1−9}X⋯XX
2p−1

X {1−9}0⋯0 X
2p−1

, X {1−9}0⋯0XX
2p−1

,⋯, X {1−9}X⋯XX
2p−1

X X {1−9}0⋯0 X
2p−1

, X X {1−9}0⋯0XX
2p−1

,⋯, X X {1−9}X⋯XX
2p−1

⋮

XXX⋯X {1−9}
2p−1

2. It verifies the patterns of nines in the intermediate result significand using ,

(1) a list of the intermediate result significand that consists of the patterns

{1−9}99⋯99
2p−1

, {1−9}99⋯99X
2p−1

, {1−9}99⋯9XX
2p−1

,⋯,{1−9}X⋯XX
2p−1

X {1−9}99⋯99
2p−1

, X {1−9}99⋯99X
2p−1

, X {1−9}99⋯9XX
2p−1

,⋯, X {1−9}X⋯XX
2p−1

XX {1−9}99⋯99
2p−1

, {1−9}99⋯99X
2p−1

, XX {1−9}99⋯9XX
2p−1

,⋯, XX {1−9}X⋯XX
2p−1

⋮

XXX ⋯X {1−9}
2p−1

3. It verifies all patterns of zeros in the input significand using, (1) a list the

first input significand that consists of the patterns

 69

{1−9}00⋯0 X

p

, {1−9}00⋯0XX
p

,⋯, {1−9}X⋯XX
p

X {1−9}0⋯0 X
p

, X {1−9}0⋯0XX
p

,⋯, X {1−9}X⋯XX
2p

X X {1−9}0⋯0 X
2p

, X X {1−9}0⋯0XX
p

,⋯, X X {1−9}X⋯XX
p

⋮

XXX⋯X {1−9}
p

4. It verifies all patterns of nines in the input significands using, (1) a list the

first input significand that consists of the patterns

{1−9}99⋯99
p

, {1−9}99⋯99X
p

, {1−9}99⋯9XX
p

,⋯,{1−9}X⋯XX
p

X {1−9}99⋯99
p

, X {1−9}99⋯99X
p

, X {1−9}99⋯9XX
p

,⋯, X {1−9}X⋯XX
p

XX {1−9}99⋯99
p

, {1−9}99⋯99X
p

, XX {1−9}99⋯9XX
p

,⋯, XX {1−9}X⋯XX
p

⋮

XXX ⋯X {1−9}
p

5.4 Summary

This chapter represents the main steps the first square root engine to solve all

the constraints numerically. It also describes the main ideas of the coverage

models that have been solved by the engine to generate test vectors can verify

all the corner cases in the hardware or software implementations of the decimal

floating-point square root operation.

The chapter also describes the rounding boundaries of the decimal Square

root operation, which our engine and our models are based on. Therefore, it

gives an advantage to the square root engine and the square root models.

The engine solved the coverage models one time and generated about 50000

test vectors in Decimal64 and about 199000 test vectors in Decimal128, the test

vectors have proved an efficiency by discovering bugs in DecNumber library

and Silminds design. Most of the bugs in the DecNumber library or Silminds

design are discovered using the rounding model and the zeros and nines model.

 70

Chapter 6

Engine and Models of Decimal Division Operation

The division engine generates test vectors, to cover corner cases, to verify a

tested implementation of decimal division operation to achieve the compliance

with the IEEE standard (754-2008) for Floating Point Arithmetic.

The engine is a software tool written in C++ to solve all the coverage models.

Although the engine solves constraints on the inputs and the unbounded

intermediate result only, it managed to discover some faults inside the operation

by forcing the engine to solve constraints on patterns of zeros and nines in the

intermediate result significand.

We design the engine to solve decimal division constraints on the unbounded

intermediate result that consists of 2.5 p digits and on simultaneous constraints

of inputs and the unbounded intermediate result. Similar engines have been

developed in [8], but they either solve constraints on the intermediate result

which consist of p1 digits and sticky bit, or solve simultaneous constraints

of the inputs and the output. The engines in [8] do not solve simultaneous

constraints on the inputs and the unbounded intermediate result. This means

that our engine has the ability to generate test vectors to discover corner cases

in the decimal division implementations that cannot be generated by the

engines in [8].

We also design coverage models based on the chosen constraints of the division

operation. The engine solves the coverage models to generate test vectors that

verify the corner cases of the division in different implementations.

The engine generates the test vectors in two formats of the IEEE standard:

Decimal64 and Decimal128. The engine time to generate one test vector

depends on the constraints that have been solved to generate it and the factor of

randomization that the engine needed. The engine generates as many test

 71

vectors as the user wants. Every time the engine runs, it generates new test

vectors. The verification engine value is neither in the time needed to generate

the test vector, if this time is practical, nor in the number of the generated test

vectors, but rather in the functionality of the cases that the test vector covers.

The engine solved the coverage models one time and generated about 339000

test vectors in Decimal128 and about 146000 in Decimal64, the test vectors

have proved their efficiency by discovering bugs in Silminds design [7]. Table

3 shows the maximum and the minimum times that the engine needed to solve

a task of the existing constraints and generate one test vector, on Intel(R)

Pentium(R) 4 CPU 3.20GHZ with g++ (Ubuntu 4.4.3) compiler.

TABLE 3. THE TIME PERFORMANCE OF THE DIVISION ENGINE

Test vector Format Minimum Time Maximum Time

Decimal 64 0.01 seconds 7 seconds

Decimal 128 0.03 seconds 2 minutes

The generated test vector is a decimal vector that has four sets, The first set is

the operation type division, number of the precision (64 or 128), and the

rounding mode. The second set is sign, significand, and exponent of the first

input. The third set is sign, significand, and exponent of the second input. The

fourth set is sign, significand, and exponent of the result. Finally the fifth set is

one or two from five flags(invalid, inexact, underflow, overflow, division by

zero). The designer enters the input sets to his implementation and verifies the

implementation output against last two sets.

 The task given to the division engine is the set of constraints on five elements,

the significand of the first input (dividend) Sx , the significand of the second

input (divisor) Sy , the intermediate result Sz , the exponent of the first input,

and the rounding mode. The constraint on Sx is a mask starting from the

minimum number Nx to the maximum number Mx. The constraint on Sy is

a mask starting from the minimum number Ny to the maximum number My.

Similarly, the mask on Sz consists of two numbers Nz and Mz. The first

 72

input exponent, the intermediate result exponent and the rounding direction are

either given explicitly in the task or left to the engine to choose randomly.

An example to explain the format of the decimal division task at p=16 is as

follows:

64 /T : 1 9999999999999999 1 9999999999999999

1000000000000002p400000000000000000000000
9999999999999992p400000000000000000000000

R R 2

 This task means that Nx=1, Mx=9999999999999999,

Ny=1, My=9999999999999999, Nz=1000000000000002p400000000000000000000000 ,

Mz=9999999999999992p400000000000000000000000 , the engine chooses randomly the

exponent of the first input, and the intermediate result exponent, while the

rounding mode is Round to Zero.

One of the solutions of this task is the test vector

d64/ 0 961708551261171E70 937500E-103 -> 1025822454678582E167 X . The d64

means decimal64, the / means the division operation, the following 0 means

that the rounding mode is Round toward Zero, the input is

x=961708551261171∗1070 , y=937500∗10−103 , the rounded result is

z=1025822454678582∗10167 , and the following X indicates that the inexact

flag is high, because the exact result is 1025822454678582.40000000000⋯∗10167.

We represent the intermediate result with length 2.5 p digits not including the

leading zeros to guarantee that the engine can generate all the possible hardest-

to-round cases. The results show that this length is enough to put constraints on

the rounding boundaries, where the hardest-to round case needs only 2p1

digits not including leading zeros to do the rounding process according to the

standard.

6.1 The Division Engine

The inverse operation of the division z=x / y is the multiplication of the

intermediate result with the divisor which gives the dividend of the division

 73

operation. The engine is based on solving the non linear equations that result

from multiplying the intermediate result with the divisor. We can estimate these

non linear equations from Figure 7, where each column represents one

nonlinear equation. The figure shows the multiplication of the intermediate

result with the divisor at p=16 , where Sz i denotes the intermediate result

digit of weight 10i , Sx i denotes the first input (dividend) digit of weight

10i , and Sy i denotes the second input (divisor) digit of weight 10i .

The engine solves the signifiand in the normalized form, it solves the inputs

significands in the form of Sx 0 . Sx−1⋯Sx−p2 Sx−p1 and Sy 0 . Sy−1⋯Sy−p2 Sy−p1 ,

and generates the intermediate result significand in the form

Sz 0. Sz−1⋯Sz−p2 Sz−p1⋯. Such that the inputs most significand digits

Sx 0≠0∧Sy 0≠0 , however the intermediate result most significand digit Sz0

may equal to zero or may not. The normalized form guarantees that the

intermediate result significand has fixed form, and we can easily estimate the

nonlinear equation shown in Figure 7 using the normalized form.

The engine uses 2.5 p digits only for the intermediate result significand Sz.

Hence, if the infinitely precise division Sx /Sy has more digits, then Sz is

truncated, i.e. it is slightly less than the infinitely precise division. The

multiplication of Sz∗Sy will thus be Sx− with 0≤10−L where L

depends on the number of digits of Sz. This explains the series of nines that

follows Sx−p1−1 as seen in Figure 7.

The engine steps begin by normalizing the mask of the input significands, it

shifts the mask {Nx, Mx } to the right with the value srx and the mask

{Ny , My} to right with the value sry.

Then, the engine gets the intermediate result significand Sz and the inputs

significand Sx and Sy that achieve the constraints. It achieves the

constraint on each digit Sxn , Sy n , or Szn by choosing the digit from its

interval [Nxn , Mxn], interval [Nyn , My n] , or interval [Nzn , Mzn]. It solves the

significands constraints using one of two algorithms, the first algorithm is the

Division-Most-Digits-Constraints-Algorithm to solve the constraints on the

 74

most significant p digits of the intermediate result significand and the p

digits of the inputs significand.

The second algorithm is the Division-Least-Digits Constraints-Algorithm to

solve the constraints on the least significant digits that follow the highest p

digits of the intermediate result significand and the p digits of the divisor

significand.

The engine also chooses the first input exponent Ex either from the interval

[qmin , qmax], or it is given explicitly.

Figure 7. The Multiplication of the Intermediate Result with the Divisor assuming Precision 16

Then, given that Ez=Ex−Ey and Ex , Ez∈ [qmin , qmax] , the engine chooses the

intermediate result exponent according to

max qmin ,Ex−qmax ≤Ez≤minqmax , Ez−qmin . However, if Ez is given, it

chooses the first input exponent using

max qmin ,Ezqmin≤Ex≤min qmax , Ezqmax . Finally, it calculates the second

input exponent Ey=Ex−Ez .

After getting the significands and exponents of x , y , z , the engine shifts to

left the significand Sx with the value srx and the significand Sy with the

value sry. The engine replaces the intermediate result exponent Ez with

Ezsrx−sry. Then, it shifts to left the intermediate result significand Sz with

a value according to the standard and subtracts this value from Ez .

 75

∗
Sy0

Sz 0

Sy−1

Sz−1

Sy−2

Sz−2

Sy−3

Sz−3

Sy−4

Sz−4

Sy−5

Sz−5

Sy−6

Sz−6

Sy−7

Sz−7

Sy−8

Sz−8

Sy−9

Sz−9

Sy−10

Sz−10

Sy−11

Sz−11

Sy−12

Sz−12

Sy−13

Sz−13

Sy−14

Sz−14

Sy−15

Sz−15 Sz−16⋯

Sz 0Sy 0 Sz 0Sy−1

Sz−1Sy 0

Sz 0 Sy−2

Sz−1Sy−1

Sz−2Sy 0

Sz 0 Sy−3

Sz−1Sy−2

Sz−2Sy−1

Sz−3Sy 0

Sz 0 Sy−4

Sz−1Sy−3

Sz−2Sy−2

Sz−3Sy−1

Sz−4Sy 0

Sz 0Sy−5

Sz−1Sy−4

Sz−2Sy−3

Sz−3Sy−2

Sz−4 Sy−1

Sz−5Sy 0

Sz 0 Sy−6

Sz−1 Sy−5

Sz−2 Sy−4

Sz−3 Sy−3

Sz−4 Sy−2

Sz−5 Sy−1

Sz−6 Sy 0

Sz 0 Sy−7

Sz−1 Sy−6

Sz−2Sy−5

Sz−3 Sy−4

Sz−4 Sy−3

Sz−5 Sy−2

Sz−6 Sy−1

Sz−7Sy 0

Sz 0Sy−8

Sz−1Sy−7

Sz−2Sy−6

Sz−3 Sy−5

Sz−4 Sy−4

Sz−5 Sy−3

Sz−6 Sy−2

Sz−7 Sy−1

Sz−8 Sy 0

Sz 0 Sy−9

Sz−1 Sy−8

Sz−2Sy−7

Sz−3 Sy−6

Sz−4Sy−5

Sz−5 Sy−4

Sz−6 Sy−3

Sz−7 Sy−2

Sz−8Sy−1

Sz−9Sy 0

Sz 0 Sy−10

Sz−1Sy−9

Sz−2Sy−8

Sz−3Sy−7

Sz−4Sy−6

Sz−5Sy−5

Sz−6Sy−4

Sz−7Sy−3

Sz−8Sy−2

Sz−9Sy−1

Sz−10 Sy 0

Sz 0 Sy−11

Sz−1 Sy−10

Sz−2 Sy−9

Sz−3 Sy−8

Sz−4 Sy−7

Sz−5 Sy−6

Sz−6 Sy−5

Sz−7 Sy−4

Sz−8 Sy−3

Sz−9 Sy−2

Sz−10 Sy−1

Sz−11 Sy 0

Sz 0 Sy−12

Sz−1Sy−11

Sz−2Sy−10

Sz−3Sy−9

Sz−4Sy−8

Sz−5Sy−7

Sz−6Sy−6

Sz−7Sy−5

Sz−8Sy−4

Sz−9Sy−3

Sz−10 Sy−2

Sz−11Sy−1

Sz−12Sy 0

Sz 0Sy−13

Sz−1 Sy−12

Sz−2 Sy−11

Sz−3 Sy−10

Sz−4 Sy−9

Sz−5 Sy−8

Sz−6 Sy−7

Sz−7 Sy−6

Sz−8 Sy−5

Sz−9 Sy−4

Sz−10 Sy−3

Sz−11 Sy−2

Sz−12 Sy−1

Sz−13 Sy 0

Sz 0 Sy−14

Sz−1Sy−13

Sz−2Sy−12

Sz−3Sy−11

Sz−4Sy−10

Sz−5Sy−9

Sz−6Sy−8

Sz−7Sy−7

Sz−8Sy−6

Sz−9Sy−5

Sz−10Sy−4

Sz−11 Sy−3

Sz−12 Sy−2

Sz−13 Sy−1

Sz−14 Sy 0

Sz 0 Sy−15

Sz−1 Sy−14

Sz−2 Sy−13

Sz−3 Sy−12

Sz−4 Sy−11

Sz−5 Sy−10

Sz−6Sy−9

Sz−7Sy−8

Sz−8Sy−7

Sz−9Sy−6

Sz−10 Sy−5

Sz−11 Sy−4

Sz−12 Sy−3

Sz−13 Sy−2

Sz−14 Sy−1

Sz−15Sy 0

Sz−1 Sy−15⋯

Sz−2 Sy−14⋯

Sz−3 Sy−13⋯

Sz−4 Sy−12 ⋯

Sz−5 Sy−11⋯

Sz−6 Sy−10⋯

Sz−7 Sy−9⋯

Sz−8 Sy−8⋯

Sz−9 Sy−7⋯

Sz−10 Sy−6⋯

Sz−11 Sy−5⋯

Sz−12 Sy−4 ⋯

Sz−13 Sy−3⋯

Sz−14 Sy−2⋯

Sz−15 Sy−1⋯

Sz−16 Sy 0⋯

Sx 0 Sx−1 Sx−2 Sx−3 Sx−4 Sx−5 Sx−6 Sx−7 Sx−8 Sx−9 Sx−10 Sx−11 Sx−12 Sx−13 Sx−14 Sx−15−1 9 ⋯

6.1.1 The Division Most Digits Constraints Algorithm

The algorithm iterates to solve the nonlinear equations from left to right. As

shown in Figure 7, for p=16, the first non linear equation from left is

 Sx0−Sz0∗Sy0=br0 (6.1)

where br0 is the value of carries that transfer from previous weights to the

weight of 100 , or the borrow generated from this weight to lower weights. The

second and the third non linear equations are:

 Sx−110∗br0−Sz0∗Sy−1−Sz−1∗Sy0=br−1 (6.2)

 Sx−210∗br−1−Sz0∗Sy−2−Sz−1∗Sy−1−Sz−2∗Sy0=br−2 . (6.3)

In general the nonlinear equation for the column of index n is :

 brn=Sx n10∗brn1−∑
j=n

j=0

Sz j∗Sy n− j , (6.4)

To start the solution, the algorithm attempts to solve equations 6.1 to 6.3

(representing columns 0 to -2) together based on the range of carries that may

transfer from the next lower significant columns. The algorithm chooses the

digit Sx 0 and the digit Sx−1 randomly from their intervals. Then since the

ranges of borrow digit br−2 , the digit Sz−2 , and the digit Sy−2 are known as

Ncr−2≤br−2≤Mcr−2 , Nz−2≤Sz−2≤Mz−2 , and Ny−2≤Sy−2≤My−2 , the algorithm

transforms Equation 3 to the inequality condition:

 Ncr−2Nz−2∗Sy 0Sz 0∗Ny−2≤Sx−210∗br−1−Sz−1∗Sy−1≤Mcr−2Mz−2∗Sy 0Sz 0∗My−2. (6.5)

 Finally, it searches randomly on the values of Sz0 , Sz−1 , Sy 0 , Sy−1 , Sx−2 that

satisfy Equation 6.1, Equation 6.2 and the Inequality 6.5 . The steps taken so

far constitute the first outer iteration that gets the final values of

Sz0 , Sy 0 , Sx0 , Sx−1 , Sx−2 and estimates the values of Sz−1 , Sy−1 that may be

refined in the following iteration.

In the second iteration, the algorithm transforms the fourth nonlinear equation

Sx−310∗br−2−Sz0∗Sy−3−Sz−3∗Sy 0−Sz−1∗Sy−2−Sz−2∗Sy−1=br−3 to the inequality

condition:

Nbr−3Nz−3∗Sy0Sz0∗Ny−3≤Sx−310∗br−2−Sz−1∗Sy−2−Sz−2∗Sy−1≤Mbr−3Mz−3∗Sy0Sz 0∗My−3 ,

 76

it searches randomly on the values of Sz−1 , Sz−2 , Sy−1 , Sy−2 , Sx−3 that achieve

the second nonlinear equation, the third nonlinear equation and the inequality

condition, where the digits Sz0 , Sy0 , Sb0 , Sx0 , Sx−1 , Sx−2 are known from the

previous iteration. The algorithm does this procedure in all the iterations and

gets all digits of Sx , Sy , and Sz .

In general, for any precision, the algorithm gets randomly the first two digits of

Sx , which are Sx 0 and Sx−1 from their intervals. If Sz0 is chosen to be

equal to zero, it gets randomly the digit Sx−2 and replaces Sx−1 with

Sx−110∗Sx0 . In this case the engine begins to solve the nonlinear equations

from the nonlinear equation of column index w z=−1 , where 10w z is the

weight of the most significand digit in the intermediate result significand of

Sz.

Then, it loops through a number of outer iterations equal to the number of

nonlinear equations(i.e number of columns). The index of the outer iterations

goes from 0≤i≤2.5p−1 . The algorithm gets in iteration i the values of

Szw z−i , Sy−i and Sxw z−i−2 and estimates the value of Szw z−i−1 , Sy−i−1 . Then,

in the next iteration it gets the values of Szw z−i−1 , Sy−i−1 and Sxw z−i−3 and

estimates Szw x/2−i−1 , and so on.

The general form of Equation 6.1, at iteration i , is

 brw z−i=Sxw z−i−∑
j=−i

0

Szw z j∗Sy−i− j . (6.6)

Equation 6.6 calculates the borrow from the column of index w z−i . The

equation has one unknown brw z−i (i.e the borrow of the column), while the

other elements of the equation are known from the previous iterations and the

value Szw z−i , Sy−i .

 The general form of Equation 6.2, at iteration i , is

 brw z−i−1=Sxw z−i−110∗brw z−i−1− ∑
j=−i−1

0

Szw z j∗Sy−i− j−1 , (6.7)

which calculates the borrow from the column of index w z−i−1 . The equation

 77

has one unknown brw z−i−1 (i.e the borrow of the column), while the other

elements of the equation are known from the previous iterations, the values of

Szw z−i , Szw z−i−1 , Sy−i , Sy−i−1 , and the value of brw z−i from Equation 6.6.

 Similarly, the general form of Equation 6.3, at iteration i , is

 brw z−i−2=Sxw z−i−210∗brw z− i−1− ∑
j=−i−2

0

Szw z j∗Sy−i− j−2 . (6.8)

As the ranges of brw z−i−2 , Szw z−i−2 , and Sy−i−2 , are known, the algorithm

transforms Equation 6.8 to inequality 6.9, which is the general form of

inequality 6.5.

Ncrwz−i−3Ncrw z−i−4Ncw z− i−5Szwz
∗Ny−i−2Nzw z−i−2∗Sy0≤

Sxwz−i−210∗brw z−i−1− ∑
j=−i−1

−1

Szw z j∗Sy−i− j−2

≤Szwz
∗My−i−2Mzw z−i−2∗Sy 0Mcr wz−i−3Mcr wz−i−4Mcrw z−i−51

 (6.9)

 Within each outer iteration, the engine does a second level of iterations to get

the values of Sxw z−i−2 , Szw z−i , Szw z−i−1 , Sy−i , Sy−i−1 that achieve at each outer

iteration inequality 6.9. At this second level of iterations, the engine just

chooses random numbers from the intervals of

Sxw z−i−2 , Szw z−i , Szw z−i−1 , Sy−i , Sy−i−1 . If these numbers do not satisfy

inequality 6.9, it chooses another combination of numbers, and so on until it

finds a set of numbers that satisfy this inequality.

The range of brw z−i−2 is the range of the carries that transfer from the columns

follow the column w z−i−2 . Since the algorithm solves only 2.5 p columns,

the maximum product sum of any column at p=34 is equal to

2.5∗34∗9∗9=6685 . This number means that a carry from any column,at

p≤34, may affect the previous three columns directly by a value more than

one and affects the higher columns indirectly by a value less than or equal to

one. Based on that, the algorithm determines the range of carries that transfer to

the column w z−i−2 from the next three columns w z−i−3, w z−i−4, w z−i−5.

Equation 6.10 and Equation 6.11 get the maximum and the minimum carries

Mcrw z−i−3 , Ncrw z−i−3 from the column of index w z−i−3 to the column of

 78

index w z−i−2 .

Mcrw z−i−3=

∑
j=−i−3

− i−2

Mzwz j∗Sy−i− j−3 ∑
j=−i−1

−2

Szw z j∗Sy−i− j−3∑
j=−1

0

Szwz j∗My−i− j−3

10
,

 (6.10)

Ncrwz−i−3=

∑
j=− i−3

−i−2

Nzw z j∗Sy−i−j−3 ∑
j=−i−1

−2

Szw z j∗Sy− i− j−3∑
j=−1

0

Sz wz j∗Ny−i− j−3

10
,

 (6.11)

 Equation 6.12 and Equation 6.13 get the maximum and the minimum carries

Mcrw z−i−4 , Ncrwz−i−4 from the column of index w z−i−4 to the column of index

w z−i−2 .

Mcrw z−i−4=

∑
j=−i−4

−i−2

Mzw z j∗Sy− i− j−4 ∑
j=−i−1

−3

Sz w z j∗Sy−i− j−4∑
j=−2

0

Szw z j∗My−i− j−4

100
,

 (6.12)

Ncrwz−i−4=

∑
j=−i−4

−i−2

Nzw z j∗Sy−i−j−4 ∑
j=−i−1

−3

Szwz  j∗Sy−i− j−4∑
j=−2

0

Szw z j∗Ny−i− j−4

100
,

 (6.13)

 Equation 6.14 and Equation 6.15 get the maximum and the minimum carries

Mcrw z−i−5 , Ncrw z−i−5 from the column of index w z−i−5 to the column of

index w z−i−2 .

Mcrw z−i−5=

∑
j=−i−5

− i−2

Mzwz j∗Sy−i− j−5 ∑
j=−i−1

−4

Szw z j∗Sy−i− j−5∑
j=−3

0

Szw z j∗My−i− j−5

1000
,

 (6.14)

Ncrwz−i−5=

∑
j=− i−5

−i−2

Nzw z j∗Sy−i−j−5 ∑
j=−i−1

−4

Szw z j∗Sy− i− j−5∑
j=−3

0

Sz wz j∗Ny−i− j−5

1000
,

 (6.15)

 After getting the iteration values Sxw z−i−2 , Szw z−i , Szw z−i−1 , Sy−i , Sy−i−1 , the

algorithm propagates the borrows between the digits of Sx to be in the form of

the general Equations 6 to 8. It replaces Sxw z−i with Sxw z−i−brw z−i , Sxw z−i−1

with Sxw z−i−110∗brw z− i−brwz−i−1 , and Sxw z−i−2 with the

Sxw z−i−210∗br wz− i−1 . Then, the algorithm begins the next outer iteration using

the same procedure, and so on until it gets all digits of Sx , Sy , and Sz.

6.1.2 The Division least Digits Constraints Algorithm

The previous algorithm gets the digits of Sx and Sy that satisfy the

 79

constraints on the most significant digits of Sz and do not take the constraints

of the least digits of Sz in its calculations. Hence, if there are constraints on

the least significant digits of the intermediate result significand Sz (that have

weight less than 10w z−p), the previous algorithm alone will not succeed to get

a solution in some hard constraints. An example of the hard constraints is a

series of zeros or nines in the least digits of Sz , which are needed to verify the

rounding process in the different designs.

The least digits algorithm gives the value of the inputs significands of Sx and

Sy which yields the needed hard constraints in the intermediate result

significand of Sz. This algorithm solves the series of zeros constraint and the

series of nines constraint in similar ways starting from right (least significant)

to left.

As shown in Figure 8, the intermediate result significand of Sz has a series of

zeros from the weight 10−17 to 10−27 , due to this series of zeros, the elements

are decreased in the columns of indexes from −17 to −27 . The algorithm

solves the nonlinear equations of the columns of indexes from −27 to −16 ,

to get the digits of Sz from Sz−16 to Sz0 .

The algorithm gets randomly the elements of the products in the column of

index −27 , which are Sz−16 , Sz−15 , Sz−14 , Sz−13, Sz−12 , Sy−15 , Sy−14, Sy−13 , Sy−12,

Sy−11 from their intervals. It calculates the carries cr−27 , cr−28 , and cr−29 of

the columns of indexes −27, −28 , and −29 , then replaces cr−27 with

cr−27cr−28/10cr−29/100 , such that cr−27mod10=0 .

Then, the algorithm attempts to solve the non linear equations of the columns

of indexes −26, −25, −24 . It searches randomly on the combination of values

of Sz−11 , Sz−10 , Sz−9 , Sy−10, Sy−9 , Sy−8 that achieves the conditions

cr−26mod10=0, cr−25mod10=0, and cr−24mod10=0 . Up to now, the algorithm

does the first iteration, gets the digit Sz−11 , Sy−10 , and estimates the digits

Sz−10 , Sz−9 , Sy−9, Sy−8 . In the second iteration, it searches randomly on the

values of Sz−10 , Sz−9 , Sz−8 , Sy−9 , Sy−8 , Sy−7 that achieve the nonlinear equations

of the columns of indexes −25, −24, −23 , to get the digit value of Sz−10 , Sy−9 ,

 80

and estimates the digits Sz−9, Sz−8 , Sy−8, Sy−7 . The algorithm does this

procedure in all iterations to get the remaining digits of Sz , from z−9 to

Sz−1 , and the remaining digits of Sy , from Sy−8 to Sy 0 . The algorithm

chooses randomly the remaining digits of Sz which are Sz0 , and multiply the

intermediate result significand Sz with the divisor significand Sy to get the

dividend significand Sx.

The general form of the nonlinear equations is:

 crn= ∑
j=n

np−1

Syn− j∗Sz jcr n−1 /10−Sxn , (6.16)

In general, the algorithm determines the series of zeros after the most p digits

in the mask of the intermediate result significand Mz , Nz . The weight of the

first zero from the left is denoted by 10Fw and the weight of the last zero in

the series is denoted by 10Lw . It gets the digits of Sz from Sz Fw1 to

Sz Lw−1p , and the digits of Sy from Sy−p1 to Sy Lw−1−Fw , which are the

elements of the products of the column of index Lw . Equation 6.17 gets the

value of the carry generated from the column of index Lw .

Figure 8. The Multiplication of the Intermediate Result with the Divisor at Constraints of Series of
Zeros on the Least Digits

Note that, this carry depends on the subtraction value of the column products

sum from the value of the digit SxLw=9 , the carry from the column of index

Lw−1 , and the carry from the column of index Lw−2 . The carry from the

 81

∗


10

w
z=10 0

Sz0⋯Sz−15

Sy0⋯Sy−15

Sz
−16


10Fw=10−17

0 0 0 0 0 0 0 0 0 0


10Lw=10−27

0 Sz−28 Sz−29⋯

⋯Sy 0 Sz−15

⋯Sy−1 Sz−14

⋯Sy−2 Sz−13

⋯Sy−3 Sz−12

⋯Sy−4 Sz−11

⋯Sy−5 Sz−10

⋯Sy−6Sz−9

⋯Sy−7 Sz−8

⋯Sy−8Sz−7

⋯Sy−9Sz−6

⋯Sy−10 Sz−5

⋯Sy−11 Sz−4

⋯Sy−12 Sz−3

⋯Sy−13 Sz−2

⋯Sy−14 Sz−1

⋯Sy−15 Sz 0

⋯Sx−15−1

Sy 0Sz−16

Sy−1Sz−15

Sy−2Sz−14

Sy−3 Sz−13

Sy−4 Sz−12

Sy−5 Sz−11

Sy−6 Sz−10

Sy−7 Sz−9

Sy−8 Sz−8

Sy−9 Sz−7

Sy−10 Sz−6

Sy−11 Sz−5

Sy−12 Sz−4

Sy−13 Sz−3

Sy−14 Sz−2

Sy−15 Sz−1

9

0

Sy−1Sz−16

Sy−2Sz−15

Sy−3Sz−14

Sy−4 Sz−13

Sy−5 Sz−12

Sy−6 Sz−11

Sy−7 Sz−10

Sy−8 Sz−9

Sy−9 Sz−8

Sy−10 Sz−7

Sy−11 Sz−6

Sy−12 Sz−5

Sy−13 Sz−4

Sy−14 Sy−3

Sy−15 Sz−2

9

0

0
Sy−2 Sz−16

Sy−3 Sz−15

Sy−4 Sz−14

Sy−5 Sz−13

Sy−6 Sz−12

Sy−7 Sz−11

Sy−8 Sz−10

Sy−9 Sz−9

Sy−10 Sz−8

Sy−11 Sz−7

Sy−12 Sz−6

Sy−13 Sz−5

Sy−14 Sz−4

Sy−15 Sz−3

9

0

0
0

Sy−3 Sz−16

Sy−4 Sz−15

Sy−5Sz−14

Sy−6 Sz−13

Sy−7 Sz−12

Sy−8 Sz−11

Sy−9 Sz−10

Sy−10 Sz−9

Sy−11 Sz−8

Sy−12 Sz−7

Sy−13 Sz−6

Sy−14 Sz−5

Sy−15 Sz−4

9

0

0
0
0

Sy−4 Sz−16

Sy−5 Sz−15

Sy−6Sz−14

Sy−7 Sz−13

Sy−8 Sz−12

Sy−9 Sz−11

Sy−10 Sz−10

Sy−11 Sz−9

Sy−12 Sz−8

Sy−13 Sz−7

Sy−14 Sz−6

Sy−15 Sz−5

9

0

0
0
0

0
Sy−5Sz−16

Sy−6 Sz−15

Sy−7Sz−14

Sy−8 Sz−13

Sy−9 Sz−12

Sy−10 Sz−11

Sy−11 Sz−10

Sy−12 Sz−9

Sy−13 Sz−8

Sy−14 Sz−7

Sy−15 Sz−6

9

0

0
0
0

0
0

Sy−6Sz−16

Sy−7Sz−15

Sy−8Sz−14

Sy−9Sz−13

Sy−10 Sz−12

Sy−11 Sz−11

Sy−12 Sz−10

Sy−13 Sz−9

Sy−14 Sz−8

Sy−15 Sz−7

9

0

0
0
0

0
0

0
Sy−7Sz−16

Sy−8Sz−15

Sy−9Sz−14

Sy−10 Sz−13

Sy−11Sz−12

Sy−12Sz−11

Sy−13Sz−10

Sy−14 Sz−9

Sy−15 Sz−8

9

0

0
0
0

0
0

0
0

Sy−8Sz−16

Sy−9Sz−15

Sy−10 Sz−14

Sy−11 Sz−13

Sy−12 Sz−12

Sy−13 Sz−11

Sy−14 Sz−10

Sy−15 Sz−9

9

0

0
0
0

0
0

0
0
0

Sy−9Sz−16

Sy−10 Sz−15

Sy−11 Sz−14

Sy−12 Sz−13

Sy−13 Sz−12

Sy−14 Sz−11

Sy−15 Sz−10

9

0

0
0
0

0
0

0
0
0

0
Sy−10 Sz−16

Sy−11 Sz−15

Sy−12 Sz−14

Sy−13 Sz−13

Sy−14 Sz−12

Sy−15 Sz−11

9

0

0
0
0

0
0

0
0
0

0
0

Sy−11 Sz−16

Sy−12 Sz−15

Sy−13 Sz−14

Sy−14 Sz−13

Sy−15 Sz−12

9

Sy0 Sz−28

0
0
0

0
0

0
0
0

0
0

0
Sy−12 Sz−16

Sy−13 Sz−15

Sy−14 Sz−14

Sy−15 Sz−13

9

Sy0 Sz−29⋯

Sy−1 Sz−28⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

Sy−13 Sz−16⋯

Sy−14 Sz−15⋯

Sy−15 Sz−14⋯

9 ⋯


Lw=−27


Lw −2=−29

column of index Lw−1 to the column of index Lw , is the products sum of

the column Lw−1 divided by 10. The carry from the column of index

Lw−2 to the column of index Lw , is the products sum of the column

Lw−2 divided by 100.

 crLw= ∑
j=Fw1

Lw p−1

Sy Lw− j∗Sz j−9
∑

j=Fw1

Lw p

Sy Lw− j−1∗Sz j

10


∑
j=Fw1

Lw p1

Sy Lw− j−2∗Sz j

100
, (6.17)

 Note that the column of index Lw−1 has one unknown product Sy 0∗SzLw−1 ,

and the column of index Lw−2 has two unknown products

Sy 0∗SzLw−2, Sy−1∗Sz Lw−1. The engine assumes the sum value of these unknown

products Sy0∗SzLw−1/10Sy0∗SzLw−2Sy−1∗Sz Lw−1/100 , to be equal to

10−cr Lwmod10 , and replaces cr Lw with cr Lw10−cr Lwmod10 , in case of

a series of zeros, such that cr Lwmod10=0.

In case of a series of nines, the algorithm solves it in the same way like the

series of zeros by adding one to the weight of the last nine in the series of nines

of the intermediate result significand mask, and replaces cr Lw with

cr Lw−cr Lwmod10, such that cr Lwmod10=0.

Then, the algorithm iterates on the iteration indexes Lw1≤i≤Fw1 to get in

each iteration the values of new digits Sy i−1−Fw , Sz i−1p , and estimates the

digits Sy i−Fw , Syi1−Fw , Szip , Sz i1p which may be refined in next iterations.

Then, it does another number of iterations from Fw2≤i≤−p to check that

the previous chosen digits value of Sz and Sy will make Sx i=9 for all

Fw2≤i≤−p1 , and chooses the remaining digits of Sz .

Each iteration on Lw1≤i≤Fw1 , it searches randomly on the values of

Sy i−1−Fw , Sy i−Fw , Syi1−Fw , Szi−1 p , Sz ip , Szi1p . It calculates the carries

generated from the columns of index i , i1, i2, using Equation 6.18,

Equation 6.19 and Equation 6.20, and checks that the carries satisfy the

conditions cr i mod10=0, cr i1 mod10=0 , and cr i2mod10=0 .

 cri=cri−1 /10 ∑
j=Fw1

ip−1

Syi− j∗Sz j−9 , (6.18)

 82

 cr i1=cr i /10 ∑
j=Fw1

ip

Syi1− j∗Sz j−9 , (6.19)

 cr i2=cr i1/10 ∑
j=Fw1

i1p

Sy i− j∗Sz j−9 , (6.20)

The algorithm repeats all the iterations, if the check in any iteration is not

achieved. As in the beginning of the algorithm, it chooses randomly the digits

in the column of index Lw , and the nonlinear equations in the next iterations

depend on these digits. The combination of these digits may fail to satisfy the

conditions in the next iteration.

 In the iterations of Lw1≤i≤Fw1 , the algorithm gets digits of Sz from

Sz Lwp to SzFwp , and the digits of Sy from Sy Lw−Fw to Sy 0 . The

algorithm does other iterations on Fw2≤i≤−p1 to get the remaining digits

of Sz , and checks that the previous chosen digits of Sz and Sy will make

Sx i=9 . It gets in each iteration the digit Sz i−1p , and calculates the carry

generated from the column of index i , using Equation 6.21, such that

cr i mod10=0 . This check may make the algorithm fail to get any solution as

the number of these iterations increase. As the algorithm has chosen all digits

of Sy and the most digits of Sz in the previous iterations without taking in

its considerations the nonlinear equations in the iterations of Fw2≤i≤−p1 .

In this case the engine refines the constraints to get the best solution.

 cr i=cr i−1 /10 ∑
j=i

ip−1

Syi− j∗Sz j−9, (6.21)

After getting the needed digits of Sz , and all digits of Sy , the least digits

algorithm multiply Sz with Sy , to get Sx . Then it uses the most digits

algorithm to get all digits of Sz using the digits of Sx and the digits of Sy.

6.2 Decimal Division Rounding Boundaries
We use the engine to get the hardest-to-round cases and determine the number

of digits needed to do the correct rounding according to the standard. The

problem termed as “table-maker's-dilemma”[11] appears when the result is

inexact and the intermediate result has a series of zeros after p digits, or after

 83

p1 digits. At this case we do not know the value of the sticky bit and

therefore we cannot do the correct rounding.

We use the engine to find the largest number of zeros that follow p digits.

The largest number of zeros that the engine gets is p−1 . The engine

generates cases at p=16 with 15 zeros, and at p=34 with 33 zeros . Two

examples from these cases are : (1) at p=16 , when the inputs are

Sx=4140631901663 and Sy=9186895982637069 , the result is

Sz=45071065455499420000000000000002177 , (2) at p=34 , when the inputs are

Sx=198848844846663198453672565093338 , and

Sy=7825666841614090843966690633705274 , then the intermediate result is

Sz=25409827542012947291701575529048540000000000000000000000000000000005111 .

 Lemma2 : At the Decimal Division operation, number of trailing zeros after

p digits in the intermediate result significand Sz that might be followed by

a non-zero digit cannot be more than or equal to p1 .

 Proof: Let us assume that p1 zeros or more exist followed by a non zero

digit, as shown in Figure 9. The figure shows that the sum of the elements from

the column of index −2p to the least columns, must have a carry larger than

or equal to 99 .

∗Sz0⋯Sz−15 Sz−16 ⋯

Sy0⋯Sy−15

0 0 0 0 Sz−32 Sz−33 ⋯

⋯0
⋯0

⋯0
⋯0
⋯0
⋯0
⋯0
⋯0
⋯0
⋯0

⋯0
⋯0
⋯0
⋯0

⋯Sy−14 Sz−16

⋯Sy−15 Sz−15

0
0

0
0
0
0
0
0
0
0

0
0
0
0
0

Sy−15 Sz−16

0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0

0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0

Sy 0 Sz−32

0

0
0
0
0
0
0
0
0

0
0
0
0
0
0

Sy 0 Sz−33⋯

Sy
−1 Sz

−32⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

⋯ 9 9 9 9 9 9 ⋯


−2p

Figure 9. The Multiplication of the Divisor with the Intermediate result that has a series of zeros equals
p1 .

Let us assume that the each product in those columns has the maximum value

 84

which equal to 9∗9=81 . At this case the sum of the products of those columns

is equal to 1∗812∗81 /103∗81 /1004∗81/10005∗81 /10000⋯n∗81/10n−1 . This

sum of products is less than or equal to 100, which means that the maximum

carry of that sum is 10, while for p1 zeros the carry must be larger than or

equal to 99. Hence the assumption of p1 zeros or more is invalid and the

lemma is proven.

 Theorem2: Only 2p1 digits not including leading zeros are enough to do

the correct rounding to Decimal Floating-Point Division operation.

 Proof: Based on the previous lemma, no more than p1 digits are needed

after the rounding position to make sure the correct calculation of the sticky bit.

Hence the total number of digits is p p1=2p1.

6.3 The Main Ideas of the Division Models

 The models are defined using a Cartesian product between two or more lists of

constraints with ignoring the impossible combinations, and allowing the other

constraints to be chosen randomly.

All the model proposal ideas are in [22]and [8], except the ideas of the nines

and zeros model. However we describe all the ideas in the form of our engine

constraints.

A) Inputs Types Model
The model aims to verify the ability of the division designs to solve all possible

combinations of the input types. The proposal ideas of the model are in [22].

We separate the model into five sub-models as follows:

1.It verifies the design when the second input is zero using, (1) a list of the

second input exponent consists of the interval [qmin ,qmax], (2) the second

input significand is equal to zero, (3) all types list of the first input.

2. It verifies the design when the first input is zero using, (1) a list of the first

input exponent consists of the interval [qmin ,qmax], (2) the first input

significand is equal to zero, (3) all types list of the second input.

 85

3. It verifies the design when the first input is Infinity, sNaN, or qNaN using,

(1) a list of the first input consists of the Infinities, sNaN, and qNaN, (2) all

types list of the second input.

4. It verifies the design when the second input is Infinity, sNaN, or qNaN

using, (1) a list of the second from the Infinities, sNaN, and qNaN inputs, (2)

all types list of the first input.

5. It verifies the design in solving the other input types using, (1) a list of the

first input from the minimum Subnormal input, the maximum Subnormal input,

the minimum Normal input, and the maximum Normal input, (2) a same list of

the second input.

B) Result Types Model
The model aims to verify the ability of the division design to generate the

different types of the final result. The proposal ideas of the model are in [22].

We separate the model into four sub-models as follows:

1. It verifies all the result exponents using, (1) a list of the intermediate result

exponent consists of the interval [qmin , qmax].

2. It verifies the generation of the first hundred subnormal numbers, the last

hundred normal numbers and the first hundred normal numbers using, (1) the

intermediate result exponent is equal qmin , (2) a list of the intermediate result

significand consists of the intervals {[2,100], [10p−1−100,10 p−1100]}.

3.It verifies the generation of numbers from one to 100, using, (1) the

intermediate result exponent is equal zero, (2) a list of the intermediate result

significand from the interval [1,100].

4. It verifies the last hundred Normal numbers using, (1) the intermediate

result exponent is equal to qmax , (2) a list of the intermediate result

significand from the interval [10p−100,10 p−1].

C) Rounding Model

 The model aims to verify the rounding process in the design. The proposal

ideas of the model are in [22]. We separate the model into three sub-models as

 86

follows:

3. It verifies the rounding process at the all combinations from the guard digit,

the least significand digit, and the sticky bit using, (1) a list from the five

rounding modes, (2) a list of the intermediate result significand consists of the

guard digit interval [0,9] , the least significand digit interval [0,9] , and the

sticky bit interval [0,1] .

4. It verifies the possible carry propagation due to rounding process using, (1) a

list from the five rounding modes, (2) a list of the intermediate result

significand consists of the cross product of the guard digit interval [0,9] , and

the patterns {99⋯9
p

, {0−8}9⋯9
p

, X {0−8}9⋯9
p

,⋯, XX⋯X {0−8}
p

}.

5. It verifies the sticky bit calculations using, (1) a list of number of digits of

the first input significand from the interval [1 , p] , (2) a list of number of

digits of the second input significand from the interval [1, p] , (3) a list of the

intermediate result significand consists of the patterns

{{1−9}X⋯X
P

0 X⋯X , {1−9}X⋯X
P

0 0 X⋯X ,⋯, {1−9}X⋯X
P

00⋯00
p

X⋯X }.

D)Trailing and Leading Zeros Model

 The model aims to verify all the possible trailing and leading zeros in the

input significands and the intermediate result significand. The proposal ideas of

the model are also in [22]. We separate the model into two sub-models as

follows:

1. It verifies the design at all possible trailing and leading zeros in the input

significands using, (1) a list of the first input significand, (2) the same list of the

second input significand that consists of the patterns

{1−9}00⋯00
P

, 0{1−9}00⋯00
P

,⋯, 00⋯0 {1−9}
P

{1−9}{1−9}0⋯00
P

,0 {1−9}{1−9}0⋯00
P

,⋯, 00⋯0{1−9}{1−9}
P

{1−9}X {1−9}0⋯00
P

, 0{1−9}X {1−9}0⋯00
P

,⋯,00⋯0{1−9}X {1−9}
P

⋮

{1−9}XX⋯X {1−9 }
P

 87

2. It verifies the generation of the trailing and leading zeros in the intermediate

result significand using, (1) a list of the intermediate result sigificand from the

patterns {1−9}00⋯00
p2

,{1−9}{1−9}0⋯00
p2

, {1−9}X {1−9}0⋯00
p2

,⋯, XX⋯X {1−9}
p2

, (2)

a list of number of digits of the first input significand from the interval [1 , p] ,

(3) a list of number of digits of the second input significand from the interval

[1, p] .

E) Zeros and Nines Model
 The model aims to verify all the possible patterns of zeros and nines in the

input significands and the intermediate result significand. The proposal ideas of

the model are all new. We separate the model into four sub-models as follows:

1. It verifies the generation of all patterns of zeros in the intermediate result

significand using, (1) a list of the intermediate result significand that consists of

{1−9}00⋯0 X

2p

, {1−9}00⋯0XX
2p

,⋯, {1−9}X⋯XX
2p

X {1−9}0⋯0 X
2p

, X {1−9}0⋯0XX
2p

,⋯, X {1−9}X⋯XX
2p

X X {1−9}0⋯0 X
2p

, X X {1−9}0⋯0XX
2p

,⋯, X X {1−9}X⋯XX
2p

⋮

XXX⋯X {1−9}
2p

2. It verifies the generation of all patterns of nines in the intermediate result

significand using, (1)a list of the intermediate result significand that consists of

{1−9}99⋯99
2p

, {1−9}99⋯99X
2p

, {1−9}99⋯9XX
2p

,⋯,{1−9}X⋯XX
2p

X {1−9}99⋯99
2p

, X {1−9}99⋯99X
2p

, X {1−9}99⋯9XX
2p

,⋯, X {1−9}X⋯XX
2p

XX {1−9}99⋯99
2p

, {1−9}99⋯99X
2p

, XX {1−9}99⋯9XX
2p

,⋯, XX {1−9}X⋯XX
2p

⋮

XXX ⋯X {1−9}
2p

3. It verifies all patterns of zeros in the input significand using, (1) a list the

first input significand, (2) the same list of the second input significand that

consists of the patterns

 88

{1−9}00⋯0 X

p

, {1−9}00⋯0XX
p

,⋯, {1−9}X⋯XX
p

X {1−9}0⋯0 X
p

, X {1−9}0⋯0XX
p

,⋯, X {1−9}X⋯XX
2p

X X {1−9}0⋯0 X
2p

, X X {1−9}0⋯0XX
p

,⋯, X X {1−9}X⋯XX
p

⋮

XXX⋯X {1−9}
p

4. It verifies all patterns of nines in the input significands using, (1) a list the

first input significand, (2) the same list of the second input significand that

consists of the patterns

{1−9}99⋯99
p

, {1−9}99⋯99X
p

, {1−9}99⋯9XX
p

,⋯,{1−9}X⋯XX
p

X {1−9}99⋯99
p

, X {1−9}99⋯99X
p

, X {1−9}99⋯9XX
p

,⋯, X {1−9}X⋯XX
p

XX {1−9}99⋯99
p

, {1−9}99⋯99X
p

, XX {1−9}99⋯9XX
p

,⋯, XX {1−9}X⋯XX
p

⋮

XXX ⋯X {1−9}
p

G) Overflow Model

The model aims to verify the overflow cases. The proposal ideas of the model

are in [22]and [8]. We separate the model into two sub-models as follows:

1. It verifies the overflow cases when the result exponent is larger than qmax ,

using, (1) a list of the intermediate result exponent from the interval

[qmax− p1 ,qmax−qmin] , (2) a list of number of digits of the second input

significand from the interval [1, p] .

2. It verifies the overflow cases and the near-overflow cases which need to shift

the intermediate result significand to left, using, (1) a list of the intermediate

result exponent from the interval [qmax ,qmax+ 2p−1] , (2) a list of number of

digits of the first input significand from the interval [1, p] , (3)a list of number

of digits of the second input significand from the interval [1, p] , (4) a list of

the intermediate result significand that consists of the patterns

{{1−9}00⋯0
p

00⋯0 , X {1−9}00⋯0
p

00⋯0,⋯,XX ⋯X {1−9}
p

00⋯0}, and random digits

pattern.

 89

H)Underflow Model
The model aims to verify the underflow cases. The proposal ideas of the model

are in [22] and [8]. We separate the model into three sub-models as follows:

1. It verifies the underflow cases when the intermediate result exponent is less

than qmin using, (1) a list of the intermediate result exponent from the interval

[qmin−qmax ,qmin].

2. It verifies the underflow and the near-underflow cases when the result is

exact or inexact, using (1) a list of the intermediate result exponent in the

interval [qmin− p , qmin] , (2) a list of the second input significand (3) a list of

the first input significand, such that the difference between number of digits of

the first input significand to number of digits of the second input significand is

from the interval [1, p−1] , (4) a list of the intermediate result significand that

consists of {{1−9 }00⋯0
p

00⋯0 , X {1−9}00⋯0
p

00⋯0,⋯,XX ⋯X {1−9}
p

00⋯0}, and

random digits pattern.

3. It verifies the near-underflow cases and the subnormals numbers using, (1) a

list of the intermediate result exponent from the interval [qmin , qmin p−1] ,

(2) a list of the first input significand, (3) a list of the second input significand,

such that the difference between number of digits of the second input

significand to number of digits of the first input significand from the interval

[1, p−1].

6.4 Previous Work

 The Fpgen division algorithm by IBM [1] is given the significand of the

quotient Sz and the difference d between the preferred exponent and the

actual exponent.

The algorithm separates the problem into three cases:

Case1: The result is exact, d =0 , and guard digit is equal to zero, it selects a

random value for 1Sy10p

Sz
, calculates Sx=Sy∗Sz , and chooses the

exponents such that Ex−Ey=Ez .

 90

Case 2: The sticky bit is zero and either the exponent difference is not zero or

the guard digit is not zero, the algorithm factorizes Sz=Sz ' .2 j .5k where Sz '

is prime to 10 and Sz= Sx
Sy

.10d1 , it initializes Sx=Sz ' .2max 0, j−d−1 .5max 0, k−d−1

and Sy=2max0,− jd1 .5max 0,−kd1 , it multiplies Sx and Sy by random factor

that keeping their size less than 10 p , it computes Ex−Ey=Ezd .

Case3: The sticky bit is one, the algorithm calculates the range of number of

digits 1max 0, d− p∣Sy∣pmin0, d− p1 and chooses Sy≤
10p

−1.10d1

Sz1

within the selected ∣Sy∣, it chooses Sx from Sz.SySx. 10d1Sz1 . Sy

within d + 1 trailing zeros, finally it computes Ex−Ey=Ezd.

This algorithm requires several iteration, but in practical it produces the

solution for most values of d . At the last case the algorithm may fail at large

values of d , when there is no Sx with d + 1 trailing zeros in its range. Test

cases for large d values are often generated by relaxing the constraint on Sz

when possible.

6.5 Comparison

The Fpgen division algorithm cannot solve simultaneous constraints on the

inputs significand and the unbounded intermediate result significand, and

cannot solve the constraints on the digits that follow the guard digits of the

intermediate result significand, while our engine solves these constraints

numerically. Both of them cannot find the solution from the first trail, but they

find the solution in practical time.

An example to the test vector that generated using our engine, and cannot be

generated using Fpgen division algorithms at [8], is at p=16 , when the inputs

are Sx=4140631901663 and Sy=9186895982637069 , the intermediate result is

Sz=45071065455499420000000000000002177 .

6.6 Summary

 91

This chapter represents the main steps that the division engine uses to solve all

the constraints numerically. It also describes the main ideas of the coverage

models that have been solved by the engine to generate test vectors can verify

corner cases in the hardware or software implementations of the decimal

floating-point division operation.

The chapter also describes the rounding boundaries of the decimal division

operation, which our engine and our models are based on. Therefore, it gives

an advantage to the division engine and the division models.

The engine solved the coverage models one time and generated about 339000

test vectors in Decimal128 and about 146000 in Decimal64, the test vectors

have proved their efficiency by discovering bugs in Silminds design [7]. Most

of bugs are discovered using the rounding models and the zeros and nines

model.

 92

Chapter 7

 Conclusions

We have presented in this thesis our verification work of five decimal floating-

point arithmetic operations which are addition-subtraction, multiplication,

fused-multiply-add (FMA), square root, and division operations.

We have presented the algorithms used in each engine to solve the coverage

models, and the ideas of these models, to generate test vectors can verify the

different implementation of the five decimal floating-point arithmetic

operations.

The main Idea of the algorithms in the engines of multiplication, FMA, square

root, and division operations, is to solve the nonlinear equations generated from

multiplying two significands.

We have succeeded to develop new engines to verify the implementations of

FMA and square root operations, and our five engines have succeeded to solve

the constraints to describe the corner cases of the operation, which include

simultaneous constraints on inputs and intermediate result, and constraints on

the unbounded intermediate result.

The generated test vectors of the five operations have proved efficiency, as they

have succeeded to discover corner bugs in the five hardware designs of

Silminds (addition-subtraction, multiplication, FMA, square root, and division)

and in the software designs of DecNumber (FMA, and square root). One of the

FMA test vectors that discovered bug in the FMA implementation of

DecNumber library (version 3.68) is the test vector

d64∗− 0 −1916972343725131E368 311281724013E-108 −8846849875104544E253 -> −5967184560399999E271 X

where the DecNumber result is −5967184560400000E271 , and one of the square

root test vectors that discovered bug in the square root implementation of

DecNumber library (version 3.68) is the test vector

d64V < 3862493272490151E26 -> 6.214896034922990E+20 X , where the DecNumber result is

 93

6.214896034922991E20 .

There is a need to develop verification technique to verify the other elementary

operations. Also our technique is not enough to verify the square root, division,

and the elementary operations, where they may need formal verification

methods or other verification technique as in [9]. These designs depend on

iterative methods, where each iteration depends on the previous iterations, so

that the verification technique need to verify the result of each iteration.

 94

Appendix A

 Test vectors Syntax

The test vectors are represented in IBM syntax as follows:

1- The type and precision: d64 for Decimal64, or d128 for Decimal128.

2- The operation: + for add, - for subtract, * for multiply, / for divide, *+ for

fused-multiply-add, *- for fused-multiply-subtract, or V for square root.

3- The rounding mode: > for (positive infinity), < for (negative infinity), 0 for

(zero), =0 for (nearest, ties to even), or h> (nearest, ties away from zero).

4- The data for input operands: <sign><significand>E<exp>. Where the sign is

either + or -, the significand is a string of decimal digits, exp is the value of the

unbiased exponent written as an integer number.

SNaN numbers are represented using the string S.

QNaN numbers are represented using the string Q.

Infinities are represented using the string <sign>inf.

5- A “->” sign, to separate inputs from results.

6- The data for output operand: <sign><significand>E<exp>. Where the sign is

either + or -, the significand is a string of decimal digits, exp is the value of the

unbiased exponent written as an integer number.

SNaN numbers are represented using the string S.

QNaN numbers are represented using the string Q.

Infinities are represented using the string <sign>inf.

7- Exceptions that occur following the operation: x (inexact), u (underflow), o

(overflow), z (division by zero) and i (invalid).

 95

 References

[1] M. Aharoni, R. Maharik, A. Ziv, “Solving Constraints on the Intermediate

Result of Decimal Floating-Point,” in Proceeding of 18th IEEE Symposium

on Computer Arithmetic, 2007.

[2] M. Aharoni, S. Asaf, R. Maharik, I. Nehama, I. Nikulshin, A. Ziv, “Solving

Constraints on the Invisible Bits of the Intermediate Result for Floating-

Point Verification,” in Proceeding of 17th IEEE Symposium on Computer

Arithmetic, 2006.

[3] M. Aharoni, S. A. L. Fournier, A. Koifman, and R. Nagel, “FPgen - A Test

Generation Framework for Data path Floating-Point Verification,” in

Proceedings of IEEE International High Level Design Validation and Test

Workshop, 2003.

[4] E. M. Clarke, S. M. Germanand, X. Zhao,“Verifying the SRT Division

Algorithm Using Theorem Proving Techniques,” Formal Methods in

System Design, vol. 14, pp. 7-44, 1999.

[5] R. Drechsler, Advanced Formal Verification. Springer, 2004.

[6] A. Y. Duale, M. H. Decker, H. G. Zipperer, M. Aharoni, and T. J. Bohizic,

“Decimal Floating-Point in z9: An Implementation and Testing

Perspective,” IBM Journal of Research and Development, 51, 2007.

[7] H. A. H. Fahmy, R. Raafat, A. M. Abdel-Majeed, R. Samy, T. ElDeeb, Y.

Farouk, “Energy and Delay improvement via Decimal Floating Point

Units,” in Proceeding of 19th IEEE Symposium on Computer Arithmetic,

2009.

[8] E. Guralnik, M. Aharoni, A.J. Birnbaum, A. Koyfman, “Simulation Based

Verification of Floating Point Division,” in IEEE Transactions on

Computers, Feb 2011.

 96

[9] E. Guralnik, A. J. Birnbaum, A. Koyfman, A. Kaplan, “Implementation

Specific Verification of Divide and Square Root Instructions,” in

Proceeding of 19th IEEE Symposium on Computer Arithmetic, 2009.

[10] J. Harison, “Floating-Point Verification,” in Journal of Universal Computer

Science, 2007.

[11] V. Lefevre, J. M. Muller, and A. Tisserand, "Toward correctly Rounded

Transcendentals" IEEE Transactions on Computers , vol 47, no 11, pp 1235-

1243, Nov 1998.

[12] O. Leary, X. Zhao, R. Gerth, C. Johan, H. Seger, “Formally Verifying

IEEE Compliance of Floating-Point Hardware,” Intel Technology Journal,

1999.

[13] R. Raafat, A. M. Abdel-Majeed, R. Samy, T. ElDeeb, Y. Farouk, M.

Elkhouly, and H. A. H. Fahmy, “A decimal fully parallel and pipelined

floating point multiplier,” in Forty-Second Asilomar Conference on Signals,

Systems, and Computers, Asilomar, California, USA, Oct. 2008.

[14] D. Rusinoff, “A mechanically checked proof of IEEE compliance of a

register-transfer-level specification of the AMD-K7 floating-point

multiplication, division, and square root instructions,” LMS Journal of

Computation and Mathematics, vol. 1, pp. 148–200, 1998.

[15] R. Samy, H. A. H. Fahmy, R. Raafat, A. Mohamed, T. ElDeeb and Y.

Farouk, “A Decimal Floating-Point Fused-Multiply-Add Unit,” in the 53rd

International Midwest Symposium on Circuits and Systems (MWSCAS),

Aug 2010.

[16] A. Sayed-Ahmed, H. A. H. Fahmy, M. Y. Hassan, “Three Engines to

Solve Verification Constraints of Decimal Floating-Point operations,” in

Forty-Four Asilomar Conference on Signals, Systems, and Computers, Nov

2010.

[17] J. Sawada, D. Borrione, M. Kaufmann, and J. Moore, “Formal verification

of divide and square root algorithms using series calculation,” in 3rd

 97

International Workshop on the ACL2 Theorem Prover and its Applications,

University of Grenoble, pp. 31–49, 2002.

[18] K. Yehia, H. A. H. Fahmy, M. Hassan, “A Redundant Decimal Floating-

Point Adder,” in Forty-Four Asilomar Conference on Signals, Systems, and

Computers, Asilomar, California, USA, 2010.

[19] A. Ziv, and L. Fournier, “Test Generation for the Binary Floating Point

Add Operation With Mask-Mask-Mask Constraints,” Theoretical Computer

Science, Vol. 291/2, pp. 183-201,2003.

[20] A. Ziv, M. Aharoni, and S. Asaf, “Solving Range Constraints for Binary

Floating-Point Instructions,” in Proceeding of 16th IEEE Symposium on

Computer Arithmetic, 2003.

[21]“IEEE standard for floating-point arithmetic,” New York, NY, Aug. 2008,

(IEEE Std 754-2008).

[22]“Floating-Point test suite for IEEE 754R standard,”

https://www.research.ibm.com/haifa/projects/verification/fpgen/ieeets.html,

visited on May 2011.

[23]“The DecNumber library version 3.68,”

http://speleotrove.com/decimal/decnumber.html, visited on May 2011.

[24]“Intel® Decimal Floating-Point Math Library,”

http://software.intel.com/en-us/articles/intel-decimal-floating-point-math-

library/, visited on May 2011.

 98

