
Multiple pipelines
Dependences

Summary

Lecture 4: Multiple issue

Hossam A. H. Fahmy

Cairo University, Faculty of Engineering

1 / 13



Multiple pipelines
Dependences

Summary

Overview

1 Multiple pipelines
ILP

2 Dependences
Fetch
Decode
Execute

3 Summary

2 / 13



Multiple pipelines
Dependences

Summary
ILP

Out of the bottleneck

Let us look at the example of the fire and the well again.

One person is at the well. There are two lines of people
from the well location to the fire. The person at the well
fills a bucket and hands it to the next person in one of the
lines.

Two persons are at the well each filling a bucket and then
providing it to the lines.

Which one will put the fire down faster? Why?
The “issue rate” of CPI = IPC = 1 is called Flynn bottleneck.

3 / 13



Multiple pipelines
Dependences

Summary
ILP

ILP

Instruction Level Parallelsim (ILP) is a property of the software
not the hardware. The hardware supports ILP by

pipelining,

superscalar in order execution such as in Sun UltraSparc, or

superscalar out of order execution such as in Intel
Pentium4.

The reordering (scheduling) may be dynamic at run time by the
hardware or static at compile time by the software.

4 / 13



Multiple pipelines
Dependences

Summary
ILP

Going to multiple issue

We will look today at in order execution to solve its problems
and detect any dependences. How can we issue two, four, or in
general n instructions per cycle?

Fetch n instructions per cycle,

decode n instructions per cycle,

execute n instructions per cycle,

may access n locations in memory per cycle, and

may write into n locations in the registers.

5 / 13



Multiple pipelines
Dependences

Summary

Fetch
Decode
Execute

Wide fetch

We are not getting the instructions from the real memory but
from an instruction cache.

Instructions are sequential

Do they fall on the same ‘line’ in cache? Similar to the issue
of aligned and non-aligned accesses to half-words in the
memory.

Instructions are not sequential

Two serial accesses? No! You will not know the target
address and complete the second fetch within one clock
cycle.

6 / 13



Multiple pipelines
Dependences

Summary

Fetch
Decode
Execute

Solution to wide fetch

Problem: On a taken branch all the fetch slots after the
branch are thrown away. ⇒ a low utilization of the
fetch unit and eventually a low IPC.

Solution: Trace cache

In addition to the regular cache, store the
dynamic instruction sequence.
Fetch from the trace cache but make sure that
the branch directions are correct.
If you miss get the correct instructions from
the regular cache or even from the memory.

A trace cache is used in Pentium4.

7 / 13



Multiple pipelines
Dependences

Summary

Fetch
Decode
Execute

Wide decode

Decode: The decoding of a number of instructions

is easy if they are of fixed length and fixed
formats
but is harder (although possible) for variable
length.

Read operands: We should check the dependencies and read the
operands.

With n instructions, we have at most
2n operands to read in one cycle. ⇒ 2n read
ports and the register file becomes
proportionally slower.

8 / 13



Multiple pipelines
Dependences

Summary

Fetch
Decode
Execute

Dependences for n instructions

Remember that we have to stall sometimes even with a
complete bypassing network.
Ld R5, 0(R3) IF D EX M WB

Sub R6, R5, R1 IF D stall EX M WB

We check

(s1Dec
= DEx)&(opEx = Ld) | (s2Dec

= DEx)&(opEx = Ld)

With two instructions going in the decode, the number of
checks quadruples and not just doubles! n2 growth in circuits
for stall and bypass.

(s1Dec1
= DEx1)&(opEx1 = Ld) | (s2Dec1

= DEx1)&(opEx1 = Ld)

|(s1Dec1
= DEx2)&(opEx2 = Ld) | (s2Dec1

= DEx2)&(opEx2 = Ld)

|(s1Dec2
= DEx1)&(opEx1 = Ld) | (s2Dec2

= DEx1)&(opEx1 = Ld)

|(s1Dec2
= DEx2)&(opEx2 = Ld) | (s2Dec2

= DEx2)&(opEx2 = Ld)

9 / 13



Multiple pipelines
Dependences

Summary

Fetch
Decode
Execute

Wide execute

Shall we put n execution units?

Yes for ALU.

No for floating point division since it is big and used
infrequently.

⇒ based on the instruction statistics, provide a mix of units.

RS/6000: 1 ALU/memory/branch + 1 FP

Pentium II: 1 ALU/FP + 1 ALU + 1 load + 1 store + 1
branch

Alpha 21164: 1 ALU/FP/branch + 2 ALU + 1 load/store

10 / 13



Multiple pipelines
Dependences

Summary

Fetch
Decode
Execute

n2 bypass

The bypass detection logic grows as n2. This is acceptable since
the sources and destinations are small fields (5 bits for
32 registers).
However, the bypass buses also grow as n2. This is not
acceptable. The busses are 32 or 64 bits wide each.

It is difficult to layout and route all of these wires.

Wide multi-input multiplexers are slow.

⇒ Group functional units into clusters and issue the dependent
instructions to the same cluster.

11 / 13



Multiple pipelines
Dependences

Summary

Fetch
Decode
Execute

Wide memory and write back

There is nothing too special about these two stages for wide
issue. Their complexity just grows and they may become
slower.

Additional ports.

Conflict detection logic for simultaneous multiple reads and
writes to the same bank.

12 / 13



Multiple pipelines
Dependences

Summary

Summary

The are some problem spots for in order superscalar processors.

Fetch and branch prediction: may use trace cache.

Decode: the dependence checks grow as n2.

Execution: Clustering may solve the n2 bypass buses problem.

13 / 13


	Multiple pipelines
	ILP

	Dependences
	Fetch
	Decode
	Execute

	Summary

