
Control Hazards
Speculation
Conclusions

Lecture 3: Branch prediction

Hossam A. H. Fahmy

Cairo University, Faculty of Engineering

1 / 18

Control Hazards
Speculation
Conclusions

Overview

1 Control Hazards

2 Speculation
Static prediction
Dynamic prediction
Two bit predictors
Branch correlations

3 Conclusions

2 / 18

Control Hazards
Speculation
Conclusions

Branches

There are two important questions.

When is the target address ready?

When is the condition resolved?

In a simple RISC processor with simplified branch instructions,
we might add more hardware in the decode stage to

calculate the target address and

resolve the simple conditions.

Downside: complex tests must be done by separate instructions
and the decode stage is even more complicated now.

3 / 18

Control Hazards
Speculation
Conclusions

Delayed branches

Assuming a fast branch, with all the information known by the
end of the decode stage, what shall I do with instruction i+1?
Branch IF D EX M WB

i+1 IF D EX M WB

target IF D EX M WB

target+1 IF D EX M WB

Flush it and lose one cycle.
Assume that the effect of the branch is delayed by one
cycle and bring something from before the branch to put it
in this slot. (Maybe even from after it as long as it is not
“harmful”.)

⇒ Delayed branches expose the internal organization to the
compiler writer and complicates interrupt handling. Moreover,
most processors have complicated branches where the result is
not known till a few cycles pass. 4 / 18

Control Hazards
Speculation
Conclusions

Static prediction
Dynamic prediction
Two bit predictors
Branch correlations

Speculation

We have already seen a few ‘solutions’ to branches:

stall,

fast branches evaluated completely at the decode stage, and

delayed branches.

Can we do better by predicting the decision and executing
speculatively?

5 / 18

Control Hazards
Speculation
Conclusions

Static prediction
Dynamic prediction
Two bit predictors
Branch correlations

The speculation game

1 Guess the branch target.

2 Execute the branch to verify the guess.

3 Meanwhile, start execution at the guessed position.

We should attempt to minimize the penalty if our guess is right
to almost zero. If our guess is wrong the penalty might be
higher.

⇒ How often is our guess correct?

⇒ How can we improve this probability?

⇒ What are the penalties?

6 / 18

Control Hazards
Speculation
Conclusions

Static prediction
Dynamic prediction
Two bit predictors
Branch correlations

Branch prediction

It is one of the heavily researched areas in computer
architecture during the 1990s.

Fixed: As an example, a processor may always fetch
in-line on true conditional branches.

Static: The strategy varies by opcode type but is
predetermined.

Dynamic: The strategy varies according to the program
behavior and depends on the history of this
branch. ⇒ Use up-down saturating counters.

Perfect prediction simply converts the delay for conditional
branch into that for unconditional branch (branch taken). The
important goal is the minimization of the branch delay not just
a higher prediction accuracy.

7 / 18

Control Hazards
Speculation
Conclusions

Static prediction
Dynamic prediction
Two bit predictors
Branch correlations

Static options

The prediction to continue in-line is quite easy since we already
know the target (it is at PC + 4). However, this is not efficient.

Most branches (especially backward) are taken.

Generate the profile of your target applications.

Find out the most probable decision for each type of
branch.

Implement the hardware to predict statically based on this
information.

8 / 18

Control Hazards
Speculation
Conclusions

Static prediction
Dynamic prediction
Two bit predictors
Branch correlations

Dynamic behavior

Was this branch taken or not taken in the past iterations?

How many iterations shall we consider?

The simplest case is to look for the last time only in a branch
history table (BHT).

⇒ Use the least significant bits of the PC to index a small
table.

⇒ Each entry in the table is one bit indicating if the last time
was taken or not. Use this bit as your prediction.

⇒ In case of a misprediction, complement this bit.

9 / 18

Control Hazards
Speculation
Conclusions

Static prediction
Dynamic prediction
Two bit predictors
Branch correlations

Problems of the BHT

The BHT is simple to implement but

multiple PCs may alias to the same location and

we may have many mispredictions.

Let us look at an inner loop with four iterations.

Prediction N T T T N T T T N T T T
branch outcome T T T N T T T N T T T N
Misprediction? + + + + + +

We get two misprediction in four decisions.

10 / 18

Control Hazards
Speculation
Conclusions

Static prediction
Dynamic prediction
Two bit predictors
Branch correlations

Improvement: 2-bit prediction

What if we look at the last two iterations? A prediction is not
changed untill it misses twice.

Taken

Taken

Taken

Taken

Not Taken

Not Taken

Not Taken

Not Taken

01 00
predict Not Takenpredict Not Taken

11

predict Taken predict Taken

10

The inner loop with four iterations.

Prediction N N T T T T T T T T T T
branch outcome T T T N T T T N T T T N
Misprediction? + + + + +

We get only one misprediction in four decisions.
11 / 18

Control Hazards
Speculation
Conclusions

Static prediction
Dynamic prediction
Two bit predictors
Branch correlations

Another 2-bit idea

We can use a saturating up-down two bit counter.

strong Not taken weak not taken weak taken strong Taken
00 01 10 11
N n t T

The inner loop with four iterations once more.

Prediction n t T T t T T T t T T T
branch outcome T T T N T T T N T T T N
Misprediction? + + + +

We get only one misprediction in four decisions.
This can be easily extended to more than two bits although
2-bit predictors are good enough for many systems.

12 / 18

Control Hazards
Speculation
Conclusions

Static prediction
Dynamic prediction
Two bit predictors
Branch correlations

Branch prediction buffer

This is a table accessed during the fetch cycle by the least
significant bits of the PC.

Each entry may be a 2-bit predictor.

If we decode the instruction to be a branch, we have the
prediction for it.

This leads to a predicition accuracy in the high 80% to over
99% in some applications.

13 / 18

Control Hazards
Speculation
Conclusions

Static prediction
Dynamic prediction
Two bit predictors
Branch correlations

Correlating predictors

1 i f (aa==2)
2 aa = 0 ;
3 i f (bb==2)
4 bb = 0 ;
5 i f (aa !=bb) { }

The decision on the third branch depends on the previous
two.

We can correlate the branches!

14 / 18

Control Hazards
Speculation
Conclusions

Static prediction
Dynamic prediction
Two bit predictors
Branch correlations

Global history

A branch history shift register keeps the history of the
previous few branches. One bit for each branch. For
example, for a history of two branches we have two bits
and four possible cases: 00, 01, 10, and 11.

We have a table (of the branch prediction buffer) for each
case and decide the prediction on the least significant bits
of the PC and the global history.

15 / 18

Control Hazards
Speculation
Conclusions

Static prediction
Dynamic prediction
Two bit predictors
Branch correlations

Hybrid schemes

Different predictors work best for different branches.
⇒ Let us combine them and choose the best.

16 / 18

Control Hazards
Speculation
Conclusions

Static prediction
Dynamic prediction
Two bit predictors
Branch correlations

Branch Target Buffer

...
...

...

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
Branch Branch Branch

instruction prediction target
address statistics

If the IF “hits” in the BTB, the target instruction that was previously
stored in the BTB is now fetched and forwarded to the processor at its

regularly scheduled time.

17 / 18

Control Hazards
Speculation
Conclusions

Conclusions

There are many ways to minimize the effect of control
hazards.

We can achieve very high prediction ratios.

We must also minimize the penalty of the branch.

18 / 18

	Control Hazards
	Speculation
	Static prediction
	Dynamic prediction
	Two bit predictors
	Branch correlations

	Conclusions

