
Hazards
Extended pipelines

Exceptions
Looking forward

Lecture 2: Exceptions everywhere

Hossam A. H. Fahmy

Cairo University, Faculty of Engineering

1 / 13



Hazards
Extended pipelines

Exceptions
Looking forward

Overview

1 Hazards
RAW, RAR, WAW, WAR
Control hazards

2 Extended pipelines
Multi-cycle execution

3 Exceptions
Precise exceptions

4 Looking forward

2 / 13



Hazards
Extended pipelines

Exceptions
Looking forward

Where are we?

It is easier to pipeline instructions that have a fixed format:

all the instructions are of the same size
and
in all instructions the fields have a fixed size and occupy
fixed locations.

The use of more pipeline stages increases the frequency of
operation but it adds

timing overheads
and
more hazards.

3 / 13



Hazards
Extended pipelines

Exceptions
Looking forward

RAW, RAR, WAW, WAR
Control hazards

Data hazards

What are the dependencies that you see in the following code?

I1: DIV R3, R1, R2

I2: ADD R5, R3, R2

I3: MUL R1, R2, R6

I4: ADD R5, R1, R5

I5: MUL R4, R2, R6

4 / 13



Hazards
Extended pipelines

Exceptions
Looking forward

RAW, RAR, WAW, WAR
Control hazards

Types of dependencies

If instruction i precedes instruction j and the sources or
destinations match then we have a dependency.

Di S1i or S2i

S1j or S2j Essential, RAW RAR
Dj Output, WAW Ordering, WAR

5 / 13



Hazards
Extended pipelines

Exceptions
Looking forward

RAW, RAR, WAW, WAR
Control hazards

Bypass instead of RAW stalls

It is better to forward (or bypass) the data instead of stalling.

Add R5, R3, R2 IF D EX M WB

Sub R6, R5, R1 IF D EX M WB

Add R4, R5, R7 IF D EX M WB

Add R8, R5, R4 IF D EX M WB

6 / 13



Hazards
Extended pipelines

Exceptions
Looking forward

RAW, RAR, WAW, WAR
Control hazards

Some must stall

Unfortunately, we cannot always bypass
Ld R5, 0(R3) IF D EX M WB

Sub R6, R5, R1 IF D stall EX M WB

Add R4, R5, R7 IF stall D EX M WB

Add R8, R5, R4 stall IF D EX M WB

7 / 13



Hazards
Extended pipelines

Exceptions
Looking forward

RAW, RAR, WAW, WAR
Control hazards

Control hazards

For these we must flush any instructions from the wrong
direction

We will deal with “prediction” in the coming few lectures.

8 / 13



Hazards
Extended pipelines

Exceptions
Looking forward

Multi-cycle execution

Extending the basic pipeline

We started by forcing all the integer instructions to pass
through the same number of stages even if they do not use
them. Why?
However, the execution of a double precision floating point
divide takes from 4 (most aggressive techniques) to over
50 (simple algorithms) cycles.

Extend the clock cycle. Everything is slow!

Allow some instructions to take multiple cycles in their
execution.

9 / 13



Hazards
Extended pipelines

Exceptions
Looking forward

Multi-cycle execution

Multi-cycle instructions

Assume multiply takes 5 cycles and add takes 3 cycles.
Ld.D F4, 0(R2) IF D EX M WB

Mul.D F0, F4, F6 IF D stall EXM1 EXM2 EXM3 EXM4 EXM5 M WB

Ld.D F8, 0(R3) IF stall D EX M WB

Add.D F6, F4, F6 IF D EXA1 EXA2 EXA3 M WB

Add.D F2, F0, F8 IF D stall1 stall2 EXA1 EXA2 EXA3 M WB

S.D F2, 0(R2) IF stall1 stall2 D EX stall3 M WB

A specific unit deals with each of the extended instructions.

Multi-cycle instructions increase the number of stall cycles.

Now, we get in order start but out of order termination.

We may also get multiple instructions in the M or

WB stage. ⇒ Stall either at the D or at the WB

stage.
Is it really necessary to stall?

10 / 13



Hazards
Extended pipelines

Exceptions
Looking forward

Precise exceptions

The exceptions

We have external interrupts and internal exceptions. These
events have several classifications.

1 User requested versus coerced.

2 Maskable versus nonmaskable.

3 Terminate versus resume.

4 Asynchronous versus synchronous.

5 Between versus within instructions.

In general, the first alternative of these pairs is easier to
implement and may be handled after the completion of the
current instruction.

11 / 13



Hazards
Extended pipelines

Exceptions
Looking forward

Precise exceptions

Precise exceptions

An exception is precise if all the instructions before the exception
finish correctly and all those after it do not change the state. Once the
exception is handled, the latter instructions are restarted from scratch.
Ld.D F4, 0(R2) IF D EX M WB

Mul.D F0, F4, F6 IF D stall EXM1 EXM2 EXM3 EXM4 EXM5 M WB

Ld.D F8, 0(R3) IF stall D EX M WB

Add.D F6, F4, F6 IF D EXA1 EXA2 EXA3 M WB

Add.D F2, F0, F8 IF D stall1 stall2 EXA1 EXA2 EXA3 M WB

S.D F2, 0(R2) IF stall1 stall2 D EX stall3 M WB

Exception at EXA1 of Add.D F6, F4, F6: Allow the Mul.D and

Ld.D to complete and flush the two Add.D and S.D.

Exception at EXM5 of Mul.D: The following Ld.D has already

completed! ⇒ either force in order WB or “undo”.

Both of the above: Which one has the higher priority? Why?

12 / 13



Hazards
Extended pipelines

Exceptions
Looking forward

Looking forward

Prediction on the branches.

Multiple pipelines in parallel.

Dynamic scheduling of the instructions by the hardware.

13 / 13


	Hazards
	RAW, RAR, WAW, WAR
	Control hazards

	Extended pipelines
	Multi-cycle execution

	Exceptions
	Precise exceptions

	Looking forward

