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Abstract

Decimal floating-point designs require a verification process to prove that the  

design is in compliance with the IEEE Standard for Floating-Point Arithmetic  

(IEEE Std 754-2008). Our work is a decimal floating-point verification  using  

simulation based verification, which a simulation method based on coverage  

models  to cover corner cases of a certain decimal floating-point operation.  

Our  work  represents  five  engines,  the  first  engine  for  the  verification  of  

decimal  addition-subtraction  operation,  the  second  for  the  verification  of  

decimal  multiplication  operation,  the  third  for  the  verification  of  decimal  

fused-multiply-add operation, the fourth for the verification of decimal square  

root operation, and the fifth for the verification of decimal division operation.  

Each engine solves constraints describing corner cases of the operation, and  

generates test vectors to verify these corner cases in the tested design. We also  

represent the coverage models of each operation solved by the engines. The  

generated test vectors have discovered bugs in commercial hardware designs  

reported  and  in  commercial  software  designs  reported.  The  verification  of  

decimal fused-multiply-add operation and the verification of decimal square  

root operation are the first published work.  
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Chapter 1

  Introduction

Decimal floating-point implementations perform the arithmetic operation using 

the numbers in base ten. Decimal floating-point implementations as software or 

hardware  based  designs  have  many  advantages  over  binary  floating-point 

especially  in  the  financial  and  commercial  applications.  Simple  decimal 

fractions such as 1/10 which might represent a tax amount or a sales discount 

yield an infinitely recurring number if  converted to a binary representation. 

Hence, a binary number system with a finite number of bits cannot accurately 

represent  such fractions.  When an approximated representation  is  used in  a 

series  of  computations,  the  final  result  may deviate  from the  correct  result 

expected by a human. In a large billing application such an error may be up to 

$5 million per Year[7].

As decimal floating-point is newly defined in the IEEE Standard for Floating-

Point  Arithmetic (IEEE Std754-2008)[21],  new verification technologies  are 

needed to verify the compliance of the decimal floating-point designs with the 

standard.

As most applications (from aircraft control systems to weather forecasting) use 

floating-point  approximation,  and  these  applications  are  often  used  in 

monitoring and controlling physical systems, the consequence of bugs in the 

result of these applications can be catastrophic. An example is the destruction 

of Ariane 5 rocket after the take off in 1996, owing to uncaught floating-point 

exception. Also, the costly and embarrassing error of Intel in the floating-point 

division instruction of some early Intel Pentium processors in 1994. Intel set 

aside approximately $475M to cover costs arising from this issue [10].

An amount  of  effort  has  been applied  on  the  formal  verification  of  binary 
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floating-point,  in  Intel[12],  AMD[14],  and  IBM[17],  and  on  the  simulation 

based verification of binary floating-point in IBM [2,3,9,19,20].

The verification of decimal floating-point using simulation based verification 

[1,8] was recently presented but the proposed algorithms do not guarantee to 

find the solution of certain cases. They cannot solve simultaneous constraints 

on  inputs  and  the  intermediate  result,  and  cannot  solve  constraints  on  an 

unbounded intermediate result. Also there are no algorithms before our own 

research  to  solve  constraints  of  the  FMA and  the  square  root  operations. 

Furthermore, there is no previous work in the formal verification of decimal 

floating-point.

1.1 Formal Verification

The hardware design starts with high-level specifications, formal verification 

uses mathematical methods to verify that the design meets all or parts of its 

specification. The main idea of formal hardware verification is to prove the 

function  correctness  of  the  design  which  the  design  simulation  using  test 

vectors cannot do.

There are two formal verification scenarios: (1) Equivalence Checking to make 

sure the equivalence of two given circuit descriptions by translating both of 

them to an internal format and establishing the correspondence between both of 

them in a matching phase, (2) Model checking (property checking) where a 

given circuit and its properties are formulated to a given verification language, 

then it is proven that all properties hold under all circumstances.

Formal  verification  has  a  lot  of  difficulties  with  arithmetic  circuits  using 

normal  techniques  like  Binary  Decision  Diagram  (BDD)  or  Boolean 

Satisfiability  Problem  (SAT)  [5].  Word-level  approaches  (such  as  Binary 

Moment Diagram (BMD), Hybrid Decision Digram (HDD),  etc.) have been 

used,  but it  is  often difficult  to  integrate in  a fully  arithmetic tool  [5].  The 

normal techniques represent the circuit in binary states which cause the state 
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explosion  problem  with  the  arithmetic  circuits  while  the  word  approaches 

represent the circuit in high level states.

1.2 Simulation based Verification

Another approach to the verification is simulation based verification, which is a 

simulation method based on coverage models to verify corner cases of decimal 

or binary floating-point operations.

The approach represents the specifications of a certain floating-point operation 

in terms of constraints on the inputs, the output, and some internal signals of 

the operation. Each specification has a coverage model,  the coverage model 

consists of tasks, each task represents the constraints of a certain case from the 

cases that test this specification. These constraints are solved by an engine that 

generates a test  vector  to verify the case in a decimal floating-point design 

using  simulation.  The  coverage  model  is  a  set  of  related  tasks  targeting  a 

certain floating point area or features of the floating-point operation, and it is 

defined using a Cartesian product between two lists or among more lists of 

constraints while ignoring the impossible combinations.

Simulation based technique can be applied regardless of the state space size, 

and  can  be  quite  effectively  in  discovering  bugs,  but  it  cannot  prove  the 

absence  of  bugs,  because  it  expresses  the  specifications  in  terms  of  some 

signals of the implementation. On other hand, Formal techniques can prove the 

absence  of  bugs  in  an  implementation,  because  they  prove  that  all  the 

specification  properties  hold  under  all  circumstances  of  the  implementation 

states.  However,  they  require  a  significant  investment  in  the  machines  and 

manual work time, and are limited to small defined implementation fragments.

In verification of decimal floating-point,  IBM has developed its  verification 

tool  FPgen [3]  to  verify  the  decimal  FP implemented  in  millicode  in  IBM 

System Z9 [6] and in the verification of decimal FP hardware in IBM power6. 

It  uses  the  simulation  based verification  in  the  verification  of  decimal  and 
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binary floating-point unites.

FPgen uses multiple engines in solving constraints. It has two types of engines, 

(1)  Analytical  engines,  which  are  based  on  mathematical  algorithms  and 

guaranteed  to  find  the  solution  in  a  reasonable  amount  of  time.  (2)  Search 

engines, which are based on search methods and do not guarantee to find the 

solution in a reasonable amount of time. Since the search engines may not find 

the solution,  although one may exit.  The search engines are used when the 

analytical engines cannot solve the constraints and generate test vectors.

According  to  [1],  FPgen  decimal  mathematical  algorithms  (1)  may  not  be 

suitable for some corner cases (eg. When the inputs are subnormal numbers), 

(2) they cannot solve simultaneous constraints on inputs and the intermediate 

result, and cannot solve constraints on the unbounded intermediate result, (3) 

there are no algorithms to solve constraints of the FMA and the square root 

operations. FPgen coverage models are described in [22].

1.3 Our Verification Work

Our decimal floating-point verification method is simulation based verification, 

which a simulation method based on coverage models to cover all corner cases 

of a certain decimal floating-point operation. The method guarantees that the 

simulation covers the interesting cases of the operation. On the other hand the 

random simulation does not guarantee a good coverage due to the large space 

of the inputs that is equal to 10n∗p . Where  p=16∨p=34 is the maximum 

number of digits in each operand for IEEE 745-2008 decimal FP formats, and

n is the number of the operation operands.

We  represent  the  standard  specifications  of  each  operation(eg:  Overflow, 

Underflow,  Rounding,  ...)  as  coverage  models  using  the  models  generation 

block as shown in Figure 1, which is a C++ code that generates the tasks of 

each model. The behavior of the models generation block of each operation is 

explained in the next chapters under the title “The main ideas of the operation 
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models”. 

Figure 1. Our Verification Work Environment for DUT(Design Under Test)

The constraints of each task is solved using a software engine that takes a task 

as input and generates a test vector as output. The test vector consists of value 

of the input operands of the operation and the output of the operation compliant 

with the standard.

The  test  vectors  are  used  to  verify  the  different  implementations  of  the 

operation  using  simulation.  The  simulation  environment  is  determined 

according to the type of the design implementation, as shown in Figure 1, it 

enters the test vector inputs to the design implementation and compares the 

output of the design implementation with the output of the test vector, if there is 

a mismatching, it is a bug in the design implementation.

The test  vectors  are represented as  ASCII characters,  the  syntax of  the test 

vectors is the IBM syntax which is explained in Appendix A. The simulation 

tools of system on chip designs read the test vectors encoded  based on DPD 

(Densely Packed Decimal) decimal floating-point,  or based on BID (Binary 

Integer  Decimal)  decimal  floating-point  [21].  Therefore,  free  software  tools 

like the tool in [7] are needed to encode the test vectors. While, we test the 

software implementation designs of the decimal floaing-point libraries, using 

the generated test vectors directly, without encoding.

The Addition-Subtraction, Multiplication, Fused-Multiply-Add (FMA), Square 

root,  and Division engines are  our  software  engines  to  solve constraints  on 

inputs, intermediate result, and specific features related to the operation. Each 
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engine  uses  algorithms  allowing  the  engines  to  solve  all  the  constraints 

numerically including simultaneous constraints on inputs and the intermediate 

result, and constraints on the unbounded intermediate result. The engines find 

the solution of most cases if the solution exits, the cases that the engines may 

not solve it, will be explained in the next chapters.

The fives engines are used for the verification of SilMinds decimal floating-

point hardware implementations[7,13,15], and research decimal floating-point 

designs  at  Cairo  university[18].  The  generated test  vectors  have proven the 

efficiency of the engines in discovering bugs in the different operations. The 

generated test vectors also have discovered bugs in the FMA and the square 

root operations of the DecNumber library from IBM (Decimal floating-point 

library used in gcc)[23].

1.4 Main Definitions

The FP standard [21] defines,  the precision p as the maximum number of 

digits in the significand. emax is the maximum exponent, and emin=1−emax

is the minimum exponent. 

In  our  work,  decimal  floating-point  numbers  are  represented  in  the 

unnormalized format. A number is defined as −1 sd P−1d P−2d P−3 ...d 010q  where 

s  is the sign, d P−1d P−2⋯d0  is the significand where di ∈{0,1,⋯, 9},  and the 

exponent  is  bounded  by  qmin≤q≤qmax ,  where  qmax=emax−p1  and

qmin=emin−p1 .

We define a “mask” for a number of digits as all the possible values that such 

digits may take. For the minimum values we use the subscript N while the 

maximum values have The subscript M . For example, the mask of p digits 

significand  d P−1d P−2⋯d0 represents the minimum and the maximum of each 

digit in the significand. If  0≤di≤9  then the mask consists of two numbers, 

the first number represents the minimum absolute values of each digit in the 

significand d NP−1
d N P−2

⋯dN 0
=00⋯0 and  the  second  number  represents  the 
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maximum  absolute  values  of  each  digit  in  the  significand

d M P−1
d MP−2

⋯d M 0
=99⋯9 . If  in  another  case  there  is  a  constraint  on d0 to  be 

exactly 5 then d N0
=d M0

=5 and the remaining digits may take any values from 0 

to 9, then the mask is d NP−1
⋯d N1

d N0
=0⋯05 to d M P−1

⋯d M1
d M0

=9⋯95 .

The intermediate result is the result of the operation when the precision of the 

significand or the exponent is unbounded; i.e. the result before the rounding or 

the normalization processes.

The Rounding mode is one from five modes defined in the standard : Round 

ties to even, Round ties to away, Round toward zero, Round toward positive, 

and Round toward negative. We do the rounding process to all the digits that 

follow a point called fractional point, to the right of the digit d0 .

The fused-multiply-add (FMA) operation is a multiplication operation followed 

by an addition-subtraction operation.  The addition intermediate  result  is  the 

result  of  the  addition-subtraction  operation  when  the  precision  of  the 

significand or the exponent is unbounded, and the multiplication intermediate 

result is the result of the multiplication operation when the precision of the 

significand or the exponent is unbounded.

All input types list is a list from the standard types [21], which are Normal 

numbers,  Zeros,  Subnormal  numbers,  Infinities,  quiet  NaN  (qNaN),  and 

signaling NaN (sNaN).

1.5  Thesis layout

In each of the following chapters, we represent the main steps of the engine for 

one operation and the coverage models that have been solved by that engine.

Chapter  2  discusses  the  addition-subtraction  while  chapter  3  explains  the 

multiplication. The engines and the models presented for these two operations 

are compared to the previous research.

Chapter 4  presents the main steps of the FMA, and chapter 5 deals with the 
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square  root.  To  our  knowledge  this  the  first  published  work  on  these  two 

operations.

Finally, chapter 6 describes the division, and chapter 7 concludes the work.

1.6  Publications out of This Work

1. A.  Sayed-Ahmed, H. A. H. Fahmy, M. Y. Hassan,  “Three Engines to Solve 

Verification Constraints of Decimal Floating-Point operations,”  in Forty-Four 

Asilomar Conference on Signals, Systems, and Computers, Nov 2010.

2. A. Sayed-Ahmed, Hossam. A. H. Fahmy, R. Samy “Verification of Decimal 

Floating-Point  Fused-Multiply-Add  Operation,”  in  The  ACS/IEEE 

International Conference on Computer Systems and Applications (AICCSA), 

Egypt, 2011. 
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Chapter 2

Engine  and  Models  of  Decimal  Addition-Subtraction 

Operation

The  addition-subtraction  engine  is  a  software  tool,  generates  addition 

-subtraction test  vectors to cover corner cases that  verify the compliance of 

software or hardware implementations of the decimal floating-point addition-

subtraction operation  with the  IEEE standard (754-2008) for  Floating Point 

Arithmetic,  it  takes coverage models as inputs  and generates test vectors as 

outputs.

The  addition-subtraction  engine  solved  the  coverage  models  one  time  and 

generated about 136000 test vectors in Decimal64, the test vectors have proved 

their efficiency by discovering bugs in Silminds design[7]. 

The generated test vector is a decimal vector that has five sets. The first set is 

type of the operation (add or subtract), number of the precision (64 or 128), and 

the rounding mode. The second set is sign, significand, and exponent of the 

first input. The third set is sign, significand, and exponent of the second input. 

The fourth set is sign, significand, and exponent of the output. Finally the fifth 

set is one or two of three flags(invalid, inexact, and overflow). The simulation 

enviroment enters  the first  three sets  to the implementation and verifies  the 

implementation output against the last two sets.

The task given to the addition-subtraction engine is the set of constraints on six 

elements,  (1) the significand of the first  input Sx that  is set  as the smaller 

exponent input,  (2) the significand of the second input  Sy that is set as the 

larger exponent input,  (3) the significand of the intermediate result  Sz ,  (4) 

the  right  shift  value  to  significand  of  the  smaller  exponent  input,  (5)  the 

intermediate  result  exponent  at  which  the  addition_subtraction  operation 
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occurs, and (6) the rounding mode.

The constraint on Sx is a mask starting from the minimum number Nx  to 

the maximum number Mx . The constraint on Sy is a mask starting from the 

minimum  number Ny to  the  maximum  number My. Each  number  in  the 

previous  masks has  p  digits.  Similarly,  the  mask on Sz consists  of  two 

numbers  Nz and  Mz , each number has 2p1 digits,  p1 digits before 

the  fractional  point  and p digits  after  it.  The  addition  intermediate  result 

exponent and the rounding direction are either given explicitly in the task or 

left to the engine to choose randomly. 

The ability of the engine to choose randomly within the range of the mask or to 

choose the intermediate result exponent and the rounding direction empowers 

the engine to generate test vectors discovering more bugs.

An example to explain the format of the decimal addition-subtraction task at

p=16 is as follows:

64+T : −1 −9999999999999999 −1000000000000000 −9999999999999999

−9999999999999999p9000000000000000 −9999999999999999p9999999999999999
R R 4

This  multiplication  task  means  that  Nx=−1, Mx=−9999999999999999,

Ny=−1000000000000000, My=−9999999999999999,

Nz=−9999999999999999p9000000000000000 Mz=−9999999999999999p9999999999999999.

Also, it means that the engine chooses randomly the right shift value, and the 

exponent  of  the  intermediate  result,  while  the  rounding  mode  is(Round  to 

Negative). 

One  of  the  solutions  of  this  task  is  the  test  vector 

d64- < −2837171276486938E137 9997162828723513E140 -> −1000000000000000E141 X .

The d64  means decimal64, the - means subtraction operation, the following

< means that  the  rounding mode is  Round to  Negative,  the  first  input  is 

x=−2837171276486938∗10137 ,  the  second  input  is y=9997162828723513∗10140 ,  

the  rounded  result  is z=−1000000000000000∗10141 , and  the  following  X  

indicates  that  the  inexact  flag  is  high,  because  the  exact  result  is 
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−9999999999999999.938∗10140 .  The  rounding  mode  causes  a  carry  in  the 

intermediate result and increases the exponent by one.

2.1 The Addition-Subtraction Engine

The engine determines the number of digits of the first input significand px

from the interval [no of digitsof Nx , no of digits of Mx] , and number of digits of the 

second  input  significand  p y  from  the  interval 

[no of digitsof Ny ,no of digits of My ] .

The engine  chooses  randomly the  right-shift  value to  the  significand of  the 

smaller exponent input sr x either from the interval [1, p] or from the interval

[p1, qmax−qmin]. If sr x is  equal  zero,  it  will  choose  randomly  left-shift 

value to the significand of the larger exponent input  sl y from the interval

[0, p−p y], otherwise if sr x is larger than zero, sl y is equal to p− py . Then, 

it shifts to left both Ny and My , with the value of sl y , and shifts to right 

both Nx and Mx , with the value of sr x .

After the shifting process, the engine uses the Addition Algorithm to get the 

first  input  significand Sx , the  second  input significand Sy , and  the 

intermediate result significand Sz. After getting the signifigands, the engine 

shifts Sx to the left with value of sr x , and shifts to right Sy with a value of

sl y .

The engine gets the input exponents and the result exponent that achieve the 

right shift sr x and the left shift  sl y .  The intermediate result exponent Ez

either  has explicit  value or is chosen using qminsr x≤Ez≤qmax−sl y . The first 

input  exponent  is  calculated  using  Ex=Ez−sr x , and  the  second  input 

exponent is calculated using Ey=Ezsl y .  

In the case that, the intermediate result significand has cancellation digits  and

sr x is larger than zero, the engine shifts Sz to left and decreases Ez with 

the value scn=min srx , p−noof digits before point  .

In the case that, the intermediate result significand has a carry digit, the engine 
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shifts Sz one digit to the right and increases Ez by one.   

The  engine  rounds  the  intermediate  result  according  to  the  standard.  The 

rounding process may generate a carry, which forces the engine to shift Sz

one digit to the right and increase Ez by one.

In the case that, Ez is larger than qmax , it is an overflow case, its result is 

according to the rounding mode.

2.1.1 The Addition Algorithm 

The algorithm is based on solving the linear equations that can be estimated 

from Figure 2, where each column represents one linear equation. The figure 

shows the addition of the two input significands at p=8 , where Sx i denotes 

the first input significand digit of weight 10i , Sy i denotes the second input 

significand  digit  of  weight 10i , and Sz i denotes  the  intermediate  result 

significand digit of weight 10i .

+
Sx 7

Sy 7

Sx6

Sy6

Sx5

Sy5

Sx 4

Sy 4

Sx 3

Sy 3

Sx2

Sy2

Sx1

Sy1

Sx0

Sy0

Sx−1

Sy−1

Sx−2

Sy−2

Sx−3

Sy−3

Sx−4

Sy−4

Sx−5

Sy−5

Sx−6⋯

Sy−6⋯

Sz8 Sz7 Sz6 Sz5 Sz4 Sz3 Sz2 Sz1 Sz0 Sz−1 Sz−2 Sz−3 Sz−4 Sz−5 Sz−6⋯

Figure 2.  The Addition of two Input Significands assuming Precision 8 

The algorithm iterates to solve the linear equations from left to right. As shown 

in Figure 2, the first linear equation from left is Sz 7−Sx 7−Sy 7=br7 where br7 is 

the value of carries that transfer from the previous weights to the weight of

107 , or the borrow generated from this weight to lower weights. The second 

and  the  third  linear  equations  are Sz 610∗br 7−Sx6−Sy 6=br 6 and

Sz 510∗br 6−Sx 5−Sy5=br5 . In general the linear equation for the column of index

n is:

                                           br n=Sz n10∗br n1−Sxn−Syn .                                  (2.1)

To  start  the  solution,  the  algorithm  attempts  to  solve  the  first  three  linear 

equations (representing columns 7 to 5) together based on the range of carries 

that  may  transfer  from  the  next  lower  significant  column.  The  algorithm 

chooses  the  digits Sz8 , Sz7 , and Sz6 randomly  from  their  intervals,  and 
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replaces Sz7 with  Sz 710∗Sz8 . Then since the ranges of borrow digit br5 ,

the  digit Sx5 , and  the  digit  Sy 5  are  known  as 

Nx4Ny 4−Mz4/10≤br5≤Mx4My4−Nz4/10 ,  Nx5≤Sx5≤Mx5 ,  and 

Ny5≤Sy5≤My5.  The  algorithm  transforms   the  third  linear  equation  to  the 

inequality condition: 

           
Nx4Ny 4−Mz4

10
Nx5Ny 5≤Sz 510∗br 6≤Mx5My5

Mx4My4−Nz4

10
.       (2.2) 

 Finally,  it  searches  randomly  on  the  combination  values  of

Sx 7 , Sx6 , Sy7 , Sy 6 , Sz 5 that satisfy the first  linear equation,  the second linear 

equation and the Inequality 2.2 . The steps taken so far constitute the first outer 

iteration that gets the final values of  Sx 7 , Sy7 , Sz8 , Sz7 , Sz 6 , Sz 5 and estimates 

the values of Sx 6, Sy6 that may be refined in the following iteration.  In the 

second  iteration,  the  algorithm  transforms  the  fourth  linear  equation

Sz 410∗br5−Sx4−Sy4=br 4 to the inequality:

               
Nx3Ny3−Mz3

10
Nx4Ny4≤Sz410∗br 5≤Mx4My4

Mx3My3−Nz3

10
,

and searches randomly on the values of Sx 6 , Sx5 , Sy6 , Sy 5 , Sz 4 that achieve the 

second linear equation, the third linear equation and the inequality condition, 

where  the  digits  Sx 7 , Sy7 , br 6 , Sz 7, Sz 6 , Sz5 are  known  from  the  previous 

iteration. The algorithm does this procedure in all the iterations and gets all 

digits of Sx , Sy , and Sz.

In  general,  the  algorithm gets  randomly  the  digits  Sz p , Szp−1 , and Sz p−2 ,

from their intervals,  and replaces  Sz p−1 with Sz p−110∗Sz p . It  does several 

iterations  of  index i , from  i=p−1 to i=−p , to  get  in  each  iteration  the 

digits Sx i, Syi , Sz i−2 , and  estimates  the  digits Sx i−1 , Syi−1 , such  that  the 

combination values of these digits achieves the general two linear equations 

and the inequality condition. The general form of the two linear equations and 

the inequality condition are:

                                                 br i=Szi−Sxi−Syi                                            (2.3)

                                        br i−1=Szi−110∗bri−Sxi−1−Syi−1                                 (2.4) 
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Nx i−3Ny i−3−Mzi−3

10
Nx i−2Ny i−2≤Szi−210∗br i−1≤Mx i−2Myi−2

Mx i−3My i−3−Nzi−3

10
. (2.5)

2.2 The Main Ideas of the Addition-Subtraction Models

The models are defined using a Cartesian product between two or more lists of 

constraints with ignoring the impossible combinations, and allowing the other 

constraints to be chosen randomly.

 All the model proposal ideas are in [22],  except the ideas of the carry and 

borrow model. However we describe all the ideas in the form of our engine 

constraints.

A) Inputs Types Model
The model aims to verify all  possible combinations of the input types.  The 

proposal ideas of the model are in [22]. We separate the model into three sub-

models as follows: 

1. It verifies the design when one of the inputs is Zero using, (1) a list of the 

first input significand is equal to zero, (2) a list of the first input exponent from 

the interval [qmin ,qmax ], (2) all input types list of the second input.

2. It  verifies  the design when one of the inputs  is  Infinity,  sNaN, or qNaN 

using, (1) a list of the first or the second input from the  Infinities, sNaN, and 

qNaN, (2) all input types list of the other input. 

3. It verifies the design in solving the other input types using, (1) a list of the 

first  or  the  second  input  from  the  minimum  Subnormal,  the  maximum 

Subnormal, the minimum Normal, and  the maximum Normal, (2) a list of the 

other input exponent from the interval [qmin, qmax ].

B) Result Types Model

The model aims to verify the ability of the design to generate different types of 

the final result.  The proposal ideas of the model are in [22]. We separate the 

model into five sub-models as follows: 

1.It verifies all the result exponents using, (1) a list of the intermediate result 
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exponent  from  the  interval [qmin ,qmax ], (2)  a  list  of  right  shift  from  the 

intervals {0,[1, p ], [ p1,qmax−qmin]}.

2.It verifies the generation of the first hundred Subnormal numbers, the last 

hundred Subnormal numbers, and the first hundred Normal numbers using, (1) 

the intermediate result exponent is equal to qmin , (2) a list of the intermediate 

result significands from the intervals {[2,100], [10 p−1−100,10 p−1100]}.

3.It  verifies  the  generation  of  numbers  from  One  to  100  using,  (1)  the 

intermediate result exponent is equal to zero, (2) a list of the intermediate result 

significands from the interval [1,100 ].

4. It verifies the last hundred Normal numbers using, (1) the intermediate result 

exponent  is  equal  to qmax , (2)  a  list  of  the  intermediate  result  significand 

from the interval [10p−100,10 p−1].

5. It verifies the generation of Zero result due to cancellation at the effective 

subtraction operation using, (1) the intermediate result significand is equal to 

zero due to cancellation, (2)  a list of the intermediate result exponent from the 

interval [qmin , qmax ].

C) Rounding Model
The  model  aims  to  verify  the  rounding  process.  The  proposal  ideas  of  the 

model are in [22]. We separate the model into three sub-models as follows: 

1. It  verifies  the  rounding  process  using,  (1)  a  list  from the  five  rounding 

modes, (2) a list  of intermediate result significand that consists of the cross 

product  of  the  guard digit  interval [0,9] , the  least  significand digit  interval

[0,9] ,  the sticky bit interval [0,1] .

2.It verifies the possible carry propagation  due to rounding process using, (1) a 

list from the five rounding modes, (2) a list of intermediate result significand 

from the cross product of the guard digit interval [0,9] ,  the sticky bit interval

[0,1] ,  and  the  patterns {99⋯9
p

, {0−8}9⋯9
p

, X {0−8}9⋯9
p

,⋯, XX⋯X {0−8}
p

}.  (3)  a 

list  of  the  intermediate  result  exponent  that  consists  of

{qmax ,emin , random number }.
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3. It verifies the sticky bit calculations using, (1) a list of right shift from the 

interval [1,qmax−qmin ] , (2)   number  of  digits  list  of  the  smallest  exponent 

input significand that consists of {1, randomnumber}.

D)Shift Model
  The model aims to verify all the possible shifting of the input significands. 

The proposal ideas of the model are also in [22]. 

1. It verifies the possible shifting to the input significands using, (1) a list of left 

shift values of the largest exponent input from the interval [0, p−1] , (2) a list 

of  right  shift  values  to  the  smallest  exponent  input  from  the  interval

[0, qmax−qmin ].

E) Trailing and Leading Zeros Model

The  model  verifies  all  the  possible  trailing  and  leading  zeros  in  the  input 

siginficands and the intermediate result significand. The proposal ideas of the 

model are also in [22]. We separate the model into three sub-models as follows: 

1.It  verifies  all  possible  trailing  and leading zeros  in  the  input  significands 

using,  (1) a list  of the first  input significand,  (2)  a list  of  the second input 

significand same like previous list, that consists of the patterns 

              

{1−9}00⋯00
P

, 0{1−9}00⋯00
P

,⋯, 00⋯0 {1−9}
P

{1−9}{1−9}0⋯00
P

,0 {1−9}{1−9}0⋯00
P

,⋯, 00⋯0{1−9}{1−9}
P

{1−9}X {1−9}0⋯00
P

, 0{1−9}X {1−9}0⋯00
P

,⋯,00⋯0{1−9}X {1−9}
P

⋮

{1−9}XX⋯X {1−9 }
P

          

2.It  verifies all  possible trailing and leading zeros in the intermediate result 

significand using, (1) a list of the intermediate result sigificand similar to the 

previous list, (2) right shift value is equal to zero.

3.It verifies the last carry in the intermediate result significand using, (1) the 

right  shift  from  the  interval [0, p−1] , (2)  a  list  of  the  intermediate  result 

sigificand from the patterns
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1{1−9}00⋯00
p1

,10 {1−9}00⋯00
p1

,⋯,100⋯0{1−9}
p1

,100⋯00
p1

1{1−9}{1−9}0⋯00
p1

,10 {1−9}{1−9}0⋯00
p1

,⋯, 100⋯0 {1−9}{1−9}
p1

1{1−9}X {1−9}0⋯00
p1

, 10{1−9}X {1−9}0⋯00
p1

,⋯,100⋯0 {1−9}X {1−9}
p1

⋮

1 XX⋯X {1−9}
p1

F) Cancellation Model

The model verifies the cancellation digits in the intermediate result significand 

when the operation is effective subtraction. The proposal ideas of the model are 

also in [22]. We separate the model into three sub-models as followss: 

1. It verifies all possible number of the cancellation digits using, (1) a list of 

number of digits of the intermediate result significand from the interval [1, p] ,

(2) a list of right shift from the interval [0,1] , (3) a list of  left shift from the 

interval [0, p−1].

2. It verifies the cancellation case at the other values of right shift using, (1) 

One cancellation digit in the intermediate result significand, (2) a list of the 

right  shift  from the interval [2,qmax−qmin ] , (3)  a  list  of  left  shift  from the 

interval [0, p−1].

3.It verifies the cases of Subnormal result due to cancellation using, (1) a list of 

number of digits of the intermediate result significand from the interval [1, p] ,  

(2) a list of right shift from interval [0,intermediate result exponent−qmin] , (3) a list 

of  left  shift  from the  interval [0, p−1] , (4)  a  list  of  the  intermediate  result 

exponent from the interval [qmin , emin].  

G) Overflow Model
The model verifies the overflow cases.  The proposal ideas of the model are 

also in [22]. We separate the model into three sub-models as follows:

1. It verifies the overflow cases due to the final carry at the effective addition 

operation using, (1) the intermediate result exponent is equal to qmax , (2)the 

intermediate result significand has a carry digit that is equal to one, (3) a list of 

right shift from the interval [0, p−1] , (4) a list of left shift from the interval
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[0, p−1].

2. It  verifies  the overflow cases  due to the rounding process using,  (1)  the 

intermediate result exponent is equal to qmax , (2) the right shift value is equal 

to p , (3) a list of the intermediate result significand that consists of the guard 

digit interval [5,9] , (4) a list from two rounding modes Round ties to even and 

Round ties to away, (5) the significand of the largest exponent input is equal to

10 p−1.  

3. It verifies also the overflow cases due to the rounding process using, (1) the 

intermediate result exponent is equal to qmax , (2) a list of right shift from the 

interval [p1, qmax−qmin] , (3) a list from two rounding modes, Round toward 

positive and Round toward negative, (4) the significand of the largest exponent 

input is equal to 10 p−1 .

H) Carry and Borrow Model

The model verifies all  the possible propagations of carries and borrows that 

occur  during  the  effective  addition  or  effective  subtraction  operations.  The 

proposal ideas of the model are all new. We separate the model into two sub-

models as follows:

1. It verifies all patterns of the borrow propagation at the effective subtraction 

operation using, (1) a list of right shift values from the interval [1, p] ,  (2) a 

list of the largest exponent input significand that consists of the patterns

      

{1−9}00⋯0 X
p

, {1−9}00⋯0XX
p

,⋯, {1−9}X⋯XX
p

X {1−9}0⋯0 X
p

, X {1−9}0⋯0XX
p

,⋯, X {1−9}X⋯XX
p

X X {1−9}0⋯0 X
p

, X X {1−9}0⋯0XX
p

,⋯, X X {1−9}X⋯XX
p

⋮

XXX⋯X {1−9}
p

2.  It  verifies  all  patterns  of  the  carry  propagation  at  the  effective  addition 

operation using, (1) a list of right shift values from the interval [1, p] ,  (2) a 

list of the largest exponent input significand that consists of the patterns
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{1−9}99⋯99
p

, {1−9}99⋯99X
p

, {1−9}99⋯9XX
p

,⋯,{1−9}X⋯XX
p

X {1−9}99⋯99
p

, X {1−9}99⋯99X
p

, X {1−9}99⋯9XX
p

,⋯, X {1−9}X⋯XX
p

XX {1−9}99⋯99
p

, {1−9}99⋯99X
p

, XX {1−9}99⋯9XX
p

,⋯, XX {1−9}X⋯XX
p

⋮

XXX ⋯X {1−9}
p

2.3 Previous work

The  Fpgen  addition-subtraction  algorithm  by  IBM  [1]  is  given  a  specific 

intermediate result and the difference d between the actual and the preferred 

exponents, to provide two inputs that yield the specified result. The algorithm 

denotes  the  addend  significand  with  the  smaller  exponent  by S x and  the 

addend significand with the larger exponent by S y , and the significand of the 

intermediate result is denoted by S z .

The algorithm divides the problem into four sub cases : 

Case 1: The result is exact and the actual exponent is equal to the preferred 

exponent,  the  algorithm  selects  random S x less  than S z and  calculates

S y=Sz−S x , where the  exponents  of  them same like  the  intermediate  result 

exponent.  Next,  it  selects  the  operand  that  has  possible  shift  right  or  left 

according to the leading or the trailing zeros of the operand, and select one of 

possible shifting.

Case 2: The result is exact and the actual exponent differs from the preferred 

exponent, the algorithm tests, if there is carry or not, where carry is possible if 

10p−1≤S z /10≤10p−110p−d−2.

If there is no carry, it chooses S x /10d≤S z−10 p−1 that has d trailing zeros, and 

subtracts  it  from S z to  get S y , that  has  p digits.  If  there  is  a  carry,  it 

chooses S x using 10 S z−10 p≤S x /10d−1≤min10 p−d1−1,10 Sz−10p−1 that  has  at  least 

d −1 trailing  zeros,  then  computes S y= Sz−S x , such  that S z has p+ d

digits and S y has p+ d −1 digits.

Case 3: The result is inexact but the sticky bit is zero, and d > 0 .  In this case,
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S z has p+ d digits including d −1 digits. According to the carry condition, 

if there is no carry, S y has at least d trailing zero, the algorithm chooses S x

using S z−10 p1≤Sx/10d−110 p−d , and computes S y= Sz−S x . Otherwise, if there 

is a carry, S y has at least d −1 trailing zeros, and the algorithm gets S x , and

S y as before.

Case 4: The result is inexact, the sticky bit is one, and d ≥2 ,there are three 

sub-cases:

1. At d > p and the guard digit is equal to zero, the algorithm separates S z

that has p+ d digits into three substrings, the head of digits of S z  is assigned 

to S y , the tail of digits is assigned to S x , and in middle there are zero digits.

2. At d = p , if S y has the  same digits as S z , the algorithm solves this case 

as  the  previous  case.  Otherwise,  the  addition  operation  has  a  carry  which 

occurs  at S y=99⋯9y
p

, S z=100⋯0
p1

z⋯z , and  the   most  significant  digit  of

S x is greater than the guard digit.

3.At d < p , if  S y  has the same digits as  S z ,  the algorithm chooses S x

using S z−10 pdS x≤min10 p−1, S z−10pd−1 . Otherwise  it  chooses S x using 

S z−10 pd−1Sx≤10 p , and computes S y= Sz−S x .

2.4 Comparison

The Fpgen addition-subtraction algorithm divides the operation into cases and 

sub-cases  and  uses  different  inequalities  to  each  one.  Our  engine  uses  one 

procedure to solve all the cases which are based on the values of right shift to 

the smaller exponent input significand and the values of left shift to the larger 

exponent  input  significand.  Our  engine  can  solve  all  the  simultaneous 

constraints  on  the  inputs  and  the  unbounded  intermediate  result  using  the 

Addition Algorithm, while Fpgen addition-subtraction algorithms  solve  the 

simultaneous  constraints  on  the  inputs  and  the  final  result,  also  they  solve 

constraints on the intermediate result.

The value of the Addition Algorithm will appear clearly in the fused-multiply-
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add(FMA) as shown in chapter 4.

2.5 Summary

This chapter represents the main steps that the addition_subtraction engine uses 

to solve all the constraints numerically. It also describes the main ideas of  the 

coverage models that have been solved by the engine to generate test vectors 

can verify all the corner cases in the hardware or software implementations of 

the decimal floating-point addition-subtraction operation.

The engine solved the coverage models one time and generated about 136000 

test  vectors  in  Decimal64,  the  test  vectors  have  proved  their  efficiency  by 

discovering  bugs  in  Silminds  design,  most  of  the  bugs  appear  from  the 

cancellation model and the overflow model.
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Chapter 3

Engine and Models of Decimal Multiplication Operation

The multiplication engine is  a  software tool,  it  generates  multiplication test 

vectors  to  cover  corner  cases  that  verify  the  compliance  of  software  or 

hardware  implementations  of  the  decimal  floating-point  multiplication 

operation with the IEEE standard (754-2008) for Floating Point Arithmetic.

The multiplication engine solved the coverage models one time and generated 

about 96000 test vectors in Decimal64, the test vectors have proved efficiency 

by discovering bugs in Silminds design[13].

The generated test vector is a decimal vector that has five sets. The first set is 

the operation type (multiplication), number of the precision (64 or 128), and the 

rounding mode. The second set is sign, significand, and exponent of the first 

input. The third set is sign, significand, and exponent of the second input. The 

fourth set is sign, significand, and exponent of the result. Finally the fifth set is 

one  or  two  of  four  flags  (invalid,  inexact,  underflow  and  overflow).  The 

designer  enters  first  three  sets  to  his  implementation  and  verifies  the 

implementations output against last two sets.

The  task  given to  the  multiplication engine is  the  set  of  constraints  on six 

elements: (1) the significand of the first input Sx , (2) the significand of the 

second input Sy , (3)  the  significand of  the  intermediate  result Sz , (4)  the 

exponent of the first input, (5) the intermediate result exponent which is the 

sum of the two inputs exponents, and (6) the rounding mode.

The constraint on Sx is a mask starting from the minimum number Nx  to 

the maximum number Mx . The constraint on Sy  is a mask starting from  the 

minimum  number Ny to  the  maximum  number My. Each  number  in  the 

previous two masks has p digits. Similarly, the mask on Sz consists of two 
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numbers Nz and Mz , each  number  consists  of 2 p digits.  The  first  input 

exponent,  intermediate result  exponent and the rounding direction are either 

given explicitly in the task or left to the engine to choose randomly. 

An example to explain the format of the decimal multiplication task at p=16

is as follows:

64*T : 1 9999999999999999 −1 −9999999999999999

−0p2000000000000000 −9999999999999990p2999999999999999
R R 0

This  multiplication  task  means  that  Nx=1, Mx=9999999999999999,

Ny=−1, My=−9999999999999999,

Nz=−0p2000000000000000 Mz=−9999999999999990p2999999999999999. Also,  it 

means that the engine chooses randomly the exponent of the first input, the 

exponent of the intermediate result, and the rounding mode is(Round Ties to 

Even). 

One  of  the  solutions  of  this  task  is  the  test  vector 

d64∗ =0 377203339734945E41 −7473476140447729E-358 -> −2819020159606310E-302 X .

The  d64  means  decimal64,  the * means  multiplication  operation,  the 

following =0 means that the rounding mode is Round Ties to Even, the first 

input  is  x=377203339734945∗1041 ,  the  second  input  is

y=−7473476140447729∗10−358 ,  the  rounded  result  is

z=−2819020159606310∗10−302 , and the following  X  indicates that the inexact 

flag  is  high,  because  the  exact  result  is 

−2819020159606310.255808487189905∗10−302.

3.1 The Multiplication Engine

The engine uses the Multiplication Algorithm to get, the first input significand

Sx , the second input significand Sy , and the intermediate result significand

Sz . Then, it gets the input exponents and the intermediate result exponent. 

The  intermediate  result  exponent Ez either  is  chosen  from  the  interval

[qmin ,qmax ], or is given explicitly.  The first input exponent is chosen using
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max qmin ,Ez−qmax≤Ex≤minqmax , Ez−qmin , or  is  given  explicitly.  The  second 

input exponent is calculated using Ey=Ez−Ex .  

The  engine  shifts  the  intermediate  result  significand  to  right  with  a  value

srz=max 0, pz− p , and the intermediate result exponent Ez  is replaced with

Ezsrz .  

In  case of  clamping,  where Ezqmax ∧ Ezpz≤qmax p , the engine shifts  to 

left Sz with  a  value  that  is  equal  to Ez−qmax , and  replaces Ez with

qmax .

At special case of under flow, where Ezqmin and Ezpz≥qmin , it shifts to 

right Sz with  a  value  that  is  equal  to qmin−Ez , and  replaces Ez with

qmin .

The  engine  rounds  the  intermediate  result  according  to  the  standard.  The 

rounding process may generate a carry, which forces the engine to shift Sz

one digit to right and increase Ez by one. 

Finally, if Ez is larger than qmax , it is an overflow case. If Ez  is smaller 

than qmin , it is  an underflow case Sz. The cases result is according to the 

rounding mode.

3.1.1 The Multiplication Algorithm 

The algorithm is based on solving the nonlinear equations that can be estimated 

from Figure  3,  where  each  column represents  one  nonlinear  equation.  The 

figure  shows  the  multiplication  of  two  inputs  significands  at p=8 , where

Sz i denotes the multiplication intermediate significand digit of weight 10i ,

Sx i denotes the first input digit of weight 10i , and Sy i denotes the second 

input digit of weight 10i .  The sum of digits in each column in addition to any 

carries from previous columns lead to one nonlinear equation. 

The algorithm uses two methods to solve the non-linear equations, it chooses 

the proper method according to the constraints on the intermediate result.  The 

first method is used, if the intermediate result constraints are on the least p
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digits, the method solves the nonlinear equation from right to left as shown in 

Figure 3. The second method is used, if the intermediate result constraints are 

on the most p digits and some or all the least digits,the method solves the 

nonlinear equation from left to right as shown in Figure 3.  

* Sx7

Sy7

Sx6

Sy6

Sx5

Sy5

Sx4

Sy4

Sx3

Sy3

Sx2

Sy2

Sx1

Sy1

Sx0

Sy0

Sx7 Sy7

Sx7 Sy6

Sx6 Sy7

Sx7 Sy5

Sx6 Sy6

Sx5 Sy7

Sx7 Sy4

Sx6 Sy5

Sx5 Sy6

Sx4 Sy 7

Sx 7 Sy3

Sx 6 Sy4

Sx 5 Sy5

Sx 4 Sy6

Sx 3 Sy7

Sx7 Sy2

Sx6 Sy3

Sx5 Sy 4

Sx4 Sy5

Sx3 Sy 6

Sx2 Sy 7

Sx7 Sy 1

Sx6 Sy 2

Sx5 Sy 3

Sx4 Sy 4

Sx3 Sy 5

Sx2 Sy 6

Sx1 Sy7

Sx7 Sy0

Sx6 Sy1

Sx5 Sy2

Sx 4 Sy3

Sx 3 Sy4

Sx2 Sy5

Sx1 Sy6

Sx0 Sy7

Sx6 Sy0

Sx5 Sy1

Sx4 Sy2

Sx3 Sy3

Sx2 Sy 4

Sx1 Sy 5

Sx0 Sy6

Sx5 Sy0

Sx4 Sy 1

Sx3 Sy2

Sx2 Sy3

Sx1 Sy4

Sx0 Sy5

Sx4 Sy0

Sx 3 Sy1

Sx 2 Sy2

Sx 1 Sy3

Sx0 Sy 4

Sx3 Sy0

Sx2 Sy1

Sx1 Sy2

Sx0 Sy3

Sx2 Sy 0

Sx1 Sy 1

Sx0 Sy 2

Sx 1 Sy0

Sx 0 Sy1

Sx0 Sy0

Sz 15 Sz14 Sz 13 Sz12 Sz11 Sz 10 Sz9 Sz8 Sz7 Sz6 Sz 5 Sz4 Sz3 Sz2 Sz 1 Sz0

Figure 3. The Products of the Multiplication Operation assuming Precision 8.

In the two methods, the algorithm achieves the constraint of each digit Sx i ,

Sy i , or Sz i , by  choosing  each  digit  from  its  interval [Nxi , Mxi ],

[Ny i , Myi ], and [Nzi , Mz i].

A)    The First Method 

In the first method, as shown in Figure 3, the algorithm attempts to solve the 

first  two  nonlinear  equations  from  right  which  are  cr0=Sx0 Sy0−Sz0 and 

cr1=Sx 0Sy 1Sx1 Sy0cr0/10−Sz 1. The algorithm chooses randomly the digit Sz0

from its  interval,  therefore Sz0 is  known, then it  searches  randomly on the 

combination of the digits Sx 0 , Sy0 , Sx1, Sy1 , Sz1 that achieves the two conditions

cr0 Mod10=0  and cr1 Mod10=0 .  The steps taken so far constitute the first 

outer  iteration that  gets  the  final  values  of  Sz 1, Sx0 , Sy0 , and estimates  the 

values of Sx 1, Sy1 that may be refined in the following iteration. 

In the second iteration, the algorithm attempt to solve the second and the third 

nonlinear  equations  which  are  cr1=Sx 0Sy 1Sx1 Sy0cr0/10−Sz 1 ,  and

cr2=Sx 0 Sy2Sx2 Sy 0Sx1 Sy1cr1/10−Sz2 . It searches randomly on the combination 

of  the  digits Sx1 , Sy1 , Sx2 , Sy2 , Sz 2 that  achieves  the  two  conditions

cr1Mod10=0  and cr2 Mod10=0 , where  the  digits cr0, Sx 0 , Sy0 , Sz0 , Sz1, are 

known from the previous iteration. The algorithm does this procedure in the 

next iterations, until it  find all digits of  Sx and Sy . then, it multiply Sx

with Sy to get the all digits of Sz .
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In general, the algorithm determines the  maximum number of digits of the first 

input  significand  min p z−no of digitsof My , p ≤px≤no of digits of Mx ,  and  the 

maximum  number  of  digits  of  the  second  input  significand  p y= pz− px ,  

where pz is  number  of  digits  of  the  intermediate  result,  which  solve  the 

problem of the leading zero digits in the intermediate result significand. 

It chooses randomly the digit Sz0 from its interval, and does outer iterations of 

index i ,  where  0≤i≤ p−1 .  In  each  iteration,  it  gets  the  digits

Sz i1 , Sxi , Syi , and  estimates  the  digits Sxi1 , Sy i1 ,  such  that  the 

combination of the previous digits  achieves the conditions cr i mod10=0 and

cr i1mod10=0 .

The general form of the two nonlinear equations that each iteration attempt to 

solve are:

                                                  cr i=∑
j=0

j= i

Sxi− j Sy j−Szi                                    (3.1) 

                                       cri1= ∑
j=0

j=i1

Sxi− j1 Sy jcri /10−Szi1                          (3.2)

In the last of each outer iteration, Sz i1 is replaced by Sz i1−cr i /10 , such that 

the nonlinear equations  are in the  previous general form. 

Finally,  after  getting all  digits  of Sx and Sy , it  calculates the intermediate 

result  significand Sz=Sx∗Sy , to  get  all  digits  of Sz. The  engine  chooses 

different p x and p y and repeats all the iterations, if one of the conditions in 

any iteration is not achieved. 

B) The Second method

In the second method, the algorithm iterates to solve the nonlinear equations 

from left to right. As shown in Figure 3, for p=8, the first nonlinear equation 

from left  is Sz 14−Sx7 Sy7=br 14 where br14 is  the  value  of  carries  that  transfer 

from previous weights to the weight of 1014 , or the borrow generated from 

this weight to lower weights. The second and the third non linear equations are

Sz 1310∗br 14−Sx 7 Sy6−Sx6 Sy7=br 13 , and Sz 1210∗br 13−Sx7 Sy 5−Sx6 Sy 6−Sx 6Sy 7=br 12 .  

In general the nonlinear equation for the column of index n , where n≤p−1 ,  
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is :

                                       br n=Sz n10∗br n−1− ∑
j=n−p1

j=p−1

Sy j Sxn− j ,                             (3.3)

To start the solution, the algorithm attempts to solve the first three nonlinear 

equations (representing columns 7 to 5) together based on the range of carries 

that  may  transfer  from  the  next  lower  significant  columns.  The  algorithm 

chooses  randomly  the  digits Sz15 , Sz14 , and Sz13 , from  their  intervals,  and 

replaces the digit Sz14 with the value Sz1410∗Sz15 . Then since the ranges of 

borrow  digit br12 , the  digit Sx 5 , and  the  digit Sy 5  are  known  as 

Ncr13≤br13≤Mcr13 , Nx5≤Sx5≤Mx5 , and  Ny5≤Sy5≤My5 , where Ncr12
 and 

Mcr12  are equal to

                    Ncr12=
∑
j=6

j=7

Sy j Nx11− j∑
j=4

j=5

Ny jSx11− j

10

∑
j=6

j=7

Sy j Nx10−j∑
j=3

j=4

Ny j Sx10− jNy5 Nx5

100

                   Mcr12=
∑
j=6

j=7

Sy j Mx11− j∑
j=4

j=5

My jSx11− j

10

∑
j=6

j=7

Sy j Mx10− j∑
j=3

j=4

My j Sx10− jMy5 Mx5

100
 

The  algorithm  transforms  the  third  nonlinear  equation  to  the  inequality 

condition:

             Ncr12Nx5 Sy 7Sx7 Ny5≤Sz1210∗br 13−Sx 6 Sy6≤Mcr12Mx5 Sy7Sx7 My5 .      (3.4) 

 Finally,  it  searches  randomly  on  the  combination  of  the  values  of

Sx 7 , Sy7 , Sx6 , Sy 6 , Sz 13 that  satisfy  the  first  nonlinear  equation,  the  second 

nonlinear equation and the Inequality 3.4. The steps taken so far constitute the 

first outer iteration that gets the final values of Sx 7 , Sy7 , Sz13 , and estimates the 

values of Sx 6, Sy6 which may be refined in the next iteration.

In the second iteration, the algorithm transforms the fourth nonlinear equation

Sz 1110∗br 12−Sx7∗y 4−Sx 6 Sy5−Sx5 Sy6−Sx4 Sy7=br11 to the inequality condition:

     Ncr11Nx4∗Sy7Sx7∗Ny 4≤Sz 1110∗br 12−Sx6 Sy5−Sx5 Sy6≤Mcr11Mx4 Sy7Sx7 My4 .

It  searches randomly on the combination of values of Sx6 , Sy6 , Sx5 , Sy5 , Sz12 that 

achieves the second nonlinear equation, the third nonlinear equation and the 

inequality condition, where the digits Sx7 , Sy7 , br14 , Sz14 , Sz13 are known from the 
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previous iteration. The algorithm does this procedure in all the iterations and 

gets all digits of Sx and Sy.

In general, the algorithm gets the digits Sz2 p−1 , Sz2 p−2 , and Sz2 p−3 from their 

intervals,  and  replaces Sz2 p−2 with Sz2 p−210∗Sz2p−1 . It  does  number  of 

iterations of index i , from i=p−1 to i=0 . It gets in each iteration the digits

Sx i , Sy i , Szip−3 , and  estimates  the  digits Sx i−1 , Sy i−1 , such  that  this 

combination  of  digits  achieves  two  nonlinear  equations  and  the  inequality 

condition. The general form of the two nonlinear equations and the inequality 

condition are:                                     

                                    br ip−1=Szip−1− ∑
j=i

j=p−1

Sx j Sy i− jp−1                              (3.5) 

                           br ip−2=Szip−210∗brip−1− ∑
j= i−1

j=p−1

Sx j Sy i− jp−2                     (3.6) 

Ncrip−3Sx p−1 Ny i−2Nx i−2 Sy p−1≤Szip−310∗br i p−2− ∑
j= i−1

j=p−2

Sx j∗Sy i− j p−3≤

Sx p−1 Myi−2Mx i−2 Sy p−1Mcr ip−3.
(3.7)

Note that, Ncrip−3 and Mcrip−3 are the minimum and the maximum carries 

that  generated from the columns that  follow the column of index ip−3 .

Since the column that has the maximum product sum, is the column of index 

p−1 , where  the  maximum  product  sum  at  p=34  is  equal  to

33∗9∗9=2673 . This number means that a carry from any column, at p≤34,

may affect the previous three columns directly by a value more than one and 

affects the higher columns indirectly by a value less than or equal to one. Based 

on  that,  the  algorithm  determines  the  range  of  carries  that  transfer  to  the 

column ip−3 from  the  next  three  columns ip−4, ip−5, ip−6. The 

general form of the carries equations are:

                     

Ncri p−3= ∑
j= p−2

j= p−1

Sy j Nx i p− 4−j ∑
j=i−3

j=i−2

Ny j Sx ip−4− j ∑
j=i−1

j= p−3

Sy j Sxip−4− j/10

 ∑
j= p−3

j= p−1

Sy j Nx i p−5− j ∑
j=i−4

j=i−2

Ny j Sx i p−5− j ∑
j=i−1

j= p−4

Sy j Sx i p−5− j/100

 ∑
j= p−4

j= p−1

Sy j Nx i p−6− j ∑
j=i−5

j=i−2

Ny j Sx i p−6− j ∑
j=i−1

j=p−5

Sy j Sxip−6− j/1000

        (3.6)
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Mcri p−3= ∑
j= p−2

j= p−1

Sy j Mx i p−4− j ∑
j=i−3

j=i−2

My j Sx i p− 4−j ∑
j=i−1

j= p−3

Sy j Sx i p− 4−j /10

 ∑
j= p−3

j= p−1

Sy j Mx i p−5− j ∑
j=i−4

j=i−2

My j Sx i p−5− j ∑
j=i−1

j= p−4

Sy j Sx i p−5−j /100

 ∑
j= p− 4

j= p−1

Sy j Mx i p−6− j ∑
j=i−5

j=i−2

My j Sx i p−6− j ∑
j=i−1

j= p−5

Sy j Sx ip−6− j/1000

       (3.7)

The values of Sx and Sy calculated so far achieve only the most significand 

digits of Sz . The algorithm must alter correlates the values of Sx and Sy ,

such that they achieve all the constraints on the digits of Sz .

The algorithm calculates the intermediate result using Sz =Sx∗Sy ,  and gets 

Sz by assign  to  it  Sz  with replacing the  digits  that  do  not  achieve  the 

constraints  with  one  that  achieve.  It  checks  that  either  condition  1

∣Sz− Sz ∣mod x≤maxerror is  achieved,  or  condition  2

∣Sz− Sz ∣mod y≤maxerror is achieved. If  condition 1 is achieved, it  replaces

Sx with Sx
Sz− Sz −Sz− Sz mod Sy

Sy
.

 Otherwise,  if  condition  2  is  achieved,  it  replaces Sy with

Sy
Sz−Sz −Sz− Sz mod Sx

Sx
. If  the  two  conditions  are  not  achieved  the 

algorithm repeats all the iterations to get new values of Sx and Sy , until one 

of  the  conditions  is  achieved.  The  algorithm  does  not  guarantee  that  the 

conditions is achieved. In this case, it  refines the constraints which leads to 

refine the maximum error, which the case that the engine may not solve.

Finally  the  algorithm  gets  the  final  value  of  the  intermediate  result  using

Sz=Sx∗Sy .

3.2 The Main Ideas of the Multiplication Models

 The models are defined using a Cartesian product between two or more lists of 

constraints with ignoring the impossible combinations, and allowing the other 

constraints to be chosen randomly.

All the proposal ideas of the models are in [22], however we describe the ideas 

in the form of the engine constraints.
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A) Inputs Types Model

The model verifies the possible combinations of input types, we separate the 

model into four sub-models as follows: 

1. It verifies the design when one of the inputs is Zero using, (1) the significand 

of one of the inputs is equal to zero, (2) a list of zero significand input that 

consists of the exponent interval [qmin ,qmax ], (3) a list from all input types of 

the other input.

2. It  verifies the design when one of the inputs is Infinity, sNaN, or  qNaN 

using, (1) a list of one of the inputs from the  Infinities, sNaN, and qNaN, (2) 

all input types list of the other input. 

3. It verifies the design in solving other types of input using, (1) a list of one of 

the  inputs  from  the  minimum  Subnormal,  the  maximum  Subnormal,  the 

minimum Normal, and  the maximum Normal, (2) a list of the other input from 

the exponent interval [qmin , qmax ].

4. It verifies the design when one of the inputs is equal to One using, (1) one of 

the  inputs  is  equal  to  One,  (2)  a  list  of  the  other  input  from the  exponent 

interval [qmin , qmax ].

B) Result Types Model

The model  verifies  the  generation of  different  types  of  the  final  result.  We 

separate the model into four sub-models as follows:

1.It verifies all the result exponents using, (1) a list of the intermediate result 

exponent from the interval [qmin, qmax ].

2. It verifies the generation of the first hundred Subnormal numbers, the last 

hundred Subnormal numbers, and the first hundred Normal numbers using, (1) 

the intermediate result exponent is equal to qmin , (2) a list of the intermediate 

result significand from the intervals {[2,100], [10 p−1−100,10 p−1100]}.

3.  It  verifies  the  generation  of  numbers  from  one  to  100  using,  (1)  the 

intermediate result exponent is equal zero, (2)  a list of the intermediate result 

significand from the interval [1,100].
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4.  It  verifies  the  last  hundred  Normal  numbers  using,  (1)  the  exponent 

intermediate  result  is  equal  to qmax , (2)  a  list  of  the  intermediate  result 

significand from the interval [10P−1,10P−100].

C)Rounding model

The model verifies the rounding process. We separate the model into four sub-

models as follows:

1.  It  verifies  the  rounding  process  using,  (1)  a  list  from the  five  rounding 

modes, (2) a list of the intermediate result significand from the cross product of 

the guard digit  interval [0,9] , the least significand digit interval [0,9] ,  the 

sticky  bit  interval [0,1] , and  number  of  digits  of  the  intermediate  result 

interval [1,2 p] .

2.  It  verifies  all  possible  carry  propagations  in  the  intermediate  result 

significand due to the rounding process using, (1) a list from the five rounding 

modes,  (3)  a  list  of  the  intermediate  result  exponent  that  consists  of

{qmax ,emin , zero , random number },  (2)  a  list  of  intermediate  result  significand 

from the cross product of the guard digit interval [0,9] ,  the sticky bit interval

[0,1] ,  number of digits of the intermediate result interval [p ,2 p] , and the 

patterns {99⋯9
p

X⋯X , {0−8}9⋯9
p

X⋯X , X {0−8}9⋯9
p

X⋯X ,⋯, XX⋯X {0−8}
p

X⋯X }.  

3. It verifies the sticky bit calculations using, (1) a list of the intermediate result 

significand from the cross product of number of digits interval [p ,2 p] , and 

the patterns {XX⋯X
p1

0{1−9}XX⋯X , XX⋯ X
p1

0 0{1−9}XX⋯X ,⋯, XX⋯X
p1

00⋯0{1−9}} .

D)Trailing and Leading Zeros Model

The model verifies the trailing and leading zeros in the input significands and 

the intermediate result significand. We separate the model into two sub -models 

as follows: 

1.It verifies the patterns of zeros in the input significands using, (1) a list of the 

first input significand, (2) a  list of the second input same like previous list, the 

list consists of
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{{1−9}00⋯00

P

, 0{1−9}00⋯00
P

,⋯, 00⋯0{1−9}
P

}

{{1−9}{1−9}0⋯00
P

,0{1−9}{1−9}0⋯00
P

,⋯, 00⋯0{1−9}{1−9}
P

}

{{1−9}X {1−9}0⋯00
P

, 0{1−9}X {1−9}0⋯00
P

,⋯, 00⋯0{1−9}X {1−9}
P

}

⋮

{{1−9}XX ⋯X {1−9}
P

}

 

2. It verifies the trailing and leading zeros in the intermediate result significand 

using, (1) a list of the intermediate result sigificand from the patterns 

                

{{1−9}00⋯00
P1

,0{1−9}00⋯00
P1

,⋯, 00⋯0{1−9}
P1

}

{{1−9}{1−9}0⋯00
P1

,0{1−9}{1−9}0⋯00
P1

,⋯, 00⋯0{1−9}{1−9}
P1

}

{{1−9}X {1−9}0⋯00
P1

, 0{1−9}X {1−9}0⋯00
P1

,⋯, 00⋯0{1−9}X {1−9}
P1

}

⋮

{{1−9}XX⋯X {1−9}
P1

}

E) Overflow Model

The model verifies the overflow cases. We separate the model into five sub-

models as follows:

1. It verifies the overflow cases when the result exponent is larger than qmax ,

using,  a  list  of  the  intermediate  result  exponent  from  the  interval

[qmax−p−1,2qmax ] .

2. It verifies the overflow and the near-overflow cases due to  the rounding 

process using, (1) the intermediate result significand is equal to 1016−1 , and 

has the guard digit interval [5,9] , (2) the two rounding modes Round ties to 

even and Round ties to away, (3) a list of the intermediate result exponent from 

the interval [qmax−p−1, qmax−1] .

3. The intermediate result significand is equal to 1016−1 , with a list of guard 

digit in the interval [1 , 9] at the two rounding modes, Round to positive and 

Round to negative, with a list of the intermediate result exponent in the interval

[qmax− p−1 ,qmax−1 ] , to verify  the overflow and the near-overflow cases due 

to the rounding process.

4. It verify the overflow cases due to number of digits of the intermediate result 

significand using, (1) a list of the intermediate result exponent from the interval
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[qmax− p−1 ,qmax ] , (2) a list  of number of  digits  of the intermediate result 

significand from the interval [p ,2 p ].

5. It verifies the near-overflow cases which need to shift the intermediate result 

significand to left using, (1) a list of the intermediate result exponent from the 

interval [qmax ,qmax p−1] , (2) a list of number of digits of the intermediate 

result significand from the interval [1, p] .   

F)Underflow Model
The model verifies the underflow cases. We separate the model into four sub-

models as follows:

1. It verifies  the underflow cases when the intermediate result exponent is less 

than qmin using, (1) a list of the intermediate result exponent from the interval

[2qmin ,qmin ].

2. It verifies the underflow and the near-underflow cases when the intermediate 

result significand is shifted to right and the result is inexact using, (1) a list of 

the intermediate result exponent from the interval [qmin−2 p ,qmin] , (2) a list of 

number of digits of the intermediate result from the interval [1,2 p ].  

3. It verifies the underflow and the near-underflow cases when the intermediate 

result significand is shifted to right and the result is exact using, (1) a list of the 

intermediate result exponent from the interval [qmin−2 p ,qmin] , (2)  a list of 

the  intermediate  result  significand  that  consists  of  the  patterns 

{{1−9}00⋯0 , X {1−9}00⋯0 ,⋯ , XX ⋯X {1−9}} ,

4. It verifies the near-underflow cases and the subnormals numbers using, (1) a 

list of the intermediate result exponent from the interval [qmin , qmin p−1 ] , (2) 

a list of number of digits of the intermediate result from the interval [1,2 p ].

3.3 Previous work

 The Fpgen multiplication algorithm by IBM [1] is given the constraints on the 

intermediate  result S z which  has  up  to 2 p digits,  and  on  the  difference

0≤d ≤p between the actual and the preferred exponents.
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The algorithm represents the problem into two cases:

Case 1:  The sticky bit  is  zero and d −1 trailing zeros after the guard digit 

exist,  the  algorithm factorizes S z=S z .10d−1 to  its  prime factors,  then  selects 

random factors  for S x and S y such that  the  value of  each is  smaller  than

10 p , then selects random exponent e x , e y such that exe y=ez−d.

Case  2:  The  sticky  bit  is  one  and d2 , the  algorithm  uses  the  following 

procedure:  (1)  it  computes  the  range  of  possible  values  of S z using

S z .10d−1≤Sz≤Sz1 .10d−1 , (2)  it  selects  randomly  the  number  of  digits

∣S y∣≤ p and  the  value  of S y using S y≤
S z

10 p−1
, (3)  it  chooses S x using

(
S z .10d−1

S y

≤S x≤
(S z+ 1).10d−1

S y

) , if  a  decimal value is  founded in that  range,  this 

mean that the solution exists, otherwise the  algorithm returns to step two. On 

the average the algorithm can find a solution for S x within 10 trials.

3.4 Comparison

The Fpgen multiplication algorithm cannot solve simultaneous constraints on 

the inputs significand and the intermediate result significand, and cannot solve 

all the constraints on the digits that follow the guard digit of the intermediate 

result significand, while our engine solves these constraints numerically. Both 

of them cannot find the solution from the first trail, but they find the solution in 

practical time.

3.5 Summary

This chapter represents the main steps that the multiplication engine uses to 

solve all the constraints numerically. It also describes the main ideas of  the 

coverage models that have been solved by the engine to generate test vectors 

can verify all the corner cases in the hardware or software implementations of 

the decimal floating-point multiplication operation. 

The engine solved the coverage models one time and generated about 96000 

test  vectors  in  Decimal64,  the  test  vectors  have  proved  efficiency  by 
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discovering bugs in Silminds design. The bugs are appeared in the input types 

model. 
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Chapter 4

Engine and Models of Decimal Fused Multiply Add (FMA) 

Operation

The fused-multiply-add(FMA) engine generates FMA test vectors to cover all 

corner cases, to verify a tested implementation of decimal fused-multiply-add 

(FMA) operation to achieve the compliance with the IEEE standard (754-2008) 

for Floating Point Arithmetic.

The FMA engine solved the coverage models one time and generated about 

425000 test vectors in Decimal64, the test vectors have proved their efficiency 

by  discovering  bugs  in  Silminds  design[15]  and  FMA  DecNumber 

implementation [23]. 

The generated test vector is a decimal vector that has six sets. The first set is 

the  operation  type  (FMA),  number  of  the  precision  (64  or  128),  and  the 

rounding mode. The second set is sign, significand, and exponent of the first 

input. The third set is sign, significand, and exponent of the second input. The 

fourth set is sign, significand, and exponent of the second input. The fifth set is 

sign, significand, and exponent of the result. Finally the sixth set is one or two 

of four flags(invalid, inexact, underflow and overflow). The designer enters the 

input sets to his implementation and verifies the implementation output against 

last two sets.

The  FMA operation x∗y±b=c multiplies  the  first  two  inputs,  and  adds 

without rounding the result of the multiplication operation to the third input.

The task given to the fused-multiply-add(FMA) engine is the set of  constraints 

on  eleven  elements,  (1)  the  significand  of  the  first  input Sx , (2)  the 

significand of the second input Sy , (3) the significand of the third input Sb ,

(4)  the  multiplication  intermediate  result Sz , (5) the  addition  intermediate 

result Sc , (6)  the  exponent  of  the  first  input,  (7)  the  multiplication 
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intermediate result exponent which is the sum of the first two inputs exponents, 

(8)  identifier  number sid to  determine  the  smaller  exponent  input  of  the 

addition  operation  (i.e  the  exponent  of  third  input  or  the  exponent  of  the 

multiplication  intermediate  result),  such  that  the  engine  determines  which 

significand will be shifted to right, (9) right shift value of the smaller exponent 

addition  input.  (10)  the  addition  intermediate  result  exponent  at  which  the 

addition_subtraction operation occurs, (11) the rounding mode.

The constraint on Sx is a mask starting from the minimum number Nx to the 

maximum  number Mx. The  constraint  on Sy is  a  mask  starting  from  the 

minimum number Ny to the maximum number My. The constraint on Sb is 

a  mask  starting  from  the  minimum  number Nb to  the  maximum  number

Mb. Each number in the previous masks has p digits. Similarly, the mask 

on Sz consists  of  two  numbers Nz and Mz , each  number  has 2 p digits, 

Also, the mask on Sc consists of two numbers Nc and Mc , each number 

has 2 p1 digits, p1 digits before the fractional point and p digits after 

it.  The first input exponent, the multiplication intermediate result exponent, the 

addition  intermediate  result  exponent  and  the  rounding  direction  are  either 

given explicitly in the task or  left to the engine to choose randomly.  

The ability of the engine to choose randomly within the range of the mask or to 

choose the input exponents and the rounding direction empowers the engine to 

generate test vectors  discovering more bugs. 

An example to explain the format of the decimal FMA task at p=16 is  as 

follows:

64∗T : −1 −9999999999999999 −1 −9999999999999999 −100000 −999999

100000000000000 99999999999999999999999999999999
−999999999999999.9000000000000000 −999999999999999.9999999999999999

R R 0 6 R R

This  task  means  that  Nx=−1, Mx=−9999999999999999,

Ny=−1, My=−9999999999999999, Nb=−100000, Mb=−999999,

Nz=100000000000000, Mz=99999999999999999999999999999999,

Nc=−999999999999999.9000000000000000, Mc=−999999999999999.9999999999999999 .
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Also, it means that the engine chooses randomly the exponent of the first input, 

the  exponent  of  the  multiplication  intermediate  result,  the  exponent  of  the 

addition intermediate result,  and the rounding mode. The engine determines 

from the task that  the  third  input  is  the  smaller  addition exponent,  and the 

significand of the smaller addition exponent (the third input exponent) will be 

shifted to right six digits.

One  of  the  solutions  of  this  task  is  the  test  vector 

d64*+ =0 −9046436700100791E−59 −11054076131311 E 127 −81183 E 76 -> 9999999999999999 E 81 X .

The d64  means decimal64, the *+ means FMA operation(i.e multiplication 

operation followed by addition operation),  the following =0 means that  the 

rounding  mode is  Round  ties  to  even,  the  first  input  is

x=−9046436700100791∗10−59 , the  second  input  is y=−11054076131311∗10127 , the 

third input is b=−81183∗1076 ,  the rounded result is c=9999999999999999∗1081 ,

and the following X  indicates that the inexact flag is high, because the exact 

result is 9999999999999999.2782750967001∗1081 .

4.1 The FMA engine

 The engine determines the number of digits of the multiplication intermediate 

result p z from the interval [no of digits of Nz ,no of digits of Mz ] , as 0≤p z≤2 p, and 

number  of  digits  of  the  third  input  pb  from  the  interval 

[no of digits of Nb ,no of digits of Mb ] . The engine shifts to right both Nz and Mz

with the  value srm z , to  be  in  the  format  of  maximum p digits  before  the 

fractional point. 

According to the value of sid , the engine determines the smaller exponent 

input  of  the  addition operation.  Therefore,  the  engine chooses  between two 

procedures, (1) procedure 1, the multiplication intermediate result exponent is 

the  smaller  exponent  input  of  the  addition  operation,  therefore  the 

multiplication intermediate result significand is shifted to right and the third 

input significand is shifted to left, (2) procedure 2, the third input exponent is 
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the smaller exponent input of the addition operation, therefore the third input 

significand  is  shifted  to  right  and  the  multiplication  intermediate  result 

significand is shifted to left.

In procedure 1, the engine chooses randomly the right-shift value sr z , either 

from the intervals [1, p] or [p1, qmax−2∗qmin].  If sr z is equal to zero, it 

will  choose  randomly  the  left-shift  value slb , from the  interval [0, p−pb ].

Otherwise,  if sr z is  larger  than  zero, slb  is equal  to  p− pb . The  engine 

shifts to left both Nb and Mb with the value of sl b , and shifts to right both

Nz and Mz with  the  value  of sr z .  Then,  the  engine  uses  the  Addition 

Algorithm (in 2.1.1) to get the third input significand Sb , the multiplication 

intermediate  result  significand  Sz , and  the  addition  intermediate  result  of 

Sc. After that, the engine shifts to left the significand Sz with the value of

sr zsrmz , and  factorizes Sz to  the  two  inputs  significands Sx and Sy

using the Multiplication Algorithm (in 3.1.1).

The engine recalculates the new value of Sc by replacing Sc with SzSb ,  

as the Multiplication Algorithm changes some digits in Sz. It shifts to right the 

third  input  significand Sb , with  the  value  of sl b , and  calculates  the  input 

exponents that achieve the values of sl b and sr z .

 To calculate the exponents, the engine chooses the addition intermediate result 

exponent Ec from  the  interval [max srzsrm z2∗qmin ,qmin ,qmax−sl b] , then  it 

calculates  the  exponent  of  the  multiplication  intermediate  result

Ez=Ec−sr z−srmz , and  the  third  input  exponent Eb=Ecslb . It   chooses  the 

first  input  exponent Ex using max qmin ,Ez−qmax≤Ex≤minqmax , Ez−qmin , or

Ex is  given  explicitly,  and  it  calculates  the  second  input  exponent  using

Ey=Ez−Ex .

However, if Ez is given explicitly to the engine, the engine gets the first input 

exponent Ex using max qmin , Ez−qmax≤Ex≤min qmax , Ez−qmin , or Ex is given 

explicitly,  and  it  gets  the  second  input  exponent  using Ey=Ez−Ex . The 

exponent of the addition intermediate result Ec is equal to Ezsr zsrmz , and 

the third input exponent Eb is equal to Ecslb .
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In procedure 2, the engine chooses randomly the right-shift value sr b , either 

from the intervals [1,2 p ], [ p1,qmax−qmin] , or [qmax1−qmin , 2∗qmax−qmin ].  

If sr b is equal to zero, it will choose randomly the left-shift value sl z , from 

the interval [0, p−p z] . Otherwise,  if sr b is  larger  than zero, sl z is equal to 

p− pz . The engine shifts to left  both Nz and Mz with the value of sl z ,

and shifts to right both Nb and Mb with the value of sr b .  Then, the engine 

uses the Addition Algorithm (in 2.1.1) to get the third input significand Sb ,

the  multiplication  intermediate  result  significand Sz , and  the  addition 

intermediate result of  Sc. After that, the engine shifts to right Sz with the 

value srm z and shifts to left Sz with value sl z . It factorizes Sz to the two 

inputs significands Sx and Sy using the Multiplication Algorithm(in 3.1.1). 

The engine recalculates the new value of Sc by replacing Sc with SzSb ,  

as the Multiplication Algorithm changes some digits in Sz.  It shifts to left the 

third  input  significand Sb , with  the  value  of sr b , and calculates  the  input 

exponents that achieve the values sr b and sl z .

The  engine  chooses  the  addition  intermediate  result Ec from  the  interval

[qminsrb , qmax ] , it calculates the multiplication intermediate result exponent 

using Ez=Ecsl z−srm z , and  the  third  input  exponent  using Eb=Ec− srb . The 

engine  gets  the  first  input  exponent Ex , either  from  the  interval

[maxqmin , Ez−qmax ,min qmax , Ez−qmin] , or Ex is  given  explicitly,  and  it 

calculates the second input exponents using Ey=Ez−Ex .

However, if Ez is given to the engine, the engine gets the first input exponent

Ex , either from the interval [max qmin , Ez−qmax  ,min qmax ,Ez−qmin] , or Ex

is  given explicitly, and it gets the second input exponent using Ey=Ez−Ex .

The exponent of the addition intermediate result Ez is equal to Ez−sl zsrmz ,

and  the third input exponent Eb is equal to Ec−srb .

The addition intermediate result may have cancellation digits, in that case the 

engine  shifts Sc to  left  and  decreases Ec with  a  value 

scn=minEc−Ez , p−no of digits before point  .  

The addition intermediate result may have a carry digit, in that case the engine 
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shifts Sc one digit to the right and increases Ec by one. 

At clamping, where Ecqmax ∧ Ec pc≤qmax p , the engine shifts to left Sc

with the value Ec−qmax and replaces Ec with qmax .

At special case of underflow, where Ecqmin and Ecpc≥qmin , it shifts to 

right Sc with the value qmin−Ec and replaces Ec with qmin .

The engine rounds the addition intermediate result according to the standard. 

The rounding process may generate a carry to force the engine to shift Sc one 

digit to right and increase Ec by one. 

Finally,  if Ec is  larger  than qmax , it  is  an  overflow  case,  and  if Ec is 

smaller  than qmin , it  is  an  underflow  case.  The  result  of  these  cases  are 

according to the rounding mode.

4.2 The Main Ideas of the FMA Models

 The models are defined using a Cartesian product between two or more lists of 

constraints while ignoring the impossible combinations and allowing the other 

constraints to be chosen randomly.  

Some of the model proposal ideas are also in [22]. We write down during the 

explanation of these ideas that they are in [22].  However we describe these 

ideas in the form of our engine constraints. The other ideas are new ideas to 

verify  new corner  cases  in  the  different  FMA implementations.  In  total  we 

present 42 sub-models of which 23 sub-model ideas are in [22] and 19 sub-

model ideas are new. 

A)  Inputs Types Model

The  model  aims  to  verify  the  ability  of  the  design  to  solve  all  possible 

combinations of the input types. The proposal ideas of the model are in [22]. 

We separate the model into three sub-models as follows: 

1.  It  verifies  the  handling  of  Normal  and Subnormal  types  of  the  first  two 

inputs, using the following lists of constraints, (1) a first input list consists of 
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the minimum Subnormal, the maximum Subnormal, and the maximum Normal, 

(2)  a  second input  exponent  list  consists  of  all  the  exponent  values  in  the 

interval [qmin , qmax ].

2. It verifies the remaining of Normal and Subnormal types of the third input, 

using the following lists  of constraints,  (1) a third input list  consists  of the 

minimum Subnormal, the maximum Subnormal, and the maximum Normal, (2) 

a  list  of   the  multiplication  intermediate  result  exponent  consists  of  the 

exponent values in the interval [2∗qmin ,2∗qmax ].

3. It verifies the input types Zero, Infinities, sNaN, or qNaN; using the four 

combinations of lists in Table 1.  

TABLE 1.COMBINATIONS OF INPUTS TYPES LISTS 

Id 
The Contents of The lists
First Input Second Input Third input

1
Zero with all possible 

exponents 
All input types list All input types list

2 All input types list All input types list
Zero with all possible 

exponents

3
 Infinities, sNaN, and 

qNaN
All input types list All input types list

4 All input types list All input types list
 Infinities, sNaN, and 

qNaN

B) Result Types Model

The model aims to verify the ability of the design to generate all  the result 

types that has not been generated in the previous model. The proposal ideas of 

the  model  are also in [22].  We separate the  model  into four  sub-models  as 

follows: 

1. It verifies all the result exponents using, (1) a list of the addition intermediate 

result exponents consists of the interval [qmin , qmax ].

2. It verifies the generation of the first hundred Subnormal numbers, the last 

hundred Subnormal numbers, the first hundred Normal numbers, and numbers 
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from One to 100  using, (1) a list of the addition intermediate result significand 

consists of the intervals {[1,100 ] ,[10P−1−100,10P−1100 ]},  (2) a list of the addition 

intermediate result exponent consists of zero and qmin .

3. It verifies the last hundred Normal numbers using, (1) a list of the addition 

intermediate result significand consists of the interval [10P−1,10P−100] , (2) the 

addition intermediate result  exponent is equal to qmax .

C) Rounding Model

The model  aims to  verify the  rounding process  in  the  design.  Some of  the 

proposal ideas of the model are in [22],  while the other ideas are new. We 

separate the model into eight sub-models as follows:

1. It  verifies the rounding process at all combinations of the guard digit, the 

least significand digit, and the sticky bit using, (1) a list from the five rounding 

modes, (2) a list of the addition intermediate significand consists of, the guard 

digit interval [0,9] , the least digit interval [0,9] , and the sticky bit  interval

[0,1] , (3)  a  list  from  the  two  values  of sid that  determines  the  smaller 

exponent input of the addition operation. The proposal idea of this sub-model is 

also in [22].

2. It verifies the possible carry propagation  due to rounding process using, (1) 

a list from the five rounding modes, (2)a list from two values of sid , (3) a list 

of  the  addition  intermediate  result  significand  consists  of,  the  guard  digit 

interval [0,9] , the  sticky  bit  interval [0,1] , and  the  patterns 

{99⋯99, {0−8}99⋯99, X {0−8}9⋯99,⋯, XX⋯X {0−8}}. The  proposal  idea  of  this 

sub-model is in [22].

3. It verifies the sticky bit calculations using, (1) a list of right shift to the third 

input consists of the interval [2 ,qmax−qmin] , (2) sid indicates that the third 

input exponent is the smaller exponent input of the addition operation, (3) the 

number of digits of the third input significand is equal to one. The proposal 

idea of this sub-model is in [22]. 

4.It  verifies the sticky bit  calculations using,  (1) a list  of right shifts to the 
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multiplication  intermediate  result  from  the  interval [2 ,qmax−2∗qmin] , (2)

sid indicates  that  the  multiplication  intermediate  result  exponent  is  the 

smaller exponent input of the addition operation, (3) the number of digits of the 

multiplication intermediate result significand is equal to one. The proposal idea 

of this sub-model is in [22]. 

5. It verifies the rounding process when the right shift is less than p using; (1) 

a list from the five rounding modes, (2)  a list of  number of digits of the third 

input  significand  consists  of  the  interval [1, p] , (3)  sid indicates  that  the 

third input exponent is the smaller exponent input of the addition operation, (4) 

a list of the right shift consists of the interval [1, p] .  

6. It verifies the rounding process when the right shift is less than p using, (1) 

a list  from the five rounding modes, (2)  a list  of  number of digits of the 

multiplication intermediate result significand consists of the interval [1,2 p ],

(3)  sid indicates that the multiplication intermediate result exponent is  the 

smaller exponent input of the addition operation, (4) a list of the right shift 

consists of the interval [1, p] .

7.  It verifies the sticky bit when the right shift value is less than p using, (1) 

the right shift value is less than p ,  (2) sid indicates that the multiplication 

intermediate  result  exponent  is  the  smaller  exponent  input  of  the  addition 

operation, (3) a list of the multiplication intermediate result significand consists 

of the pattern

            

{1−9}00⋯0
p1

{1−9}X⋯X
p−1

, X {1−9 }00⋯0
p1

{1−9}X⋯X
p−1

,⋯, X⋯X {1−9}
p1

{1−9}X⋯X
p−1

,

{1−9}00⋯0
p1

0{1−9}X⋯X
p−1

, X {1−9}00⋯0
p1

0{1−9}X ⋯X
p−1

,⋯, X⋯X {1−9}
p1

0{1−9} X⋯X
p−1

,

{1−9}00⋯0
p1

00{1−9}X⋯X
p−1

, X {1−9}00⋯0
p1

00 {1−9}X⋯X
p−1

,⋯, X⋯X {1−9}
p1

00 {1−9 }X⋯X
p−1

,

⋮

{1−9}00⋯0
p1

00⋯0{1−9}
p−1

, X {1−9}00⋯0
p1

00⋯0{1−9}
p−1

,⋯, X⋯X {1−9}
p1

00⋯0 {1−9}
p−1

8. It verifies the sticky bit when the right shift value is less than p using, (1) 

the  right  shift  value  is  less  than p ,  (2) sid indicates  that  the  third  input 

sigificand is  the  smaller  exponent  input  of  the  addition  operation,  (3)   the 

multiplication intermediate result significand has zero digits after the most p
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digits,  (4)  the  third  input  significand  has  the  pattern

{1−9}00⋯0 X
p

, X {1−9}00⋯0 X
p

,⋯, X⋯X {1−9}0 X
p

.

D)Shift Model

  The model aims to verify all the possible shifting of the input significands. 

The proposal ideas of the model are also in [22]. We separate the model into 

two sub-models as follows:

1. It verifies all the possible shifting to  the third input significand using, (1) a 

list of right shift to the third input consists of the interval [1, qmax−qmin ], (2)

sid indicates that the third input exponent is the smaller exponent input of the 

addition operation.

2. It verifies all the possible shifting to the multiplication intermediate result 

significand using, (1) a list  of right shift   to the multiplication intermediate 

result  consists  of  the  interval [1, qmax−2∗qmin ], (2) sid  indicates  that  the 

multiplication intermediate result exponent is the smaller exponent input of the 

addition operation.

E) Trailing and Leading Zeros Model

    The model aims to verify all the possible trailing and leading zeros in the 

input significands and the addition intermediate result significand. The proposal 

ideas  of  the  model  are also in  [22].  We separate the  model  into three  sub-

models as follows:

1. It  verifies the different patterns of digits of the input significands using, (1) a 

list is from two values of sid ,  (2)  a list of the third input significand, (3) a 

similar list of the multiplication intermediate result significand that has 2 p

digits. The second and  the third lists have the same pattern 
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{1−9}00⋯00
p

,0{1−9}00⋯00
p

,⋯, 00⋯0{1−9}
p

,

{1−9}{1−9}0⋯00
p

,0{1−9}{1−9}0⋯00
p

,⋯, 00⋯0{1−9}{1−9}
p

,

{1−9}X {1−9}0⋯00
p

,0{1−9}X {1−9}0⋯00
p

,⋯ ,00⋯0{1−9}X {1−9}
p

,

⋮

{1−9}XX⋯X {1−9}
p

2. It  verifies  different  patterns  of  digits  of  the  addition  intermediate  result 

significands using (1) a list of the addition intermediate result significand of

p digits before fractional point,  consists of similar pattern of the previous 

sub-model.                                      

    3. It verifies the final carry with different pattern of zeros in the addition 

intermediate  result  significand using,  (1)  a  list  of  the  addition  intermediate 

result sigificand consists of the following patterns

                  

1{1−9}00⋯00
p1

,10{1−9}00⋯00
p1

,⋯,100⋯0 {1−9}
p1

,100⋯00
p1

,

1{1−9}{1−9}0⋯00
p1

,10 {1−9}{1−9}0⋯00
p1

,⋯, 100⋯0{1−9}{1−9}
p1

,

1 {1−9}X {1−9}0⋯00
p1

,10{1−9}X {1−9}0⋯00
p1

,⋯ ,100⋯0{1−9}X {1−9}
p1

,

⋮

1 XX⋯X {1−9}
p1

F)  Carry and Borrow model

  The model aims to verify all the possible propagation  of carries and borrows 

in the addition operation. The Ideas of the model are all new. We separate the 

model into four sub-models as follows:

1. It verifies all patterns of the borrow propagation when the addition operation 

is effective subtraction using, (1) a  list of right shift values to the third input 

consists of the interval [1,2 p ], (2) sid indicates that the third input exponent 

is  the  smaller  exponent  input  of  the  addition  operation,  (3)  a list  of  the 

multiplication intermediate result significand consists of the following pattern 
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{1−9}00⋯0 X
2p

,{1−9}00⋯0XX
2p

,⋯ ,{1−9}X⋯XX
2p

,

X {1−9}0⋯0 X
2p

, X {1−9}0⋯0XX
2p

,⋯, X {1−9}X⋯XX
2p

,

X X {1−9}0⋯0 X
2p

, X X {1−9}0⋯0XX
2p

,⋯, X X {1−9}X⋯XX
2p

,

⋮

XXX ⋯X {1−9}
2p

2. It verifies all patterns of the borrow propagation when the addition operation 

is  effective  subtraction  using,  (1)  a   list  of  right  shift  to  the  multiplication 

intermediate result consists of the interval [1, p] , (2) sid  indicates that the 

multiplication intermediate result exponent is the smaller exponent input of the 

addition operation, (3) a list of the third input significand consists of similar 

pattern to the pattern in sub-model 1, but with p digits.

3. It verifies all patterns of the carry propagation when the addition operation is 

effective addition using, (1) a  list of right shift values to the third input in the 

interval [1,2 p ], (2)  sid indicates that the third input exponent is the smaller 

exponent  input  of  the  addition  operation,  (3)  a list  of  the  multiplication 

intermediate result significand consists of the following pattern.

               

{1−9}99⋯99
2p

,{1−9}99⋯99X
2p

,{1−9}99⋯9XX
2p

,⋯, {1−9}X⋯XX
2p

,

X {1−9}99⋯99
2p

, X {1−9}99⋯99X
2p

, X {1−9}99⋯9XX
2p

,⋯ , X {1−9}X⋯XX
2p

,

XX {1−9}99⋯99
2p

,{1−9}99⋯99X
2p

, XX {1−9}99⋯9XX
2p

,⋯, XX {1−9}X⋯XX
2p

,

⋮

XXX ⋯X {1−9}
2p

4. It verifies all patterns of the carry propagation when the operation is effective 

addition  using,  (1)  a   list  of  right  shift  values  to  the  multiplication   result 

consists  of  the  interval [1, p] . (2) sid  indicates  that  the  multiplication 

intermediate  result  exponent  is  the  smaller  exponent  input  of  the  addition 

operation, (3) a list of the third input significand of similar pattern to the pattern 

in sub-model 3, but with p digits.

G) Overflow Model

  The model aims to verify all the overflow and the near overflow cases. We 
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separate the model into four sub-models as follows:

1.It  verifies  the  overflow cases  due  to  the  rounding  process  using,  (1)  the 

addition intermediate result significand is equal to 10 p−1 , with a guard digit 

consists of the interval [5,9] , (2) the addition intermediate result exponent is 

equal to qmax , (3) a list is from two rounding modes Round ties to even and 

Round ties to away,(4) a list of the multiplication  intermediate result exponent 

consists of the interval [qmax−p, qmax ].

2.It  verifies  the overflow cases  due to the rounding process using,  (1)   the 

addition intermediate result significand is equal to 10 p−1 , with a guard digit 

consists of the interval [1,9] , (2) the addition intermediate result exponent is 

equal to qmax , (3) two rounding modes are Round to positive and Round to 

negative, (4) a list of the multiplication  intermediate result exponent consists 

of the interval [qmax−p, qmax ].  

3. It verifies the overflow cases due to the final carry at the effective addition 

operation using, (1) the number of digits before fractional point of the addition 

intermediate result significand is equal to p1 , (2)  the addition intermediate 

result exponent is equal to qmax , (3) a list of the multiplication intermediate 

result exponent consists of the interval [qmax−p, qmax ] , (4)  a list of  number 

of digits of the third input significand consists of the interval [1, p] .

4. It verifies the overflow cases due to the result of the multiplication operation 

using, (1) a list of the multiplication intermediate result exponent consists of 

the interval [qmax−p , 2∗qmax ]. The proposal idea of this sub-model is in [22].

H) Clamping Model

The clamping occurs  when the   intermediate  result  exponent  is  larger  than

qmax , and the number of digits of the intermediate result significand is less 

than p , such that the sum of the  intermediate result exponent to the number 

of  digits  of  the  intermediate  result  significand  is  less  than  or  equal  to

qmaxp . At  that  case,  the  engine   shifts  to  left  the  intermediate  result 

significand and reduces the number of leading zeros. 
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 The model aims to verify all clamping cases. We separate the model into two 

sub-models as follows:

1. It  verifies  the  clamping  case  using,  (1)  a  list  of  the  multiplication 

intermediate result exponent consists of the interval [qmax1,qmaxp−1] , (2) 

a list of number of digits of the multiplication intermediate result significand 

consists  of  the  interval [1, p] , (3)  the  multiplication  intermediate  result 

exponent  to  the  number  of  digits  of  the  multiplication  intermediate  result 

signicand is less than or equal to qmaxp , (4)  a list of third input significand 

consists  of {zero ,random number}, (5)  the  third  input  exponent  is  equal  to

qmax .  

2. It verifies the cases of left shift to the addition intermediate result significand 

due to the preferred exponent condition using, (1) a list of the multiplication 

intermediate result exponent consists of the interval [qmin1,qmaxp ] , (2) a 

random value  of  number  of  digits  of  the  multiplication  intermediate  result 

significand from the interval [1, p] , (3) the third input significand is equal to 

zero, (4) the third input exponent is less than the multiplication intermediate 

result exponent. 

I)  Underflow Model

   The model aims to verify all the underflow and the near underflow cases. We 

separate the model into three sub-models as follows:

1. It  verifies the underflow due to the result  of the multiplication operation 

using, (1) a list of the multiplication intermediate result exponents consists of 

the  interval [2∗qmin , qmin], (2)  a  list  of  third  input  significand  consists  of

{zero ,random number}.  The proposal idea of this sub-model is in [22].

2. It  verifies  the  underflow  flag  when  the  result  is  inexact  and  the  result 

exponent is equal to qmin using, (1) a list of the multiplication intermediate 

result exponent consists of the interval [qmin−2p , qmin] , (2) a list of number of 

digits of the multiplication intermediate result consists of the interval [1,2 p ],

(3) the  third input significand is equal to zero. 
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3. It verifies the underflow flag when the result is exact and the result exponent 

is  equal  to qmin using,  (1)  a  list  of  the  multiplication  intermediate  result 

exponent  consists  of  the  interval [qmin−2p , qmin] , (2)   a  list  of  the 

multiplication  intermediate  result  significand   consists  of  the  pattern

{{1−9}00⋯0 , X {1−9}00⋯0,⋯, XX⋯X {1−9}}, (3)  the  third  input  significand  is 

equal to zero.

J) Cancellation Model

    The model aims to verify all the cancellation cases, which has cancellation 

digits in the most digits of the addition intermediate result due to the effective 

subtraction operation. We separate the model into ten sub-models as follows:

1. It  verifies the cases of all possible number of the cancellation digits using, 

(1) a list of the addition intermediate result significand  consists of an interval 

of  number of  digits  before  the  fractional  point [1, p−1] , and an interval  of 

number of digits after the fractional point [1, p−1] at zero value before the 

fractional point, (2)  a list of right shift consists of the interval [0,1] , (3)  a list 

of number of digits of the multiplication intermediate result significand consists 

of  the  interval [1,2 p ], (4) sid identifies  the  third  input   exponent  as  the 

smaller addition exponent. The proposal idea of this sub-model is in [22].

2. It verifies the cases of all possible number of the cancellation digits, (1) a list 

of the addition intermediate result significand   similar to the list in sub-model 

1, (2)  a list of right shifts consists of the interval [0,1] , (3) a list of number of 

digits  of  the  third  input  significand consists  of  the  interval [1, p] , (4) sid

identifies  the  multiplication  intermediate  result  exponent  as  the  smaller 

exponent. The proposal idea of this sub-model is in [22].  

3.  It  verifies  the  zero  result  due  to  cancellation  using,  (1)   the  addition 

intermediate result significand is equal to zero value, (2) the right shift is zero, 

(3)  a  list  of  number  of  digits  of  the  multiplication  intermediate  result 

significand  consists  of  the  interval [1,2 p ]. The  proposal  idea  of  this  sub-

model is in [22].   
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4. It verifies the cases when the result is exact due to cancellation using, (1) the 

addition intermediate result significand has zero value after the fractional point, 

(2)a list  of the multiplication intermediate result significand  consists of the 

pattern                                        

                    
{1−9}XX⋯X

p

000⋯0
p−1

{1−9},{1−9}XX⋯X
p

00⋯0
p−2

{1−9}X ,

{1−9}XX⋯X
p

00⋯0
p−3

{1−9}XX ,⋯, {1−9}XX⋯X
p

{1−9}XX⋯X

        

(3)   a  list  of  right  shift  to  the  third  input  significand  consists  the  interval

[p ,2p−1] , (4) sid identifies the third input  exponent as the smaller addition 

exponent.

5. It verifies the cases when the result is exact due to the cancellation using, (1) 

the addition intermediate result significand has zero value after point, (2) a list 

of the multiplication intermediate result significand consists of the pattern        

                     
{1−9}XX⋯X

p

{1−9}00⋯0 , {1−9}XX⋯X
p

X {1−9}00⋯0,

{1−9}XX⋯X
p

XX {1−9}00⋯0 ,⋯, {1−9}XX⋯X
p

XX⋯X {1−9}

        

(3) a list of right shift to the third input significand from the interval [1, p] , (4) 

sid identifies the third input  exponent as the smaller addition exponent.

6. It verifies the underflow cases due to cancellation using, (1) a list of  the 

addition intermediate result significand  consists of the interval of number of 

digits before fractional point [1, p−1] , and  the interval of number of digits 

after  point [1, p] , (2)  a  list  of  values  of  the  addition  intermediate  result 

exponent in the interval [qmin, qmin p−1], (3)    a list of right shift consists of 

the interval [0,1] . The proposal idea of this sub-model is in [22].      

7. It verifies the underflow  due to cancellation using, (1) One cancellation digit 

in the  addition intermediate result  significand (2) the addition intermediate 

result exponent is equal to qmin , (3)  a list of the multiplication intermediate 

result exponent consists of the interval [2∗qmin , qmin1] .

8. It verifies the near overflow cases with cancellation using, (1) a list of the 

addition intermediate result significand consists of the interval of number of 
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digits before point [1, p−1] , (2)  a right shift is equal to one, (3)  the  addition 

intermediate result exponent is equal to qmax1 .

9. It verifies the cancellation cases with one digit using, (1) one cancellation 

digit in the addition intermediate result significand, (2) a list of right shift from 

the  interval [2, qmax−2∗qmin ], (3) sid identifies  the  multiplication  result 

exponent as the smaller exponent. The proposal idea of this sub-model is in 

[22].   

10. It verifies the cancellation cases with one digit using, (1) one cancellation 

digit in the addition intermediate result significand, (2) a list of right shift from 

the interval [2, qmax−qmin ], (3) sid identifies the third input exponent as the 

smaller exponent. The proposal idea of this sub-model is in [22].   

4.3 Summary

This chapter represents the main steps of the first FMA engine to solve all the 

constraints  numerically.  It  also  describes  the  main  ideas  of   the  coverage 

models that have been solved by the engine to generate test vectors can verify 

all the corner cases in the hardware or software implementations of the decimal 

floating-point FMA operation. 

The engine cannot find the solution from the first trial, and may not solve all 

the constraints on the least digits of the multiplication intermediate result that 

have weight less than 10p−1 .

The engine solved the coverage models one time and generated about 425000 

test  vectors  in  Decimal64,  the  test  vectors  have  proved  their  efficiency  by 

discovering bugs in Silminds design and FMA DecNumber implementation. 

The DecNumber bugs are discovered using the carry and borrow model, while 

most of Silminds bugs are discovered using the overflow and the underflow 

models.
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Chapter 5

Engine and Models of Decimal Square Root Operation

The square root engine is a software tool written in C++ to generate square root 

test vectors can cover all  corner cases,  to verify a tested implementation of 

decimal  square  root  operation  to  achieve  the  compliance  with  the  IEEE 

standard (754-2008) for Floating Point Arithmetic, it takes coverage models as 

inputs and generates test vectors as outputs.

The engine generates the test  vectors in two formats of the IEEE standard: 

Decimal64  and  Decimal128.  The  engine  time  to  generate  one  test  vector 

depends on the constraints that have been solved to generate it and the factor of 

randomization  that  the  engine  needed.  The  engine  generates  as  many  test 

vectors as the user wants. Every time the engine runs, it  generates new test 

vectors. The verification engine value is neither in the time needed to generate 

the test vector, if this time is practical, nor in the number of the generated test 

vectors, but rather in the functionality of the cases that the test vector covers.

The engine solved the coverage models one time and generated about 50000 

test vectors in Decimal64 and about 199000 test vectors in Decimal128, the test 

vectors  have  proved  an  efficiency  by  discovering  bugs  in  DecNumber 

library[23]  and  Silminds  design  [7].  Table  2 shows  the  maximum and  the 

minimum  times  that  the  engine  needed  to  solve  a  task  of  the  existing 

constraints  and  generate  one  test  vector,  on  Intel(R)  Pentium(R)  4  CPU 

3.20GHZ with g++ (Ubuntu 4.4.3) compiler.

TABLE 2. THE TIME PERFORMANCE OF  THE SQUARE ROOT ENGINE 

Test vector Format Minimum Time Maximum Time

Decimal 64 0.006 seconds  37  seconds

Decimal 128 0.017 seconds 2.35 minutes

Although the engine solves constraints on the input and the intermediate result 
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only, it managed to discover some faults inside the operation in two designs  by 

forcing the engine to solve constraints on patterns of zeros and nines in the 

intermediate result significand. 

The generated test vector is a decimal vector that has three sets, The first set is 

type of the operation square root, number of the precision (64 or 128), and the 

rounding mode. The second set is sign, significand, and exponent of the input. 

The third set is sign, significand, and exponent of the result. Finally the fourth 

set is one of two flags(invalid, inexact). The designer enters the input set to his 

implementation and verifies his output against the last two sets.

The  task  given to  the  square  root  engine is  the  set  of   constraints  on four 

elements, the significand of the input Sx ,  the intermediate result significand

Sz , the exponent of the input, and the rounding mode. The constraint on Sx

is a mask starting from the minimum number Nx to the maximum number

Mx. Similarly, the mask on Sz consists of two numbers Nz and Mz. The 

input exponent and the rounding direction are either given explicitly in the task 

or left to the engine to choose randomly. 

An example to explain the format of the decimal square root task at p=16 is 

as follows:

                         
64V T : 1000000000 9999999999

0000000000009999.600000000000000000000000
9999999999999999.699999999999999999999999 R R

 This  task  means  that  Nx=1000000000, Mx=9999999999,

Nz=0000000000009999.600000000000000000000000,

Mz=9999999999999999.699999999999999999999999, the  engine  chooses  randomly 

the exponent of the input, and it chooses randomly the rounding mode.

One  of  the  solutions  of  this  task  is  the  test  vector 

d64V 0 3425834081E146 -> 5853062515469999E62 X . The d64 means  decimal64, 

the V means  the  square  root  operation,  the  following  0  means  that  the 

rounding mode is  Round toward Zero,  the  input  is x=3425834081∗10146 , the 

rounded result is z=5853062515469999∗1062, and the following X indicates
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 that  the  inexact  flag  is  high,  because  the  exact  result  is 

5853062515469999659210807209389743301409⋯.

We represent the intermediate result with length 2.5 p digits not including the 

leading zeros to guarantee that the engine can generate all the possible hardest-

to-round cases, where the hardest-to round case needs only 2p−1 digits not 

including leading zeros to do the rounding process according to the standard.  

5.1 The Square Root Engine

The  inverse  operation  of  the  square  root  is  the  multiplication  of  the 

intermediate  result  with  itself  which  gives  the  input  of  the  square  root 

operation. The engine is based on solving the non linear equations that result 

from multiplying the intermediate result with itself. We can estimate these non 

linear equations from Figure 4, where each column represents one nonlinear 

equation. The figure shows the squarer of the intermediate result at p=16 ,

where Sz i denotes  the  intermediate  result  digit  of  weight 10i , and Sx i

denotes the input digit of weight 10i .

   The engine uses 2.5 p digits  only for  the  intermediate  result  significand

Sz. Hence, if the infinity precise square root of the input significand Sx has 

more  digits,  then Sz is  truncated,  i.e.  it  is  slightly  less  than  the  infinitely 

precise square root. The square of Sz will thus be Sx− with 0≤10−L

where L depends on the number of digits of Sz. This explains the series of 

nines that follows Sx0−1 as seen in Figure 4. Also if the input exponent is 

odd, the engine shifts the input significand one digit to the left which explains 

that Sx p may exist. For example if the input is x=8116261898426249∗10351 which 

has  16 digits  in  the  input  significand,  the  engine  solves  it  as

x=81162618984262490∗10350 which has 17 digits.   

The square of the most significant digit of Sz such as in Figure 4 should be on 

a  column  with  an  even   index  for Sx. If Sz84 , that  squaring  does  not 

generate  a  carry  into  a  higher  position.  Otherwise,  if  Sz8≥4 , its  square 

generates a carry into position Sx17 . Note that even if Sz8=3 (the square is 9) 

a carry into the position of Sz8 Sz8 will lead to a carry out into the position of
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Sx 17. So,  in  general,  if  the  position  formula w x of  the  most  significant 

nonzero  digit Sxw x
of  the  input  is  odd  then, Sxw x

is  a  carry  from the  first 

nonlinear equation. 

The engine steps begin by choosing the input exponent formula Ex according 

to its constraints. If the input exponent is odd, the engine shifts Nx and Mx

by one digit to the left, and subtracts one from Ex .

Then,  the  engine  gets  the  intermediate  result  significand Sz and  the  input 

significand Sx that achieve the constraints. It achieves the constraint on each 

digit Sx n or Szn by choosing the digit from its interval formula [Nxn , Mxn ] or 

formula [Nzn , Mzn]. It  solves  the  significands  constraints  using  one  of  two 

algorithms,  the  first  algorithm  is  the  Square-Root-Most-Digits-Constraints-

Algorithm to  solve  the  constraints  on  the  most  significant p digits  of  the 

intermediate result significand and the p1 digits of the input significand, 

 

Figure 4. The squarer of the Intermediate Result assuming Precision 16

the second algorithm is the Square-Root-Least-Digits Constraints-Algorithm to 

solve the constraints on the least significant digits that follow the highest p

digits of the intermediate result significand.    

After the engine gets the significand value of Sx and Sz it shifts  to left the 

significand  formula Sz by p−w x/2 and  calculates  the  result  exponent 

formula E z=Ex/2−pwx/2 , if  the  result  is  inexact.  If  the  input  exponent  is 

odd, the engine shifts Sx by one digit to right and increases Ex by one.
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 5.1.1The Square Root Most Digits Constraints Algorithm

   The algorithm iterates to solve the nonlinear equations from left to right. As 

shown in Figure 4, for p=16, the first  non linear equation from left is

                                              Sx 16−Sz8∗Sz8=br16                                          (5.1)

where br16 is the value of carries that transfer from previous weights to the 

weight of 1016 , or the borrow generated from this weight to lower weights. 

The second and the third non linear equations are: 

                                          Sx 1510∗br16−2∗Sz7∗Sz8=br15                             (5.2)

                                  Sx 1410∗br15−2∗Sz6∗Sz8−Sz7∗Sz7=br14 .                     (5.3)

In general the nonlinear equation for the column of index n is :

                                     brn=Sxn10∗brn1− ∑
j=n−wx /2

w x/2

Sz j∗Szn− j ,                        (5.4)

To  start  the  solution,  the  algorithm  attempts  to  solve  equations  5.1  to  5.3 

(representing columns 16 to 14) together based on the range of carries that may 

transfer from the next lower significant columns. The algorithm chooses the 

digit Sx 16 and the  digit Sx 15 randomly from their  intervals.  Then since the 

ranges  of  borrow  digit br14  and  the  digit Sz6  are  known  as 

Ncr14≤br14≤Mcr14 and Nz6≤Sz6≤Mz6 , the algorithm transforms Equation 5.3 

to the inequality condition:

              Ncr142∗Nz6∗Sz8≤Sx 1410∗br15−Sz7∗Sz7≤Mcr142∗Mz6∗Sz8 .         (5.5) 

 Finally,  it  searches  randomly  on  the  values  of Sz8 , Sz7 , Sx14 that  satisfy 

Equation  5.1,  Equation  5.2  and  the  Inequality  5.5.  The  steps  taken  so  far 

constitute  the  first  outer  iteration  that  gets  the  final  values  of 

Sz8 , Sx16 , Sx15 , Sx14 and estimates the value of Sz7 that may be refined in the 

following iteration. 

   In the second iteration, the algorithm transforms the fourth nonlinear equation

Sx 1310∗br14−2∗Sz5∗Sz8−2∗Sz6∗Sz7=br13 to  

               Ncr132∗Nz5∗Sz8≤Sx 1310∗br14−2∗Sz6∗Sz7≤Mcr132∗Mz5∗Sz8 ,  
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and searches randomly on the values of Sz7 , Sz6 , Sx13 that achieve the second 

nonlinear equation, the third nonlinear equation and the inequality condition, 

where  the  digits Sz8 , Sb16 , Sx16 , Sx 15, Sx 14 , are  known  from  the  previous 

iteration. The algorithm does this procedure in all the iterations and gets all 

digits of Sx and Sz.     

   In general, for any precision, the algorithm gets randomly the first two digits 

of Sx , which are Sxw x
and Sxw x−1 from their intervals. If w x is odd, it gets 

randomly  the  digit  Sxw x−2 , replaces Sxw x−1 with Sxw x−110∗Sxwx
, and 

replaces w x with w x−1 .

   Then, it loops through a number of outer iterations equal to the number of 

nonlinear equations(i.e number of columns). The index of the outer iterations 

goes from formula 1≤i≤2.5p . The algorithm gets in iteration i the values of 

Szw x /2−i1 and Sxw x− i−1 and estimates  the value of Szw x /2−i . Then,  in the next 

iteration  it  gets  the  values  of Szw x /2−i and Sxw x− i−2 and  estimates Szw x /2−i−1 ,

and so on.

    The general form of Equation 5.1, at iteration i , is 

                               brw x− i1=Sxw x−i1− ∑
j=w x/2− i1

w x/2

Sz j∗Szw x− i1− j .                         (5.6)

Equation 5.6 calculates the borrow from the column of index  w x−i1 . The 

equation has one unknown brw x− i1 (i.e the borrow of the column), while the 

other elements of the equation are known from the previous iterations and the 

value Szw x /2−i1 .

    The general form of Equation 5.2, at iteration formula i , is 

                            brw x− i=Sxwx−i10∗brwx−i1− ∑
j=w x/2−i

wx/ 2

Sz j∗Szwx−i− j ,                    (5.7)

which calculates the borrow from the column of index  w x−i . The equation 

has  one  unknown brw x− i (i.e  the  borrow  of  the  column),  while  the  other 

elements of the equation are known from the previous iterations, the values of

Szw x /2−i1 , Szw x/2−i , and the value of brw x− i1 from Equation 5.6.
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    Similarly, the general form of Equation 5.3, at iteration formula i , is 

                         brw x− i−1=Sxw x−i−110∗brw x−i− ∑
j=wx /2− i−1

w x/2

Sz j∗Szw x−i−1− j .               (5.8)

As the ranges of  brw x− i−1 and Szw x /2−i−1 are known, the algorithm transforms 

Equation 5.8 to inequality 5.9, which is the general form of inequality 5.5.

                     

Ncrw x−i−2Ncrw x−i−3Ncrw x− i−42∗Szw x/2
∗Nzw x/2−i−1≤

Sxw x−i−110∗brw x−i− ∑
j=wx /2− i

w x /2−1

Sz j∗Szw x−i−1− j

≤2∗Szwx /2
∗Mzwx /2−i−1Mcrw x−i−2Mcrw x−i−3Mcr wx−i−41

           (5.9)

  Within each outer iteration, the engine does a second level of iterations to get 

the  values  of Sxw x− i−1 , Szw x/2−i1 , Szwx / 2−i that  achieve  at  each  outer  iteration 

inequality 5.9. At this second level of iterations, the engine just chooses random 

numbers from the intervals of Sxw x− i−1 , Szw x /2−i1 , Szwx/ 2−i .  If these numbers do 

not satisfy inequality 5.9, it chooses another combination of  numbers, and so 

on until it finds a set of numbers that satisfy this inequality.

   The  range  of brw x− i−1 is  the  range  of  the  carries  that  transfer  from the 

columns following the column w x−i−1 . Since the algorithm solves only 2.5 p

columns,  the  maximum product  sum of any column at  p=34  is  equal  to

2.5∗34∗9∗9=6685 . This  number  means  that  a  carry  from  any  column,at

p≤34, may affect the previous three columns directly by a value more than 

one and affects the higher columns indirectly by a value less than or equal to 

one. Based on that, the algorithm determines the range of carries that transfer to 

the  column  formula w x−i−1 from  the  next  three  columns  formula

w x−i−2, w x−i−3, w x−i−4.

Equation 5.10 and Equation 5.11 get the maximum and the minimum carries 

formula Mcrw x−i−2 , Ncrwx−i−2  from the column of index formula w x−i−2 to the 

column of index formula w x−i−1 .

                        
Mcrw x−i−2=

∑
j=w x/2−1

w x/2

2∗Sz j∗Mzwx−i−2− j ∑
j=wx / 2−i

w x /2−2

Sz j∗Szw x− i−2− j

10
,

    (5.10)
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Ncrwx−i−2=

∑
j=wx /2−1

w x/2

2∗Sz j∗Nz wx−i−2− j ∑
j=wx/ 2−i

w x/2−2

Sz j∗zw x− i−2− j

10
,

       (5.11)

Equation 5.12 and Equation 5.13 get the maximum and the minimum carries 

formula Mcrw x−i−3 , Ncrwx−i−3  from the column of index formula w x−i−3 to the 

column of index formula w x−i−1 .

                       
Mcrw x−i−3=

∑
j=w x/2−2

wx/ 2

2∗Sz j∗Mzwx−i−3− j ∑
j=wx /2− i

w x/2−3

Sz j∗Szw x−i−3− j

100
,

     (5.12)

                       
Ncrwx−i−3=

∑
j=wx /2−2

w x/2

2∗Sz j∗Nzwx−i−3− j ∑
j=wx /2−i

w x/2−3

Sz j∗Szw x−i−3− j

100
,

      (5.13)

Equation 5.14 and Equation 5.15 get the maximum and the minimum carries 

formula Mcrw x−i−4 , Ncrw x− i−4 from the column of index formula w x−i−4 to the 

column of index formula w x−i−1 .

                          
Mcrw x− i−4=

∑
j=w x /2−3

w x /2

2∗Sz j∗Mzw x−i−4− j ∑
j=w x/2− i

w x /2−4

Sz j∗Szw x−i−4− j

1000
,

          (5.14)

                      
Ncrwx−i−4=

∑
j=w x/2−3

wx/ 2

2∗Sz j∗Nzw x−i−4− j ∑
j=wx /2− i

w x /2−4

Sz j∗Szw x−i−4− j

1000
,

       (5.15) 

After  getting  the  iteration  values Sxw x− i−1 , Szw x /2−i1 , Szwx/ 2−i , the  algorithm 

propagates  the  borrows  between the  digits  of Sx to  be  in  the  form of  the 

general  Equations  6.15  to  8.15  It  replaces  formula Sx w x−i1  with  formula

Sx w x−i1−brw x−i1 ,  formula Sxw x− i  with  formula Sx w x−i10∗brw x−i1−brw x−i , and 

formula Sx w x− i−1  with formula Sx w x− i−110∗brw x− i .  Then, the algorithm begins 

the next outer iteration using the same procedure, and so on until it gets all 

digits of Sx and Sz.

5.1.2The Square Root least Digits Constraints Algorithm 

The previous algorithm gets the digits of Sx that satisfy the constraints on the 

most significant digits of Sz and do not take the constraints of the least digits 

of Sz in  its  calculations.   Hence,  in  case  there  are  constraints  on the  least 
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significant digits of the intermediate result significand Sz (that have weight 

less  than 10w x/2− p ),  the  previous  algorithm alone  will  not  succeed to  get  a 

solution in some hard constraints. An example of the hard constraints is a series 

of  zeros  or  nines  in  the  least  digits  of Sz , which are  needed to verify the 

rounding process in the different designs. 

The Square Root least digits algorithm gives the value of the input significand

Sx , which  yields  the  needed  hard  constraints  in  the  intermediate  result 

significand Sz. This  algorithm solves the  series  of  zeros constraint  and the 

series of nines constraint in similar ways starting from right (least significant) 

to left. 

As shown in Figure 5, the intermediate result significand Sz has a series of 

zeros from the weight 10−9 to 10−19 , due to this series of zeros, the elements 

are  decreased  in  the  columns  of  indexes  from −2 to −12 . The  algorithm 

solves the nonlinear equations of the columns of indexes from −12 to −1 , to 

get the digits of Sz from Sz−8 to Sz7 .  

The algorithm gets randomly the elements of the products in the column of 

index −12 , which  are Sz−8 , Sz−7 , Sz−6 , Sz−5 , and Sz−4 from  their  intervals. 

It  calculates  the  carries cr−12 , cr−13 , and cr−14 of  the  columns  of  indexes 

−12, −13 , and −14 ,  then  replaces cr−12 with cr−12cr−13/10cr−14/100 ,

such that formula cr−12mod10=0 .

Then, the algorithm attempts to solve the non linear equations of the columns 

of indexes −11, −10, −9 .  It searches randomly on the combination of values 

of Sz−3 , Sz−2 , Sz−1 that  achieves  the  conditions cr−11mod10=0, cr−10 mod10=0,

and cr−9 mod10=0 .  Up to now, the algorithm does the first iteration, gets the 

digit Sz−3 , and  estimates  the  digits Sz−2 , Sz−1 . In  the  second  iteration,  it 

searches randomly on the values of Sz−2 , Sz−1 , Sz0 that achieve the nonlinear 

equations  of  the  columns of  indexes −10, −9, −8 , to  get  the  digit  value of

z−2 , and estimates the digits Sz−1 , Sz0 .  The algorithm does this procedure 

in all iterations to get the remaining digits of Sz , from Sz−1 to Sz7 .  

The general form of the nonlinear equations is:
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                                    crn= ∑
j=n−w x/2

wx /2

Sz j∗Szn− jcrn−1/10−Sxn ,                        (5.16)

In general, the algorithm determines the series of zeros after the most p digits 

in the mask of the intermediate result significand formula Mz , Nz . The weight 

of the first zero from the left is denoted by formula 10Fw  and the  weight of 

the last zero in the series is denoted by formula 10Lw . It gets the digits from

Sz Fw1 , to Szw x /2−1−FwLw , which  are  the  elements  of  the  products  of  the 

column of index formula W x /2Lw .

Equation 5.17 gets the value of the carry generated from the column of index 

formula W x /2Lw .

 

  

Figure 5. The Squarer of the Intermediate Result with Constraint of Series of Zeros on the Least Digits

the carry from the column of index formula W x /2Lw−1 , and the carry from 

the  column of  index  formula W x /2Lw−2 .  The  carry  from the  column of 

index  formula W x /2Lw−1 to  the  column of  index  formula W x /2+ Lw , is  the 

products  sum of the  column formula W x /2Lw−1 divided by 10.  The carry 

from the column of index formula W x /2Lw−2 to the column of index formula

W x /2Lw , is the products sum of  the column formula W x /2Lw−2 divided 

by 100. 
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cr wx / 2Lw= ∑
j=Fw1

w x/2−1−FwLw

Sz j∗Szwx /2Lw− j−9

∑
j=Fw1

w
x
/ 2−2−FwLw

Sz j∗Szw x/2−1Lw− j

10


∑
j=Fw1

w
x
/2−3−FwLw

Sz j∗Szwx / 2−2Lw− j

100
,

       (5.17)

 Note  that  the  column  of  index W x /2Lw−1 has  two  unknown  products 

2∗Szw x/2
∗SzLw−1 , and  the  column  of  index W x /2Lw−2 has  four  unknown 

products 2∗Szw x /2
∗SzLw−2 , 2∗Szw x/2−1∗Sz Lw−1 . The engine assumes the sum value 

of   these  unknown products 2∗zw x /2
∗zLw−1/102∗zw x /2

∗z Lw−22∗zw x /2−1∗zLw−1/100 ,  

to   be  equal  to 10−cr wx/ 2Lwmod10 , and  replaces  crw x /2Lw  with

crw x/2Lw10−crw x /2Lwmod10 , in  case  of  a  series  of  zeros,   such  that 

crwx /2 Lwmod10=0.

In case of a series of nines, the algorithm solves it in the same  way like the 

series of zeros by adding one to the weight of the last nine in the series of nines 

of  the  intermediate  result  significand  mask,  and  replaces  formula crw x /2Lw  

with formula crw x/2Lw−crw x/2Lwmod10 , such that formula cr wx/ 2Lwmod10=0.

Then, the algorithm iterates on the iteration indexes  formula Lw1≤i≤Fw1

to  get  in  each iteration the  value of  a new digit  formula Szw x /2−1−Fwi ,  and 

estimates the digits  formula Szw x /2−Fwi , Szw x /2−Fwi1 which may be refined in 

next  iterations. Then,  it  does  another   number  of  iterations  from  formula

Fw2≤i≤−1−w x/2 to check that the previous chosen digits value of Sz will 

make formula Sxw x/2i=9  for all Fw2≤i≤−1−w x/2 .

 Each iteration on formula Lw1≤i≤Fw1 , it searches randomly on the values 

of  formula Szw x /2−Fwi−1 , Szw x /2−Fwi , and Szw x/2−Fwi1 . It  calculates  the  carry 

generated  from  the  columns  of  index  formula w x /2i , w x/2i1, w x /2i2,

using Equation 5.18,  Equation 5.19 and Equation 5.20,  and checks that  the 

carries  satisfy  the  conditions  cr wx / 2i mod10=0, cr wx / 2i1mod10=0 , and

cr wx / 2i2mod10=0 .   

                          crw x/2i=crw x/2i−1/10 ∑
j=Fw1

w x/2−1−Fwi

Sz j∗Szwx/ 2i− j−9 ,                 (5.18)

                                                                     63



                          crw x/2i1=crw x/2i /10 ∑
j=Fw1

w x/2−Fwi

Sz j∗Szwx /2 i1− j−9 ,                 (5.19)

                       crw x/2i2=crw x/2i1/10 ∑
j=Fw1

wx /21−Fw i

Sz j∗Szw x/2i2− j−9 ,              (5.20)

The algorithm repeats  all  the  iterations,  if  the  check in  any iteration is  not 

achieved.   As in the first,  the algorithm chooses randomly the digits  in the 

column of index formula W x /2Lw , and the nonlinear equations in the next 

iterations depend on this values. This combination of these digits may fail to 

satisfy the conditions in the next iteration. 

 In the iterations of  Lw1≤i≤Fw1 , the algorithm gets  digits of Sz  from

Szw x /2Lw−Fw to Szw x /2
. The  algorithm  does  other  iterations  on

Fw+ 2≤i≤−1−w x/2 to calculate in each iteration the carry generated from the 

column  of  index w x /2i , using  Equation  5.21,  and  checks  that

cr wx/ 2i mod10=0 .  This check may make the algorithm fail to get any solution 

as  the  number of  these  iterations  increase.  As the  algorithm has  chosen all 

digits of Sz in the previous iterations without taking in its considerations the 

nonlinear  equations  in  the  iterations  of Fw2≤i≤−1−w x/2 . In  this  case  the 

engine refines the constraints  to get the best solution.

                                 crw x/2i=crw x/2i−1/10∑
j=i

w x/2

Sz j∗Szwx/2i− j−9,                    (5.21)

After getting the needed digits of Sz , the least digits algorithm squares Sz to 

get Sx .  Then it uses the most digits algorithm to get all digits of Sz using 

the digits of Sx .  

5.2 Decimal Square Root Rounding Boundaries

We use the engine also to get the hardest-to-round cases and determine the 

number of digits needed to do the correct rounding according to the standard. 

The problem termed as “table-maker's-dilemma”[11] appears when the result is 

inexact and the intermediate result has a series of zeros after p digits, or after

p1 digits. At this case we do not know the value of the sticky bit, therefore 

we cannot do correct rounding.

We use the engine to find the largest number of zeros that follow p digits. We 
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find that the largest number of zeros at p6 is p−2 . The engine generates 

cases  at p=16 with  14  zeros,  and  at p=34 with  32  zeros.  Two  examples 

from these  cases  are  :  (1)  at p=16 , when the  input  exponent  is  even and

Sx=6693849239557175 , the result is  Sz=8181594734253937000000000000001894 ,  (2) 

at  p=34 , when  the  input  exponent  is  even  and 

Sx=3011112066528974958465370408325306 , the  intermediate  result  is

Sz=5487360081613903855754351956764089000000000000000000000000000000007198 .
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Figure 6.  The squarer of the intermediate result with a series of zeros equals p−1 .

   Lemma 1:  In the decimal square root operation, number of trailing zeros 

after p digits in the intermediate result significand Sz that might be followed 

by a non-zero digit cannot be more than or equal to p−1 , for all p6 .

   Proof: Let us assume that p−1 zeros or more exist that followed by a non 

zero digit, and p6 ,  as shown in Figure 6. The figure shows that the sum of 

the elements must equal to the formula d7 d6 999999 , where 0≤di9 . The sum 

of the elements can be represented using Equation 5.22. 

           

ElementsSum=crSzwx /2−p∗Szw x /2−p∗1002∗Szw x /2−p∗Szw x /2−p1∗101

2∗Szw x /2−p∗Szw x /2− p2Szw x /2−p1∗Sz w x /2−p1∗102

2∗Szw x/2− p∗Szw x/2− p32∗Szw x /2−p1∗Szw x /2−p2∗103

2∗Szw x /2−p∗Szw x /2−p42∗Szw x /2−p1∗Szw x /2−p3Szw x /2−p2∗Sz w x/2− p2∗104


2∗Szw x /2−p∗Szw x /2−p52∗Sz w x /2− p1∗Szw x /2−p42∗Szw x /2−p2∗Szw x /2−p3∗105 .

  (5.22) 

Where 0≤cr≤2∗9∗9 /104∗9∗9 /1001 is  the  carry  that  propagates  from  the 

columns of next lower weights to the digit of weight 10w x−2p , and each of the 
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six digits zw x/2− p , zw x /2−p1 , zw x /2− p2 , zw x /2−p3 , zw x /2−p4 , zw x /2−p5 has an interval [0,9] .

Note that, for p≤6 , Equation 5.22  is not exit, which means that number of 

trailing zeros may be more than p−2 ,  however number of trailing zeros will 

not be more than p zeros.

The condition that the sum of the elements is equal to  formula d7 d6 999999 ,

can be represented as the formula ElementsSum−999999 mod 1000000=0 .                 

An  exhaustive  search  for  all  the  values  of 

cr , zw x /2−p , zw x /2−p1 , zw x /2−p2, zw x /2− p3 , zw x /2−p4 , zw x/2− p5 ,   indicates  that  the  condition

ElementsSum−999999 mod 1000000=0  cannot be achieved. Hence the assumption of

p−1 zeros or more is invalid and the lemma is proven. 

  Theorem 1: Only 2p−1 digits not including leading zeros are sufficient to 

do the correct rounding to Decimal Floating-Point Square Root operation, at

p6 .

    Proof: Based on the previous lemma, no more than p−1 digits are needed 

after the rounding position to ensure the correct calculation of the sticky bit. 

Hence the total number of digits is p p−1=2p−1.

5.3 The Main Ideas of the Square Root Models

The models are defined using a Cartesian product between two or more lists of 

constraints with ignoring the impossible combinations, and allowing the other 

constraints to be chosen randomly.

All the model proposal ideas are in [22], except the ideas of the nines and zeros 

model. However we describe all the ideas in the form of our engine constraints.

A) Inputs Types Model
The model aims to verify the ability to solve all possible combinations of the 

input types. The proposal ideas of the model are in [22].  We separate the model 

into three sub-models as follows: 

1. It  verifies the Zero input using, (1) a list of the input exponent from the 
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interval [qmin , qmax ] , (2) the input significand is equal to zero (3) a list from 

the two types of the input sign.

2. It verifies the design when  the input is Infinity, sNaN, or  qNaN using, (1) a 

list of input from the  Infinities, sNaN, and qNaN, (2) a list from the two types 

of the input sign.

3. It verifies the design in solving the other input types using, (1) a list of the 

input from the minimum Subnormal, the maximum Subnormal, the minimum 

Normal , and  the maximum Normal, (2) a list from the two types of the input 

sign.

B) Result Types Model
The model aims to verify the generation of the different types of  the final 

result. The proposal ideas of the model are in [22].  We separate the model into 

four sub-models as follows: 

1. It verifies all the result exponents using, (1) a list of the input exponents from 

the interval [qmin , qmax ].

2. It verifies the generation of the first hundred numbers and the last hundred 

subnormal numbers, and the first hundred normal numbers using, (1) the input 

exponent is equal to qmin , (2) a list of the intermediate result significand that 

consists of the intervals {[2,100], [10 p−1−100,10 p−1100]}.

3. It verifies the generation of numbers from One to 100 using, (1) the input 

exponent is equal zero, (2)  a list of the intermediate result significand from the 

interval [1,100].

4. It verifies the last hundred Normal numbers using, (1) the input exponent is 

equal  to qmax , (2)  a  list  of  the  intermediate  result  significands  from  the 

interval [10 p−100,10 p−1].

C) Rounding Model

 The model aims to verify the rounding process in the design.  The proposal 

ideas of the model are in [22]. We separate the model into three sub-models as 

follows:

                                                                     67



1. It verifies the rounding process at the all combinations from the guard digit, 

the  least  significand digit,  and the  sticky bit  using,  (1)  a  list  from the five 

rounding modes, (2) a list of the intermediate result significand consists of the 

cross  products  of  the  guard  digit  interval [0,9] , the  least  significand  digit 

interval [0,9] .

2. It verifies the possible carry propagation due to rounding process using, (1) a 

list  from  the  five  rounding  modes,  (2)  a  list  of  the  intermediate  result 

significand  consists  of  the  guard  digit   interval [0 ,9] ,  and  the  patterns 

{99⋯9
p

, {0−8}9⋯9
p

, X {0−8}9⋯9
p

,⋯, XX⋯X {0−8}
p

}.

3. It verifies the sticky bit calculations using, (1) a list of the intermediate result 

significand that consists of the patterns

{1−9}x⋯x
P

0 x⋯x ,{1−9}x⋯x
P

00 x⋯ x ,⋯, {1−9}x⋯x
P

00⋯00
p x−2

x⋯x

0{1−9}x⋯x
P

0 x⋯x ,0 {1−9}x ⋯x
P

00 x⋯ x ,⋯,0 {1−9}x⋯x
P

00⋯00
px−2

x⋯x

00 {1−9}x⋯x
P

0 x⋯x , 00 {1−9}x⋯x
P

0 0 x⋯x ,⋯, 00 {1−9}x⋯x
P

00⋯00
px−2

x⋯x

⋮

0⋯0
p/2

{1−9}x⋯x
P

0 x⋯x , 0⋯0
p /2

{1−9}x⋯x
P

00 x⋯x ,⋯, 0⋯0
p /2

{1−9}x⋯x
P

00⋯00
px−2

x⋯x

D)Trailing and Leading Zeros Model

 The model aims to verify all the possible trailing and leading zeros in the input 

significand and the intermediate result significand. The proposal ideas of the 

model are also in [22]. We separate the model into two sub-models as follows:

1. It verifies the possible trailing and leading zeros the input significand using, 

(1) a list of the first input significand that consists of the patterns  

              

{1−9}00⋯00
P

, 0{1−9}00⋯00
P

,⋯, 00⋯0 {1−9}
P

{1−9}{1−9}0⋯00
P

,0 {1−9}{1−9}0⋯00
P

,⋯, 00⋯0{1−9}{1−9}
P

{1−9}X {1−9}0⋯00
P

, 0{1−9}X {1−9}0⋯00
P

,⋯,00⋯0{1−9}X {1−9}
P

⋮

{1−9}XX⋯X {1−9 }
P

          

2.A list  of  the intermediate result  sigificand,  to verify the generation of the 
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trailing and leading zeros in the intermediate result significand, it consists of

   

{1−9}00⋯00
p

, 0{1−9}00⋯00
p

,⋯, 00⋯0{1−9 }
p

,

{1−9}{1−9}0⋯00
p

,0 {1−9}{1−9}0⋯00
p

,⋯, 00⋯0{1−9}{1−9}
p

{1−9}X {1−9}0⋯00
p

, 0{1−9}X {1−9}0⋯00
p

,⋯,00⋯0{1−9}X {1−9}
p

⋮

XX⋯X {1−9}
p

E) Zeros and Nines Model

 The model aims to verify all the possible patterns of zeros and nines in the 

input significands and the intermediate result significand. The proposal ideas of 

the model are all new. We separate the model into four sub-models as follows:

1. It  verifies the patterns of zeros in the intermediate result significand using, 

(1) a list of the intermediate result significand that consists of the patterns

      
{1−9}00⋯0 X

2p−1

, {1−9}00⋯0XX
2p−1

,⋯, {1−9}X⋯XX
2p−1

X {1−9}0⋯0 X
2p−1

, X {1−9}0⋯0XX
2p−1

,⋯, X {1−9}X⋯XX
2p−1

X X {1−9}0⋯0 X
2p−1

, X X {1−9}0⋯0XX
2p−1

,⋯, X X {1−9}X⋯XX
2p−1

⋮

XXX⋯X {1−9}
2p−1

2. It verifies the patterns of nines in the intermediate result significand using ,

(1) a list of the intermediate result significand that consists of the patterns

      

{1−9}99⋯99
2p−1

, {1−9}99⋯99X
2p−1

, {1−9}99⋯9XX
2p−1

,⋯,{1−9}X⋯XX
2p−1

X {1−9}99⋯99
2p−1

, X {1−9}99⋯99X
2p−1

, X {1−9}99⋯9XX
2p−1

,⋯, X {1−9}X⋯XX
2p−1

XX {1−9}99⋯99
2p−1

, {1−9}99⋯99X
2p−1

, XX {1−9}99⋯9XX
2p−1

,⋯, XX {1−9}X⋯XX
2p−1

⋮

XXX ⋯X {1−9}
2p−1

3. It  verifies all patterns of zeros in the input significand using, (1) a list the 

first input significand that consists of the patterns
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{1−9}00⋯0 X

p

, {1−9}00⋯0XX
p

,⋯, {1−9}X⋯XX
p

X {1−9}0⋯0 X
p

, X {1−9}0⋯0XX
p

,⋯, X {1−9}X⋯XX
2p

X X {1−9}0⋯0 X
2p

, X X {1−9}0⋯0XX
p

,⋯, X X {1−9}X⋯XX
p

⋮

XXX⋯X {1−9}
p

4. It verifies all patterns of nines in the input significands  using, (1) a list the 

first input significand that consists of the patterns

   

{1−9}99⋯99
p

, {1−9}99⋯99X
p

, {1−9}99⋯9XX
p

,⋯,{1−9}X⋯XX
p

X {1−9}99⋯99
p

, X {1−9}99⋯99X
p

, X {1−9}99⋯9XX
p

,⋯, X {1−9}X⋯XX
p

XX {1−9}99⋯99
p

, {1−9}99⋯99X
p

, XX {1−9}99⋯9XX
p

,⋯, XX {1−9}X⋯XX
p

⋮

XXX ⋯X {1−9}
p

5.4 Summary

This chapter represents the main steps the first square root engine to solve all 

the constraints numerically. It also describes the main ideas of  the coverage 

models that have been solved by the engine to generate test vectors can verify 

all the corner cases in the hardware or software implementations of the decimal 

floating-point square root operation. 

The  chapter also describes the rounding  boundaries of the decimal  Square 

root operation, which our engine and our models are based on. Therefore, it 

gives   an advantage to  the square root engine and the square root models.

The engine solved the coverage models one time and generated about 50000 

test vectors in Decimal64 and about 199000 test vectors in Decimal128, the test 

vectors have proved an efficiency by discovering bugs in DecNumber library 

and Silminds design. Most of the bugs in the  DecNumber library or Silminds 

design are discovered using the rounding model and the zeros and nines model.
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Chapter 6

Engine and Models of Decimal Division Operation

The division engine generates test vectors, to cover corner cases, to verify a 

tested implementation of decimal division operation to achieve the compliance 

with the IEEE standard (754-2008) for Floating Point Arithmetic.

The engine is a software tool written in C++ to solve all the coverage models. 

Although  the  engine  solves  constraints  on  the  inputs  and  the  unbounded 

intermediate result only, it managed to discover some faults inside the operation 

by forcing the engine to solve constraints on patterns of zeros and nines in the 

intermediate result significand. 

We design the engine to solve decimal division constraints on the unbounded 

intermediate result that consists of 2.5 p digits and on simultaneous constraints 

of  inputs  and the unbounded intermediate result.  Similar engines have been 

developed in [8], but they either solve constraints on the intermediate result 

which consist of p1 digits and sticky bit, or solve simultaneous constraints 

of  the  inputs  and the output.  The engines in  [8]  do not solve simultaneous 

constraints on the inputs and the unbounded intermediate result. This means 

that our engine has the ability to generate test vectors to discover corner cases 

in  the  decimal  division  implementations  that  cannot  be  generated  by  the 

engines in [8].

We also design coverage models based on the chosen constraints of the division 

operation. The engine solves the coverage models to generate test vectors that 

verify the corner cases of the division in different implementations. 

The engine generates the test  vectors in two formats of the IEEE standard: 

Decimal64  and  Decimal128.  The  engine  time  to  generate  one  test  vector 

depends on the constraints that have been solved to generate it and the factor of 

randomization  that   the  engine  needed.  The  engine  generates  as  many  test 
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vectors as the user wants. Every time the engine runs, it  generates new test 

vectors. The verification engine value is neither in the time needed to generate 

the test vector, if this time is practical, nor in the number of  the generated test 

vectors, but rather in the functionality of the cases that the test vector covers.

The engine solved the coverage models one time and generated about 339000 

test vectors in Decimal128 and about 146000 in Decimal64, the test vectors 

have proved their efficiency by discovering bugs in Silminds design [7]. Table 

3 shows the maximum and the minimum times that the engine needed to solve 

a  task  of  the  existing  constraints  and  generate  one  test  vector,  on  Intel(R) 

Pentium(R) 4 CPU 3.20GHZ with g++ (Ubuntu 4.4.3) compiler.

TABLE 3. THE TIME PERFORMANCE OF THE DIVISION ENGINE 

Test vector Format Minimum Time Maximum Time

Decimal 64 0.01 seconds  7  seconds

Decimal 128 0.03 seconds 2 minutes

The generated test vector is a decimal vector that has four sets, The first set is 

the  operation  type  division,  number  of  the  precision  (64  or  128),  and  the 

rounding mode. The second set is sign, significand, and exponent of the first 

input. The third set is sign, significand, and exponent of the second input. The 

fourth set is sign, significand, and exponent of the result. Finally the fifth set is 

one or two from five flags(invalid, inexact, underflow, overflow, division by 

zero). The designer enters the input sets to his implementation and verifies the 

implementation output against last two sets.

 The task given to the division engine is the set of constraints on five elements, 

the significand of the first input (dividend) Sx , the significand of the second 

input (divisor) Sy , the intermediate result Sz , the exponent of the first input, 

and the  rounding mode.  The  constraint  on Sx is  a  mask  starting  from the 

minimum number Nx to the maximum number Mx. The constraint on Sy is 

a mask starting from the minimum number Ny to the maximum number My.

Similarly,  the  mask on Sz consists  of  two numbers Nz and Mz. The first 
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input exponent, the intermediate result exponent and the rounding direction are 

either given explicitly in the task or left to the engine to choose randomly. 

An example to explain the format of the decimal division task at p=16 is as 

follows:

                        

64 /T : 1 9999999999999999 1 9999999999999999

1000000000000002p400000000000000000000000
9999999999999992p400000000000000000000000

R R 2

 This  task  means  that  Nx=1, Mx=9999999999999999,

Ny=1, My=9999999999999999, Nz=1000000000000002p400000000000000000000000 ,

Mz=9999999999999992p400000000000000000000000 , the  engine  chooses  randomly  the 

exponent  of  the  first  input,  and the  intermediate  result  exponent,  while  the 

rounding mode is Round to Zero.

One  of  the  solutions  of  this  task  is  the  test  vector 

d64/ 0 961708551261171E70 937500E-103 -> 1025822454678582E167 X . The d64

means decimal64, the / means the division operation, the following 0 means 

that  the  rounding  mode  is  Round  toward  Zero,  the  input  is

x=961708551261171∗1070 , y=937500∗10−103 , the  rounded  result  is

z=1025822454678582∗10167 , and the following  X  indicates that  the inexact 

flag is high, because the exact result is 1025822454678582.40000000000⋯∗10167.

We represent the intermediate result with length 2.5 p digits not including the 

leading zeros to guarantee that the engine can generate all the possible hardest-

to-round cases. The results show that this length is enough to put constraints on 

the rounding boundaries, where the hardest-to round case needs only 2p1

digits not including leading zeros to do the rounding process according to the 

standard.

6.1 The Division Engine

The  inverse  operation  of  the  division z=x / y  is  the  multiplication  of  the 

intermediate result with the divisor which gives the dividend of the division 
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operation. The engine is based on solving the non linear equations that result 

from multiplying the intermediate result with the divisor. We can estimate these 

non  linear  equations  from  Figure  7,  where  each  column  represents  one 

nonlinear  equation.  The  figure  shows the  multiplication  of  the  intermediate 

result  with  the  divisor  at p=16 , where Sz i denotes  the  intermediate  result 

digit  of  weight 10i , Sx i denotes  the  first  input  (dividend)  digit  of  weight

10i , and Sy i denotes the second input (divisor) digit of weight 10i .

The engine solves the signifiand in the normalized form, it solves the inputs 

significands in the form of  Sx 0 . Sx−1⋯Sx−p2 Sx−p1  and  Sy 0 . Sy−1⋯Sy−p2 Sy−p1 ,

and  generates  the  intermediate  result  significand  in  the  form 

Sz 0. Sz−1⋯Sz−p2 Sz−p1⋯. Such  that  the  inputs  most  significand  digits 

Sx 0≠0∧Sy 0≠0 , however the intermediate result  most  significand digit Sz0

may  equal  to  zero  or  may  not.  The  normalized  form  guarantees  that  the 

intermediate result significand has fixed form, and we can easily estimate the 

nonlinear equation shown in Figure 7 using the normalized form.

The engine uses 2.5 p digits only for the intermediate result significand Sz.

Hence, if the infinitely precise division  Sx /Sy  has more digits, then Sz is 

truncated,  i.e.  it  is  slightly  less  than  the  infinitely  precise  division.  The 

multiplication  of Sz∗Sy will  thus  be Sx− with 0≤10−L where L

depends on the number of digits of Sz. This explains the series of nines that 

follows Sx−p1−1 as seen in Figure 7. 

The engine steps begin by normalizing the mask of the input significands, it 

shifts  the  mask {Nx, Mx } to  the  right  with  the  value srx and  the  mask

{Ny , My} to right with the value sry.

Then,  the  engine gets  the  intermediate  result  significand Sz and the  inputs 

significand Sx and  Sy  that  achieve  the  constraints.  It  achieves  the 

constraint  on  each  digit Sxn , Sy n , or Szn by  choosing  the  digit  from its 

interval [Nxn , Mxn ], interval [Nyn , My n] , or interval [Nzn , Mzn]. It solves the 

significands constraints using one of two algorithms, the first algorithm is the 

Division-Most-Digits-Constraints-Algorithm  to  solve  the  constraints  on  the 
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most  significant p digits  of the  intermediate  result  significand and the p

digits of the inputs significand.

The  second algorithm is  the  Division-Least-Digits  Constraints-Algorithm to 

solve the constraints on the least significant digits that follow the highest p

digits  of  the  intermediate  result  significand and the p digits  of  the  divisor 

significand. 

The engine also chooses the first input exponent Ex either from the interval 

[qmin , qmax ],  or it is given explicitly. 

Figure 7. The Multiplication of the Intermediate Result with the Divisor assuming Precision 16 

Then, given that Ez=Ex−Ey  and Ex , Ez∈ [qmin , qmax ] ,  the engine chooses the 

intermediate  result  exponent  according  to

max qmin ,Ex−qmax ≤Ez≤minqmax , Ez−qmin .  However,  if  Ez is  given,  it 

chooses  the  first  input  exponent  using

max qmin ,Ezqmin≤Ex≤min qmax , Ezqmax .  Finally,  it  calculates  the  second 

input exponent Ey=Ex−Ez .

After getting the significands and exponents of x , y , z , the engine shifts to 

left  the significand Sx with the value srx and the significand Sy with the 

value sry. The  engine  replaces  the  intermediate  result  exponent Ez with

Ezsrx−sry. Then, it shifts to left the intermediate result significand Sz with 

a value according to the standard and subtracts this value from Ez .
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6.1.1 The Division Most Digits Constraints Algorithm

The algorithm iterates to solve the nonlinear equations from left to right. As 

shown in Figure 7, for p=16, the first  non linear equation from left is

                                                  Sx0−Sz0∗Sy0=br0                                        (6.1)

where br0 is the value of carries that transfer from previous weights to the 

weight of 100 , or the borrow generated from this weight to lower weights. The 

second and the third non linear equations are: 

                                     Sx−110∗br0−Sz0∗Sy−1−Sz−1∗Sy0=br−1                     (6.2)

                         Sx−210∗br−1−Sz0∗Sy−2−Sz−1∗Sy−1−Sz−2∗Sy0=br−2 .             (6.3)

In general the nonlinear equation for the column of index n is :

                                       brn=Sx n10∗brn1−∑
j=n

j=0

Sz j∗Sy n− j ,                           (6.4)

To  start  the  solution,  the  algorithm  attempts  to  solve  equations  6.1  to  6.3 

(representing columns 0 to -2) together based on the range of carries that may 

transfer from the next lower significant columns. The algorithm chooses the 

digit Sx 0 and  the  digit Sx−1 randomly  from their  intervals.  Then  since  the 

ranges of borrow digit br−2 , the digit Sz−2 , and the digit Sy−2  are known as 

Ncr−2≤br−2≤Mcr−2 , Nz−2≤Sz−2≤Mz−2 , and Ny−2≤Sy−2≤My−2 ,  the algorithm 

transforms Equation 3 to the inequality condition:

 Ncr−2Nz−2∗Sy 0Sz 0∗Ny−2≤Sx−210∗br−1−Sz−1∗Sy−1≤Mcr−2Mz−2∗Sy 0Sz 0∗My−2. (6.5) 

 Finally, it searches randomly on the values of Sz0 , Sz−1 , Sy 0 , Sy−1 , Sx−2 that 

satisfy Equation 6.1, Equation 6.2 and the Inequality 6.5 . The steps taken so 

far  constitute  the  first  outer  iteration  that  gets  the  final  values  of 

Sz0 , Sy 0 , Sx0 , Sx−1 , Sx−2 and estimates the values of Sz−1 , Sy−1 that may be 

refined in the following iteration. 

In the second iteration, the algorithm transforms the fourth nonlinear equation

Sx−310∗br−2−Sz0∗Sy−3−Sz−3∗Sy 0−Sz−1∗Sy−2−Sz−2∗Sy−1=br−3 to  the  inequality 

condition: 

Nbr−3Nz−3∗Sy0Sz0∗Ny−3≤Sx−310∗br−2−Sz−1∗Sy−2−Sz−2∗Sy−1≤Mbr−3Mz−3∗Sy0Sz 0∗My−3 ,
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it searches randomly on the values of Sz−1 , Sz−2 , Sy−1 , Sy−2 , Sx−3 that achieve 

the second nonlinear equation, the third nonlinear equation and the inequality 

condition, where the digits Sz0 , Sy0 , Sb0 , Sx0 , Sx−1 , Sx−2 are known from the 

previous iteration. The algorithm does this procedure in all the iterations and 

gets all digits of Sx , Sy , and Sz .

In general, for any precision, the algorithm gets randomly the first two digits of

Sx , which  are Sx 0 and Sx−1 from their  intervals.  If Sz0 is  chosen  to  be 

equal  to  zero,  it  gets  randomly  the  digit Sx−2 and  replaces Sx−1 with

Sx−110∗Sx0 . In this case the engine begins to solve the nonlinear equations 

from the nonlinear equation of column index  w z=−1 ,  where  10w z is the 

weight of the most significand digit in the intermediate result significand of 

Sz.

Then,  it  loops through a number of outer  iterations equal to the number of 

nonlinear equations(i.e number of columns). The index of the outer iterations 

goes  from  0≤i≤2.5p−1 . The  algorithm  gets  in  iteration i the  values  of 

Szw z−i , Sy−i and Sxw z−i−2 and  estimates   the  value  of Szw z−i−1 , Sy−i−1 . Then, 

in  the  next  iteration  it  gets  the  values  of Szw z−i−1 , Sy−i−1 and Sxw z−i−3 and 

estimates Szw x/2−i−1 , and so on.

The general form of Equation 6.1, at iteration i , is 

                                          brw z−i=Sxw z−i−∑
j=−i

0

Szw z j∗Sy−i− j .                           (6.6)

Equation  6.6  calculates  the  borrow from the  column of  index  w z−i . The 

equation has one unknown brw z−i (i.e  the borrow of  the column),  while the 

other elements of the equation are known from the previous iterations and the 

value Szw z−i , Sy−i .

    The general form of Equation 6.2, at iteration i , is 

                           brw z−i−1=Sxw z−i−110∗brw z−i−1− ∑
j=−i−1

0

Szw z j∗Sy−i− j−1 ,             (6.7)

which calculates the borrow from the column of index w z−i−1 . The equation 
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has  one  unknown brw z−i−1 (i.e  the  borrow  of  the  column),  while  the  other 

elements of the equation are known from the previous iterations, the values of

Szw z−i , Szw z−i−1 , Sy−i , Sy−i−1 , and the value of brw z−i from Equation 6.6.

    Similarly, the general form of Equation 6.3, at iteration i , is 

                        brw z−i−2=Sxw z−i−210∗brw z− i−1− ∑
j=−i−2

0

Szw z j∗Sy−i− j−2 .                (6.8)

As  the  ranges  of  brw z−i−2 , Szw z−i−2 , and Sy−i−2 , are  known,  the  algorithm 

transforms  Equation  6.8  to  inequality  6.9,  which  is  the  general  form  of 

inequality 6.5.

              

Ncrwz−i−3Ncrw z−i−4Ncw z− i−5Szwz
∗Ny−i−2Nzw z−i−2∗Sy0≤

Sxwz−i−210∗brw z−i−1− ∑
j=−i−1

−1

Szw z j∗Sy−i− j−2

≤Szwz
∗My−i−2Mzw z−i−2∗Sy 0Mcr wz−i−3Mcr wz−i−4Mcrw z−i−51

       (6.9)

   Within each outer iteration, the engine does a second level of iterations to get  

the values of Sxw z−i−2 , Szw z−i , Szw z−i−1 , Sy−i , Sy−i−1 that achieve at each outer 

iteration  inequality  6.9. At  this  second  level  of  iterations,  the  engine  just 

chooses  random  numbers  from  the  intervals  of 

Sxw z−i−2 , Szw z−i , Szw z−i−1 , Sy−i , Sy−i−1 .  If  these  numbers  do  not  satisfy 

inequality 6.9, it chooses another combination of numbers, and so on until it 

finds a set of numbers that satisfy this inequality.

The range of brw z−i−2 is the range of the carries that transfer from the columns 

follow the column w z−i−2 . Since the algorithm solves only 2.5 p columns, 

the  maximum  product  sum  of  any  column  at  p=34  is  equal  to

2.5∗34∗9∗9=6685 . This  number  means  that  a  carry  from  any  column,at

p≤34, may affect the previous three columns directly by a value more than 

one and affects the higher columns indirectly by a value less than or equal to 

one. Based on that, the algorithm determines the range of carries that transfer to 

the column w z−i−2 from the next three columns w z−i−3, w z−i−4, w z−i−5.

Equation 6.10 and Equation 6.11 get the maximum and the minimum carries 

Mcrw z−i−3 , Ncrw z−i−3  from  the  column  of  index  w z−i−3 to  the  column  of 
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index w z−i−2 .

        
Mcrw z−i−3=

∑
j=−i−3

− i−2

Mzwz j∗Sy−i− j−3 ∑
j=−i−1

−2

Szw z j∗Sy−i− j−3∑
j=−1

0

Szwz j∗My−i− j−3

10
,

    (6.10)

         
Ncrwz−i−3=

∑
j=− i−3

−i−2

Nzw z j∗Sy−i−j−3 ∑
j=−i−1

−2

Szw z j∗Sy− i− j−3∑
j=−1

0

Sz wz j∗Ny−i− j−3

10
,

     (6.11)

  Equation 6.12 and Equation 6.13 get the maximum and the minimum carries 

Mcrw z−i−4 , Ncrwz−i−4 from the column of index w z−i−4 to the column of index 

w z−i−2 .

       
Mcrw z−i−4=

∑
j=−i−4

−i−2

Mzw z j∗Sy− i− j−4 ∑
j=−i−1

−3

Sz w z j∗Sy−i− j−4∑
j=−2

0

Szw z j∗My−i− j−4

100
,

    (6.12)

        
Ncrwz−i−4=

∑
j=−i−4

−i−2

Nzw z j∗Sy−i−j−4 ∑
j=−i−1

−3

Szwz  j∗Sy−i− j−4∑
j=−2

0

Szw z j∗Ny−i− j−4

100
,

     (6.13)

 Equation 6.14 and Equation 6.15 get the maximum and the minimum carries 

Mcrw z−i−5 , Ncrw z−i−5  from  the  column  of  index  w z−i−5 to  the  column  of 

index w z−i−2 .

         
Mcrw z−i−5=

∑
j=−i−5

− i−2

Mzwz j∗Sy−i− j−5 ∑
j=−i−1

−4

Szw z j∗Sy−i− j−5∑
j=−3

0

Szw z j∗My−i− j−5

1000
,

   (6.14)

         
Ncrwz−i−5=

∑
j=− i−5

−i−2

Nzw z j∗Sy−i−j−5 ∑
j=−i−1

−4

Szw z j∗Sy− i− j−5∑
j=−3

0

Sz wz j∗Ny−i− j−5

1000
,

    (6.15) 

 After getting the iteration values Sxw z−i−2 , Szw z−i , Szw z−i−1 , Sy−i , Sy−i−1 , the 

algorithm propagates the borrows between the digits of Sx to be in the form of 

the general Equations 6 to 8. It replaces Sxw z−i  with Sxw z−i−brw z−i ,  Sxw z−i−1

with  Sxw z−i−110∗brw z− i−brwz−i−1 ,  and  Sxw z−i−2  with  the 

Sxw z−i−210∗br wz− i−1 .  Then, the algorithm begins the next outer iteration using 

the same procedure, and so on until it gets all digits of Sx , Sy , and Sz.

6.1.2 The Division least Digits Constraints Algorithm

The  previous  algorithm  gets  the  digits  of Sx and  Sy that  satisfy  the 
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constraints on the most significant digits of Sz and do not take the constraints 

of the least digits of Sz in its calculations.  Hence, if there are constraints on 

the least significant digits of the intermediate result significand Sz (that have 

weight less than 10w z−p ), the previous algorithm alone will not succeed to get 

a solution in some hard constraints. An example of the hard constraints is a 

series of zeros or nines in the least digits of Sz , which are needed to verify the 

rounding process in the different designs. 

The least digits algorithm gives the value of the inputs significands of Sx and

Sy which  yields  the  needed  hard  constraints  in  the  intermediate  result 

significand of Sz. This algorithm solves the series of zeros constraint and the 

series of nines constraint in similar ways starting from right (least significant) 

to left. 

As shown in Figure 8, the intermediate result significand of Sz has a series of 

zeros from the weight 10−17 to 10−27 , due to this series of zeros, the elements 

are decreased in the columns of indexes from  −17 to −27 . The algorithm 

solves the nonlinear equations of the columns of indexes from −27 to −16 ,

to get the digits of Sz from Sz−16 to Sz0 .  

The algorithm gets randomly the elements of the products in the column of 

index −27 , which  are  Sz−16 , Sz−15 , Sz−14 , Sz−13, Sz−12 , Sy−15 , Sy−14, Sy−13 , Sy−12,

Sy−11 from their intervals. It calculates the carries cr−27 , cr−28 , and cr−29 of 

the  columns  of  indexes −27, −28 , and −29 ,  then  replaces cr−27 with

cr−27cr−28/10cr−29/100 , such that cr−27mod10=0 .

Then, the algorithm attempts to solve the non linear equations of the columns 

of indexes −26, −25, −24 .  It searches randomly on the combination of values 

of  Sz−11 , Sz−10 , Sz−9 , Sy−10, Sy−9 , Sy−8  that  achieves  the  conditions 

cr−26mod10=0, cr−25mod10=0,  and cr−24mod10=0 . Up  to  now,  the  algorithm 

does  the  first  iteration,  gets  the  digit Sz−11 , Sy−10 , and  estimates  the  digits

Sz−10 , Sz−9 , Sy−9, Sy−8 . In  the  second  iteration,  it  searches  randomly  on  the 

values of Sz−10 , Sz−9 , Sz−8 , Sy−9 , Sy−8 , Sy−7 that achieve the nonlinear equations 

of the columns of indexes −25, −24, −23 , to get the digit value of Sz−10 , Sy−9 ,
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and  estimates  the  digits Sz−9, Sz−8 , Sy−8, Sy−7 .  The  algorithm  does  this 

procedure  in  all  iterations  to  get  the  remaining  digits  of Sz , from z−9 to

Sz−1 , and the  remaining  digits  of  Sy , from Sy−8 to Sy 0 . The algorithm 

chooses randomly the remaining digits of Sz which are Sz0 , and multiply the 

intermediate result significand Sz with the divisor significand Sy to get the 

dividend significand Sx.

The general form of the nonlinear equations is:

                                          crn= ∑
j=n

np−1

Syn− j∗Sz jcr n−1 /10−Sxn ,                    (6.16)

In general, the algorithm determines the series of zeros after the most p digits 

in the mask of the intermediate result significand Mz , Nz . The weight of the 

first zero from the left is denoted by 10Fw and the weight of the last zero in 

the  series  is  denoted  by  10Lw .  It  gets  the  digits  of Sz  from Sz Fw1 to

Sz Lw−1p , and the digits of  Sy from  Sy−p1 to Sy Lw−1−Fw ,  which are the 

elements of the products of the column of index Lw .  Equation 6.17 gets the 

value of the carry generated from the column of index Lw .  

  

Figure 8.  The Multiplication of the Intermediate Result with the Divisor at Constraints of Series of 
Zeros on the Least Digits

Note that, this carry depends on the subtraction value of the column products 

sum from the value of the digit SxLw=9 , the carry from the column of index 

Lw−1 , and the carry from the column of index Lw−2 .  The carry from the 
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column of index Lw−1 to the column of index Lw , is the products sum of 

the  column  Lw−1 divided  by  10.  The  carry  from  the  column  of  index 

Lw−2 to  the  column of  index  Lw , is  the  products  sum of   the  column 

Lw−2 divided by 100. 

              crLw= ∑
j=Fw1

Lw p−1

Sy Lw− j∗Sz j−9
∑

j=Fw1

Lw p

Sy Lw− j−1∗Sz j

10


∑
j=Fw1

Lw p1

Sy Lw− j−2∗Sz j

100
,         (6.17)

 Note that the column of index Lw−1 has one unknown product Sy 0∗SzLw−1 ,

and  the  column  of  index Lw−2 has  two  unknown  products 

Sy 0∗SzLw−2, Sy−1∗Sz Lw−1.  The engine assumes the sum value of  these unknown 

products Sy0∗SzLw−1/10Sy0∗SzLw−2Sy−1∗Sz Lw−1/100 ,  to   be  equal  to

10−cr Lwmod10 , and replaces cr Lw  with cr Lw10−cr Lwmod10 , in case of 

a series of zeros,  such that cr Lwmod10=0.

In case of a series of nines, the algorithm solves it in the same way like the 

series of zeros by adding one to the weight of the last nine in the series of nines 

of  the  intermediate  result  significand  mask,  and  replaces  cr Lw with 

cr Lw−cr Lwmod10, such that cr Lwmod10=0.

Then, the algorithm iterates on the iteration indexes Lw1≤i≤Fw1 to get in 

each iteration the values of  new digits Sy i−1−Fw , Sz i−1p ,  and estimates the 

digits  Sy i−Fw , Syi1−Fw , Szip , Sz i1p which  may  be  refined  in  next  iterations. 

Then, it does another  number of iterations from  Fw2≤i≤−p to check that 

the  previous  chosen digits  value  of Sz and Sy will  make  Sx i=9  for  all 

Fw2≤i≤−p1 , and chooses the remaining digits of Sz .

Each  iteration  on  Lw1≤i≤Fw1 , it  searches  randomly  on  the  values  of 

Sy i−1−Fw , Sy i−Fw , Syi1−Fw , Szi−1 p , Sz ip , Szi1p . It  calculates  the  carries 

generated  from  the  columns  of  index  i , i1, i2, using  Equation  6.18, 

Equation  6.19  and  Equation  6.20,  and  checks  that  the  carries  satisfy  the 

conditions cr i mod10=0, cr i1 mod10=0 , and cr i2mod10=0 .   

                                      cri=cri−1 /10 ∑
j=Fw1

ip−1

Syi− j∗Sz j−9 ,                           (6.18)
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                                     cr i1=cr i /10 ∑
j=Fw1

ip

Syi1− j∗Sz j−9 ,                         (6.19)

                                     cr i2=cr i1/10 ∑
j=Fw1

i1p

Sy i− j∗Sz j−9 ,                         (6.20)

The algorithm repeats  all  the  iterations,  if  the  check in  any iteration is  not 

achieved.  As in the beginning of the algorithm, it chooses randomly the digits 

in the column of index Lw , and the nonlinear equations in the next iterations 

depend on these digits. The combination of these digits may fail to satisfy the 

conditions in the next iteration. 

  In the iterations of Lw1≤i≤Fw1 , the algorithm gets  digits of  Sz from

Sz Lwp to SzFwp , and  the  digits  of  Sy  from Sy Lw−Fw to Sy 0 .  The 

algorithm does other iterations on Fw2≤i≤−p1 to get the remaining digits 

of Sz , and checks that the previous chosen digits of Sz and Sy will make

Sx i=9 .  It  gets in each iteration the digit Sz i−1p , and calculates the carry 

generated  from  the  column  of  index i , using  Equation  6.21,  such  that

cr i mod10=0 .  This check may make the algorithm fail to get any solution as 

the number of these iterations increase. As the algorithm has chosen all digits 

of Sy and the most digits of Sz  in the previous iterations without taking in 

its considerations the nonlinear equations in the iterations of Fw2≤i≤−p1 .

In this case the engine refines the constraints  to get the best solution.

                                      cr i=cr i−1 /10 ∑
j=i

ip−1

Syi− j∗Sz j−9,                             (6.21)

After getting the needed digits of Sz , and all digits of  Sy , the least digits 

algorithm  multiply Sz with  Sy , to get Sx .  Then it  uses the most digits 

algorithm to get all digits of Sz using the digits of Sx  and the digits of Sy.

6.2 Decimal Division Rounding Boundaries 
We use the engine to get the hardest-to-round cases and determine the number 

of  digits  needed to  do  the  correct  rounding according  to  the  standard.  The 

problem termed  as  “table-maker's-dilemma”[11]  appears  when  the  result  is 

inexact and the intermediate result has a series of zeros after p digits, or after
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p1 digits.  At  this  case  we do not  know the  value  of  the  sticky bit  and 

therefore we cannot do the correct rounding.

We use the engine to find the largest number of zeros that follow p digits. 

The  largest  number  of  zeros  that  the  engine  gets  is  p−1 . The  engine 

generates cases at p=16 with 15 zeros,  and at p=34 with 33 zeros .  Two 

examples  from  these  cases  are  :  (1)  at p=16 , when  the  inputs  are 

Sx=4140631901663  and  Sy=9186895982637069 ,  the  result   is 

Sz=45071065455499420000000000000002177 ,   (2) at  p=34 ,  when the inputs are

Sx=198848844846663198453672565093338 , and

Sy=7825666841614090843966690633705274 , then  the  intermediate  result  is 

Sz=25409827542012947291701575529048540000000000000000000000000000000005111 .

   Lemma2 : At the Decimal Division operation, number of trailing zeros after

p digits in the intermediate result significand Sz that might be followed by 

a non-zero digit cannot be more than or equal to p1 .

   Proof: Let us assume that p1 zeros or more exist followed by a non zero 

digit, as shown in Figure 9. The figure shows that the sum of the elements from 

the column of index −2p to the least columns, must have a carry larger than 

or equal to 99 .

∗Sz0⋯Sz−15 Sz−16 ⋯

Sy0⋯Sy−15

0 0 0 0 Sz−32 Sz−33 ⋯

⋯0
⋯0

⋯0
⋯0
⋯0
⋯0
⋯0
⋯0
⋯0
⋯0

⋯0
⋯0
⋯0
⋯0

⋯Sy−14 Sz−16

⋯Sy−15 Sz−15

0
0

0
0
0
0
0
0
0
0

0
0
0
0
0

Sy−15 Sz−16

0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0

0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0

Sy 0 Sz−32

0

0
0
0
0
0
0
0
0

0
0
0
0
0
0

Sy 0 Sz−33⋯

Sy
−1 Sz

−32⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

0 ⋯

⋯ 9 9 9 9 9 9 ⋯


−2p

Figure 9. The Multiplication of the Divisor with the Intermediate result that has a series of zeros equals 
p1 .

Let us assume that the each product in those columns has the maximum value 

                                                                     84



which equal to 9∗9=81 . At this case the sum of the products of those columns 

is  equal to  1∗812∗81 /103∗81 /1004∗81/10005∗81 /10000⋯n∗81/10n−1 .  This 

sum of products is less than or equal to 100, which means that the maximum 

carry of that sum is 10, while for p1 zeros the carry must be larger than or 

equal to 99. Hence the assumption of p1 zeros or more is invalid and the 

lemma is proven. 

 Theorem2: Only 2p1 digits not including leading zeros are enough to do 

the correct rounding to Decimal Floating-Point Division operation.

  Proof:  Based on the previous lemma, no more than p1 digits are needed 

after the rounding position to make sure the correct calculation of the sticky bit. 

Hence the total number of digits is p p1=2p1.

6.3 The Main Ideas of the Division Models

 The models are defined using a Cartesian product between two or more lists of 

constraints with ignoring the impossible combinations, and allowing the other 

constraints to be chosen randomly.

All the model proposal ideas are in [22]and [8], except the ideas of the nines 

and zeros model. However we describe all the ideas in the form of our engine 

constraints.

A) Inputs Types Model
The model aims to verify the ability of the division designs to solve all possible 

combinations of the input types. The proposal ideas of the model are in [22]. 

We separate the model into five sub-models as follows: 

1.It verifies the design when the second input is zero using, (1) a list of the 

second  input  exponent  consists  of  the  interval [qmin ,qmax ], (2)  the  second 

input significand is equal to zero, (3) all types list of the first input. 

2. It verifies the design when the first input is zero using, (1) a list of the first 

input  exponent  consists  of  the  interval [qmin ,qmax ], (2)  the  first  input 

significand is equal to zero, (3) all types list of the second input.
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3. It verifies the design when the first input is Infinity, sNaN, or  qNaN using, 

(1) a list of the first input consists of the Infinities, sNaN, and qNaN, (2) all 

types list of the second input. 

4. It verifies the design when  the second input is Infinity, sNaN, or  qNaN 

using, (1) a list of the second from the Infinities, sNaN, and qNaN inputs, (2) 

all types list of the first input. 

5. It verifies the design in solving the other input types using, (1) a list of the 

first input from the minimum Subnormal input, the maximum Subnormal input, 

the minimum Normal input, and  the maximum Normal input, (2) a same list of 

the second input.

B) Result Types Model
The model  aims to verify the ability of  the division design to  generate  the 

different types of  the final result. The proposal ideas of the model are in [22]. 

We separate the model into four sub-models as follows: 

1. It verifies all the result exponents using, (1) a list of the intermediate result 

exponent consists of the interval [qmin , qmax ].

2. It verifies the generation of the first hundred subnormal numbers, the last 

hundred normal numbers and the first hundred normal numbers using, (1) the 

intermediate result exponent is equal qmin , (2) a list of the intermediate result 

significand consists of the intervals {[2,100], [10p−1−100,10 p−1100]}.

3.It  verifies  the  generation  of  numbers  from  one  to  100,  using,  (1)  the 

intermediate result exponent is equal zero, (2) a list of the intermediate result 

significand from the interval [1,100].

4. It  verifies  the  last  hundred Normal  numbers  using,  (1)   the  intermediate 

result  exponent  is  equal  to qmax , (2)  a  list   of  the  intermediate  result 

significand from the interval [10p−100,10 p−1].  

C) Rounding Model

 The model aims to verify the rounding process in the design.  The proposal 

ideas of the model are in [22]. We separate the model into three sub-models as 
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follows:

3. It verifies the rounding process at the all combinations from the guard digit, 

the  least  significand digit,  and the  sticky bit  using,  (1)  a  list  from the five 

rounding modes, (2) a list of the intermediate result significand consists of the 

guard  digit  interval [0,9] , the  least  significand digit  interval [0,9] , and the 

sticky bit interval [0,1] .

4. It verifies the possible carry propagation due to rounding process using, (1) a 

list  from  the  five  rounding  modes,  (2)  a  list  of  the  intermediate  result 

significand consists of the cross product of the guard digit  interval [0,9] ,  and 

the patterns  {99⋯9
p

, {0−8}9⋯9
p

, X {0−8}9⋯9
p

,⋯, XX⋯X {0−8}
p

}.

5. It verifies the sticky bit calculations using, (1) a list of number of digits of 

the  first  input  significand from the  interval [1 , p ] , (2)  a  list  of  number  of 

digits of the second input significand from the interval [1, p] , (3) a list of the 

intermediate  result  significand   consists  of  the  patterns 

{{1−9}X⋯X
P

0 X⋯X , {1−9}X⋯X
P

0 0 X⋯X ,⋯, {1−9}X⋯X
P

00⋯00
p

X⋯X }.

D)Trailing and Leading Zeros Model

   The model aims to verify all the possible trailing and leading zeros in the 

input significands and the intermediate result significand. The proposal ideas of 

the  model  are  also  in  [22].  We separate  the  model  into  two sub-models  as 

follows:

1. It verifies the design at all possible  trailing and leading  zeros in the input 

significands using, (1) a list of the first input significand, (2) the same list of the 

second input significand that consists of the patterns  

              

{1−9}00⋯00
P

, 0{1−9}00⋯00
P

,⋯, 00⋯0 {1−9}
P

{1−9}{1−9}0⋯00
P

,0 {1−9}{1−9}0⋯00
P

,⋯, 00⋯0{1−9}{1−9}
P

{1−9}X {1−9}0⋯00
P

, 0{1−9}X {1−9}0⋯00
P

,⋯,00⋯0{1−9}X {1−9}
P

⋮

{1−9}XX⋯X {1−9 }
P
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2. It verifies the generation of the trailing and leading zeros in the intermediate 

result significand using, (1) a list of the intermediate result sigificand from the 

patterns  {1−9}00⋯00
p2

,{1−9}{1−9}0⋯00
p2

, {1−9}X {1−9}0⋯00
p2

,⋯, XX⋯X {1−9}
p2

,     (2) 

a list of number of digits of the first input significand from the interval [1 , p ] ,

(3) a list of number of digits of the second input significand from the interval

[1, p] .

E) Zeros and Nines Model
  The model aims to verify all the possible patterns of zeros and nines in the 

input significands and the intermediate result significand. The proposal ideas of 

the model are all new. We separate the model into four sub-models as follows:

1. It  verifies the generation of all patterns of zeros in the intermediate result 

significand using, (1) a list of the intermediate result significand that consists of

   
{1−9}00⋯0 X

2p

, {1−9}00⋯0XX
2p

,⋯, {1−9}X⋯XX
2p

X {1−9}0⋯0 X
2p

, X {1−9}0⋯0XX
2p

,⋯, X {1−9}X⋯XX
2p

X X {1−9}0⋯0 X
2p

, X X {1−9}0⋯0XX
2p

,⋯, X X {1−9}X⋯XX
2p

⋮

XXX⋯X {1−9}
2p

2. It  verifies the generation of all patterns of nines in the intermediate result 

significand  using, (1)a list of the intermediate result significand that consists of

   

{1−9}99⋯99
2p

, {1−9}99⋯99X
2p

, {1−9}99⋯9XX
2p

,⋯,{1−9}X⋯XX
2p

X {1−9}99⋯99
2p

, X {1−9}99⋯99X
2p

, X {1−9}99⋯9XX
2p

,⋯, X {1−9}X⋯XX
2p

XX {1−9}99⋯99
2p

, {1−9}99⋯99X
2p

, XX {1−9}99⋯9XX
2p

,⋯, XX {1−9}X⋯XX
2p

⋮

XXX ⋯X {1−9}
2p

3. It  verifies all patterns of zeros in the input significand using, (1) a list the 

first input significand, (2)  the same list of the second input significand that 

consists of the patterns
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{1−9}00⋯0 X

p

, {1−9}00⋯0XX
p

,⋯, {1−9}X⋯XX
p

X {1−9}0⋯0 X
p

, X {1−9}0⋯0XX
p

,⋯, X {1−9}X⋯XX
2p

X X {1−9}0⋯0 X
2p

, X X {1−9}0⋯0XX
p

,⋯, X X {1−9}X⋯XX
p

⋮

XXX⋯X {1−9}
p

4. It verifies all patterns of nines in the input significands  using, (1) a list the 

first input significand, (2)  the same list of the second input significand that 

consists of the patterns

   

{1−9}99⋯99
p

, {1−9}99⋯99X
p

, {1−9}99⋯9XX
p

,⋯,{1−9}X⋯XX
p

X {1−9}99⋯99
p

, X {1−9}99⋯99X
p

, X {1−9}99⋯9XX
p

,⋯, X {1−9}X⋯XX
p

XX {1−9}99⋯99
p

, {1−9}99⋯99X
p

, XX {1−9}99⋯9XX
p

,⋯, XX {1−9}X⋯XX
p

⋮

XXX ⋯X {1−9}
p

G) Overflow Model

The model aims to verify the overflow cases. The proposal ideas of the model 

are in [22]and [8].  We separate the model into two sub-models as follows: 

1. It verifies the overflow cases when the result exponent is larger than qmax ,  

using,  (1)  a  list  of  the  intermediate  result  exponent  from  the  interval

[qmax− p1 ,qmax−qmin] , (2) a list of number of digits of the second input 

significand from the interval [1, p] .

2. It verifies the overflow cases and the near-overflow cases which need to shift 

the intermediate result significand to left, using, (1) a list of the intermediate 

result exponent from the interval [qmax ,qmax+ 2p−1] , (2) a list of number of 

digits of the first input significand from the interval [1, p] ,  (3)a list of number 

of digits of the second input significand  from the interval [1, p] , (4) a list of 

the  intermediate  result  significand  that  consists  of  the  patterns 

{{1−9}00⋯0
p

00⋯0 , X {1−9}00⋯0
p

00⋯0,⋯,XX ⋯X {1−9}
p

00⋯0}, and  random  digits 

pattern.
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H)Underflow Model
The model aims to verify the underflow cases. The proposal ideas of the model 

are in [22] and  [8].  We separate the model into three sub-models as follows:

1. It verifies the underflow cases when the intermediate result exponent is less 

than qmin using, (1) a list of the intermediate result exponent from the interval

[qmin−qmax ,qmin ].

2. It  verifies the underflow and the near-underflow cases when the result is 

exact  or  inexact,  using  (1)  a  list  of  the  intermediate  result  exponent  in  the 

interval [qmin− p , qmin] , (2) a list of the second input significand  (3) a list of 

the first input significand, such that the difference between number of digits of 

the first input significand  to number of digits of the second input significand is 

from the interval [1, p−1] , (4) a list of the intermediate result significand that 

consists  of  {{1−9 }00⋯0
p

00⋯0 , X {1−9}00⋯0
p

00⋯0,⋯,XX ⋯X {1−9}
p

00⋯0}, and 

random digits pattern.

3. It verifies the near-underflow cases and the subnormals numbers using, (1) a 

list of the intermediate result exponent from the interval [qmin , qmin p−1 ] ,

(2) a list of the first input significand,  (3) a list of the second input significand, 

such  that  the  difference  between  number  of  digits  of  the  second  input 

significand  to number of digits of the first input significand from the interval

[1, p−1].

6.4 Previous Work

 The  Fpgen  division  algorithm by IBM [1]  is  given  the  significand of  the 

quotient  Sz and the  difference d between the  preferred exponent and the 

actual exponent.

The algorithm separates the problem into three cases:

Case1:  The result is exact, d =0 , and guard digit is equal to zero, it selects a 

random  value  for 1Sy10p

Sz
,  calculates  Sx=Sy∗Sz , and  chooses  the 

exponents such that Ex−Ey=Ez .
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Case 2: The sticky bit is zero and either the exponent difference is not zero or 

the guard digit is not zero, the algorithm factorizes Sz=Sz ' .2 j .5k  where Sz '

is  prime  to  10  and  Sz= Sx
Sy

.10d1 , it  initializes  Sx=Sz ' .2max 0, j−d−1 .5max 0, k−d−1  

and Sy=2max0,− jd1 .5max 0,−kd1 ,  it  multiplies  Sx and Sy by random factor 

that keeping their size less than 10 p ,  it computes Ex−Ey=Ezd .

Case3: The sticky bit is one, the algorithm calculates the range of number of 

digits 1max 0, d− p∣Sy∣pmin0, d− p1 and  chooses Sy≤
10p

−1.10d1

Sz1
 

within the selected  ∣Sy∣, it chooses  Sx from  Sz.SySx. 10d1Sz1 . Sy

within d + 1 trailing zeros, finally it computes Ex−Ey=Ezd.

This  algorithm  requires  several  iteration,  but  in  practical  it  produces  the 

solution for most values of d . At the last case the algorithm may fail at large 

values of d , when there is no Sx with d + 1 trailing  zeros in its range. Test 

cases for large d values are often generated by relaxing the constraint on Sz  

when possible.

6.5 Comparison

The Fpgen division  algorithm cannot  solve  simultaneous  constraints  on  the 

inputs  significand  and  the  unbounded  intermediate  result  significand,  and 

cannot solve the constraints on the digits that follow the guard digits of the 

intermediate  result  significand,  while  our  engine  solves  these  constraints 

numerically. Both of them cannot find the solution from the first trail, but they 

find the solution in practical time.

An example to the test vector that generated using our engine, and cannot be 

generated using Fpgen division algorithms at [8], is at p=16 , when the inputs 

are  Sx=4140631901663  and  Sy=9186895982637069 ,  the intermediate result  is 

Sz=45071065455499420000000000000002177 .

6.6 Summary
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This chapter represents the main steps that the division engine uses to solve all 

the constraints numerically. It also describes the main ideas of  the coverage 

models that have been solved by the engine to generate test vectors can verify 

corner  cases  in  the  hardware  or  software  implementations  of  the  decimal 

floating-point division operation. 

The  chapter also describes the rounding  boundaries of the decimal division 

operation, which our engine and our models are based on. Therefore, it gives 

an advantage to  the division engine and the division models.

The engine solved the coverage models one time and generated about 339000 

test vectors in Decimal128 and about 146000 in Decimal64, the test vectors 

have proved their efficiency by discovering bugs in Silminds design [7]. Most 

of  bugs are  discovered  using  the  rounding models  and the  zeros  and nines 

model. 
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Chapter 7

  Conclusions

We have presented in this thesis our verification work of five decimal floating-

point  arithmetic  operations  which  are  addition-subtraction,  multiplication, 

fused-multiply-add (FMA), square root, and division operations.

We have presented the algorithms used in each engine to solve the coverage 

models, and the ideas of these models, to generate test vectors can verify the 

different  implementation  of  the  five  decimal  floating-point  arithmetic 

operations.

The main Idea of the algorithms in the engines of multiplication, FMA, square 

root, and division operations, is to solve the nonlinear equations generated from 

multiplying two significands.

We have succeeded to develop new engines to verify the implementations of 

FMA and square root operations, and our five engines have succeeded to solve 

the  constraints  to  describe  the  corner  cases  of  the  operation,  which include 

simultaneous constraints on inputs and intermediate result, and constraints on 

the unbounded intermediate result.

The generated test vectors of the five operations have proved efficiency, as they 

have  succeeded  to  discover  corner  bugs  in  the  five  hardware  designs  of 

Silminds (addition-subtraction, multiplication, FMA, square root, and division) 

and in the software designs of DecNumber (FMA, and square root). One of the 

FMA  test  vectors  that  discovered  bug  in  the  FMA  implementation  of 

DecNumber  library  (version  3.68)  is  the  test  vector

d64∗− 0 −1916972343725131E368 311281724013E-108 −8846849875104544E253 -> −5967184560399999E271 X

where the DecNumber result  is  −5967184560400000E271 , and one of the square 

root  test  vectors  that  discovered  bug  in  the  square  root  implementation  of 

DecNumber  library  (version  3.68)  is  the  test  vector

d64V < 3862493272490151E26 -> 6.214896034922990E+20 X , where the DecNumber result is
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6.214896034922991E20 .  

There is a need to develop verification technique to verify the other elementary 

operations. Also our technique is not enough to verify the square root, division, 

and  the  elementary  operations,  where  they  may  need  formal  verification 

methods or  other  verification technique as in [9].  These designs depend on 

iterative methods, where each iteration depends on the previous iterations, so 

that the verification technique need to verify the result of each iteration.  
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Appendix A

   Test vectors Syntax

The test vectors are represented in IBM syntax as follows:

1- The type and precision: d64 for Decimal64, or d128 for Decimal128.

2-  The operation: + for add, - for subtract, * for multiply, / for divide, *+ for 

fused-multiply-add, *- for fused-multiply-subtract, or V for square root.

3- The rounding mode: > for (positive infinity), < for (negative infinity), 0 for 

(zero), =0 for (nearest, ties to even), or h> (nearest, ties away from zero).

4- The data for input operands: <sign><significand>E<exp>. Where the sign is 

either + or -, the significand is a string of decimal digits, exp is the value of the 

unbiased exponent written as an integer number.

SNaN numbers are represented using the string S.

QNaN numbers are represented using the string Q.

Infinities are represented using the string <sign>inf.

5- A “->” sign, to separate inputs from results.

6- The data for output operand: <sign><significand>E<exp>. Where the sign is 

either + or -, the significand is a string of decimal digits, exp is the value of the 

unbiased exponent written as an integer number.

SNaN numbers are represented using the string S.

QNaN numbers are represented using the string Q.

Infinities are represented using the string <sign>inf.

7- Exceptions that occur following the operation: x (inexact), u (underflow), o 

(overflow), z (division by zero) and i (invalid).
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