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Abstract

Decimal floating-point designs require a verification process to prove that the
design is in compliance with the IEEE Standard for Floating-Point Arithmetic
(IEEE Std 754-2008). Our work is a decimal floating-point verification using
simulation based verification, which a simulation method based on coverage
models to cover corner cases of a certain decimal floating-point operation.
Our work represents five engines, the first engine for the verification of
decimal addition-subtraction operation, the second for the verification of
decimal multiplication operation, the third for the verification of decimal
fused-multiply-add operation, the fourth for the verification of decimal square
root operation, and the fifth for the verification of decimal division operation.
Each engine solves constraints describing corner cases of the operation, and
generates test vectors to verify these corner cases in the tested design. We also
represent the coverage models of each operation solved by the engines. The
generated test vectors have discovered bugs in commercial hardware designs
reported and in commercial software designs reported. The verification of
decimal fused-multiply-add operation and the verification of decimal square

root operation are the first published work.



Chapter 1

Introduction

Decimal floating-point implementations perform the arithmetic operation using
the numbers in base ten. Decimal floating-point implementations as software or
hardware based designs have many advantages over binary floating-point
especially in the financial and commercial applications. Simple decimal
fractions such as 1/10 which might represent a tax amount or a sales discount
yield an infinitely recurring number if converted to a binary representation.
Hence, a binary number system with a finite number of bits cannot accurately
represent such fractions. When an approximated representation is used in a
series of computations, the final result may deviate from the correct result
expected by a human. In a large billing application such an error may be up to

$5 million per Year[7].

As decimal floating-point is newly defined in the IEEE Standard for Floating-
Point Arithmetic (IEEE Std754-2008)[21], new verification technologies are
needed to verify the compliance of the decimal floating-point designs with the

standard.

As most applications (from aircraft control systems to weather forecasting) use
floating-point approximation, and these applications are often used in
monitoring and controlling physical systems, the consequence of bugs in the
result of these applications can be catastrophic. An example is the destruction
of Ariane 5 rocket after the take off in 1996, owing to uncaught floating-point
exception. Also, the costly and embarrassing error of Intel in the floating-point
division instruction of some early Intel Pentium processors in 1994. Intel set

aside approximately $475M to cover costs arising from this issue [10].

An amount of effort has been applied on the formal verification of binary



floating-point, in Intel[12], AMD[14], and IBM[17], and on the simulation
based verification of binary floating-point in IBM [2,3,9,19,20].

The verification of decimal floating-point using simulation based verification
[1,8] was recently presented but the proposed algorithms do not guarantee to
find the solution of certain cases. They cannot solve simultaneous constraints
on inputs and the intermediate result, and cannot solve constraints on an
unbounded intermediate result. Also there are no algorithms before our own
research to solve constraints of the FMA and the square root operations.
Furthermore, there is no previous work in the formal verification of decimal

floating-point.

1.1 Formal Verification

The hardware design starts with high-level specifications, formal verification
uses mathematical methods to verify that the design meets all or parts of its
specification. The main idea of formal hardware verification is to prove the
function correctness of the design which the design simulation using test

vectors cannot do.

There are two formal verification scenarios: (1) Equivalence Checking to make
sure the equivalence of two given circuit descriptions by translating both of
them to an internal format and establishing the correspondence between both of
them in a matching phase, (2) Model checking (property checking) where a
given circuit and its properties are formulated to a given verification language,

then it is proven that all properties hold under all circumstances.

Formal verification has a lot of difficulties with arithmetic circuits using
normal techniques like Binary Decision Diagram (BDD) or Boolean
Satisfiability Problem (SAT) [5]. Word-level approaches (such as Binary
Moment Diagram (BMD), Hybrid Decision Digram (HDD), etc.) have been
used, but it is often difficult to integrate in a fully arithmetic tool [5]. The

normal techniques represent the circuit in binary states which cause the state



explosion problem with the arithmetic circuits while the word approaches

represent the circuit in high level states.

1.2 Simulation based Verification

Another approach to the verification is simulation based verification, which is a
simulation method based on coverage models to verify corner cases of decimal

or binary floating-point operations.

The approach represents the specifications of a certain floating-point operation
in terms of constraints on the inputs, the output, and some internal signals of
the operation. Each specification has a coverage model, the coverage model
consists of tasks, each task represents the constraints of a certain case from the
cases that test this specification. These constraints are solved by an engine that
generates a test vector to verify the case in a decimal floating-point design
using simulation. The coverage model is a set of related tasks targeting a
certain floating point area or features of the floating-point operation, and it is
defined using a Cartesian product between two lists or among more lists of

constraints while ignoring the impossible combinations.

Simulation based technique can be applied regardless of the state space size,
and can be quite effectively in discovering bugs, but it cannot prove the
absence of bugs, because it expresses the specifications in terms of some
signals of the implementation. On other hand, Formal techniques can prove the
absence of bugs in an implementation, because they prove that all the
specification properties hold under all circumstances of the implementation
states. However, they require a significant investment in the machines and

manual work time, and are limited to small defined implementation fragments.

In verification of decimal floating-point, IBM has developed its verification
tool FPgen [3] to verify the decimal FP implemented in millicode in IBM
System Z9 [6] and in the verification of decimal FP hardware in IBM power6.

It uses the simulation based verification in the verification of decimal and



binary floating-point unites.

FPgen uses multiple engines in solving constraints. It has two types of engines,
(1) Analytical engines, which are based on mathematical algorithms and
guaranteed to find the solution in a reasonable amount of time. (2) Search
engines, which are based on search methods and do not guarantee to find the
solution in a reasonable amount of time. Since the search engines may not find
the solution, although one may exit. The search engines are used when the

analytical engines cannot solve the constraints and generate test vectors.

According to [1], FPgen decimal mathematical algorithms (1) may not be
suitable for some corner cases (eg. When the inputs are subnormal numbers),
(2) they cannot solve simultaneous constraints on inputs and the intermediate
result, and cannot solve constraints on the unbounded intermediate result, (3)
there are no algorithms to solve constraints of the FMA and the square root

operations. FPgen coverage models are described in [22].

1.3 Our Verification Work

Our decimal floating-point verification method is simulation based verification,
which a simulation method based on coverage models to cover all corner cases
of a certain decimal floating-point operation. The method guarantees that the
simulation covers the interesting cases of the operation. On the other hand the
random simulation does not guarantee a good coverage due to the large space
of the inputs that is equal to 10™”. Where (p=16Vvp=34) is the maximum
number of digits in each operand for IEEE 745-2008 decimal FP formats, and

n is the number of the operation operands.

We represent the standard specifications of each operation(eg: Overflow,
Underflow, Rounding, ...) as coverage models using the models generation
block as shown in Figure 1, which is a C++ code that generates the tasks of
each model. The behavior of the models generation block of each operation is

explained in the next chapters under the title “The main ideas of the operation



models”.

Simulation
Environment

Test vectors Design

Specifications ; Model - Inputs
H‘Models Generauon}—‘@

eg: Overflow, Underflow, Rounding,... L

Output

Consist
of

Test Vectors

Output >

Tasks, each task consists of
constraints on inputs, output, and
other internal signals.

Figure 1. Our Verification Work Environment for DUT(Design Under Test)

The constraints of each task is solved using a software engine that takes a task
as input and generates a test vector as output. The test vector consists of value
of the input operands of the operation and the output of the operation compliant

with the standard.

The test vectors are used to verify the different implementations of the
operation using simulation. The simulation environment is determined
according to the type of the design implementation, as shown in Figure 1, it
enters the test vector inputs to the design implementation and compares the
output of the design implementation with the output of the test vector, if there is

a mismatching, it is a bug in the design implementation.

The test vectors are represented as ASCII characters, the syntax of the test
vectors is the IBM syntax which is explained in Appendix A. The simulation
tools of system on chip designs read the test vectors encoded based on DPD
(Densely Packed Decimal) decimal floating-point, or based on BID (Binary
Integer Decimal) decimal floating-point [21]. Therefore, free software tools
like the tool in [7] are needed to encode the test vectors. While, we test the
software implementation designs of the decimal floaing-point libraries, using

the generated test vectors directly, without encoding.

The Addition-Subtraction, Multiplication, Fused-Multiply-Add (FMA), Square
root, and Division engines are our software engines to solve constraints on

inputs, intermediate result, and specific features related to the operation. Each



engine uses algorithms allowing the engines to solve all the constraints
numerically including simultaneous constraints on inputs and the intermediate
result, and constraints on the unbounded intermediate result. The engines find
the solution of most cases if the solution exits, the cases that the engines may

not solve it, will be explained in the next chapters.

The fives engines are used for the verification of SilMinds decimal floating-
point hardware implementations[7,13,15], and research decimal floating-point
designs at Cairo university[18]. The generated test vectors have proven the
efficiency of the engines in discovering bugs in the different operations. The
generated test vectors also have discovered bugs in the FMA and the square
root operations of the DecNumber library from IBM (Decimal floating-point

library used in gcc)[23].

1.4 Main Definitions

The FP standard [21] defines, the precision p as the maximum number of
digits in the significand. emax is the maximum exponent, and emin=1-—emax

is the minimum exponent.

In our work, decimal floating-point numbers are represented in the
unnormalized format. A number is defined as (-1)'(d,_,d,_,d; 5...d;)10°  where
s is the sign, d,_,d,_,d, is the significand where d,€(0,1,--,9], and the
exponent is bounded by gmin<q<gmax, where gmax=emax-p+1  and

gmin=emin—p+1.
We define a “mask” for a number of digits as all the possible values that such
digits may take. For the minimum values we use the subscript N while the
maximum values have The subscript M. For example, the mask of p digits
significand d, ,d,_,--d, represents the minimum and the maximum of each
digit in the significand. If 0=d;<9 then the mask consists of two numbers,
the first number represents the minimum absolute values of each digit in the

significand dy, dy, ~~-dy=00---0 and the second number represents the



maximum  absolute values of each digit in the significand
dy, dy,~dy=99-9. If in another case there is a constraint on d, to be

exactly 5 then dy=d, =5 and the remaining digits may take any values from 0

to 9, then the mask is dy, ---dydy=0--05 to d,, --dydy=9---95.

The intermediate result is the result of the operation when the precision of the
significand or the exponent is unbounded; i.e. the result before the rounding or

the normalization processes.

The Rounding mode is one from five modes defined in the standard : Round
ties to even, Round ties to away, Round toward zero, Round toward positive,
and Round toward negative. We do the rounding process to all the digits that

follow a point called fractional point, to the right of the digit d,.

The fused-multiply-add (FMA) operation is a multiplication operation followed
by an addition-subtraction operation. The addition intermediate result is the
result of the addition-subtraction operation when the precision of the
significand or the exponent is unbounded, and the multiplication intermediate
result is the result of the multiplication operation when the precision of the

significand or the exponent is unbounded.

All input types list is a list from the standard types [21], which are Normal
numbers, Zeros, Subnormal numbers, Infinities, quiet NaN (gNaN), and

signaling NaN (sNaN).

1.5 Thesis layout

In each of the following chapters, we represent the main steps of the engine for

one operation and the coverage models that have been solved by that engine.

Chapter 2 discusses the addition-subtraction while chapter 3 explains the
multiplication. The engines and the models presented for these two operations

are compared to the previous research.

Chapter 4 presents the main steps of the FMA, and chapter 5 deals with the



square root. To our knowledge this the first published work on these two

operations.

Finally, chapter 6 describes the division, and chapter 7 concludes the work.

1.6 Publications out of This Work

1. A. Sayed-Ahmed, H. A. H. Fahmy, M. Y. Hassan, “Three Engines to Solve
Verification Constraints of Decimal Floating-Point operations,” in Forty-Four

Asilomar Conference on Signals, Systems, and Computers, Nov 2010.

2. A. Sayed-Ahmed, Hossam. A. H. Fahmy, R. Samy “Verification of Decimal
Floating-Point  Fused-Multiply-Add  Operation,” in The ACS/IEEE
International Conference on Computer Systems and Applications (AICCSA),

Egypt, 2011.



Chapter 2

Engine and Models of Decimal Addition-Subtraction

Operation

The addition-subtraction engine is a software tool, generates addition
-subtraction test vectors to cover corner cases that verify the compliance of
software or hardware implementations of the decimal floating-point addition-
subtraction operation with the IEEE standard (754-2008) for Floating Point
Arithmetic, it takes coverage models as inputs and generates test vectors as

outputs.

The addition-subtraction engine solved the coverage models one time and
generated about 136000 test vectors in Decimal64, the test vectors have proved

their efficiency by discovering bugs in Silminds design[7].

The generated test vector is a decimal vector that has five sets. The first set is
type of the operation (add or subtract), number of the precision (64 or 128), and
the rounding mode. The second set is sign, significand, and exponent of the
first input. The third set is sign, significand, and exponent of the second input.
The fourth set is sign, significand, and exponent of the output. Finally the fifth
set is one or two of three flags(invalid, inexact, and overflow). The simulation
enviroment enters the first three sets to the implementation and verifies the

implementation output against the last two sets.

The task given to the addition-subtraction engine is the set of constraints on six
elements, (1) the significand of the first input Sx that is set as the smaller
exponent input, (2) the significand of the second input Sy that is set as the
larger exponent input, (3) the significand of the intermediate result Sz, (4)
the right shift value to significand of the smaller exponent input, (5) the

intermediate result exponent at which the addition_subtraction operation



occurs, and (6) the rounding mode.

The constraint on Sx is a mask starting from the minimum number Nx to
the maximum number Mx. The constraint on Sy is a mask starting from the
minimum number Ny to the maximum number My. Each number in the
previous masks has p digits. Similarly, the mask on Sz consists of two
numbers Nz and Mz, each number has 2p+1 digits, p+1 digits before
the fractional point and p digits after it. The addition intermediate result
exponent and the rounding direction are either given explicitly in the task or

left to the engine to choose randomly.

The ability of the engine to choose randomly within the range of the mask or to
choose the intermediate result exponent and the rounding direction empowers

the engine to generate test vectors discovering more bugs.

An example to explain the format of the decimal addition-subtraction task at

p=16 is as follows:

64+T: —1 —9999999999999999 —1000000000000000 —9999999999999999
—9999999999999999p9000000000000000  —9999999999999999p9999999999999999
R R 4

This multiplication task means that Nx=-1, Mx=-9999999999999999,
Ny=-—1000000000000000, My=—9999999999999999,
Nz=-9999999999999999p9000000000000000 Mz =—9999999999999999p9999999999999999.

Also, it means that the engine chooses randomly the right shift value, and the
exponent of the intermediate result, while the rounding mode is(Round to
Negative).

One of the solutions of this task is the test vector

d64- < —2837171276486938E137 +9997162828723513E140 -> —1000000000000000E141 X .

The dé64 means decimal64, the - means subtraction operation, the following
< means that the rounding mode is Round to Negative, the first input is
x=—2837171276486938+10"", the second input is y=+9997162828723513%10',

the rounded result is z=-1000000000000000x10"", and the following X

indicates that the inexact flag is high, because the exact result is

10



—9999999999999999.938 10", The rounding mode causes a carry in the

intermediate result and increases the exponent by one.

2.1 The Addition-Subtraction Engine

The engine determines the number of digits of the first input significand p,
from the interval [noof digitsof Nx,noof digitsof Mx], and number of digits of the
second input significand p, from the interval
[noof digitsof Ny,noof digits of My].
The engine chooses randomly the right-shift value to the significand of the
smaller exponent input sr, either from the interval [1,p] or from the interval
[p+1,qmax—qmin]. If sr, is equal zero, it will choose randomly left-shift
value to the significand of the larger exponent input s/, from the interval
[0,p—p,], otherwise if sr, is larger than zero, s, isequalto p—p,. Then,
it shifts to left both Ny and My, with the value of sl,, and shifts to right

both Nx and Mx, with the value of sr,.

After the shifting process, the engine uses the Addition Algorithm to get the
first input significand Sx, the second input significand Sy, and the
intermediate result significand Sz. After getting the signifigands, the engine
shifts Sx to the left with value of sr,, and shifts to right Sy with a value of
sl,.

The engine gets the input exponents and the result exponent that achieve the
right shift sr, and the left shift s/,. The intermediate result exponent Ez

either has explicit value or is chosen using q,,,+sr,.<Ez=q,,—sl,. The first
input exponent is calculated using Ex=Ez—sr, and the second input

exponent is calculated using Ey=Ez+sl,.

In the case that, the intermediate result significand has cancellation digits and
sr, is larger than zero, the engine shifts Sz to left and decreases Ez with

the value scn=min(sr , p—noof digits before point).

In the case that, the intermediate result significand has a carry digit, the engine

11



shifts Sz one digit to the right and increases Ez by one.

The engine rounds the intermediate result according to the standard. The
rounding process may generate a carry, which forces the engine to shift Sz

one digit to the right and increase Ez by one.

In the case that, Ez is larger than gmax, it is an overflow case, its result is

according to the rounding mode.

2.1.1 The Addition Algorithm

The algorithm is based on solving the linear equations that can be estimated
from Figure 2, where each column represents one linear equation. The figure
shows the addition of the two input significands at p=8, where Sx; denotes
the first input significand digit of weight 10, Sy, denotes the second input
significand digit of weight 10, and Sz; denotes the intermediate result
significand digit of weight 10'.

+Sx7 Sxs  Sxg  Sx,  Sx, 0 Sxo, Sx,  Sx.y Sx,  Sxg Sx g

Sy, SV Sys Sya Sys Sy, Sy Sy, Sy Sy, Sy, Sy, Sy Sy
Szg Sz, Szg Szy Szy, Szy Sz, Sz Sz Sz, Sz, Sz, Sz, Sz Sz_4-

Figure 2. The Addition of two Input Significands assuming Precision 8

The algorithm iterates to solve the linear equations from left to right. As shown

in Figure 2, the first linear equation from left is Sz,—Sx,—Sy,=br, where br, is

the value of carries that transfer from the previous weights to the weight of
10’7, or the borrow generated from this weight to lower weights. The second

and the third linear  equations  are Szs+10%br,—Sx;—Sys=brs; and
Sz5+10xbr—Sx;—Sy;=br;. In general the linear equation for the column of index
n is:

br,=Sz,+10%br,,,—Sx,— Sy, . (2.1)

To start the solution, the algorithm attempts to solve the first three linear
equations (representing columns 7 to 5) together based on the range of carries
that may transfer from the next lower significant column. The algorithm

chooses the digits Szg,  Sz;,, and Szg randomly from their intervals, and

12



replaces Sz, with Sz,+10%Sz,. Then since the ranges of borrow digit brs,

the digit Sx;, and the digit Sys are known as
(Nx,+ Ny,—Mz,)/10 <br; <(Mx,+ My,— Nz,)/10, Nx,< Sx;< Mx,, and
Ny;<Sy;<Mys. The algorithm transforms the third linear equation to the

inequality condition:

(Nx,+Ny,—Mz,) (Mx,+My,—Nz,)

0 + Nx; + Ny <Sz,+10%br < Mx,+ My .+ 0 (2.2)

Finally, it searches randomly on the combination values of
Sx;, Sxs, Sy;, Sye Szs that satisfy the first linear equation, the second linear
equation and the Inequality 2.2 . The steps taken so far constitute the first outer
iteration that gets the final values of Sx;, Sy,, Sz;, Sz,, Szs, Sz and estimates
the values of Sx;, Sys that may be refined in the following iteration. In the
second iteration, the algorithm transforms the fourth linear equation
Sz,+10*br;—Sx,—Sy,=br, to the inequality:

Nx,+ Ny,—Mz Mx,+ My,—Nz
M—FN}Q—FNMSSz4+10*br5SMx4+My4+( 3T s 3>,
10 10

and searches randomly on the values of Sx;, Sx;, Sys, Sys. Sz, that achieve the
second linear equation, the third linear equation and the inequality condition,
where the digits Sx,, Sy,, bre, Sz;, Szs, Sz; are known from the previous
iteration. The algorithm does this procedure in all the iterations and gets all

digits of Sx, Sy, and Sz

In general, the algorithm gets randomly the digits Sz, Sz, ,, and Sz,.,,

from their intervals, and replaces Sz, , with Sz, ,+10%Sz . It does several
iterations of index i, from i=p-1 to i=—p, to get in each iteration the
digits Sx;, Sy, Szi,, and estimates the digits Sx,,, Sy,,, such that the
combination values of these digits achieves the general two linear equations
and the inequality condition. The general form of the two linear equations and

the inequality condition are:
br=Sz;— Sx;— Sy, (23)

br,_,=Sz,_,+10%br,—Sx,_,— Sy, _, (2.4)
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Nx,_;+Ny, s— Mz, Mx,_3+My; s— Nz,
(VX {63 % 3)+in,2+Ny,.,2sSz,,2+10*bri,lsMxi,2+My,,2+( Xis 1yo ENEAE

L. @5)

2.2 The Main Ideas of the Addition-Subtraction Models

The models are defined using a Cartesian product between two or more lists of
constraints with ignoring the impossible combinations, and allowing the other

constraints to be chosen randomly.

All the model proposal ideas are in [22], except the ideas of the carry and
borrow model. However we describe all the ideas in the form of our engine

constraints.

A) Inputs Types Model
The model aims to verify all possible combinations of the input types. The

proposal ideas of the model are in [22]. We separate the model into three sub-

models as follows:

1. Tt verifies the design when one of the inputs is Zero using, (1) a list of the
first input significand is equal to zero, (2) a list of the first input exponent from

the interval [gmin,gmax], (2) all input types list of the second input.

2. It verifies the design when one of the inputs is Infinity, sNaN, or gNaN
using, (1) a list of the first or the second input from the Infinities, sNaN, and

gNaN, (2) all input types list of the other input.

3. It verifies the design in solving the other input types using, (1) a list of the
first or the second input from the minimum Subnormal, the maximum
Subnormal, the minimum Normal, and the maximum Normal, (2) a list of the

other input exponent from the interval [qmin, gmax].

B) Result Types Model
The model aims to verify the ability of the design to generate different types of

the final result. The proposal ideas of the model are in [22]. We separate the

model into five sub-models as follows:

1.1t verifies all the result exponents using, (1) a list of the intermediate result

14



exponent from the interval [gmin,gmax]|, (2) a list of right shift from the

intervals (0,[1,pl,[ p+1,qmax—qmin]}.

2.1t verifies the generation of the first hundred Subnormal numbers, the last
hundred Subnormal numbers, and the first hundred Normal numbers using, (1)
the intermediate result exponent is equal to gmin, (2) a list of the intermediate

result significands from the intervals {[2,100],[10”~'—100,10""'+100]}.

3.It verifies the generation of numbers from One to 100 using, (1) the
intermediate result exponent is equal to zero, (2) a list of the intermediate result

significands from the interval [1,100].

4. Tt verifies the last hundred Normal numbers using, (1) the intermediate result
exponent is equal to gmax, (2) a list of the intermediate result significand

from the interval [10”—100,10"—1].

5. It verifies the generation of Zero result due to cancellation at the effective
subtraction operation using, (1) the intermediate result significand is equal to
zero due to cancellation, (2) a list of the intermediate result exponent from the

interval [gmin, gmax]|.

C) Rounding Model
The model aims to verify the rounding process. The proposal ideas of the

model are in [22]. We separate the model into three sub-models as follows:

1. It verifies the rounding process using, (1) a list from the five rounding
modes, (2) a list of intermediate result significand that consists of the cross
product of the guard digit interval [0,9], the least significand digit interval

[0,9], the sticky bit interval [0,1].

2.1t verifies the possible carry propagation due to rounding process using, (1) a
list from the five rounding modes, (2) a list of intermediate result significand

from the cross product of the guard digit interval [0,9], the sticky bit interval

p p

p p
0.1], and the patterns g9 (g 9...9, X (0-8/9-.-9,-.., xx-x [0—g8)]. (3) a

list of the intermediate result exponent that consists of

{gmax ,emin , random number | .
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3. It verifies the sticky bit calculations using, (1) a list of right shift from the
interval [1,gmax—qgmin], (2) number of digits list of the smallest exponent

input significand that consists of (1, randomnumber.

D)Shift Model
The model aims to verify all the possible shifting of the input significands.

The proposal ideas of the model are also in [22].

1. Tt verifies the possible shifting to the input significands using, (1) a list of left
shift values of the largest exponent input from the interval [0,p—1], (2) a list

of right shift values to the smallest exponent input from the interval

[0, gmax—qmin|.

E) Trailing and Leading Zeros Model
The model verifies all the possible trailing and leading zeros in the input

siginficands and the intermediate result significand. The proposal ideas of the

model are also in [22]. We separate the model into three sub-models as follows:

1.It verifies all possible trailing and leading zeros in the input significands
using, (1) a list of the first input significand, (2) a list of the second input

significand same like previous list, that consists of the patterns

P P P
{1-9]00---00,0{1—9]00---00,---,00---0{1—9
P P 14
[1-9]{1-9}0---00,0{1—9}{1—9]0---00,---,00---0{1—9}{1—9]
P P P

[1-9} X(1-9]0---00,0{1-9] X {1-9]0---00,---,00---0{1—9} X [1—9]
P

[1-9) XX---X[1-9]

2.1t verifies all possible trailing and leading zeros in the intermediate result
significand using, (1) a list of the intermediate result sigificand similar to the

previous list, (2) right shift value is equal to zero.

3.1t verifies the last carry in the intermediate result significand using, (1) the
right shift from the interval [0,p—1], (2) a list of the intermediate result

sigificand from the patterns
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p+1 p+1 p+1 p+1

1{1-9}00---00,10{1—9]00---00,---,100---0{1—9],100--- 00
p+1 p+1 p+1
1{1-9}{1-9]0---00,10{1—9}{1-9]0---00,---,100---0{1—9}{1—9]
p+1 p+1 p+1

1{1-9} X[1-9}0---00,10{1—9} X[1—9}0---00,---,100---0{1—9] X (1—9]
p;rl

1XX---X{1-9]

F) Cancellation Model
The model verifies the cancellation digits in the intermediate result significand

when the operation is effective subtraction. The proposal ideas of the model are

also in [22]. We separate the model into three sub-models as followss:

1. It verifies all possible number of the cancellation digits using, (1) a list of
number of digits of the intermediate result significand from the interval [1, p],
(2) a list of right shift from the interval [0,1], (3) a list of left shift from the

interval [0,p—1].

2. Tt verifies the cancellation case at the other values of right shift using, (1)
One cancellation digit in the intermediate result significand, (2) a list of the
right shift from the interval [2,gmax—qmin], (3) a list of left shift from the

interval [0,p—1].

3.1t verifies the cases of Subnormal result due to cancellation using, (1) a list of
number of digits of the intermediate result significand from the interval [1, p],

(2) a list of right shift from interval [0,intermediate resultexponent—qmin], (3) a list
of left shift from the interval [0,p—1], (4) a list of the intermediate result

exponent from the interval [gmin,emin].

G) Overflow Model
The model verifies the overflow cases. The proposal ideas of the model are

also in [22]. We separate the model into three sub-models as follows:

1. It verifies the overflow cases due to the final carry at the effective addition
operation using, (1) the intermediate result exponent is equal to gmax, (2)the
intermediate result significand has a carry digit that is equal to one, (3) a list of

right shift from the interval [0,p—1], (4) a list of left shift from the interval
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[Osp_]-J

2. It verifies the overflow cases due to the rounding process using, (1) the
intermediate result exponent is equal to gmax, (2) the right shift value is equal
to p, (3) alist of the intermediate result significand that consists of the guard
digit interval [59], (4) a list from two rounding modes Round ties to even and
Round ties to away, (5) the significand of the largest exponent input is equal to

10P—1.

3. It verifies also the overflow cases due to the rounding process using, (1) the
intermediate result exponent is equal to gmax, (2) a list of right shift from the
interval [p+1,gmax—gmin], (3) a list from two rounding modes, Round toward
positive and Round toward negative, (4) the significand of the largest exponent

input is equal to 10°—-1.

H) Carry and Borrow Model
The model verifies all the possible propagations of carries and borrows that

occur during the effective addition or effective subtraction operations. The
proposal ideas of the model are all new. We separate the model into two sub-

models as follows:

1. It verifies all patterns of the borrow propagation at the effective subtraction
operation using, (1) a list of right shift values from the interval [1,p], (2) a

list of the largest exponent input significand that consists of the patterns

p p p
(1-9}00---0 X,{1-9}00---0XX ,---,{1-9} X --- XX
p p p
X(1-9]0--0X,X{1-9]0---0XX,--, X [1—9} X --- XX
p p

p
XX{1-9}0---0X,XX{1-9J0---0XX,--, XX [1-9} X--- XX
»

XXX--- X{1-9]

2. It verifies all patterns of the carry propagation at the effective addition
operation using, (1) a list of right shift values from the interval [1,p], (2) a

list of the largest exponent input significand that consists of the patterns
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b b p p
(1-9)99---99,(1-9]99---99X,{1-9]99---9XX,---,(1-9] X ---XX
p p p p
X({1-9]99---99, X [1-9}99---99X , X {1—9}99---9XX ,---, X {19} X --- XX
4 p p p
XX {1-9]99---99,{1-9}99---99X , XX [1—9]99---9XX ,---, XX {1—9] X --- XX

p
XXX - X {1-9]

2.3 Previous work

The Fpgen addition-subtraction algorithm by IBM [1] is given a specific
intermediate result and the difference d between the actual and the preferred
exponents, to provide two inputs that yield the specified result. The algorithm
denotes the addend significand with the smaller exponent by S, and the
addend significand with the larger exponent by S,, and the significand of the

intermediate result is denoted by S,.
The algorithm divides the problem into four sub cases :

Case 1: The result is exact and the actual exponent is equal to the preferred
exponent, the algorithm selects random S, less than S, and calculates

S§,=S,—S,, where the exponents of them same like the intermediate result
exponent. Next, it selects the operand that has possible shift right or left
according to the leading or the trailing zeros of the operand, and select one of

possible shifting.

Case 2: The result is exact and the actual exponent differs from the preferred

exponent, the algorithm tests, if there is carry or not, where carry is possible if

107'<S,/10<10”"'+107 2.

If there is no carry, it chooses S,/10°<S,-10"" that has d trailing zeros, and
subtracts it from S, to get S,, that has p digits. If there is a carry, it
chooses S, using 10S,-10°<S,/10°'<min(10”**'~1,105,-10""") that has at least

d—1 trailing zeros, then computes S,=S,—S,, such that S, has p+d

digitsand S, has p+d-1 digits.
Case 3: The result is inexact but the sticky bit is zero, and d>0. In this case,
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S, has p+d digits including d—1 digits. According to the carry condition,
if there is no carry, S, has at least d trailing zero, the algorithm chooses S,
using S,—107"'<S /10°'<10”’, and computes S,=S,—S,. Otherwise, if there
isacarry, S, hasatleast d—1 trailing zeros, and the algorithm gets S,, and

S, as before.

Case 4: The result is inexact, the sticky bit is one, and d =2  there are three

sub-cases:

1. At d>p and the guard digit is equal to zero, the algorithm separates S,
that has p+d digits into three substrings, the head of digits of S, is assigned

to S,, the tail of digits is assigned to S,, and in middle there are zero digits.

2. At d=p, if S, hasthe same digits as S,, the algorithm solves this case
as the previous case. Otherwise, the addition operation has a carry which

P p+1
— —

occurs at g —g9...9y, S =100--0z-z and the most significant digit of
y > z 3
S, is greater than the guard digit.

3.At d<p, if S, has the same digits as S,, the algorithm chooses S,
using S,—107"“<S <min(10°~1,S,—10"""""). Otherwise it chooses S, using

S,—10"%"'<s <10", and computes S,=S,-S,.
2.4 Comparison

The Fpgen addition-subtraction algorithm divides the operation into cases and
sub-cases and uses different inequalities to each one. Our engine uses one
procedure to solve all the cases which are based on the values of right shift to
the smaller exponent input significand and the values of left shift to the larger
exponent input significand. Our engine can solve all the simultaneous
constraints on the inputs and the unbounded intermediate result using the
Addition Algorithm, while Fpgen addition-subtraction algorithms solve the
simultaneous constraints on the inputs and the final result, also they solve

constraints on the intermediate result.

The value of the Addition Algorithm will appear clearly in the fused-multiply-
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add(FMA) as shown in chapter 4.
2.5 Summary

This chapter represents the main steps that the addition_subtraction engine uses
to solve all the constraints numerically. It also describes the main ideas of the
coverage models that have been solved by the engine to generate test vectors
can verify all the corner cases in the hardware or software implementations of

the decimal floating-point addition-subtraction operation.

The engine solved the coverage models one time and generated about 136000
test vectors in Decimal64, the test vectors have proved their efficiency by
discovering bugs in Silminds design, most of the bugs appear from the

cancellation model and the overflow model.
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Chapter 3

Engine and Models of Decimal Multiplication Operation

The multiplication engine is a software tool, it generates multiplication test
vectors to cover corner cases that verify the compliance of software or
hardware implementations of the decimal floating-point multiplication

operation with the IEEE standard (754-2008) for Floating Point Arithmetic.

The multiplication engine solved the coverage models one time and generated
about 96000 test vectors in Decimal64, the test vectors have proved efficiency

by discovering bugs in Silminds design[13].

The generated test vector is a decimal vector that has five sets. The first set is
the operation type (multiplication), number of the precision (64 or 128), and the
rounding mode. The second set is sign, significand, and exponent of the first
input. The third set is sign, significand, and exponent of the second input. The
fourth set is sign, significand, and exponent of the result. Finally the fifth set is
one or two of four flags (invalid, inexact, underflow and overflow). The
designer enters first three sets to his implementation and verifies the

implementations output against last two sets.

The task given to the multiplication engine is the set of constraints on six
elements: (1) the significand of the first input Sx, (2) the significand of the
second input Sy, (3) the significand of the intermediate result Sz, (4) the
exponent of the first input, (5) the intermediate result exponent which is the

sum of the two inputs exponents, and (6) the rounding mode.

The constraint on Sx is a mask starting from the minimum number Nx to
the maximum number Mx. The constraint on Sy is a mask starting from the
minimum number Ny to the maximum number My. Each number in the

previous two masks has p digits. Similarly, the mask on Sz consists of two
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numbers Nz and Mz, each number consists of 2p digits. The first input
exponent, intermediate result exponent and the rounding direction are either

given explicitly in the task or left to the engine to choose randomly.

An example to explain the format of the decimal multiplication task at p=16

is as follows:

64*T: +1 +9999999999999999 —1 —9999999999999999
—0p2000000000000000  —9999999999999990p2999999999999999
R R O

This multiplication task means that Nx=+1, Mx=+9999999999999999,

Ny=-1, My=-9999999999999999,

Nz=-0p2000000000000000  Mz=—9999999999999990p2999999999999999. Also, it
means that the engine chooses randomly the exponent of the first input, the
exponent of the intermediate result, and the rounding mode is(Round Ties to

Even).

One of the solutions of this task is the test vector

d64x* =0 +377203339734945E41 —7473476140447729E-358 -> —2819020159606310E-302 X.

The d64 means decimal64, the * means multiplication operation, the
following =0 means that the rounding mode is Round Ties to Even, the first
input is x=+377203339734945% 10", the second input is
y=—7473476140447729%10** | the rounded result is
2=-2819020159606310x10 ", and the following X indicates that the inexact

flag is high, because the exact result is

—2819020159606310.255808487189905 * 102,

3.1 The Multiplication Engine

The engine uses the Multiplication Algorithm to get, the first input significand
Sx, the second input significand Sy, and the intermediate result significand
Sz. Then, it gets the input exponents and the intermediate result exponent.

The intermediate result exponent Ez either is chosen from the interval

[gmin,qmax |, or is given explicitly. The first input exponent is chosen using
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max (qmin, Ez— qmax) <E,<min(qmax, Ez—qmin), or is given explicitly. The second

input exponent is calculated using Ey=Ez—Ex.

The engine shifts the intermediate result significand to right with a value
srz=max (0, p,—p), and the intermediate result exponent Ez is replaced with

Ez+srz.

In case of clamping, where Ez>qgmax A Ez+p,<qmax+p, the engine shifts to

left Sz with a value that is equal to Ez—qgmax, and replaces Ez with

gmax .

At special case of under flow, where Ez<gmin and Ez+p,>qmin, it shifts to

right Sz with a value that is equal to gmin—Ez, and replaces Ez with
gmin .

The engine rounds the intermediate result according to the standard. The

rounding process may generate a carry, which forces the engine to shift Sz

one digit to right and increase Ez by one.

Finally, if Ez is larger than gmax, it is an overflow case. If Ez is smaller
than gmin, it is an underflow case Sz. The cases result is according to the

rounding mode.

3.1.1 The Multiplication Algorithm

The algorithm is based on solving the nonlinear equations that can be estimated

from Figure 3, where each column represents one nonlinear equation. The

figure shows the multiplication of two inputs significands at p=8, where
Sz, denotes the multiplication intermediate significand digit of weight 10’,
Sx; denotes the first input digit of weight 10, and Sy, denotes the second

input digit of weight 10'. The sum of digits in each column in addition to any

carries from previous columns lead to one nonlinear equation.

The algorithm uses two methods to solve the non-linear equations, it chooses
the proper method according to the constraints on the intermediate result. The

first method is used, if the intermediate result constraints are on the least p

24



digits, the method solves the nonlinear equation from right to left as shown in
Figure 3. The second method is used, if the intermediate result constraints are
on the most p digits and some or all the least digits,the method solves the

nonlinear equation from left to right as shown in Figure 3.

Sx. Sx

Sy
SX35¥,
SX,Sy;
Sx,5y,

« SX

Sy

Sx7 5y,

Sx;8y1 SxeSy,
SXsSy2 SX:8y,

Sxg
Sys
SX6 SYo
Sx5 Sy,
SX4 Sy,

5 SX,
Sys Sy,
SX5Syy X4 5y,
Sx,Syy Sx5Sy;
SX3 8y, Sx,5y,

Sx, Sx, Sx,
Sy, Sy, Sy
SX,8y0 SX18¥5 SXoSYo
Sx, Sy SxoSyy

SxoSy

7 3

Sx; Sy,

Sx,Sy,

Sx; Sys Sx¢Sys

SX;8Y6 SXs Sys SX5SYe
Sx78y; Sx¢Sy; SxsSy; Sx,Sy,

Sx75y5
Sx ¢Sy,
Sx5Sys
SX4Sy5
Sx3Sy;

Sx5 Sys
Sx; Sy,
Sx4 Sys
Sx3Sy
Sx,8y7

Sx5Sy; Sx,4Sys
Sx,Sy, Sx,Sy,
Sx38ys X, 85
SX,8y6 SX1S¥6

Sx,Sy;

SxoSy;

Sx3 Sy,
Sx,Sy,
Sx,8y5
Sxo Sy

SX,5y5
Sx, Sy,
SXoSys

Sx1Sy;
Sx,Sy,

SXoSys

Sz Sz Sz Sz Sz Sz Sz Sz, Sz Sz Sz Sz, Sz Sz Sz Sz

15 14 13 12 11 10 9 8 7 6

Figure 3. The Products of the Multiplication Operation assuming Precision 8.

In the two methods, the algorithm achieves the constraint of each digit Sx,,

Sy, or Sz, by from its interval [Nx,Mx,],

[Ny,»,My,«], and [NZ,‘)MZI']'

choosing each digit

A) The First Method
In the first method, as shown in Figure 3, the algorithm attempts to solve the

first two nonlinear equations from right which are  cry=5x,Sy,—Sz, and

cr=8x,Sy,+8x, Sy, +cry/10-5z,. The algorithm chooses randomly the digit Sz,
from its interval, therefore Sz, is known, then it searches randomly on the
combination of the digits Sx,, Sy,, Sx;, Sy, Sz, that achieves the two conditions

(cry)Mod ;=0 and (cr,)Mod,,;=0. The steps taken so far constitute the first

outer iteration that gets the final values of Sz,, Sx,, Sy,, and estimates the

values of Sx,, Sy, that may be refined in the following iteration.

In the second iteration, the algorithm attempt to solve the second and the third

nonlinear  equations which are cr=Sx,Sy,+8x, Sy, +cro/10—Sz,, and

cry=5x,Sy,+5x,8y,+5x,Sy,+cr,/10-Sz,. It searches randomly on the combination

of the the
(cr,)Mod,,=0

digits Sx., Sy, Sx,, Sy,, Sz, that achieves two  conditions
and (cr,)Mod,;=0, where the digits cr, Sx,. Sy,, Sz, Sz,, are
known from the previous iteration. The algorithm does this procedure in the
next iterations, until it find all digits of Sx and Sy. then, it multiply Sx

with Sy to get the all digits of Sz.
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In general, the algorithm determines the maximum number of digits of the first
input significand ~ min(p,—no of digitsof My, p)<p,<no of digitsof Mx, ~ and  the
maximum number of digits of the second input significand p,=p,—p,;

where p, is number of digits of the intermediate result, which solve the

problem of the leading zero digits in the intermediate result significand.

It chooses randomly the digit Sz, from its interval, and does outer iterations of
index i, where 0<i<p—1. In each iteration, it gets the digits

Sz, Sx, Sy;, and  estimates the digits Sxi.., Sy such that the
combination of the previous digits achieves the conditions (cr;)mod,;=0 and

(cr,.,)mod ,=0.

The general form of the two nonlinear equations that each iteration attempt to
solve are:
j=i
crl:z Sx;_;Sy;— Sz 3.1)
j=0
j=i+l

cria= Y, Sx;_ ;41 Sy;+cr/10— Sz, (3.2)

j=0

In the last of each outer iteration, Sz,,, is replaced by Sz,,,—cr;/10, such that

the nonlinear equations are in the previous general form.

Finally, after getting all digits of Sx and Sy, it calculates the intermediate
result significand Sz=SxxSy, to get all digits of Sz. The engine chooses
different p, and p, and repeats all the iterations, if one of the conditions in

any iteration is not achieved.

B) The Second method
In the second method, the algorithm iterates to solve the nonlinear equations

from left to right. As shown in Figure 3, for p=8, the first nonlinear equation

from left is Sz,,—Sx,Sy,=br,, where br,, is the value of carries that transfer

from previous weights to the weight of 10", or the borrow generated from

this weight to lower weights. The second and the third non linear equations are
Sz 5+ 10%br,,—Sx,Sys,— SxsSy,=br;, and Sz,,+10%br ;—Sx,Sys—SxSys—SxSy,=br,,.

In general the nonlinear equation for the column of index n, where n<p-1,
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is :
j=p-1

br,=Sz,+10%br,_,— > Sy;Sx,;, (3.3)

j=n—-p+1

To start the solution, the algorithm attempts to solve the first three nonlinear
equations (representing columns 7 to 5) together based on the range of carries
that may transfer from the next lower significant columns. The algorithm
chooses randomly the digits Sz,5,Sz,,, and Sz,;, from their intervals, and
replaces the digit Sz,, with the value S$z,,+10%Sz,;. Then since the ranges of

borrow digit br,,, the digit Sx;, and the digit Sy; are known as
Ner,<br,<Mcr,,,  Nx,<Sx;<Mx,, and Ny.<Sy.<My., where Ncr,, and

Mcr., are equal to

j=5 =7 j=4

ZS}’,NXU ;+ZNYISX11 j ZS}’,leo ,+Z Ny ;Sx,9_;+NysNx;
Ner,= = 0 = 100

j=7 j=5 j=7 j=4
ZS.V}MXU /+ZMY Sxi_j Zsijxm j+ZMy]SX10 jTMys Mx,

Mer, == 0 = 100

The algorithm transforms the third nonlinear equation to the inequality

condition:
Ncr,,+ Nx; Sy ,+Sx, Nys< Sz,,410%br ;—Sx Sy, < Mcr ,+ Mx; Sy, +Sx, My . (3.4)

Finally, it searches randomly on the combination of the wvalues of
Sx;, Sy;, Sxg, Sys, Sz,3 that satisfy the first nonlinear equation, the second
nonlinear equation and the Inequality 3.4. The steps taken so far constitute the
first outer iteration that gets the final values of Sx;, Sy;, Sz;;, and estimates the

values of Sx;, Sy, which may be refined in the next iteration.

In the second iteration, the algorithm transforms the fourth nonlinear equation

82,4+ 10%br,—Sx;% y,—Sx Sys— Sx; Sys— Sx, Sy, =br,;  to the inequality condition:
Ncr,+ Nx xSy, +Sx,* Ny ,<Sz,,+10*br,—Sx, Sy —Sx; Sy, <Mcr,+ Mx,Sy,+ Sx, My, .

It searches randomly on the combination of values of S, Sy, Sxs, Sys, Sz,, that
achieves the second nonlinear equation, the third nonlinear equation and the

inequality condition, where the digits Sx,, Sy,, bry,, Sz,,, Sz, are known from the
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previous iteration. The algorithm does this procedure in all the iterations and

gets all digits of Sx and Sy.

In general, the algorithm gets the digits Sz,, ,, Sz,, ,, and Sz,, ; from their
intervals, and replaces Sz,, , with Sz,, ,+10%Sz, ,. It does number of

iterations of index i, from i=p—1 to i=0. It gets in each iteration the digits

Sx,, Sy, Sz and estimates the digits Sx, ,, Sy, ,, such that this

i i+p—32
combination of digits achieves two nonlinear equations and the inequality
condition. The general form of the two nonlinear equations and the inequality

condition are:

j=p-1

bri,, =8z, 1— Z SX;SYijip-1 (3.5)
j=i
j=p-1
brivy =Sz, o +10%bri 1 — > SX;Sy, i\, (3.6)
j=i—1
j=p72
Ncry,p_3+Sx, Ny, ,+Nx,_,Sy, \<Szi, s+10%br, , ,— Y Sx*Sy,_ ., ;< 3.7)
j=i-1 .

Sx, My, ,+Mx,_,Sy, ,+Mcr;,, .

Note that, Ncr,,, ; and Mcr;,, ; are the minimum and the maximum carries
that generated from the columns that follow the column of index i+p-3.
Since the column that has the maximum product sum, is the column of index
p—1, where the maximum product sum at p=34 is equal to
33%¥9%x9=2673. This number means that a carry from any column, at p<34,
may affect the previous three columns directly by a value more than one and
affects the higher columns indirectly by a value less than or equal to one. Based
on that, the algorithm determines the range of carries that transfer to the
column i+p—3 from the next three columns i+p-4, i+p-5, i+p-6. The

general form of the carries equations are:

j=p-1 jEi2 j=p
( Z SyiNX st Z Ny;SXips_jt SYjSXHp—S—j)/ 100+ (36)
S~ ~, :

g g J=p-s

(20 SyNxpy i+ D0 Ny Sy i+ 20 Sy 8%, 6;)/1000

j=p—4 j=i—-5 j=i—1
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j=p-1 j=i=2 j=p-3

Mer;, = Sy M,y poa it D, MY SXiep oyt D0 Sy S,y ) /104
j=p—2 j=i—3 j=i—1
et jmi2 j=p—a
(> Sy;Mx,, s+ > My,Sx., s+ Sy;SX,, p_s_;)/100+ (3.7)
j=p-3 j=i—4 Jj=i—1

j=p-1 j=i-2 5

(2 SV Mx ot 20 My S, pg i+ D0 Sy 8K, )/1000

j=p-4 j=i-5 j=i—1

.
1l
=
|

The values of Sx and Sy calculated so far achieve only the most significand
digits of Sz. The algorithm must alter correlates the values of Sx and Sy,

such that they achieve all the constraints on the digits of Sz.

The algorithm calculates the intermediate result using Sz =Sx*Sy, and gets
Sz by assign to it Sz with replacing the digits that do not achieve the
constraints with one that achieve. It checks that either condition 1
(|Sz— Sz |)mod x <maxerror is achieved, or condition 2
(|Sz— Sz [)mod y <maxerror is achieved. If condition 1 is achieved, it replaces

(Sz— Sz )—(Sz—Sz )mod Sy
Sy ’

Sx with Sx+

Otherwise, if condition 2 is achieved, it replaces Sy with

(Sz—Sz)—(Sz— Sz)mod Sx

Sy +
Y Sx

If the two conditions are not achieved the

algorithm repeats all the iterations to get new values of Sx and Sy, until one
of the conditions is achieved. The algorithm does not guarantee that the
conditions is achieved. In this case, it refines the constraints which leads to

refine the maximum error, which the case that the engine may not solve.

Finally the algorithm gets the final value of the intermediate result using

Sz=S8x*Sy .
3.2 The Main Ideas of the Multiplication Models

The models are defined using a Cartesian product between two or more lists of
constraints with ignoring the impossible combinations, and allowing the other

constraints to be chosen randomly.

All the proposal ideas of the models are in [22], however we describe the ideas

in the form of the engine constraints.
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A) Inputs Types Model

The model verifies the possible combinations of input types, we separate the
model into four sub-models as follows:

1. It verifies the design when one of the inputs is Zero using, (1) the significand
of one of the inputs is equal to zero, (2) a list of zero significand input that
consists of the exponent interval [gmin,qmax], (3) a list from all input types of

the other input.

2. It verifies the design when one of the inputs is Infinity, sNaN, or gNaN
using, (1) a list of one of the inputs from the Infinities, sSNaN, and gNaN, (2)

all input types list of the other input.

3. It verifies the design in solving other types of input using, (1) a list of one of
the inputs from the minimum Subnormal, the maximum Subnormal, the
minimum Normal, and the maximum Normal, (2) a list of the other input from

the exponent interval [gmin, gmax].

4. Tt verifies the design when one of the inputs is equal to One using, (1) one of
the inputs is equal to One, (2) a list of the other input from the exponent

interval [gmin, gmax]|.

B) Result Types Model

The model verifies the generation of different types of the final result. We

separate the model into four sub-models as follows:

1.1t verifies all the result exponents using, (1) a list of the intermediate result

exponent from the interval [gmin,gmax].

2. It verifies the generation of the first hundred Subnormal numbers, the last
hundred Subnormal numbers, and the first hundred Normal numbers using, (1)
the intermediate result exponent is equal to gmin, (2) a list of the intermediate

result significand from the intervals {[2,100],[10?"'~100,10""'+100]}.

3. It verifies the generation of numbers from one to 100 using, (1) the
intermediate result exponent is equal zero, (2) a list of the intermediate result

significand from the interval [1,100].
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4. Tt verifies the last hundred Normal numbers using, (1) the exponent
intermediate result is equal to gmax, (2) a list of the intermediate result

significand from the interval [10°-1,10"-100].

C)Rounding model

The model verifies the rounding process. We separate the model into four sub-

models as follows:

1. It verifies the rounding process using, (1) a list from the five rounding
modes, (2) a list of the intermediate result significand from the cross product of
the guard digit interval [0,9], the least significand digit interval [0,9], the
sticky bit interval [0,1], and number of digits of the intermediate result

interval [1,2p].

2. It verifies all possible carry propagations in the intermediate result
significand due to the rounding process using, (1) a list from the five rounding
modes, (3) a list of the intermediate result exponent that consists of

{gmax emin, zero,randomnumber}, ~ (2) a list of intermediate result significand
from the cross product of the guard digit interval [0,9], the sticky bit interval

[0,1], number of digits of the intermediate result interval [p,2p]|, and the

P P P

p
patterns (g9...9x...x,{0-8/9--9X X, X[0-8]9--9 X---X, -, XX~ X[0—8] X -+ X].

3. It verifies the sticky bit calculations using, (1) a list of the intermediate result

significand from the cross product of number of digits interval [p,2p], and

p+1 p+1 p+1

the patterns (xx.xo(1-9) xx---x, XX X00{1—9) XX---X -, XX--- X 00---0{1-9]] .

D)Trailing and Leading Zeros Model

The model verifies the trailing and leading zeros in the input significands and
the intermediate result significand. We separate the model into two sub -models

as follows:

1.1t verifies the patterns of zeros in the input significands using, (1) a list of the
first input significand, (2) a list of the second input same like previous list, the

list consists of
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P P P

((1-9}00---00,0{1—9]00---00,--,00---0{1—9 ]
P

P

{{1-9}{1-9}0---00,0{1—-9}{1—9]0---00,---,00---0{1—9}{1—9}]
p P P

P

((1-9)x{1-9}0---00,0{1-9]} X[1-9]0---00, -+, 00---0{1-9} X [1-9 ]
,
((1-9)xx - Xx(1-9]]
2. It verifies the trailing and leading zeros in the intermediate result significand

using, (1) a list of the intermediate result sigificand from the patterns

P+1 P+1 P+1
{(1-9J00---00,0{1-9}00---00,---,00---0{1—9}]
P+l P+1 P+l
{{1-9}{1-9]0---00,0{1-9}{1-9]0---00,--,00---0{1—-9}{1-9}}
P+1 P+1 P+1

((1-9} x[1-9}0---00,0{1—9} X{1-9}0---00,---,00---0{1—9] X {1—9}]

P+1

[(1-9) xx---X[1-9})

E) Overflow Model

The model verifies the overflow cases. We separate the model into five sub-
models as follows:
1. Tt verifies the overflow cases when the result exponent is larger than gmax,

using, a list of the intermediate result exponent from the interval

[gmax—p—1,2gmax].

2. It verifies the overflow and the near-overflow cases due to the rounding
process using, (1) the intermediate result significand is equal to 10°—1, and
has the guard digit interval [59], (2) the two rounding modes Round ties to
even and Round ties to away, (3) a list of the intermediate result exponent from

the interval [gmax—p—1,gmax—1].

3. The intermediate result significand is equal to 10°—1, with a list of guard
digit in the interval [1,9] at the two rounding modes, Round to positive and
Round to negative, with a list of the intermediate result exponent in the interval

[gmax—p—1,qmax—1], to verify the overflow and the near-overflow cases due

to the rounding process.

4. It verify the overflow cases due to number of digits of the intermediate result

significand using, (1) a list of the intermediate result exponent from the interval
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[gmax—p—1,qmax], (2) a list of number of digits of the intermediate result

significand from the interval [p,2p].

5. It verifies the near-overflow cases which need to shift the intermediate result
significand to left using, (1) a list of the intermediate result exponent from the
interval [gmax,qmax+p—1], (2) a list of number of digits of the intermediate

result significand from the interval [1,p].

F)Underflow Model
The model verifies the underflow cases. We separate the model into four sub-

models as follows:

1. It verifies the underflow cases when the intermediate result exponent is less

than gmin using, (1) a list of the intermediate result exponent from the interval
[2gmin,gmin |.

2. It verifies the underflow and the near-underflow cases when the intermediate

result significand is shifted to right and the result is inexact using, (1) a list of

the intermediate result exponent from the interval [qmin—2 p,qmin|, (2) a list of

number of digits of the intermediate result from the interval [1,2p].

3. It verifies the underflow and the near-underflow cases when the intermediate

result significand is shifted to right and the result is exact using, (1) a list of the

intermediate result exponent from the interval [qmin—2p,qmin], (2) a list of

the intermediate result significand that consists of the patterns
{{1-9}00---0, X {1-9}00---0,--, XX --- X {1-9}},

4. It verifies the near-underflow cases and the subnormals numbers using, (1) a

list of the intermediate result exponent from the interval [gmin,qgmin+p-1], (2)

a list of number of digits of the intermediate result from the interval [1,2p].

3.3 Previous work

The Fpgen multiplication algorithm by IBM [1] is given the constraints on the
intermediate result S, which has up to 2p digits, and on the difference

0<d <p between the actual and the preferred exponents.
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The algorithm represents the problem into two cases:

Case 1: The sticky bit is zero and d—1 trailing zeros after the guard digit
exist, the algorithm factorizes S,=S,10"" to its prime factors, then selects
random factors for S, and S, such that the value of each is smaller than

107, then selects random exponent e, , e, suchthat e,+e,=e,—d.

Case 2: The sticky bit is one and d>2, the algorithm uses the following
procedure: (1) it computes the range of possible values of S, using

S,.107'<S,<(S,+1).10°", (2) it selects randomly the number of digits

z

IS/<p and the value of S, using S,=( ), (3) it chooses S, using

T 1071

(51.10“<S _(s.+ 1).10""
s, T S

y Yy

), if a decimal value is founded in that range, this

mean that the solution exists, otherwise the algorithm returns to step two. On

the average the algorithm can find a solution for S, within 10 trials.
3.4 Comparison

The Fpgen multiplication algorithm cannot solve simultaneous constraints on
the inputs significand and the intermediate result significand, and cannot solve
all the constraints on the digits that follow the guard digit of the intermediate
result significand, while our engine solves these constraints numerically. Both
of them cannot find the solution from the first trail, but they find the solution in

practical time.
3.5 Summary

This chapter represents the main steps that the multiplication engine uses to
solve all the constraints numerically. It also describes the main ideas of the
coverage models that have been solved by the engine to generate test vectors
can verify all the corner cases in the hardware or software implementations of

the decimal floating-point multiplication operation.

The engine solved the coverage models one time and generated about 96000

test vectors in Decimal64, the test vectors have proved efficiency by
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discovering bugs in Silminds design. The bugs are appeared in the input types

model.
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Chapter 4

Engine and Models of Decimal Fused Multiply Add (FMA)

Operation

The fused-multiply-add(FMA) engine generates FMA test vectors to cover all
corner cases, to verify a tested implementation of decimal fused-multiply-add
(FMA) operation to achieve the compliance with the IEEE standard (754-2008)

for Floating Point Arithmetic.

The FMA engine solved the coverage models one time and generated about
425000 test vectors in Decimal64, the test vectors have proved their efficiency
by discovering bugs in Silminds design[15] and FMA DecNumber

implementation [23].

The generated test vector is a decimal vector that has six sets. The first set is
the operation type (FMA), number of the precision (64 or 128), and the
rounding mode. The second set is sign, significand, and exponent of the first
input. The third set is sign, significand, and exponent of the second input. The
fourth set is sign, significand, and exponent of the second input. The fifth set is
sign, significand, and exponent of the result. Finally the sixth set is one or two
of four flags(invalid, inexact, underflow and overflow). The designer enters the
input sets to his implementation and verifies the implementation output against

last two sets.

The FMA operation x*yxb=c multiplies the first two inputs, and adds

without rounding the result of the multiplication operation to the third input.

The task given to the fused-multiply-add(FMA) engine is the set of constraints
on eleven elements, (1) the significand of the first input Sx, (2) the
significand of the second input Sy, (3) the significand of the third input Sb,

(4) the multiplication intermediate result Sz, (5) the addition intermediate

result Sc, (6) the exponent of the first input, (7) the multiplication
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intermediate result exponent which is the sum of the first two inputs exponents,
(8) identifier number sid to determine the smaller exponent input of the
addition operation (i.e the exponent of third input or the exponent of the
multiplication intermediate result), such that the engine determines which
significand will be shifted to right, (9) right shift value of the smaller exponent
addition input. (10) the addition intermediate result exponent at which the

addition_subtraction operation occurs, (11) the rounding mode.

The constraint on Sx is a mask starting from the minimum number Nx to the
maximum number Mx. The constraint on Sy is a mask starting from the
minimum number Ny to the maximum number My. The constraint on Sb is
a mask starting from the minimum number Nb to the maximum number

Mb. Each number in the previous masks has p digits. Similarly, the mask
on Sz consists of two numbers Nz and Mz, each number has 2p digits,
Also, the mask on Sc consists of two numbers Nc and Mc, each number
has 2p+1 digits, p+1 digits before the fractional point and p digits after
it. The first input exponent, the multiplication intermediate result exponent, the
addition intermediate result exponent and the rounding direction are either

given explicitly in the task or left to the engine to choose randomly.

The ability of the engine to choose randomly within the range of the mask or to
choose the input exponents and the rounding direction empowers the engine to

generate test vectors discovering more bugs.

An example to explain the format of the decimal FMA task at p=16 is as

follows:

64x+T: —1 —9999999999999999 —1 —9999999999999999 —100000 —999999
+100000000000000 +99999999999999999999999999999999
—999999999999999.9000000000000000 —999999999999999.9999999999999999
R R 0 6 R R
This task means that Nx=-1, Mx=-—9999999999999999,
Ny=-1, My=-9999999999999999, Nb=-100000, Mb=-999999,
Nz=+100000000000000, Mz =-+99999999999999999999999999999999,

Nc=-999999999999999.9000000000000000,  pc=-999999999999999.9999999999999999 .
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Also, it means that the engine chooses randomly the exponent of the first input,
the exponent of the multiplication intermediate result, the exponent of the
addition intermediate result, and the rounding mode. The engine determines
from the task that the third input is the smaller addition exponent, and the
significand of the smaller addition exponent (the third input exponent) will be

shifted to right six digits.

One of the solutions of this task is the test vector

d64*+ =0 —9046436700100791E —59 —11054076131311E127 —81183E76 -> +9999999999999999 E81 X .

The d64 means decimal64, the *+ means FMA operation(i.e multiplication
operation followed by addition operation), the following =0 means that the
rounding mode is Round ties to even, the first input is
x=—9046436700100791x10", the second input is y=-11054076131311%10", the
third input is b=-81183%10", the rounded result is c¢=+9999999999999999*10",
and the following X indicates that the inexact flag is high, because the exact

result is 9999999999999999.2782750967001 * 10" .

4.1 The FMA engine

The engine determines the number of digits of the multiplication intermediate
result p, from the interval [noof digitsof Nz,noof digitsof Mz], as 0<p,<2p, and
number of digits of the third input p, from the interval
[no of digits of Nb,noof digitsof Mb]. The engine shifts to right both Nz and Mz
with the value srm,, to be in the format of maximum p digits before the

fractional point.

According to the value of sid, the engine determines the smaller exponent
input of the addition operation. Therefore, the engine chooses between two
procedures, (1) procedure 1, the multiplication intermediate result exponent is
the smaller exponent input of the addition operation, therefore the
multiplication intermediate result significand is shifted to right and the third

input significand is shifted to left, (2) procedure 2, the third input exponent is
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the smaller exponent input of the addition operation, therefore the third input
significand is shifted to right and the multiplication intermediate result

significand is shifted to left.

In procedure 1, the engine chooses randomly the right-shift value sr,, either
from the intervals [1,p] or [p+1,qmax—2%qmin|. If sr, is equal to zero, it
will choose randomly the left-shift value sl,, from the interval [0,p—p,].
Otherwise, if sr, is larger than zero, sl, is equal to p—p,- The engine
shifts to left both Nb and Mb with the value of sl,, and shifts to right both
Nz and Mz with the value of sr,. Then, the engine uses the Addition
Algorithm (in 2.1.1) to get the third input significand Sb, the multiplication
intermediate result significand Sz, and the addition intermediate result of
Sc. After that, the engine shifts to left the significand Sz with the value of
sr,+srm,, and factorizes Sz to the two inputs significands Sx and Sy

using the Multiplication Algorithm (in 3.1.1).

The engine recalculates the new value of Sc by replacing Sc with Sz+Sb,
as the Multiplication Algorithm changes some digits in Sz. It shifts to right the
third input significand Sb, with the value of sl,, and calculates the input

exponents that achieve the values of sl, and sr,.

To calculate the exponents, the engine chooses the addition intermediate result
exponent Ec from the interval [max(sr,+srm, +2%qmin,qmin),qmax—sl,], then it
calculates the exponent of the multiplication intermediate result
Ez=Ec—sr,—srm,, and the third input exponent Eb=Ec+sl,. It chooses the
first input exponent Ex using max(gmin,Ez—qmax)<E,<min(qmax, Ez—qmin), Or
Ex is given explicitly, and it calculates the second input exponent using
Ey=Ez—Ex.
However, if Ez is given explicitly to the engine, the engine gets the first input
exponent Ex using max(gmin, Ez—qmax)<E,<min(gmax, Ez—qmin), or Ex is given
explicitly, and it gets the second input exponent using Ey=Ez—Ex. The
exponent of the addition intermediate result Ec is equal to Ez+sr,+srm,, and

the third input exponent FE* isequal to Ec+sl,.
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In procedure 2, the engine chooses randomly the right-shift value sr,, either
from the intervals [1,2p], [p+1,gmax—gmin]|, or [gmax+1—gmin,2xgmax—qmin].
If sr, is equal to zero, it will choose randomly the left-shift value sl,, from
the interval [0,p—p,|. Otherwise, if sr, is larger than zero, sl, is equal to
p—p,. The engine shifts to left both Nz and Mz with the value of sl,,
and shifts to right both Nb and Mb with the value of sr,. Then, the engine
uses the Addition Algorithm (in 2.1.1) to get the third input significand Sb,
the multiplication intermediate result significand Sz, and the addition
intermediate result of Sc. After that, the engine shifts to right Sz with the
value srm, and shifts to left Sz with value sl,. It factorizes Sz to the two

inputs significands Sx and Sy using the Multiplication Algorithm(in 3.1.1).

The engine recalculates the new value of Sc by replacing Sc with Sz+Sb,
as the Multiplication Algorithm changes some digits in Sz. It shifts to left the
third input significand Sb, with the value of sr,, and calculates the input

exponents that achieve the values sr, and sl,.

The engine chooses the addition intermediate result Ec from the interval
[gmin+sr,,qmax|, it calculates the multiplication intermediate result exponent
using Ez=Ec+sl,—srm,, and the third input exponent using Eb=Ec-sr,. The
engine gets the first input exponent Ex, either from the interval
| max(gmin , Ez—qmax), min(qmax, Ez—qmin)|, or Ex is given EXphCiﬂy, and it

calculates the second input exponents using Ey=Ez—Ex.

However, if Ez is given to the engine, the engine gets the first input exponent
Ex, either from the interval [max(gmin, Ez—qgmax),min(qmax ,Ez—qmin)], or Ex

is given explicitly, and it gets the second input exponent using Ey=Ez—Ex.

The exponent of the addition intermediate result Fz is equal to Ez—sl,+srm,,

and the third input exponent Fb isequalto Ec—sr,.

The addition intermediate result may have cancellation digits, in that case the
engine shifts Sc to left and decreases Ec with a  value

scn=min(Ec—Ez, p—no of digits before point) .
The addition intermediate result may have a carry digit, in that case the engine
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shifts Sc one digit to the right and increases Ec by one.

At clamping, where Ec>qgmax A Ec+p.<qmax+p, the engine shifts to left Sc

with the value Ec—qgmax and replaces Ec with gmax.

At special case of underflow, where Ec<gmin and Ec+p.>qmin, it shifts to

right Sc with the value gmin—Ec and replaces Ec with qgmin.

The engine rounds the addition intermediate result according to the standard.
The rounding process may generate a carry to force the engine to shift Sc one

digit to right and increase Ec by one.

Finally, if Ec is larger than gmax, it is an overflow case, and if Ec is
smaller than gmin, it is an underflow case. The result of these cases are

according to the rounding mode.

4.2 The Main Ideas of the FMA Models

The models are defined using a Cartesian product between two or more lists of
constraints while ignoring the impossible combinations and allowing the other

constraints to be chosen randomly.

Some of the model proposal ideas are also in [22]. We write down during the
explanation of these ideas that they are in [22]. However we describe these
ideas in the form of our engine constraints. The other ideas are new ideas to
verify new corner cases in the different FMA implementations. In total we
present 42 sub-models of which 23 sub-model ideas are in [22] and 19 sub-

model ideas are new.

A) Inputs Types Model

The model aims to verify the ability of the design to solve all possible
combinations of the input types. The proposal ideas of the model are in [22].

We separate the model into three sub-models as follows:

1. It verifies the handling of Normal and Subnormal types of the first two

inputs, using the following lists of constraints, (1) a first input list consists of
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the minimum Subnormal, the maximum Subnormal, and the maximum Normal,
(2) a second input exponent list consists of all the exponent values in the

interval [gmin, gmax]|.

2. It verifies the remaining of Normal and Subnormal types of the third input,
using the following lists of constraints, (1) a third input list consists of the
minimum Subnormal, the maximum Subnormal, and the maximum Normal, (2)
a list of the multiplication intermediate result exponent consists of the
exponent values in the interval [2*qmin,2*qmax].

3. It verifies the input types Zero, Infinities, sNalN, or gNaN; using the four

combinations of lists in Table 1.

TaBLE 1.ComBinaTioNs oF INpuTs TypES LisTs

Id The Contents of The lists
First Input Second Input Third input
Zero with all possible
1 All input types list | All input types list
exponents
Zero with all possible
2 All input types list All input types list
exponents
Infinities, sNalN, and
3 All input types list | All input types list
gNaN
Infinities, sNaN, and
4 All input types list All input types list
gNaN
B) Result Types Model

The model aims to verify the ability of the design to generate all the result
types that has not been generated in the previous model. The proposal ideas of
the model are also in [22]. We separate the model into four sub-models as

follows:

1. It verifies all the result exponents using, (1) a list of the addition intermediate

result exponents consists of the interval [gmin, gmax].

2. It verifies the generation of the first hundred Subnormal numbers, the last

hundred Subnormal numbers, the first hundred Normal numbers, and numbers
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from One to 100 using, (1) a list of the addition intermediate result significand
consists of the intervals ([1,100],[10°7'~100,10°"'+100]}, (2) a list of the addition

intermediate result exponent consists of zero and gmin.

3. It verifies the last hundred Normal numbers using, (1) a list of the addition
intermediate result significand consists of the interval [10"-1,10°-100], (2) the

addition intermediate result exponent is equal to gmax.

C) Rounding Model

The model aims to verify the rounding process in the design. Some of the
proposal ideas of the model are in [22], while the other ideas are new. We

separate the model into eight sub-models as follows:

1. It verifies the rounding process at all combinations of the guard digit, the
least significand digit, and the sticky bit using, (1) a list from the five rounding
modes, (2) a list of the addition intermediate significand consists of, the guard
digit interval [0,9], the least digit interval [0,9], and the sticky bit interval

[0,1], (3) a list from the two values of sid that determines the smaller
exponent input of the addition operation. The proposal idea of this sub-model is

also in [22].

2. It verifies the possible carry propagation due to rounding process using, (1)
a list from the five rounding modes, (2)a list from two values of sid, (3) a list
of the addition intermediate result significand consists of, the guard digit
interval [0,9], the  sticky  bit  interval [0,1], and the  patterns

[99---99,{0—8}99---99, X (0—8]9---99,---, XX ---X (0—8]]. The proposal idea of this

sub-model is in [22].

3. It verifies the sticky bit calculations using, (1) a list of right shift to the third
input consists of the interval [2,qmax—qmin], (2) sid indicates that the third
input exponent is the smaller exponent input of the addition operation, (3) the
number of digits of the third input significand is equal to one. The proposal

idea of this sub-model is in [22].

4.1t verifies the sticky bit calculations using, (1) a list of right shifts to the
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multiplication intermediate result from the interval [2,qmax—2%gmin], (2)

sid indicates that the multiplication intermediate result exponent is the
smaller exponent input of the addition operation, (3) the number of digits of the
multiplication intermediate result significand is equal to one. The proposal idea

of this sub-model is in [22].

5. It verifies the rounding process when the right shift is less than p using; (1)
a list from the five rounding modes, (2) a list of number of digits of the third
input significand consists of the interval [1,p|, (3) sid indicates that the
third input exponent is the smaller exponent input of the addition operation, (4)

a list of the right shift consists of the interval [1,p].

6. It verifies the rounding process when the right shift is less than p using, (1)
a list from the five rounding modes, (2) a list of number of digits of the
multiplication intermediate result significand consists of the interval [1,2p],

(3) sid indicates that the multiplication intermediate result exponent is the
smaller exponent input of the addition operation, (4) a list of the right shift

consists of the interval [1,p].

7. Tt verifies the sticky bit when the right shift value is less than p using, (1)
the right shift value is less than p, (2) sid indicates that the multiplication
intermediate result exponent is the smaller exponent input of the addition
operation, (3) a list of the multiplication intermediate result significand consists
of the pattern

p+1 p-1 p+1 p-1 p+1 p—1
(1-9J00--0{1-9} X---X, X{1-9]00---0{1-9] X--- X ,---, X ---X {1-9}{1-9} X --- X,

pt1 p-1 p+1 p-1 p+1 p-1

(1-9J00--00{1-9} X - X, X[1-9}00---00{1—9} X --X ,---, X--- X[1-9] 0{1-9} X --- X,
p+l p-1 p+1 p-1 p+1 p—

(1-9}00---000{1—9}X---X, X[1—9}00---000{1—9} X--- X ,---, X---X {1-9]00{1-9} X --- X,

p+1 p-1 p+1 p—1 p+1 p—1
—_—

{1-9J00---000---0{1—9},X[1—9]00---000---0{1—9], -, X--- X [1—9]00---0 {19}

8. It verifies the sticky bit when the right shift value is less than p using, (1)
the right shift value is less than p, (2) sid indicates that the third input
sigificand is the smaller exponent input of the addition operation, (3) the

multiplication intermediate result significand has zero digits after the most p
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digits, (4) the third input significand has the  pattern

p p 4

{1-9}00---0X,X{1-9}00---0X,---,X---X{1-9]0X.

D)Shift Model

The model aims to verify all the possible shifting of the input significands.
The proposal ideas of the model are also in [22]. We separate the model into

two sub-models as follows:

1. It verifies all the possible shifting to the third input significand using, (1) a
list of right shift to the third input consists of the interval [1,gmax—qmin], (2)
sid indicates that the third input exponent is the smaller exponent input of the

addition operation.

2. It verifies all the possible shifting to the multiplication intermediate result
significand using, (1) a list of right shift to the multiplication intermediate
result consists of the interval [1,qmax—2%gmin], (2) sid indicates that the
multiplication intermediate result exponent is the smaller exponent input of the

addition operation.

E) Trailing and Leading Zeros Model

The model aims to verify all the possible trailing and leading zeros in the
input significands and the addition intermediate result significand. The proposal
ideas of the model are also in [22]. We separate the model into three sub-

models as follows:

1. It verifies the different patterns of digits of the input significands using, (1) a
list is from two values of sid, (2) a list of the third input significand, (3) a
similar list of the multiplication intermediate result significand that has 2p

digits. The second and the third lists have the same pattern
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p 4 4

(1-9}00---00,0{1—9]00---00,--,00---0{1—9],
p p

p

[1-9}{1-9}0---00,0{1-9}{1-9}0---00,--,00---0{1—9} [1—9],
P P P

(1-9)X({1-9}0---00,0{1-9} X{1-9}0---00,--,00---0{1—-9} X[1-9),

p

[1-9)XX---X [1-9)

2. It verifies different patterns of digits of the addition intermediate result
significands using (1) a list of the addition intermediate result significand of
p digits before fractional point, consists of similar pattern of the previous

sub-model.

3. It verifies the final carry with different pattern of zeros in the addition
intermediate result significand using, (1) a list of the addition intermediate

result sigificand consists of the following patterns

p+1 p+1 pt+1 pt+1
1{1-9}00---00,10{1—9}00---00,---,100---0{1—9},100---00,
p+1 p+1 p+1
1{1-9}{1-9}0---00,10{1—9}{1—9}0---00 -, 100---0{1—9} {19,
p+1 p+1l p+1

1{1-9] X {1-9}0---00,10{1—9} X{1—9}0---00,---,100---0{1—9]} X[1—9],
Pl

1XX---X {1-9]

F) Carry and Borrow model

The model aims to verify all the possible propagation of carries and borrows
in the addition operation. The Ideas of the model are all new. We separate the

model into four sub-models as follows:

1. It verifies all patterns of the borrow propagation when the addition operation
is effective subtraction using, (1) a list of right shift values to the third input
consists of the interval [1,2p], (2) sid indicates that the third input exponent
is the smaller exponent input of the addition operation, (3) a list of the

multiplication intermediate result significand consists of the following pattern
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2p 2p 2p

(1-9J00---0X,(1-9}00---0XX -, {19} X --- XX,
2,

2p 2p

X{1-9J0---0X,X{1-9}0---0XX, -, X [1-9) X --- XX,
2p 2p 2p

XX({1-9]0---0 X, XX {1-9]0---0XX,---, X X[1-9] X --- XX,

2p

XXX - X[1-9)

2. It verifies all patterns of the borrow propagation when the addition operation
is effective subtraction using, (1) a list of right shift to the multiplication
intermediate result consists of the interval [1,p|, (2) sid indicates that the
multiplication intermediate result exponent is the smaller exponent input of the
addition operation, (3) a list of the third input significand consists of similar

pattern to the pattern in sub-model 1, but with p digits.

3. It verifies all patterns of the carry propagation when the addition operation is
effective addition using, (1) a list of right shift values to the third input in the
interval [1,2p], (2) sid indicates that the third input exponent is the smaller
exponent input of the addition operation, (3) a list of the multiplication
intermediate result significand consists of the following pattern.

2p 2p 2p 2p

[1-9]99---99,{1-9]99---99X,(1-9}99---9XX -, {1-9] X --- XX,
2p 2p 2p 2p
X{1-9]99---99, X {1—-9}99---99X, X [1-9]99---9XX ,---, X [1—9] X --- XX,
2p 2p 2p 2p

XX {1-9]99---99,{1-9}99---99X, XX[1—9]99---9XX ,---, XX [1-9] X --- XX,

2p

XXX ---X[1-9)

4. Tt verifies all patterns of the carry propagation when the operation is effective
addition using, (1) a list of right shift values to the multiplication result
consists of the interval [1,p]. (2) sid indicates that the multiplication
intermediate result exponent is the smaller exponent input of the addition
operation, (3) a list of the third input significand of similar pattern to the pattern

in sub-model 3, but with p digits.

G) Overflow Model

The model aims to verify all the overflow and the near overflow cases. We
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separate the model into four sub-models as follows:

1.1t verifies the overflow cases due to the rounding process using, (1) the
addition intermediate result significand is equal to 10°—1, with a guard digit
consists of the interval [5,9], (2) the addition intermediate result exponent is
equal to gmax, (3) a list is from two rounding modes Round ties to even and
Round ties to away,(4) a list of the multiplication intermediate result exponent

consists of the interval [gmax—p, gmax]|.

2.1t verifies the overflow cases due to the rounding process using, (1) the
addition intermediate result significand is equal to 10°—1, with a guard digit
consists of the interval [1,9], (2) the addition intermediate result exponent is
equal to gmax, (3) two rounding modes are Round to positive and Round to
negative, (4) a list of the multiplication intermediate result exponent consists

of the interval [gmax—p,gmax].

3. It verifies the overflow cases due to the final carry at the effective addition
operation using, (1) the number of digits before fractional point of the addition
intermediate result significand is equal to p+1, (2) the addition intermediate
result exponent is equal to gmax, (3) a list of the multiplication intermediate
result exponent consists of the interval [gmax—p,qmax|, (4) a list of number

of digits of the third input significand consists of the interval [1,p].

4. Tt verifies the overflow cases due to the result of the multiplication operation
using, (1) a list of the multiplication intermediate result exponent consists of

the interval [gmax—p,2xqmax]|. The proposal idea of this sub-model is in [22].

H) Clamping Model

The clamping occurs when the intermediate result exponent is larger than
gmax, and the number of digits of the intermediate result significand is less

than p, such that the sum of the intermediate result exponent to the number

of digits of the intermediate result significand is less than or equal to
gmax+p. At that case, the engine shifts to left the intermediate result

significand and reduces the number of leading zeros.
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The model aims to verify all clamping cases. We separate the model into two

sub-models as follows:

1. It verifies the clamping case using, (1) a list of the multiplication
intermediate result exponent consists of the interval [gmax+1,qmax+p—1], (2)
a list of number of digits of the multiplication intermediate result significand
consists of the interval [1,p], (3) the multiplication intermediate result
exponent to the number of digits of the multiplication intermediate result
signicand is less than or equal to gmax+p, (4) a list of third input significand
consists of {zero,randomnumber|, (5) the third input exponent is equal to

qmax .

2. It verifies the cases of left shift to the addition intermediate result significand
due to the preferred exponent condition using, (1) a list of the multiplication
intermediate result exponent consists of the interval [gmin+1,qmax+p]|, (2) a
random value of number of digits of the multiplication intermediate result
significand from the interval [1,p], (3) the third input significand is equal to
zero, (4) the third input exponent is less than the multiplication intermediate

result exponent.

I) Underflow Model

The model aims to verify all the underflow and the near underflow cases. We

separate the model into three sub-models as follows:

1. Tt verifies the underflow due to the result of the multiplication operation
using, (1) a list of the multiplication intermediate result exponents consists of
the interval [2*qmin,qmin], (2) a list of third input significand consists of

{zero,randomnumber|. The proposal idea of this sub-model is in [22].

2. It verifies the underflow flag when the result is inexact and the result
exponent is equal to gmin using, (1) a list of the multiplication intermediate
result exponent consists of the interval [gmin—2p,qgmin|, (2) a list of number of
digits of the multiplication intermediate result consists of the interval [1,2p],

(3) the third input significand is equal to zero.
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3. It verifies the underflow flag when the result is exact and the result exponent
is equal to gmin using, (1) a list of the multiplication intermediate result
exponent consists of the interval [gmin—2p,qmin], (2) a list of the
multiplication intermediate result significand  consists of the pattern
{{1-9}00---0, X{1-9}00---0,---,XX---X [1-9}], (3) the third input significand is

equal to zero.

J) Cancellation Model

The model aims to verify all the cancellation cases, which has cancellation
digits in the most digits of the addition intermediate result due to the effective

subtraction operation. We separate the model into ten sub-models as follows:

1. It verifies the cases of all possible number of the cancellation digits using,
(1) a list of the addition intermediate result significand consists of an interval
of number of digits before the fractional point [1,p—1], and an interval of
number of digits after the fractional point [1,p—1] at zero value before the
fractional point, (2) a list of right shift consists of the interval [0,1], (3) a list
of number of digits of the multiplication intermediate result significand consists
of the interval [1,2p], (4) sid identifies the third input exponent as the

smaller addition exponent. The proposal idea of this sub-model is in [22].

2. It verifies the cases of all possible number of the cancellation digits, (1) a list
of the addition intermediate result significand similar to the list in sub-model
1, (2) a list of right shifts consists of the interval [0,1], (3) a list of number of
digits of the third input significand consists of the interval [1,p]|, (4) sid

identifies the multiplication intermediate result exponent as the smaller

exponent. The proposal idea of this sub-model is in [22].

3. It verifies the zero result due to cancellation using, (1) the addition
intermediate result significand is equal to zero value, (2) the right shift is zero,
(3) a list of number of digits of the multiplication intermediate result
significand consists of the interval [1,2p]|. The proposal idea of this sub-

model is in [22].
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4. It verifies the cases when the result is exact due to cancellation using, (1) the
addition intermediate result significand has zero value after the fractional point,
(2)a list of the multiplication intermediate result significand consists of the
pattern

2 ~ — 2

[1-9] XX--- X 000---0{1—9],{1—-9} XX---X 00---0{1—9] X,
p

p-3 P
—_——

[1-9} XX---X00---0{1-9} XX,---,{1-9} XX--- X {1-9] XX --- X

(3) a list of right shift to the third input significand consists the interval
p,2p—1], (4) sid identifies the third input exponent as the smaller addition

exponent.

5. It verifies the cases when the result is exact due to the cancellation using, (1)
the addition intermediate result significand has zero value after point, (2) a list
of the multiplication intermediate result significand consists of the pattern

P P

{1-9}XX---X{1-9}00---0,{1—-9} XX --- X X{1-9}00---0,

p p
(1-9) XX---X XX [1-9}00---0,---,[1-9] XX--- X XX---X [1-9]

(3) alist of right shift to the third input significand from the interval [1,p], (4)

sid identifies the third input exponent as the smaller addition exponent.

6. It verifies the underflow cases due to cancellation using, (1) a list of the
addition intermediate result significand consists of the interval of number of
digits before fractional point [1,p—1], and the interval of number of digits
after point [1,p], (2) a list of values of the addition intermediate result
exponent in the interval [gmin,gmin+p—1], (3) a list of right shift consists of

the interval [0,1]. The proposal idea of this sub-model is in [22].

7. It verifies the underflow due to cancellation using, (1) One cancellation digit
in the addition intermediate result significand (2) the addition intermediate
result exponent is equal to gmin, (3) a list of the multiplication intermediate

result exponent consists of the interval [2*gmin, gmin+1].

8. It verifies the near overflow cases with cancellation using, (1) a list of the

addition intermediate result significand consists of the interval of number of
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digits before point [1,p—1], (2) a right shift is equal to one, (3) the addition

intermediate result exponent is equal to gmax+1.

9. It verifies the cancellation cases with one digit using, (1) one cancellation
digit in the addition intermediate result significand, (2) a list of right shift from
the interval [2,gmax—2xqmin|, (3) sid identifies the multiplication result
exponent as the smaller exponent. The proposal idea of this sub-model is in

[22].

10. It verifies the cancellation cases with one digit using, (1) one cancellation
digit in the addition intermediate result significand, (2) a list of right shift from
the interval [2,gqmax—qmin], (3) sid identifies the third input exponent as the

smaller exponent. The proposal idea of this sub-model is in [22].

4.3 Summary

This chapter represents the main steps of the first FMA engine to solve all the
constraints numerically. It also describes the main ideas of the coverage
models that have been solved by the engine to generate test vectors can verify
all the corner cases in the hardware or software implementations of the decimal

floating-point FMA operation.

The engine cannot find the solution from the first trial, and may not solve all
the constraints on the least digits of the multiplication intermediate result that

have weight less than 107",

The engine solved the coverage models one time and generated about 425000
test vectors in Decimal64, the test vectors have proved their efficiency by
discovering bugs in Silminds design and FMA DecNumber implementation.
The DecNumber bugs are discovered using the carry and borrow model, while
most of Silminds bugs are discovered using the overflow and the underflow

models.
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Chapter 5

Engine and Models of Decimal Square Root Operation

The square root engine is a software tool written in C++ to generate square root
test vectors can cover all corner cases, to verify a tested implementation of
decimal square root operation to achieve the compliance with the IEEE
standard (754-2008) for Floating Point Arithmetic, it takes coverage models as

inputs and generates test vectors as outputs.

The engine generates the test vectors in two formats of the IEEE standard:
Decimal64 and Decimal128. The engine time to generate one test vector
depends on the constraints that have been solved to generate it and the factor of
randomization that the engine needed. The engine generates as many test
vectors as the user wants. Every time the engine runs, it generates new test
vectors. The verification engine value is neither in the time needed to generate
the test vector, if this time is practical, nor in the number of the generated test

vectors, but rather in the functionality of the cases that the test vector covers.

The engine solved the coverage models one time and generated about 50000
test vectors in Decimal64 and about 199000 test vectors in Decimal128, the test
vectors have proved an efficiency by discovering bugs in DecNumber
library[23] and Silminds design [7]. Table 2 shows the maximum and the
minimum times that the engine needed to solve a task of the existing
constraints and generate one test vector, on Intel(R) Pentium(R) 4 CPU

3.20GHZ with g++ (Ubuntu 4.4.3) compiler.

TaBLE 2. THE TiME PERFORMANCE OF THE SQUARE RooTt ENGINE

Test vector Format Minimum Time Maximum Time
Decimal 64 0.006 seconds 37 seconds
Decimal 128 0.017 seconds 2.35 minutes

Although the engine solves constraints on the input and the intermediate result
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only, it managed to discover some faults inside the operation in two designs by
forcing the engine to solve constraints on patterns of zeros and nines in the

intermediate result significand.

The generated test vector is a decimal vector that has three sets, The first set is
type of the operation square root, number of the precision (64 or 128), and the
rounding mode. The second set is sign, significand, and exponent of the input.
The third set is sign, significand, and exponent of the result. Finally the fourth
set is one of two flags(invalid, inexact). The designer enters the input set to his

implementation and verifies his output against the last two sets.

The task given to the square root engine is the set of constraints on four
elements, the significand of the input Sx, the intermediate result significand
Sz, the exponent of the input, and the rounding mode. The constraint on sx
is a mask starting from the minimum number Nx to the maximum number

Mx. Similarly, the mask on Sz consists of two numbers Nz and Mz The
input exponent and the rounding direction are either given explicitly in the task

or left to the engine to choose randomly.

An example to explain the format of the decimal square root task at p=16 is

as follows:
64V T: +1000000000 +9999999999
+0000000000009999.600000000000000000000000
+9999999999999999.699999999999999999999999 R R
This task means that Nx =-+1000000000, Mx=-9999999999,

Nz=+0000000000009999.600000000000000000000000,

Mz =+9999999999999999.699999999999999999999999, the engine chooses randomly

the exponent of the input, and it chooses randomly the rounding mode.

One of the solutions of this task is the test vector
d64V 0 +3425834081E146 -> +5853062515469999E62 X. The d64 means decimal64,
the V means the square root operation, the following 0 means that the
rounding mode is Round toward Zero, the input is x=+3425834081%10"°, the

rounded result is z=+5853062515469999+10%, and the following x indicates
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that the inexact flag is high, because the exact result is

+5853062515469999659210807209389743301409 - -.

We represent the intermediate result with length 2.5p digits not including the
leading zeros to guarantee that the engine can generate all the possible hardest-
to-round cases, where the hardest-to round case needs only 2p—1 digits not

including leading zeros to do the rounding process according to the standard.
5.1 The Square Root Engine

The inverse operation of the square root is the multiplication of the
intermediate result with itself which gives the input of the square root
operation. The engine is based on solving the non linear equations that result
from multiplying the intermediate result with itself. We can estimate these non
linear equations from Figure 4, where each column represents one nonlinear
equation. The figure shows the squarer of the intermediate result at p=16,

where Sz, denotes the intermediate result digit of weight 10', and Sx,

denotes the input digit of weight 10"

The engine uses 2.5p digits only for the intermediate result significand
Sz. Hence, if the infinity precise square root of the input significand Sx has
more digits, then Sz is truncated, i.e. it is slightly less than the infinitely
precise square root. The square of Sz will thus be Sx—A with 0<A<10™"
where L depends on the number of digits of Sz. This explains the series of
nines that follows Sx,—1 as seen in Figure 4. Also if the input exponent is
odd, the engine shifts the input significand one digit to the left which explains
that sx, may exist. For example if the input is x=8116261898426249+10*" which
has 16 digits in the input significand, the engine solves it as

x=81162618984262490x10™" which has 17 digits.

The square of the most significant digit of Sz such as in Figure 4 should be on
a column with an even index for Sx. If Sz;<4, that squaring does not
generate a carry into a higher position. Otherwise, if Sz,=4, its square
generates a carry into position Sx,,. Note that even if Sz,=3 (the square is 9)

a carry into the position of Sz;5z, will lead to a carry out into the position of
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Sx,,. So, in general, if the position formula w, of the most significant
nonzero digit Sx, of the input is odd then, Sx, is a carry from the first

nonlinear equation.

The engine steps begin by choosing the input exponent formula E, according
to its constraints. If the input exponent is odd, the engine shifts Nx and Mx

by one digit to the left, and subtracts one from E,.

Then, the engine gets the intermediate result significand Sz and the input
significand Sx that achieve the constraints. It achieves the constraint on each
digit Sx, or Sz, by choosing the digit from its interval formula [Nx,,Mx,| or
formula [Nz,,Mz,|. It solves the significands constraints using one of two
algorithms, the first algorithm is the Square-Root-Most-Digits-Constraints-
Algorithm to solve the constraints on the most significant p digits of the

intermediate result significand and the p+1 digits of the input significand,

Sz, Sz, Sz NA Sz, Sz, Sz, Sz, Sz, Sty
S Sz, Sz, Sz Sz, St Sz, A Sz, Sz
Sz 482y Sz gSz7 Sz gSz SzgSzs SzeSzy Sz oSz Sz4Szy, SzgSzy SzoSzo Sz eSzoy Sz Sz, SzgSzoy Sz §Sz-s Sz §Szos Sz ¢Sz Sz4Sz., Sz 4824 Sz 4879
Sz oSty 2,8z, Sz oSty S2oSeg SzoSpy S2oSpy SzoSzy, SoSp SzoSzg SpoSey SzoSto, SpoSey SzoStoy SpiSts Sz,Seg StoSt SzoStg
Sz Sty Sz oSey SpgSzg SzSzs SzSty StgSty SzgSz, SzSzy SzgSpy SpoSty Szgr, SzeSiy StSty §paSpg ST St St St
SesSey SesSey StStg Srszs SzsSpy SesSty SpSzy, SzsSzy SzsSpy SSt SzgSr, StsSiy Sz Si, StosSts SzsSige
S, Sey Se,Seq S St Sz Seg SeySey SeSey SzoSzy, Sty Spy Sty SzySeo SzySi, Si,So, StogStL Sz Sis
Sz 38ty S23Szq SzaSze S2sSzs SzaSza S23Szs SzsSzo SzsSza Sz3Szo SzSza Sz Sz, StaSts Sz sStoe
Sz,Sty S2,S2; SzoaStg S2,Seg SzoSty SpySty SzoSzy SzoSey SzoSty Sz Se, StoSt, SzoStye
Sz Szy S2.St, Sz St S Sts Sz Sz St Sty SziSzy, St Sty osp .S, SiSty StoSty
SzSzy Sz oSty SpoStg SzoSzg SzoSzy SpoSzy St Sz, Sz Sz SzoSzy Szt
Sz Sty Si_ Sz, Si_ St St St Si Sz, St S, Sz, Sz Sz S2_\Sz o
S2.Szg S1981 7 Sz.3Sz¢ Sz,Sz5 S1,574 Se.,5z , 82581, S2.552
SeSey S2ySty SeSt SeySts Si,Sz, Sty StySiye
Se_ySty S2ySty Se,St Su Sy SESty Szt
S2.582 4 StsSz, Sz St StsSts SzsStog
Se.gSty StgSz, StgStg StgSty
S22, 248t Sp,Spge
Sz 4St 4 Sz_ySt
S2_ySt 4

*

Sk SXps

5

Sy Sxy o Sxp, o Sk Sxy o S SXg Sx; SXg Sxs SX, Sx, Sx,  Sx; o Sx,-1 9 -

7 5

Figure 4. The squarer of the Intermediate Result assuming Precision 16
the second algorithm is the Square-Root-Least-Digits Constraints-Algorithm to
solve the constraints on the least significant digits that follow the highest p

digits of the intermediate result significand.

After the engine gets the significand value of Sx and Sz it shifts to left the
significand formula Sz by p—w,/2 and calculates the result exponent
formula E,=E,/2—p+w,/2, if the result is inexact. If the input exponent is

odd, the engine shifts Sx by one digit to right and increases E, by one.
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5.1.1The Square Root Most Digits Constraints Algorithm
The algorithm iterates to solve the nonlinear equations from left to right. As

shown in Figure 4, for p=16, the first non linear equation from left is
Sx o — Szy* Sz,=br,, (5.1)

where br is the value of carries that transfer from previous weights to the
weight of 10", or the borrow generated from this weight to lower weights.

The second and the third non linear equations are:
SX .+ 10%br ,—2%Sz,%Sz,=br (5.2)
Sx,,+10%br . —2*Sz *Sz,— Sz,* Sz, =br,, . (5.3)

In general the nonlinear equation for the column of index n is:
w,/2

br,=Sx,+10%br, . ,— D, Sz;xSz,_;, (5.4)

j=n—-w,/2

To start the solution, the algorithm attempts to solve equations 5.1 to 5.3
(representing columns 16 to 14) together based on the range of carries that may
transfer from the next lower significant columns. The algorithm chooses the
digit Sx,; and the digit Sx;; randomly from their intervals. Then since the
ranges of borrow digit br,, and the digit Sz, are known as

Ner,,<br,,<Mcr,, and Nz;=Sz;<Mz,, the algorithm transforms Equation 5.3

to the inequality condition:

Ner,,+2%Nzg* Sz <Sx ,+10%br . —Sz,* Sz, <Mcr,,+2% Mz * Sz,. (5.5)
Finally, it searches randomly on the values of Sz,, Sz,, Sx,, that satisfy
Equation 5.1, Equation 5.2 and the Inequality 5.5. The steps taken so far
constitute the first outer iteration that gets the final values of

Szg, SXi6 SXy5, Sx,, and estimates the value of Sz, that may be refined in the

following iteration.

In the second iteration, the algorithm transforms the fourth nonlinear equation

Sx ;+10%br,,—2%Sz_xSz,—2* Sz, %Sz, =br,, to

Ner,+2% Nz xSz, <Sx ,+10%br,, —2% Sz xSz, < Mcr ,+2* Mz *Sz,,
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and searches randomly on the values of Sz,, Sz,, Sx,; that achieve the second
nonlinear equation, the third nonlinear equation and the inequality condition,
where the digits Sz, Sby, Sxi,  Sx5, Sxy,, are known from the previous
iteration. The algorithm does this procedure in all the iterations and gets all

digits of Sx and Sz

In general, for any precision, the algorithm gets randomly the first two digits
of Sx, which are Sx, and Sx,_, from their intervals. If w, is odd, it gets
randomly the digit Sx, _,, replaces Sx,_; with Sx, ;+10%5x ., and

replaces w, with w,—1.

Then, it loops through a number of outer iterations equal to the number of
nonlinear equations(i.e number of columns). The index of the outer iterations
goes from formula 1<i<2.5p. The algorithm gets in iteration i the values of

Sz, -1 and Sx,_,; and estimates the value of Sz, , ;. Then, in the next
iteration it gets the values of Sz, and Sx,_,, and estimates Sz,

and so on.

The general form of Equation 5.1, at iteration i, is
w,/2

br,, _i1=SX, —in— Z Sz;*5Z,, i1 j- (5.6)

j=w 2—i+1

Equation 5.6 calculates the borrow from the column of index w,—i+1. The
equation has one unknown br,_., (i.e the borrow of the column), while the
other elements of the equation are known from the previous iterations and the

value Sz, ;.-

The general form of Equation 5.2, at iteration formula i, is
w,/2

br, _=Sx, _;+10%br, ., — z Sz;%Sz,, _i_;, (5.7)

j=w 2—i

which calculates the borrow from the column of index w,—i. The equation
has one unknown br,_; (i.e the borrow of the column), while the other
elements of the equation are known from the previous iterations, the values of

Sz, p-i+1>52, o—;» and the value of br,_., from Equation 5.6.
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Similarly, the general form of Equation 5.3, at iteration formula i, is

w,/2
br, . =Sx, . +10%br, — D>, Sz;#Sz, ., ;. (5.8)
j=w, [2—i-1
As the ranges of br,_., and Sz, are known, the algorithm transforms

Equation 5.8 to inequality 5.9, which is the general form of inequality 5.5.

Ncrwxfi72+Ncrwxfi73+ Ncrwxf i74+2*SzWX,2*NzWX,27M <
w,/2-1
SX, i +10%br, .— Y Sz*Sz, i, (5.9)
j=w, 2—i

<2xSz, »,*Mz,,,_;_,+Mcr, _,_,+Mcr, _,_s+Mcr, _,_,+1

Within each outer iteration, the engine does a second level of iterations to get
the values of Sx,_ .., Sz, ., Sz,,,; that achieve at each outer iteration
inequality 5.9. At this second level of iterations, the engine just chooses random
numbers from the intervals of Sx, ., Sz, 1.1, SZ,,,;- If these numbers do
not satisfy inequality 5.9, it chooses another combination of numbers, and so

on until it finds a set of numbers that satisfy this inequality.

The range of br,_,, is the range of the carries that transfer from the
columns following the column w,-i-1. Since the algorithm solves only 2.5p
columns, the maximum product sum of any column at p=34 is equal to

2.5%34%9%9=6685. This number means that a carry from any column,at
p=34, may affect the previous three columns directly by a value more than
one and affects the higher columns indirectly by a value less than or equal to
one. Based on that, the algorithm determines the range of carries that transfer to

the column formula w,—i-1 from the next three columns formula
w,—i—2, w,—i—3, w,—i—4.

Equation 5.10 and Equation 5.11 get the maximum and the minimum carries

formula Mcr, _, ,,Ncr, ., from the column of index formula w,-i-2 to the

column of index formula w,—i-1.

w, /2 w2-2
2xSz. %Mz, _;_,_+ Sz, %Sz, i, ;
J w,—i—2—] J w,—i—2—] 5 10
M _j=w,/2-1 j=w,/2—i ( . )
Crwxfifz_ 10 ’
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w,/2 w22

z 2xSz*%Nz,, i ,_;+ z Sz;%2,, i ;
_j=w/2-1 ! j=w/2-i ’ (511)
Ncrwx—i—Z_ 10 4

Equation 5.12 and Equation 5.13 get the maximum and the minimum carries
formula Mcr, _, ;,Ncr, 5 from the column of index formula w,-i-3 to the
column of index formula w,—i—1.

w,/2 w,/2-3

Y. 2%SzxMz,, s+ . Sz;xSz, i
Mcr _j=w2-2 ) jEw, 2 ' (5.12)
M 100 ’
w,/2 w/2-3
Y 2%SzkNz st D Si¥Sz, s
Ner — J=w/2-2 ) j=w,/2—i ' (5.13)
o 100 ’

Equation 5.14 and Equation 5.15 get the maximum and the minimum carries
formula Mcr, _,_,,Ncr, ;. , from the column of index formula w,—i—4 to the

column of index formula w,—i—1.

w, /2 w/2—4

Z 2%Sz;xMz,, ;4 + Z Sz;*S8z,, _i_4_; (5 14)

__Jj=w/2-3 j=w/2—i .
Mer, o= 1000 ’

w2 w,/2—4

D, 2xSz;xNz, .+ D, Sz;%Sz, 4 e 1o

__j=w,/2-3 j=w 2—i ( . )

Ner, 4= 1000 ’

After getting the iteration values Sx,_; ., Sz, .1, Sz, the algorithm
propagates the borrows between the digits of Sx to be in the form of the
general Equations 6.15 to 8.15 It replaces formula Sx,_.. with formula
Sx, _i—br, i, formula Sx,_; with formula Sx,_+10%br, . ,—br, ;, and
formula Sx,_.. with formula Sx,_._,+10%br,_;. Then, the algorithm begins
the next outer iteration using the same procedure, and so on until it gets all

digits of Sx and Sz

5.1.2The Square Root least Digits Constraints Algorithm

The previous algorithm gets the digits of Sx that satisfy the constraints on the
most significant digits of Sz and do not take the constraints of the least digits

of Sz in its calculations. Hence, in case there are constraints on the least
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significant digits of the intermediate result significand Sz (that have weight
less than 10"/>"* ), the previous algorithm alone will not succeed to get a
solution in some hard constraints. An example of the hard constraints is a series
of zeros or nines in the least digits of Sz, which are needed to verify the

rounding process in the different designs.

The Square Root least digits algorithm gives the value of the input significand

Sx, which yields the needed hard constraints in the intermediate result
significand Sz. This algorithm solves the series of zeros constraint and the
series of nines constraint in similar ways starting from right (least significant)

to left.

As shown in Figure 5, the intermediate result significand Sz has a series of
zeros from the weight 10 to 107", due to this series of zeros, the elements
are decreased in the columns of indexes from -2 to —12. The algorithm
solves the nonlinear equations of the columns of indexes from -12 to -1, to

get the digits of Sz from Sz, to Sz,.

The algorithm gets randomly the elements of the products in the column of

index -12, which are Sz, Sz_,, Sz, Sz, and Sz_, from their intervals.

It calculates the carries cr_,,, cr_;, and cr_,, of the columns of indexes
-12, =13, and -14, then replaces cr ,, with cr ,,+cr 3/10+cr /100,

such that formula cr_,,mod, ;=0.

Then, the algorithm attempts to solve the non linear equations of the columns
of indexes -11, -10, —9. It searches randomly on the combination of values
of Sz, Sz_,, Sz_, that achieves the conditions cr_,;mod,,=0, cr_,;mod,,=0,
and cr_gmod,;=0. Up to now, the algorithm does the first iteration, gets the
digit Sz ;, and estimates the digits Sz,, Sz ,. In the second iteration, it
searches randomly on the values of Sz,, Sz ,, Sz, that achieve the nonlinear
equations of the columns of indexes -10, -9, -8, to get the digit value of
z,, and estimates the digits Sz, Sz,. The algorithm does this procedure

in all iterations to get the remaining digits of Sz, from Sz, to Sz,.

The general form of the nonlinear equations is:
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w, /2

=, Sz;%Sz, ;+cr, ,/10—Sx,, (5.16)

j=n-w,/2

In general, the algorithm determines the series of zeros after the most p digits
in the mask of the intermediate result significand formula Mz,Nz. The weight
of the first zero from the left is denoted by formula 10™ and the weight of
the last zero in the series is denoted by formula 10". It gets the digits from

SZpyi1s 10 SZy i puiny Which are the elements of the products of the

column of index formula W,/2+Lw.

Equation 5.17 gets the value of the carry generated from the column of index

formula W,/2+Lw.

mMX’z=m7 10 =107 10v=10719
1 T 1
S22, Sty Sty Sz, Sty Sz, S5 St S, Sty 0 0 0 0 0 0 08,
* S22, Sty Sty S, Sty Sz, S5 St S, Sty 0 0 0 0 0 0 08z,
w8198 S8y 0 0 0 0 0 0 0 0 0 0 0 285381y 26825829
St Sy St S, SteSy 0 0 0 0 0 0 0 0 0 0 0 282,51
St Sy St Sy St Sty Sty 0 0 0 0 0 0 0 0 0 0 0
&S, S Se St e StuSe,o Stz 0 0 0 0 0 0 0 0 0 0
w88y SySey SeySe, StySi Sta S, SSry 0 0 0 0 0 0 0 0 0
81,81 S10S1y S1,S1.4 SzoSts S1oSig Sz,S1; SzoSig 0 0 0 0 0 0 0 0
S8y St S, St Sty StSe, St S SpSe Szt SeSty, 0 0 0 0 0 0 0
SpoSey SeoSey SpoSz, SpoSty SpoSt, SpoStg SzoSt SpoSt, SzySzy 0 0 0 0 0 0
oSSy SeSey SeSey SeySe, SeSty SeSey SeSty SeoSty SeSt, SeiSty 0 0 0 0 0
oSSty SeSey SeLSey Se,Sey SpnSt, SpSia SenSt, SenSty SinSeg SpL,St, SenSty o 0 0 0 0
8138ty S1aSty S15S10 S3Sto SiaSzy SiS1n S1aS1s S1aSty Si3Srs S1aSi S1aSz; SzsSig 0 0 0
oSSty SeSey SeSe, SeySeo SeySey SeySey SeySt, SpySey SeySe SeyStg Sp St SpSt, SiSig 0 0
oSSty SeSey SeiSey SegSe, SeiSey SeiSey SeSt SpgSe, SpgSey SpiSty, SiSig SeSng SeSp, o SilSig 0

S St SpStg SpgSzy SpgSza SpgSz, SpgSty StgSty SpgSty SpgSt, SpgStg SzSt, SpgStg SeStg SteSt,  SigSig
80,8, S,Seg SeLSey SiLSey SiLSty SinSp, SenSpy SinSpy SeLSey SeLSe, SinSiy SinSe SeSi. SenSey SiSi
S1481 7 StgSzs S1Srs SigSzy SzgSzy S1Szy SzgSzy SzgSzo S1eSzy SzgS1y S1eSzy S1gSiy S1pSzs SipSig

=Xl 9 9 9 9 9 9 9 9 9 9 9 9 9 9 -

w2+ Lw=-12 w [+ Lw-2=-14

Figure 5. The Squarer of the Intermediate Result with Constraint of Series of Zeros on the Least Digits

the carry from the column of index formula W,(/2+Lw-1, and the carry from
the column of index formula W./2+Lw-2. The carry from the column of
index formula W,/2+Lw-1 to the column of index formula w/2+tw, is the
products sum of the column formula W./2+Lw-1 divided by 10. The carry
from the column of index formula W,/2+Lw-2 to the column of index formula

W,/2+Lw, is the products sum of the column formula W,2+Lw-2 divided

by 100.
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w,/2—1-Fw+Lw

CTy 124+ Lw= Z Sz;*%5z,, jppw-j— 9+
j=Fw+1
w /2=2—Fw+Lw w [2—=3—Fw+Lw (5. 17)
Z Sz;*8Z,, 1y 141w j Z SZ;%8Z,, 15 24 pw-j
j=Fw+1 J=Fwtl
+ s
10 100

Note that the column of index W./2+Lw—1 has two unknown products
2%Sz,, ,*52;,, , and the column of index W,2+Lw-2 has four unknown
products 2%Sz, ,*Sz,, ,, 2%Sz,, *Sz;, . The engine assumes the sum value
of these unknown products (2%z, %z, )/10+(2%z, ¥z, ,+2%z, %z, ,)/100,
to be equal to (10—(cr,,,,,,)Jmod,), and replaces  cr, ...,  with

cr, it (10=(cr, ,,,,Jmod,), in case of a series of zeros, such that

(Crwxl2+ 1) mod ,=0.

In case of a series of nines, the algorithm solves it in the same way like the
series of zeros by adding one to the weight of the last nine in the series of nines
of the intermediate result significand mask, and replaces formula cr, ;..

Wlth formUIa Crwx/2+LW_ (Crwx/z+LW) mod 10 SUCh that forml.ﬂa (Cr w2+ Lw) mod 10— 0.

Then, the algorithm iterates on the iteration indexes formula Lw+1<i<Fw+1
to get in each iteration the value of a new digit formula Sz, , , r,.. and
estimates the digits formula Sz, r,.i> SZ, o kvviv1 Which may be refined in
next iterations. Then, it does another number of iterations from formula
Fw+2<i<—1-w/2 to check that the previous chosen digits value of Sz will

make formula Sx, ;=9 forall Fw+2<i<—1-w/2.

Each iteration on formula Lw+1<i<Fw+1, it searches randomly on the values
of formula Sz, ry+ic1> SZyp-pvsi> and Sz, p.00- It calculates the carry
generated from the columns of index formula w./2+i, w/2+i+1, w/2+i+2,

using Equation 5.18, Equation 5.19 and Equation 5.20, and checks that the

carries  satisfy the conditions  (cr,,,,,;Jmod =0, (cr,,.;.,Jmod,;=0, and

(Cer/2+i+2)mOd10:O .
w,/[2—1-Fw+i
CTy 241 =Cly i1/ 10+ > Sz;*SZ,y24i-7= 9, (5.18)
j=Fw+1
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w,/[2—Fw+i

Cer/2+i+1zcer/2+i/10+ z Sz;% S8z, ppiiv1-;—9, (519)

j=Fw+1

w, /241 — Fw+i
CT oy 124142 =CTy 4101/ 10+ ]_%:H Sz2,%Sz,, 1p1i42 =9, (5.20)
The algorithm repeats all the iterations, if the check in any iteration is not
achieved. As in the first, the algorithm chooses randomly the digits in the
column of index formula W,/2+Lw, and the nonlinear equations in the next
iterations depend on this values. This combination of these digits may fail to
satisfy the conditions in the next iteration.
In the iterations of Lw+1i<i<Fw+1, the algorithm gets digits of Sz from
Sz, ppitw-rw to SZ,,. The algorithm does other iterations on
Fw+2<i<-1-w,/2 to calculate in each iteration the carry generated from the
column of index w/2+i, using Equation 5.21, and checks that
(cr,, p.;)mod,;=0. This check may make the algorithm fail to get any solution
as the number of these iterations increase. As the algorithm has chosen all
digits of Sz in the previous iterations without taking in its considerations the

nonlinear equations in the iterations of Fw+2<i<—1-w/2. In this case the

engine refines the constraints to get the best solution.
w,/2
Cer/2+i:C’”wx/z+i—1/ 10+Z Sz;%82,, 154i-;— 9, (521)
Jj=i
After getting the needed digits of Sz, the least digits algorithm squares Sz to
get Sx. Then it uses the most digits algorithm to get all digits of Sz using

the digits of sx.

5.2 Decimal Square Root Rounding Boundaries

We use the engine also to get the hardest-to-round cases and determine the

number of digits needed to do the correct rounding according to the standard.

The problem termed as “table-maker's-dilemma”[11] appears when the result is

inexact and the intermediate result has a series of zeros after p digits, or after
p+1 digits. At this case we do not know the value of the sticky bit, therefore

we cannot do correct rounding.
We use the engine to find the largest number of zeros that follow p digits. We
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find that the largest number of zeros at p>6 is p—2. The engine generates
cases at p=16 with 14 zeros, and at p=34 with 32 zeros. Two examples
from these cases are : (1) at p=16, when the input exponent is even and

Sx=6693849239557175, the result is  Sz=8181594734253937000000000000001894,  (2)
at p=34, when the input exponent is even and

Sx=3011112066528974958465370408325306, the intermediate result is

S5z=>5487360081613903855754351956764089000000000000000000000000000000007198 .

& 5275230 ---0 0 0 0 0 00 Sz_y
Sz,-+52_40---0 0 0 0 0 008z 5
-0 0 0 0 0 0
-0 0 0 0 0 0
-0 0 0 0 0 0
-0 0 0 0 0 0
-0 0 0 0 0 0
.0 0 0 0 0 0--
-0 0 0 0 0 0
-0 0 0 0 0 0
-0 0 0 0 0 0
~-Sz_48z_4 0 0 0 0 0
~-Sz_4Sz_, Sz_,Sz_4 0 0 0 0
<8z Sz Sz_Sz_, Sz_.Sz_4 0 0 0
<Sz2.6Sz_5 Sz.¢Sz_q Sz ¢Sz, Sz_Sz_g 0 0

--Sz .Sz, Sz_,Sz_., Sz_,Sz_ Sz_,Sz_, Sz_,Sz_4 0---
<S2.4Sz_5 Sz.4Sz_y Sz ¢Sz_5 Sz ¢Sz Sz 4Sz_, Sz ¢Sz g

-9 9 9 9 9 9
1

W, ~2p

Figure 6. The squarer of the intermediate result with a series of zeros equals p—1.

Lemma 1: In the decimal square root operation, number of trailing zeros
after p digits in the intermediate result significand Sz that might be followed

by a non-zero digit cannot be more than or equal to p—1, forall p>6.

Proof: Let us assume that p—1 zeros or more exist that followed by a non
zero digit, and p>6, as shown in Figure 6. The figure shows that the sum of
the elements must equal to the formula d,d;999999, where 0=<d,<9. The sum
of the elements can be represented using Equation 5.22.

ElementsSum=cr+(Sz,, ;, ,*Sz,,, ,)%10°+(2%Sz,, ;, %5z, 5 ,.,)*10"+
(2*SZwX/Z—p*SZwX/Z—p-%—Z+SZWA/2—p+1*SZwX/2—p+1)*102+
(2% Sz +2%8z, , %Sz, ) %107+ (5.22)

4
wX/27p*SZWX/27p+4+2*SZWY/27p+1*SZWX/27p+3+SZwX/27p+2* SZWJZ*[HZ)* 107+

)%10°.

* Sz

wJl2—p w2—p+3

(2% Sz

(2* SZWXIZ—p* SZwX/Z—p+5+2*SZwX/2— p+1* SZwX/Z—p+4+2* SZWXIZ—p+2*SZwK/2—p+3

Where 0<cr<2+9%9/10+4%9%9/100+1 is the carry that propagates from the

columns of next lower weights to the digit of weight 10"~*, and each of the
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SiX digits ZwAlzfp’ ZWX/27p+lJ ZWA/Z*IJ+2’ZWX/Z*p+3’ZWA/Z*[)+4)ZWX/Z*IJ+5 haS dan interVal [0,9] .

Note that, for p=<6, Equation 5.22 is not exit, which means that number of
trailing zeros may be more than p—2, however number of trailing zeros will

not be more than p zeros.

The condition that the sum of the elements is equal to formula d,d;999999,

can be represented as the formula (ElementsSum—999999)mod ;500 =0.

An exhaustive search for all the values of
€Ty Zyy 9 ps B 12— pi 15 By 12— pt25 Zow 12— pi33Fow 13—p+4s By J2 piss indicates that the condition
(ElementsSum—999999)mod ,400000=0 cannot be achieved. Hence the assumption of

p—1 zeros or more is invalid and the lemma is proven.

Theorem 1: Only 2p—1 digits not including leading zeros are sufficient to

do the correct rounding to Decimal Floating-Point Square Root operation, at

p>6.

Proof: Based on the previous lemma, no more than p-1 digits are needed
after the rounding position to ensure the correct calculation of the sticky bit.

Hence the total number of digits is p+p—1=2p—1.

5.3 The Main Ideas of the Square Root Models

The models are defined using a Cartesian product between two or more lists of
constraints with ignoring the impossible combinations, and allowing the other

constraints to be chosen randomly.
All the model proposal ideas are in [22], except the ideas of the nines and zeros

model. However we describe all the ideas in the form of our engine constraints.

A) Inputs Types Model
The model aims to verify the ability to solve all possible combinations of the

input types. The proposal ideas of the model are in [22]. We separate the model

into three sub-models as follows:

1. It verifies the Zero input using, (1) a list of the input exponent from the
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interval [gmin,gmax], (2) the input significand is equal to zero (3) a list from

the two types of the input sign.

2. It verifies the design when the input is Infinity, sNaN, or gNaN using, (1) a
list of input from the Infinities, sNalN, and gNaN, (2) a list from the two types

of the input sign.

3. It verifies the design in solving the other input types using, (1) a list of the
input from the minimum Subnormal, the maximum Subnormal, the minimum
Normal , and the maximum Normal, (2) a list from the two types of the input

sign.

B) Result Types Model
The model aims to verify the generation of the different types of the final

result. The proposal ideas of the model are in [22]. We separate the model into

four sub-models as follows:

1. Tt verifies all the result exponents using, (1) a list of the input exponents from

the interval |[gmin, gmax]|.

2. It verifies the generation of the first hundred numbers and the last hundred
subnormal numbers, and the first hundred normal numbers using, (1) the input
exponent is equal to gmin, (2) a list of the intermediate result significand that

consists of the intervals {[2,100],[107"'~100,10""'+100]}.

3. It verifies the generation of numbers from One to 100 using, (1) the input
exponent is equal zero, (2) a list of the intermediate result significand from the

interval [1,100].

4. It verifies the last hundred Normal numbers using, (1) the input exponent is
equal to gmax, (2) a list of the intermediate result significands from the

interval [107—100,107—1].

C) Rounding Model
The model aims to verify the rounding process in the design. The proposal

ideas of the model are in [22]. We separate the model into three sub-models as

follows:
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1. It verifies the rounding process at the all combinations from the guard digit,
the least significand digit, and the sticky bit using, (1) a list from the five
rounding modes, (2) a list of the intermediate result significand consists of the
cross products of the guard digit interval [0,9], the least significand digit

interval [0,9].

2. It verifies the possible carry propagation due to rounding process using, (1) a
list from the five rounding modes, (2) a list of the intermediate result

significand consists of the guard digit interval [0,9], and the patterns

p p p p
—

(99---9,{0-8]9---9,X{0-8]9---9,--, XX---X [0—8]].

3. It verifies the sticky bit calculations using, (1) a list of the intermediate result

significand that consists of the patterns

P P P P2
[1-9)x---x0x---x,{1-9]x---x00x---x,--,{1—9} x---x00---00x - - x
P 14 P P2

0{1-9)x---x0x---x,0{1—-9}x---x00x---x,---,0{1—9}x---x00---00 x---x
P

P p—2
—_—— —_— ——

00{1—-9}x---x0x---x,00{1—=9}x---x00x---x,--+,00{1 =9} x---x00---00 x-+-x

pl2 P pl2 P pl2 P p—2
—_——— —_——— —_———

O~--0{1—9}X~--X0x-~-X,0-~-O{1—9}x---x00x-~-x,--~,O---0[1—9}X~--X00--~00x--~x

D)Trailing and Leading Zeros Model
The model aims to verify all the possible trailing and leading zeros in the input

significand and the intermediate result significand. The proposal ideas of the

model are also in [22]. We separate the model into two sub-models as follows:

1. It verifies the possible trailing and leading zeros the input significand using,
(1) a list of the first input significand that consists of the patterns

{1-9]00---00,0{1—9]00---00,---,00---0{1—9)}
P

14 P

—_—
[1-9]{1-9}0---00,0{1—9}{1—9]0---00,---,00---0{1—9}{1—9]
P P

P
{1-9} X{1-9}0---00,0{1—-9} X {1-9}0---00,---,00---0{1—9} X {1—9]

P
(1-9) XXX (1-9]

2.A list of the intermediate result sigificand, to verify the generation of the
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trailing and leading zeros in the intermediate result significand, it consists of

p p p
{1-9}00---00,0{1—9}00---00,---,00---0{1—9},
p p p
1-9]{1-9]0---00,0({1—9}{1—9]0---00,---,00---0{1—9}{1—9]

p p p
[1-9} x(1-9]0---00,0{1-9] X [{1-9]0---00,---,00---0{1—9) X [1—9]

p

XX---X{1-9]

E) Zeros and Nines Model
The model aims to verify all the possible patterns of zeros and nines in the

input significands and the intermediate result significand. The proposal ideas of

the model are all new. We separate the model into four sub-models as follows:

1. It verifies the patterns of zeros in the intermediate result significand using,

(1) a list of the intermediate result significand that consists of the patterns

2p-1 2p—-1 2p-1
(1-9}00---0 X,{1—9}00---0XX,---,{1—9} X --- XX
2p—1 2p—1 2p—-1
X{1-90--0X,X{1-9]0---0XX, -, X [1-9] X --- XX
2p—1 2p—1 2p—1

XX[1-9/0--0X,XX[1-9}0---0XX,---, XX [1—9] X --- XX

2p—1

XXX---X{1-9)

2. It verifies the patterns of nines in the intermediate result significand using ,

(1) a list of the intermediate result significand that consists of the patterns

2p—-1 2p—-1 2p—1 2p—1
{1-9}99---99,{1-9}99---99X,{1—9}99---9XX,---,{1-9} X --- XX
2p—1 2p—-1 2p-1 2p-1
X{1-9]99---99, X {1-9}99---99X, X[1-9}99---9XX -, X [1-9] X --- XX
2p-1 2p—-1 2p—1 2p—-1

XX{1-9}99---99,{1-9}99---99X, XX{1—-9}99---9XX,---, XX {1-9} X --- XX

2p—-1

XXX ---X{1-9]

3. It verifies all patterns of zeros in the input significand using, (1) a list the

first input significand that consists of the patterns
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p p p

(1-9}00---0 X,{1-9}00---0XX,---,{1-9] X --- XX

p P 2p
X{1-9J0---0X,X{1-9}0---0XX, -, X {1-9}X--- XX
2p p 4

XX{1-9/0---0X,XX{1-9}0---0XX,---, X X [1-9} X--- XX
p
XXX---X{1-9]

4. It verifies all patterns of nines in the input significands using, (1) a list the

first input significand that consists of the patterns

p p 4 p
{1-9}99---99,{1—9}99---99X, {1-9}99---9XX ,---,{1-9] X --- XX
p p p p
X{1-9}99---99, X {1-9}99---99X, X{1—9}99---9XX -, X [1-9} X --- XX
p p p p

XX {1-9}99---99,{1-9}99---99X , XX{1-9}99---9XX ,---, XX [1-9] X --- XX
p

XXX ---X (1-9]

5.4 Summary

This chapter represents the main steps the first square root engine to solve all
the constraints numerically. It also describes the main ideas of the coverage
models that have been solved by the engine to generate test vectors can verify
all the corner cases in the hardware or software implementations of the decimal

floating-point square root operation.

The chapter also describes the rounding boundaries of the decimal Square
root operation, which our engine and our models are based on. Therefore, it

gives an advantage to the square root engine and the square root models.

The engine solved the coverage models one time and generated about 50000
test vectors in Decimal64 and about 199000 test vectors in Decimal128, the test
vectors have proved an efficiency by discovering bugs in DecNumber library
and Silminds design. Most of the bugs in the DecNumber library or Silminds

design are discovered using the rounding model and the zeros and nines model.
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Chapter 6

Engine and Models of Decimal Division Operation

The division engine generates test vectors, to cover corner cases, to verify a
tested implementation of decimal division operation to achieve the compliance

with the IEEE standard (754-2008) for Floating Point Arithmetic.

The engine is a software tool written in C++ to solve all the coverage models.
Although the engine solves constraints on the inputs and the unbounded
intermediate result only, it managed to discover some faults inside the operation
by forcing the engine to solve constraints on patterns of zeros and nines in the

intermediate result significand.

We design the engine to solve decimal division constraints on the unbounded
intermediate result that consists of 2.5p digits and on simultaneous constraints
of inputs and the unbounded intermediate result. Similar engines have been
developed in [8], but they either solve constraints on the intermediate result
which consist of p+1 digits and sticky bit, or solve simultaneous constraints
of the inputs and the output. The engines in [8] do not solve simultaneous
constraints on the inputs and the unbounded intermediate result. This means
that our engine has the ability to generate test vectors to discover corner cases
in the decimal division implementations that cannot be generated by the

engines in [8].

We also design coverage models based on the chosen constraints of the division
operation. The engine solves the coverage models to generate test vectors that

verify the corner cases of the division in different implementations.

The engine generates the test vectors in two formats of the IEEE standard:
Decimal64 and Decimal128. The engine time to generate one test vector
depends on the constraints that have been solved to generate it and the factor of

randomization that the engine needed. The engine generates as many test
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vectors as the user wants. Every time the engine runs, it generates new test
vectors. The verification engine value is neither in the time needed to generate
the test vector, if this time is practical, nor in the number of the generated test

vectors, but rather in the functionality of the cases that the test vector covers.

The engine solved the coverage models one time and generated about 339000
test vectors in Decimal128 and about 146000 in Decimal64, the test vectors
have proved their efficiency by discovering bugs in Silminds design [7]. Table
3 shows the maximum and the minimum times that the engine needed to solve
a task of the existing constraints and generate one test vector, on Intel(R)

Pentium(R) 4 CPU 3.20GHZ with g++ (Ubuntu 4.4.3) compiler.

TaBLE 3. THE TiME PERFORMANCE OF THE DivisioN ENGINE

Test vector Format Minimum Time Maximum Time
Decimal 64 0.01 seconds 7 seconds
Decimal 128 0.03 seconds 2 minutes

The generated test vector is a decimal vector that has four sets, The first set is
the operation type division, number of the precision (64 or 128), and the
rounding mode. The second set is sign, significand, and exponent of the first
input. The third set is sign, significand, and exponent of the second input. The
fourth set is sign, significand, and exponent of the result. Finally the fifth set is
one or two from five flags(invalid, inexact, underflow, overflow, division by
zero). The designer enters the input sets to his implementation and verifies the

implementation output against last two sets.

The task given to the division engine is the set of constraints on five elements,
the significand of the first input (dividend) Sx, the significand of the second
input (divisor) Sy, the intermediate result Sz, the exponent of the first input,
and the rounding mode. The constraint on Sx is a mask starting from the
minimum number Nx to the maximum number Mx. The constraint on Sy is
a mask starting from the minimum number Ny to the maximum number My.

Similarly, the mask on Sz consists of two numbers Nz and Mz. The first
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input exponent, the intermediate result exponent and the rounding direction are

either given explicitly in the task or left to the engine to choose randomly.

An example to explain the format of the decimal division task at p=16 is as

follows:

64/T: +1 +9999999999999999 +1 +9999999999999999
+1000000000000002p400000000000000000000000
+9999999999999992p400000000000000000000000

R R?2
This task means that Nx=+1, Mx=+9999999999999999,

Ny=+1, My=+9999999999999999, Nz =+1000000000000002p400000000000000000000000,

Mz=-+9999999999999992p400000000000000000000000, the engine chooses randomly the
exponent of the first input, and the intermediate result exponent, while the
rounding mode is Round to Zero.

One of the solutions of this task is the test vector
d64/ 0 +961708551261171E70 +937500E-103 -> +1025822454678582E167 X. The d64
means decimal64, the / means the division operation, the following 0 means
that the rounding mode is Round toward Zero, the input is

x=+961708551261171%10°,  y=+937500%10"'"*, the rounded result is

z=+1025822454678582+ 10", and the following x indicates that the inexact
flag is high, because the exact result is +1025822454678582.40000000000 - 10"’
We represent the intermediate result with length 2.5p digits not including the
leading zeros to guarantee that the engine can generate all the possible hardest-
to-round cases. The results show that this length is enough to put constraints on
the rounding boundaries, where the hardest-to round case needs only 2p+1
digits not including leading zeros to do the rounding process according to the

standard.

6.1 The Division Engine

The inverse operation of the division z=x/y is the multiplication of the

intermediate result with the divisor which gives the dividend of the division
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operation. The engine is based on solving the non linear equations that result
from multiplying the intermediate result with the divisor. We can estimate these
non linear equations from Figure 7, where each column represents one
nonlinear equation. The figure shows the multiplication of the intermediate
result with the divisor at p=16, where Sz; denotes the intermediate result
digit of weight 10, Sx, denotes the first input (dividend) digit of weight

10, and Sy, denotes the second input (divisor) digit of weight 10'.

The engine solves the signifiand in the normalized form, it solves the inputs
significands in the form of Sx.Sx_;--Sx_,,Sx .., and  Syo-Sy_i* Sy 2V s
and generates the intermediate result significand in the form
Szy.Sz_y+Sz_,,82_,,,. Such that the inputs most significand digits
Sx,#0ASy,#0, however the intermediate result most significand digit Sz,
may equal to zero or may not. The normalized form guarantees that the
intermediate result significand has fixed form, and we can easily estimate the

nonlinear equation shown in Figure 7 using the normalized form.

The engine uses 2.5p digits only for the intermediate result significand Sz.
Hence, if the infinitely precise division Sx/Sy has more digits, then Sz is
truncated, i.e. it is slightly less than the infinitely precise division. The
multiplication of SzxSy will thus be Sx—A with 0<A<10™" where L
depends on the number of digits of Sz. This explains the series of nines that

follows Sx_,,,—1 asseen in Figure 7.

The engine steps begin by normalizing the mask of the input significands, it
shifts the mask [Nx,Mx] to the right with the value srx and the mask

[Ny,My| to right with the value sry.

Then, the engine gets the intermediate result significand Sz and the inputs
significand Sx and Sy that achieve the constraints. It achieves the
constraint on each digit Sx,, Sy,, or Sz, by choosing the digit from its
interval [Nx,,Mx,], interval [Ny, My,l, orinterval [Nz, Mz]. It solves the
significands constraints using one of two algorithms, the first algorithm is the

Division-Most-Digits-Constraints-Algorithm to solve the constraints on the
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most significant p digits of the intermediate result significand and the p

digits of the inputs significand.

The second algorithm is the Division-Least-Digits Constraints-Algorithm to
solve the constraints on the least significant digits that follow the highest p
digits of the intermediate result significand and the p digits of the divisor

significand.

The engine also chooses the first input exponent Ex either from the interval

[gmin, gmax|, or it is given explicitly.

Voo Y Y Yy Y s Y Yy Y Y Y Y Y Vs Vo Vg

Sz, Sz, Sz Sz Sz, Sz . Sz Sz, Sz Sz_y Sz_y Sz_y, Sz, Sz_, Sz Sz
5208y o SzoSyy SzoSy, SzoSys SzoSy. Sy SzoSy S20Sys Sz Sy S20Syg S2oSyow S2oSyn SzoSya S2oYon SzoSyu Sz

Sz.\Sy, Sz.\Sy., Sz.\Sy, Sz\Sy, Sz.\Sy_, SzSy Sz Sy Sz.Sy., Sz,Sy, Sz.Sy., Sz Sy, Sz.\Sy, Sz.,Sy., Sz.Sy  Sz.,Sy., Sz, Sy 5

S25Sy g S2aSy.y SzySyy SESy.y Sz Sy SEaSys SzaSy. SeaSy, S8y S8y S2Sy.y SEaSy.y SEaSy., SEaSyay Sz,Sy

S48y SzySyoy SzySy., SzSyy SzSy.y SzySy.s SzaSys SzSy, SzySy. SzaSy.y SzaSy. SzuSy.y SiuSy Sz_3Sy_13

S2.48y o Sz-48y-1 Sz-4Sy-2 Sz4Sy-3 S1-4Sy-s Sz-4Sy-s Sz-4Sy-¢ Sz-4Sys Sz-aSy-s Sz-4Sy-y Sz-aSy-w SzSy-u Sz_, Sy,

SesSy o SzsSyy SzsSy, StgSys SzsSy. SzsSys StiSy SeSy., SziSy, SesSy, StiSy. Sz Sy

Sz oSy SteSy. SeoSy Sz SzeSy. S8y S2Sy S8y, StSy 1Sy sz Sy

S2.,8y . SzSy. StpSy., SeSyy Sz;Sy, StSy.s St,Sy SiSy, SiiSy Sz Sy

Sz4Sy o SeoSyy SreSy, SeaSys SeSy. SeaSys S1uSy S2Sy SpSyge-

S§2.9Sy 0 Sz-9Sy-1 Sz-oSy SzSy-3 Sz-9Sy-s Sz-oSy-s SzsSy-s Sz_ySy

SZ—\USyO Sz—ms}’—w Sz—ms}’—z Sz—msy—x SZ—]US}/—4 Sl—ms}'—s Sz,wSy,G'--

SEuSy s SEnSyy 28y, SEuSyy TSy S Sy

Sz o Sz Sz, SEpSYy Sz,Sy

SzsSy oSSy S2sSYos SzSy_ye

S2.44Sy o 2y sz WSy

258 o SzysSyp

Sz o

Sxo Sxp Sxo,  Sx.p Sxoy Sxy Sxg Sx, Sxip Sxlg Sxp Sxy Sxp SXlz Sxiy Sxs—1009 -

14 SH Sz

Figure 7. The Multiplication of the Intermediate Result with the Divisor assuming Precision 16
Then, given that Ez=Ex—Ey and Ex, Ez€|gmin,qmax|, the engine chooses the
intermediate result exponent according to

max (qmin, Ex—qmax)< Ez<min(qmax ,Ez—qmin). ~ However, if Ez is given, it
chooses the first input exponent using
max (qmin, Ez+ qmin)< Ex<min(qmax, Ez+qmax). ~ Finally, it calculates the second

input exponent Ey=Ex—Ez.

After getting the significands and exponents of x, y, z, the engine shifts to
left the significand Sx with the value srx and the significand Sy with the
value sry. The engine replaces the intermediate result exponent Ez with

Ez+srx—sry. Then, it shifts to left the intermediate result significand sz with

a value according to the standard and subtracts this value from Ez.
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6.1.1 The Division Most Digits Constraints Algorithm
The algorithm iterates to solve the nonlinear equations from left to right. As

shown in Figure 7, for p=16, the first non linear equation from left is
Sxo=Szy*Sy,=br, (61)

where br; is the value of carries that transfer from previous weights to the
weight of 10°, or the borrow generated from this weight to lower weights. The

second and the third non linear equations are:
Sx_,+10*br,—Sz,*xSy_,—Sz_,*Sy,=br_, (6.2)
Sx_,+10*br_,—Sz xSy _,—Sz_*Sy_,—Sz_,*Sy,=br_,. (6,3)

In general the nonlinear equation for the column of index n is:

j=0
br,=Sx,+10xbr, ,— > Sz;%Sy,_;, (6.4)

j=n

To start the solution, the algorithm attempts to solve equations 6.1 to 6.3
(representing columns 0 to -2) together based on the range of carries that may
transfer from the next lower significant columns. The algorithm chooses the
digit Sx, and the digit Sx, randomly from their intervals. Then since the

ranges of borrow digit br_,, the digit Sz_,, and the digit Sy_, are known as
Ner ,<br ,<Mcr_,, Nz ,<Sz ,<Mz_,, and Ny ,<Sy ,<My ,, the algorithm
transforms Equation 3 to the inequality condition:

Ner_y+ Nz_y#Sy ,+Szy* Ny_,<Sx_,+10%br_,—Sz_,*Sy_, <Mcr _,+ Mz_,*Sy+Sz,xMy _,. (6.5)

Finally, it searches randomly on the values of Sz,, Sz ,, Sy,, Sy, Sx, that
satisfy Equation 6.1, Equation 6.2 and the Inequality 6.5 . The steps taken so
far constitute the first outer iteration that gets the final values of

Sz,, Sy,, SX,, Sx_;, Sx_, and estimates the values of Sz, Sy, that may be

refined in the following iteration.

In the second iteration, the algorithm transforms the fourth nonlinear equation
Sx_,+10%br_,—Sz,*Sy_,—Sz_,*Sy,—Sz_,*Sy_,—Sz_,*Sy_,=br_; to the inequality
condition:

Nbr_,+Nz_,*Sy,+ Szy* Ny_,<Sx_,+10%br_,—Sz_,*Sy_,—Sz_,*Sy_,<Mbr_,+Mz_,*Sy,+Sz,* My_,,
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it searches randomly on the values of Sz_,, Sz_,, Sy_,, Sy_,, Sx_; that achieve
the second nonlinear equation, the third nonlinear equation and the inequality
condition, where the digits Sz,, Sy,, Sb,, Sx,, Sx_,, Sx_, are known from the
previous iteration. The algorithm does this procedure in all the iterations and

gets all digits of Sx, Sy, and Sz.

In general, for any precision, the algorithm gets randomly the first two digits of
Sx, which are Sx, and Sx, from their intervals. If Sz, is chosen to be
equal to zero, it gets randomly the digit Sx_, and replaces Sx_, with
Sx_,+10%Sx,. In this case the engine begins to solve the nonlinear equations
from the nonlinear equation of column index w,=—1, where 10" is the
weight of the most significand digit in the intermediate result significand of
Sz.
Then, it loops through a number of outer iterations equal to the number of
nonlinear equations(i.e number of columns). The index of the outer iterations
goes from 0<i<2.5p—1. The algorithm gets in iteration i the values of
Sz,_;, Sy, and SX,_, and estimates the value of Sz,_,_,, Sy__;- Then,
in the next iteration it gets the values of Sz, ., Sy, and Sx,_;,; and

estimates Sz, ,,_;_,» and so on.

The general form of Equation 6.1, at iteration i, is
0
br, i=5x, _i— Z Sz, %Sy i (6.6)
j=-i
Equation 6.6 calculates the borrow from the column of index w,—i. The
equation has one unknown br, _; (i.e the borrow of the column), while the
other elements of the equation are known from the previous iterations and the

value Sz, _;, Sy..

The general form of Equation 6.2, at iteration i, is

0
br, i 1=8x, ;1 +10%br, ; - Z Sz, %Sy i j 1, (6.7)

j=—i—1

which calculates the borrow from the column of index w,—i—1. The equation
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has one unknown br,_,_, (i.e the borrow of the column), while the other
elements of the equation are known from the previous iterations, the values of

Sz, i, Sz, iy, Sy_;, Sy_i_;, and the value of br,_; from Equation 6.6.

Similarly, the general form of Equation 6.3, at iteration i, is

0
br, i ,=Sx,, _; ,+10%br, ;- Z Sz, %Sy _i_j o (6.8)

j=—i-2

As the ranges of br,_,,, Sz,_,,, and Sy, ,, are known, the algorithm
transforms Equation 6.8 to inequality 6.9, which is the general form of

inequality 6.5.

Ner,, _;_y+Ner,, . ,+Nc, . +S5z, %Ny , ,+Nz, _, ,*Sy,<
—1
wazfi72+10*brw;i71_ Z SZWZ+j*Sy*i*j*2 (69)
j=—i-1
<Sz,*My_, ,+Mz, . ,xSy,+Mcr, , ,+Mcr . ,+Mcr,6 . .+1

Within each outer iteration, the engine does a second level of iterations to get
the values of Sx, _; ., Sz, _, Sz, .., Sy, Sy_., that achieve at each outer
iteration inequality 6.9. At this second level of iterations, the engine just
chooses random numbers from the intervals of

SXy_ia» Sy iy S5 &Y, Sy If these numbers do not satisfy
inequality 6.9, it chooses another combination of numbers, and so on until it

finds a set of numbers that satisfy this inequality.

The range of br, _,, is the range of the carries that transfer from the columns
follow the column w,—i—2. Since the algorithm solves only 2.5p columns,
the maximum product sum of any column at p=34 is equal to

2.5%34%9%9=6685. This number means that a carry from any column,at

p=<34, may affect the previous three columns directly by a value more than
one and affects the higher columns indirectly by a value less than or equal to
one. Based on that, the algorithm determines the range of carries that transfer to

the column w,—i—2 from the next three columns w,-i—3, w,—i—4, w,—i—5.

Equation 6.10 and Equation 6.11 get the maximum and the minimum carries

Mcr,, _;_5,Ner,, ;5 from the column of index w,—i—3 to the column of
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-2 0
Mz, *Sy_ . . ;+ S kSY i st Sz, . *My_;_.
Mcr A :j:;?’ Zw‘+]* .V—I—J—3 j:;71 Zw[+]* .V—I—J—3 j;l ZWL+]* .V—l—]—3 (6.10)

10 ’

—i—2

) 0
Nz, . *Sy_;_i s+ Sz, i *Sy_i_ i3+ Sz, ,*Ny_,_;
Ncr :j:;73 ZWI+J* y—l—j—3 }':72,'71 sz+]* y—l—]—3 j;l Zw1+]* y—l—j—3 (6.11)

w,—i—3 10 4

Equation 6.12 and Equation 6.13 get the maximum and the minimum carries

Mcr, _;_,,Necr, -, from the column of index w,—i—4 to the column of index

w,—i—2.

—i-2 -3 0

Z MZW,+]*Sy—i—j—4+ Z SZW,+j*Sy—i—j—4+ Z SZW7+J-*M_)’_,-_1-_4 6.12
Mer | —i=i=s j=—i-1 j=—2 ( . )

w,—i—4 100 2

—i-2 -3 0

Z Nzw,+j*SY—i—j—4+ z SZW,+j*S.Y—i—j—4+ Z SZW,+j*NY—i—j—4 6.13
Ner 4:j:—i—4 j=—i-1 j=2 ( . )

100 ’

Equation 6.14 and Equation 6.15 get the maximum and the minimum carries

Mcr,, _;_5, Ncr

w-i-s from the column of index w,-i—5 to the column of
index w,—i—=2.

—i=2

—4 0
Mz, . %Sy, ; s+ S *Sy o+ Sz, . *My_,_.
Mcr :j:_z,'_s Zw1+j* .yfzfij j:;_l sz+]* y*l*]*S j:Z_:3 Zw1+}* Y—x—j—s (6.14)

wimies 1000 ’

—i—2 0

—4
Nz, . *Sy_,_. o+ Sz, . *Sy_,_._¢t S *Ny_,_ .
Ner :j:ZFS Zwﬁ—}* .V—l—]—S j:;71 ZW[+]* y—l—]—S }-;3 ZW‘+J* y—l—]—S (6.15)

wimis 1000 ’

After getting the iteration values Sx, _;.,, Sz, ., Sz, S i Sy i1, the
algorithm propagates the borrows between the digits of Sx to be in the form of

the general Equations 6 to 8. It replaces Sx,_; with Sx,_—br, _,, S

w,—i—1
Wlth SXW;,'71+10*brwr,‘_brwzﬂ'71; and SXWZ—FZ Wlth the
Sx,, _i_,+10%br . ,. Then, the algorithm begins the next outer iteration using

the same procedure, and so on until it gets all digits of Sx, Sy, and Sz

6.1.2 The Division least Digits Constraints Algorithm
The previous algorithm gets the digits of Sx and Sy that satisfy the
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constraints on the most significant digits of Sz and do not take the constraints
of the least digits of Sz in its calculations. Hence, if there are constraints on
the least significant digits of the intermediate result significand Sz (that have
weight less than 10"" ), the previous algorithm alone will not succeed to get
a solution in some hard constraints. An example of the hard constraints is a
series of zeros or nines in the least digits of Sz, which are needed to verify the

rounding process in the different designs.

The least digits algorithm gives the value of the inputs significands of Sx and

Sy which yields the needed hard constraints in the intermediate result
significand of Sz. This algorithm solves the series of zeros constraint and the
series of nines constraint in similar ways starting from right (least significant)

to left.

As shown in Figure 8, the intermediate result significand of Sz has a series of
zeros from the weight 10" to 107, due to this series of zeros, the elements
are decreased in the columns of indexes from -17 to —-27. The algorithm
solves the nonlinear equations of the columns of indexes from -27 to -16,

to get the digits of Sz from Sz, to Sz,.

The algorithm gets randomly the elements of the products in the column of
index —27, which are Sz_15, Sz 15, SZ2.44,52_ 13, SZ_1p, SY_ 155 SY_145 SY_135 SY_125
Sy_;; from their intervals. It calculates the carries cr_,,, cr_,,, and cr_,, of

the columns of indexes -27, —28, and -29, then replaces cr_,, with

cr_,,+cr_,/10+cr_,,/100, such that cr_,,mod ,=0.

Then, the algorithm attempts to solve the non linear equations of the columns
of indexes —26, —25, —24. It searches randomly on the combination of values
of Sz_y1s Szoyg, SZogs SY 10, SV 9 SV that achieves the conditions

cr_,ymod,,;=0, cr_,,mod,;=0, and cr ,mod,,=0. Up to now, the algorithm
does the first iteration, gets the digit Sz_,,, Sy_,, and estimates the digits

Sz_y, Sz_s, Sy_s, Sys- In the second iteration, it searches randomly on the
values of Sz_,, Sz, Sz_y, Sy, Sy_s, Sy_, that achieve the nonlinear equations

of the columns of indexes -25, —24, —23, to get the digit value of Sz, Sy,
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and estimates the digits Sz, Sz Sy Sy,. The algorithm does this
procedure in all iterations to get the remaining digits of Sz, from z_, to

Sz_,, and the remaining digits of Sy, from Sy, to Sy,- The algorithm
chooses randomly the remaining digits of Sz which are Sz,, and multiply the
intermediate result significand Sz with the divisor significand Sy to get the

dividend significand Sx.

The general form of the nonlinear equations is:
n+p—1

cr= ), SY,_;j*Sz;+cr, /10— Sx,, (6.16)

j=n

In general, the algorithm determines the series of zeros after the most p digits
in the mask of the intermediate result significand Mz,Nz. The weight of the
first zero from the left is denoted by 10™ and the weight of the last zero in
the series is denoted by 10". It gets the digits of Sz from Sz, to

Sz,, ., and the digits of Sy from Sy ,., to Sy,,, . which are the
elements of the products of the column of index Lw. Equation 6.17 gets the

value of the carry generated from the column of index Lw.

10"=10" 107=10""" 10=107

Szy++-S2_45 SZ,W‘ 0 0 0 0 0 0 0 0 0 0 0 S2_y Sz_y9
*SY«)‘“S}’—IG

Sy oSz Sy (ST 0 0 0 0 0 0 0 0 0 0 0 Yoz 55 SYSz_py
Sy Sz_y, SySz_ Sy Sz g 0 0 0 0 0 0 0 0 0 0 0 Sy S2_p
8y ,8z_5 Sy ,Sz., Sy ,Sz_ Sy,Si 0 0 0 0 0 0 0 0 0 0 0
8y 48z, Sy 48z, Sy ,Sz_, Sy.,Si. Sy .Sz 0 0 0 0 0 0 0 0 0 0
Sy 4 Sz_yy Sy 4SSz, Sy ,Sz_3 Sy Sy Sy ,Sz_i5 Sy_ Sz 0 0 0 0 0 0 0 0 0
Sy Sz Sy.5Szyy Sy Sz, Sy Sz Sy Sz, Sy Sz Sy Sz 0 0 0 0 0 0 0 0-
Sy Sz Sy (Szay Sy ¢Sty Sy ¢Sy Sy ¢Sz Sy Sz Sy ¢Siis Sy Sz 0 0 0 0 0 0 0
"'S}C?SLH SYJSZfs Syi.,Szim Syffsz—u SY—7SZ—12 S}CTSZ—B S}CTSZ—N S)’,TSZ—ls S)’,TSZ—xs 0 0 0 0 0 0
Sy oSz Syt SY.gStg Sy 4Stag SY4Szy Sy oSt SYsStay SY4Sty Sy4Sias SysSiyg 0 0 0 0 [USS
Sy oSt Sy oSz, Sy.oSty Sy oSty Sy oSty SyoSty SY9Szayy SYoSZay SyoSzoy SySzis SyoSzog 0 0 0 [USS
Y08ty Y0Stg SYo0Sty Y-Sty Y1052y SYoi0S2a VoSt Y-Sty Yo0S2ay Vo10STas Vo152 YongS2ys O 0 0
Sy nSzes Sy-nuSzs Sy-uSts Sy-uSz; Sy-uSzs Sy-uSz-g Sy-1Sz-w Sy-uSzu Sy-uSzz Sy-nSzaz Sy-11Szas Sy-uSz-is Sy-uSz-ss 0 0
Sy Sty Y Sty Sy pSis SY.pSis Y52, Sy pSty Sy pSig Sy Sty Sy pStay SY-pStp SY-nStp SY-pStu Y-St Sy pSz 0

8y 5 Sty Sy Sty Sy Sty Sy.uSts Sy 5SSz Sy Sz Sy Sty Sy 5Szg Sy 3Szag SYyStoy Sy 15Szyy SV uSLyy Sy Sty Sy 15Szys Y pSLg
Sy WSz Sy Sty Y Sy VoSt SYuSts Y St Y St Sy Sty SV Sty Sy uStag Y Sy SV Sty Y uSty Sy Sz Y-Sz
Y sSz g Sy Sty Sy 6St, Sy sSzy Sy Sz Sy 5Szs Sy St Sy Sz, Sy 1Sty Sy 5S2e Sy 1Sz Sy 1582y Sy 652y Sy Sz Sy Sz

e Sx -1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 -

Lw=-27 Lw—=2=-29
Figure 8. The Multiplication of the Intermediate Result with the Divisor at Constraints of Series of
Zeros on the Least Digits

Note that, this carry depends on the subtraction value of the column products
sum from the value of the digit Sx,,=9, the carry from the column of index

Lw—1, and the carry from the column of index Lw-2. The carry from the
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column of index Lw-1 to the column of index Lw, is the products sum of
the column Lw-1 divided by 10. The carry from the column of index
Lw—2 to the column of index Lw, is the products sum of the column

Lw—2 divided by 100.

Lw+p Lw+ p+1

Lw+p-1 . Z SY 1w j-1*SZ; . Z SY 1w j-2*5Z; (6 17)
cr,, = Z SyLij>|<Szj—9+J:FW+1 m 4 [EEwd ™ , :
Jj=Fw+1

Note that the column of index Lw-1 has one unknown product Sy,*Sz,, ,,

and the column of index Lw-2 has two unknown products
Syo*Szy,,_, Sy_1xSz;, .. The engine assumes the sum value of these unknown

products (Syo*Szy,)/10+(Sy,* Sz, ,+ Sy_,*Sz,,,,)/100, to be equal to
(10—(cr,,)mod ), and replaces cr,, with cr,+(10—(cr,,)mod,), in case of

a series of zeros, such that (cr,,)mod,,=0.

In case of a series of nines, the algorithm solves it in the same way like the
series of zeros by adding one to the weight of the last nine in the series of nines
of the intermediate result significand mask, and replaces cr,, with

cr,,—(cr,,)mod,, such that (cr,,)mod,,=0.

Then, the algorithm iterates on the iteration indexes Lw+1<i<Fw+1 to get in
each iteration the values of new digits Sy, ,_p,, Sz,_,,,. and estimates the
digits  SVir» Visipes SZiips SZis, which may be refined in next iterations.
Then, it does another number of iterations from Fw+2<i<—p to check that
the previous chosen digits value of Sz and Sy will make Sx,=9 for all

Fw+2<i<—p+1, and chooses the remaining digits of Sz.

Each iteration on Lw+l<i<Fw+1, it searches randomly on the values of
Yici-rwr Yicrwr Vit1-pus SZivipr SZivps SZisyip- It calculates the carries

generated from the columns of index i, i+1, i+2, using Equation 6.18,

Equation 6.19 and Equation 6.20, and checks that the carries satisfy the
conditions (cr.)mod..=0. (cr...)mod..=0. and (cr...)mod..=0.
i+p—1

cr,=cr,_,/10+ Z Sy, ;*Sz,—9, (6.18)

j=Fw+1
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i+p
cri=cr;/10+ z Sy *¥Sz;-9, (6.19)
j=Fw+1
i+1+p

cri,=cri,/10+ E: Sy j*52;—9, (6.20)

j=Fw+1

The algorithm repeats all the iterations, if the check in any iteration is not
achieved. As in the beginning of the algorithm, it chooses randomly the digits
in the column of index Lw, and the nonlinear equations in the next iterations
depend on these digits. The combination of these digits may fail to satisfy the

conditions in the next iteration.

In the iterations of Lw+1<i<Fw+1, the algorithm gets digits of Sz from

Szy,., to Szg,,,, and the digits of Sy from Sy,, . to Sy,- The
algorithm does other iterations on Fw+2<i<-p+1 to get the remaining digits
of Sz, and checks that the previous chosen digits of Sz and Sy will make

Sx;=9. It gets in each iteration the digit Sz, ,,,, and calculates the carry
generated from the column of index i, using Equation 6.21, such that

(cr,Jmod,;=0. This check may make the algorithm fail to get any solution as
the number of these iterations increase. As the algorithm has chosen all digits
of Sy and the most digits of Sz in the previous iterations without taking in
its considerations the nonlinear equations in the iterations of Fw+2<i<—p+1.
In this case the engine refines the constraints to get the best solution.

i+p-1

cri=cr,_,/10+ Y, Sy, *5z,—9, (6.21)

After getting the needed digits of Sz, and all digits of Sy, the least digits

algorithm multiply Sz with Sy, to get Sx. Then it uses the most digits

algorithm to get all digits of Sz using the digits of Sx and the digits of Sy.

6.2 Decimal Division Rounding Boundaries

We use the engine to get the hardest-to-round cases and determine the number
of digits needed to do the correct rounding according to the standard. The
problem termed as “table-maker's-dilemma”[11] appears when the result is

inexact and the intermediate result has a series of zeros after p digits, or after
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p+1 digits. At this case we do not know the value of the sticky bit and

therefore we cannot do the correct rounding.

We use the engine to find the largest number of zeros that follow p digits.

The largest number of zeros that the engine gets is p—1. The engine

generates cases at p=16 with 15 zeros, and at p=34 with 33 zeros . Two

examples from these cases are : (1) at p=16, when the inputs are
Sx=4140631901663 and Sy =9186895982637069 , the  result is
Sz=45071065455499420000000000000002177,  (2) at p=34, when the inputs are
Sx =198848844846663198453672565093338, and

Sy =7825666841614090843966690633705274, then the intermediate result is

S§z=25409827542012947291701575529048540000000000000000000000000000000005111 .

Lemma2 : At the Decimal Division operation, number of trailing zeros after
p digits in the intermediate result significand Sz that might be followed by

a non-zero digit cannot be more than or equal to p+1.

Proof: Let us assume that p+1 zeros or more exist followed by a non zero
digit, as shown in Figure 9. The figure shows that the sum of the elements from
the column of index —2p to the least columns, must have a carry larger than

or equal to 99.

5520821582 15+ 0 0 0 0 Sz_4, Sz 4y
SYo oSy _is
-0 0 0 0 SYoSzay  SyoSzoay-
-0 0 0 0 0 Sy Sz_y e
.0 0 0 0 0 0.
.0 0 0 0 0 0.
.0 0 0 0 0 0.
.0 0 0 0 0 0.
.0 0 0 0 0 0---
.0 0 0 0 0 0---
Sy 145744 0 0 0 0 0
8y 45SZ15 Sy 455z g6 0 0 0 0
-9 9 9 9 9 9 -
T
2

Figure 9. The Multiplication of the Divisor with the Intermediate result that has a series of zeros equals
p+1.

Let us assume that the each product in those columns has the maximum value
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which equal to 9*%9=81. At this case the sum of the products of those columns
is equal to  1%81+2%81/10+3%81/100+4%81/1000+5%81/10000+--+n*81/10"".  This
sum of products is less than or equal to 100, which means that the maximum
carry of that sum is 10, while for p+1 zeros the carry must be larger than or
equal to 99. Hence the assumption of p+1 zeros or more is invalid and the

lemma is proven.

Theorem2: Only 2p+1 digits not including leading zeros are enough to do

the correct rounding to Decimal Floating-Point Division operation.

Proof: Based on the previous lemma, no more than p+1 digits are needed
after the rounding position to make sure the correct calculation of the sticky bit.

Hence the total number of digits is p+p+1=2p+1.
6.3 The Main Ideas of the Division Models

The models are defined using a Cartesian product between two or more lists of
constraints with ignoring the impossible combinations, and allowing the other

constraints to be chosen randomly.

All the model proposal ideas are in [22]and [8], except the ideas of the nines
and zeros model. However we describe all the ideas in the form of our engine

constraints.

A) Inputs Types Model
The model aims to verify the ability of the division designs to solve all possible

combinations of the input types. The proposal ideas of the model are in [22].

We separate the model into five sub-models as follows:

1.1t verifies the design when the second input is zero using, (1) a list of the
second input exponent consists of the interval [gmin,qmax]|, (2) the second

input significand is equal to zero, (3) all types list of the first input.

2. It verifies the design when the first input is zero using, (1) a list of the first
input exponent consists of the interval [gmin,qmax], (2) the first input

significand is equal to zero, (3) all types list of the second input.
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3. It verifies the design when the first input is Infinity, sNaN, or gNaN using,
(1) a list of the first input consists of the Infinities, sNaN, and gNaN, (2) all

types list of the second input.

4. It verifies the design when the second input is Infinity, sNaN, or gNaN
using, (1) a list of the second from the Infinities, sNaN, and gNaN inputs, (2)
all types list of the first input.

5. It verifies the design in solving the other input types using, (1) a list of the
first input from the minimum Subnormal input, the maximum Subnormal input,
the minimum Normal input, and the maximum Normal input, (2) a same list of

the second input.

B) Result Types Model
The model aims to verify the ability of the division design to generate the

different types of the final result. The proposal ideas of the model are in [22].

We separate the model into four sub-models as follows:

1. It verifies all the result exponents using, (1) a list of the intermediate result

exponent consists of the interval [gmin,gmax].

2. It verifies the generation of the first hundred subnormal numbers, the last
hundred normal numbers and the first hundred normal numbers using, (1) the
intermediate result exponent is equal gmin, (2) a list of the intermediate result

significand consists of the intervals ({[2,100],[10°~'~100,10""'+100]}.

3.1t verifies the generation of numbers from one to 100, using, (1) the
intermediate result exponent is equal zero, (2) a list of the intermediate result

significand from the interval [1,100].

4. Tt verifies the last hundred Normal numbers using, (1) the intermediate
result exponent is equal to gmax, (2) a list of the intermediate result

significand from the interval [10°-100,10"—1].

C) Rounding Model
The model aims to verify the rounding process in the design. The proposal

ideas of the model are in [22]. We separate the model into three sub-models as
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follows:

3. It verifies the rounding process at the all combinations from the guard digit,
the least significand digit, and the sticky bit using, (1) a list from the five
rounding modes, (2) a list of the intermediate result significand consists of the
guard digit interval [0,9], the least significand digit interval [0,9], and the

sticky bit interval [0,1].

4. Tt verifies the possible carry propagation due to rounding process using, (1) a
list from the five rounding modes, (2) a list of the intermediate result

significand consists of the cross product of the guard digit interval [0,9], and

P p p

p
the patterns (9.7 798/ 9...9,X (0-8/9--9,--, XXX [0—8]].

5. It verifies the sticky bit calculations using, (1) a list of number of digits of
the first input significand from the interval [1,p], (2) a list of number of
digits of the second input significand from the interval [1,p], (3) a list of the

intermediate  result  significand consists ~of  the  patterns

P P P p
———

[[1-9)X---X0X---X,[1-9}X---X00X---X,---,{1-9] X ---X 00---00 X --- X ].

D)Trailing and Leading Zeros Model
The model aims to verify all the possible trailing and leading zeros in the

input significands and the intermediate result significand. The proposal ideas of
the model are also in [22]. We separate the model into two sub-models as

follows:

1. It verifies the design at all possible trailing and leading zeros in the input
significands using, (1) a list of the first input significand, (2) the same list of the
second input significand that consists of the patterns

P P P

{1-9}00---00,0{1—9}00---00,---,00---0{1—9}
P 14

P

(1-9}{1-9]0---00,0(1—9}{1—9]0---00,---,00---0{1—9}[1—9]

P P P

(1-9)x{1-9]0---00,0{1—9} X {1—9]0---00,---,00---0{1—9] X {1—9]

14

(1-9) XXX (1-9]
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2. It verifies the generation of the trailing and leading zeros in the intermediate

result significand using, (1) a list of the intermediate result sigificand from the

p+2 p+2 p+2 pt+2

patterns 4 _q109...00,{1-9}{1-9)0---00,{1-9] X {1-9}0---00,--, XX --- X [1-9] , )

a list of number of digits of the first input significand from the interval [1, p],

(3) a list of number of digits of the second input significand from the interval
[1,p].

E) Zeros and Nines Model
The model aims to verify all the possible patterns of zeros and nines in the

input significands and the intermediate result significand. The proposal ideas of

the model are all new. We separate the model into four sub-models as follows:

1. It verifies the generation of all patterns of zeros in the intermediate result

significand using, (1) a list of the intermediate result significand that consists of

2p 2p 2p
(1-9}00---0 X,{1-9}00---0XX,---,{1-9] X --- XX
2p 2p 2p
X{1-9J0---0X,X(1-9J0---0XX,---, X (1-9} X ---XX
2p 2p 2p

XX(1-9]0---0X,XX[1-9]0---0XX,---, XX [1-9] X --- XX

2
XXX---X{1-9]

2. Tt verifies the generation of all patterns of nines in the intermediate result

significand using, (1)a list of the intermediate result significand that consists of

2p 2p 2p 2p
{1-9}99---99,{1-9}99---99X,{1—9}99---9XX,---,{1-9} X --- XX
2p 2p 2p 2p
X{1-9}99---99, X {1-9}99---99X, X{1-9}99---9XX,---, X {1-9] X --- XX
2p 2p 2p 2p

XX{1-9}99---99,{1-9}99---99X , XX{1-9}99---9XX,---, XX {1-9] X --- XX

2p

XXX - X{1-9]}

3. It verifies all patterns of zeros in the input significand using, (1) a list the
first input significand, (2) the same list of the second input significand that

consists of the patterns
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p p p

(1-9}00---0 X,{1-9}00---0XX,---,{1-9] X --- XX

p P 2p
X{1-9J0---0X,X{1-9}0---0XX, -, X {1-9}X--- XX
2p p 4

XX{1-9/0---0X,XX{1-9}0---0XX,---, X X [1-9} X--- XX
p
XXX---X{1-9]

4. It verifies all patterns of nines in the input significands using, (1) a list the
first input significand, (2) the same list of the second input significand that

consists of the patterns

p p b p
{1-9}99---99,{1-9}99---99X,{1—9}99---9XX,---,{1-9} X --- XX
14 b p p
X{1-9}99---99, X {1-9}99---99X, X{1—9}99---9XX,---, X {1-9} X --- XX
P P p p

XX{1-9]99---99,(1-9]99---99X , XX {1—9]99---9XX ,---, XX [1-9] X --- XX
»

XXX - X {1-9]}

G) Overflow Model

The model aims to verify the overflow cases. The proposal ideas of the model

are in [22]and [8]. We separate the model into two sub-models as follows:

1. It verifies the overflow cases when the result exponent is larger than gmax,
using, (1) a list of the intermediate result exponent from the interval
[gmax—p+1,qmax—qmin|, (2) a list of number of digits of the second input

significand from the interval [1,p].

2. It verifies the overflow cases and the near-overflow cases which need to shift
the intermediate result significand to left, using, (1) a list of the intermediate
result exponent from the interval [gqmax,qmax+2p—1], (2) a list of number of
digits of the first input significand from the interval [1,p], (3)a list of number
of digits of the second input significand from the interval [1,p|, (4) a list of

the intermediate result significand that consists of the patterns

p p b
——

([1-9]00--000--0, X [1—9]00--000---0,---, XX -—X [1-9]00---0}, and random digits

pattern.
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H)Underflow Model
The model aims to verify the underflow cases. The proposal ideas of the model

are in [22] and [8]. We separate the model into three sub-models as follows:

1. It verifies the underflow cases when the intermediate result exponent is less

than gmin using, (1) a list of the intermediate result exponent from the interval

[gmin—qgmax ,gmin |.

2. It verifies the underflow and the near-underflow cases when the result is
exact or inexact, using (1) a list of the intermediate result exponent in the
interval [gmin—p,qgmin], (2) a list of the second input significand (3) a list of
the first input significand, such that the difference between number of digits of
the first input significand to number of digits of the second input significand is

from the interval [1,p—1], (4) a list of the intermediate result significand that

p p p
consists  of ((1-9)00--000---0, X [1-9)00--000---0,--, XX --X (1—9]00---0}, and

random digits pattern.

3. It verifies the near-underflow cases and the subnormals numbers using, (1) a
list of the intermediate result exponent from the interval [gmin,gmin+ p—1],

(2) a list of the first input significand, (3) a list of the second input significand,
such that the difference between number of digits of the second input

significand to number of digits of the first input significand from the interval
[1,p—1].

6.4 Previous Work

The Fpgen division algorithm by IBM [1] is given the significand of the
quotient Sz and the difference d between the preferred exponent and the

actual exponent.
The algorithm separates the problem into three cases:

Casel: The result is exact, d=0, and guard digit is equal to zero, it selects a

1 P
random value for 1<Sy<5%, calculates  Sx=Sy*Sz, and chooses the

exponents such that Ex—Ey=Ez.
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Case 2: The sticky bit is zero and either the exponent difference is not zero or
the guard digit is not zero, the algorithm factorizes Sz=Sz'.2’.5* where Sz’

Sx

is prime to 10 and Sz=s—y-10d“, it initializes Sx=Sz'.2"*®/47Y grex®k=d=y

and Sy=2"07/HH grex@okr b Ly multiplies  Sx and Sy by random factor

that keeping their size less than 10”, it computes Ex—Ey=FEz+d.

Case3: The sticky bit is one, the algorithm calculates the range of number of

P d+1
digits 1+max(0,d— p)<|Sy|<p+min(0,d—p+1) and chooses SyS%
within the selected [Sy|, it chooses Sx from Sz.Sy<Sx.(10%"')<(Sz+1).Sy

within d+1 trailing zeros, finally it computes Ex—Ey=Ez+d.

This algorithm requires several iteration, but in practical it produces the
solution for most values of d. At the last case the algorithm may fail at large
values of d, when there isno Sx with d+1 trailing zeros in its range. Test
cases for large d values are often generated by relaxing the constraint on Sz

when possible.
6.5 Comparison

The Fpgen division algorithm cannot solve simultaneous constraints on the
inputs significand and the unbounded intermediate result significand, and
cannot solve the constraints on the digits that follow the guard digits of the
intermediate result significand, while our engine solves these constraints
numerically. Both of them cannot find the solution from the first trail, but they

find the solution in practical time.

An example to the test vector that generated using our engine, and cannot be
generated using Fpgen division algorithms at [8], is at p=16, when the inputs

are Sx=4140631901663 and Sy=9186895982637069, the intermediate result is

Sz=45071065455499420000000000000002177 .

6.6 Summary
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This chapter represents the main steps that the division engine uses to solve all
the constraints numerically. It also describes the main ideas of the coverage
models that have been solved by the engine to generate test vectors can verify
corner cases in the hardware or software implementations of the decimal

floating-point division operation.

The chapter also describes the rounding boundaries of the decimal division
operation, which our engine and our models are based on. Therefore, it gives

an advantage to the division engine and the division models.

The engine solved the coverage models one time and generated about 339000
test vectors in Decimal128 and about 146000 in Decimal64, the test vectors
have proved their efficiency by discovering bugs in Silminds design [7]. Most
of bugs are discovered using the rounding models and the zeros and nines

model.
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Chapter 7

Conclusions

We have presented in this thesis our verification work of five decimal floating-
point arithmetic operations which are addition-subtraction, multiplication,

fused-multiply-add (FMA), square root, and division operations.

We have presented the algorithms used in each engine to solve the coverage
models, and the ideas of these models, to generate test vectors can verify the
different implementation of the five decimal floating-point arithmetic

operations.

The main Idea of the algorithms in the engines of multiplication, FMA, square
root, and division operations, is to solve the nonlinear equations generated from

multiplying two significands.

We have succeeded to develop new engines to verify the implementations of
FMA and square root operations, and our five engines have succeeded to solve
the constraints to describe the corner cases of the operation, which include
simultaneous constraints on inputs and intermediate result, and constraints on

the unbounded intermediate result.

The generated test vectors of the five operations have proved efficiency, as they
have succeeded to discover corner bugs in the five hardware designs of
Silminds (addition-subtraction, multiplication, FMA, square root, and division)
and in the software designs of DecNumber (FMA, and square root). One of the
FMA test vectors that discovered bug in the FMA implementation of

DecNumber library (version 3.68) is the test vector

d64x— 0 —1916972343725131E368 +311281724013E-108 —8846849875104544E253 -> —5967184560399999E271 X
where the DecNumber result is  -5967184560400000E271, and one of the square
root test vectors that discovered bug in the square root implementation of
DecNumber library (version 3.68) is the test vector

d64V < +3862493272490151E26 -> +6.214896034922990E+20 X, where the DecNumber result is
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+6.214896034922991E20 .

There is a need to develop verification technique to verify the other elementary
operations. Also our technique is not enough to verify the square root, division,
and the elementary operations, where they may need formal verification
methods or other verification technique as in [9]. These designs depend on
iterative methods, where each iteration depends on the previous iterations, so

that the verification technique need to verify the result of each iteration.
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Appendix A

Test vectors Syntax

The test vectors are represented in IBM syntax as follows:

1- The type and precision: d64 for Decimal64, or d128 for Decimal128.

2- The operation: + for add, - for subtract, * for multiply, / for divide, *+ for

fused-multiply-add, *- for fused-multiply-subtract, or V for square root.

3- The rounding mode: > for (positive infinity), < for (negative infinity), 0 for

(zero), =0 for (nearest, ties to even), or h> (nearest, ties away from zero).

4- The data for input operands: <sign><significand>E<exp>. Where the sign is
either + or -, the significand is a string of decimal digits, exp is the value of the

unbiased exponent written as an integer number.
SNaN numbers are represented using the string S.
QNaN numbers are represented using the string Q.
Infinities are represented using the string <sign>inf.
5- A “->” sign, to separate inputs from results.

6- The data for output operand: <sign><significand>E<exp>. Where the sign is
either + or -, the significand is a string of decimal digits, exp is the value of the

unbiased exponent written as an integer number.
SNaN numbers are represented using the string S.
QNaN numbers are represented using the string Q.
Infinities are represented using the string <sign>inf.

7- Exceptions that occur following the operation: x (inexact), u (underflow), o

(overflow), z (division by zero) and i (invalid).
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