
Going out of order
VLIW

What did we learn?

Lecture 5: Out of order, Dynamic versus Static
scheduling

Hossam A. H. Fahmy

Cairo University, Faculty of Engineering

1 / 15



Going out of order
VLIW

What did we learn?

Overview

1 Going out of order
Dynamic scheduling
Register renaming
Advanced techniques

2 VLIW
Can compilers help?

3 What did we learn?

2 / 15



Going out of order
VLIW

What did we learn?

Dynamic scheduling
Register renaming
Advanced techniques

Where are we?

We pipeline the instructions to enhance the throughput.

We included long instructions.

We handled exceptions.

We managed in order issue to multiple pipelines in parallel.

Now we are ready to have out of order execution.

Dynamic scheduling in the hardware.

Static scheduling in the software.

3 / 15



Going out of order
VLIW

What did we learn?

Dynamic scheduling
Register renaming
Advanced techniques

Why do we go out of order?

Div.f F0, F1, F2 IF D EXD1 EXD2 EX... EXD9 M WB

Add.f F3, F0, F4 IF D stall1 stall... stall8 EXA1 EXA2

Mul.f F8, F2, F5 IF stall1 stall... stall8 D EXM1

The Add.f must wait because of the RAW hazard.

The Mul.f does not need to wait. It can start before the
Add.f instruction.

4 / 15



Going out of order
VLIW

What did we learn?

Dynamic scheduling
Register renaming
Advanced techniques

Dynamic scheduling

Execution: is non-sequential (not the original order)

This reduces stalls,
improves the utilization of the functional
units, and
enables parallel execution.

Exceptions: must be precise. We must maintain the appearance
of sequential execution. This is important but
hard.

5 / 15



Going out of order
VLIW

What did we learn?

Dynamic scheduling
Register renaming
Advanced techniques

Instruction buffer

Instructions are brought from memory and dispatched to
the decoder in order.

The decoder must be able to look at multiple instructions
to re-order.

Some instructions will be issued (started) while others are
waiting.

The instructions reside in the instruction buffer while the
decoder checks them. (Different names are used by various
people.)

6 / 15



Going out of order
VLIW

What did we learn?

Dynamic scheduling
Register renaming
Advanced techniques

Dispatch and Issue

Dispatch: is the first part of decoding.

The new instructions get a location in order
in the instruction buffer.
If the buffer is full, the dispatching unit stalls
all the following instructions.

Issue: is the second part of decoding

Start the execution, i.e. send instructions from
instruction buffer to execution units out of
order.
An instruction that has to wait does not delay
the following instructions.

7 / 15



Going out of order
VLIW

What did we learn?

Dynamic scheduling
Register renaming
Advanced techniques

Register renaming

Div.f F0, F1 ,F2
Add.f F3, F0, F4
Mul.f F0, F1, F2
Add.f F4, F0, F2

⇒

Div.f L0, L1 ,L2
Add.f L3, L0, L4
Mul.f L5, L1, L2
Add.f L6, L5, L2

Think of the registers as names not specific locations.

On a write, allocate a new location and record it in a map
table.

On a read, find the location in the table of the most recent
write.

De-allocation occurs when the dependent RAW hazards are
cleared.

This is a neat idea that might be implemented in either the
hardware or the software. It eliminates WAW and WAR
hazards.

8 / 15



Going out of order
VLIW

What did we learn?

Dynamic scheduling
Register renaming
Advanced techniques

Other techniques: Scoreboards and Tomasulo’s
algorithm

The scoreboard technique uses a centralized approach to
check and resolve the dependencies. It was first
implemented in CDC6600 in 1964.

The Tomasulo data flow technique uses a distributed
approach where the reservation station may also contain
the value of the register not just a tag. This amounts to a
register renaming scheme. It was first implemented in
IBM 360/91 in 1967.

Those who are interested can read more about these techniques
in the “Quantitative Approach”.

9 / 15



Going out of order
VLIW

What did we learn?
Can compilers help?

Very Long Instruction Word

We have seen some problems with multiple issue superscalars:

N2 dependence checks (large stall and bypass logic),

N2 bypass buses (partially fixed with clustering), as well as

wider fetch and problems with branch prediction.

In VLIW,

a single issue pipeline that has N parallel units is used,

the compiler only puts independent “instructions” in the
same group,

VLIW travels down the pipeline as one unit, and

in pure VLIW machines the processor does not need to do
any dependence checks.

10 / 15



Going out of order
VLIW

What did we learn?
Can compilers help?

VLIW purity

In a pure (classical/ideal) VLIW design the compiler schedules
the pipeline including the stall cycles.

⇒ The compiler must know the exact latencies and
organization of the pipeline.

Problem 1: These details vary in different implementations.
We must recompile the code. (TransMeta
recompiles on the fly.)

Problem 2: Even for a specific implementation, the latencies
are not fixed. What shall the hardware do for a
cache miss?

Real implementations are not ideal.

11 / 15



Going out of order
VLIW

What did we learn?
Can compilers help?

Scheduling and issuing

Schedule: Decide the order of the instructions.

Put independent instructions between the
slow operations and the instructions that need
their results.

Issue: Decide the time a specific instruction starts.

Once all the dependencies are clear we can
start.

Schedule Issue
Pure VLIW SW SW
In-order superscalar SW HW
Out-of-order (dynamic) HW HW

12 / 15



Going out of order
VLIW

What did we learn?
Can compilers help?

Scheduling: Compiler or HW

Compiler:

+ Large scope (may be the whole program).
+ Leads to a simpler hardware.
− Low branch prediction accuracy.
− No information about memory delays (cache

misses).
− Difficult to speculate and recover.

Hardware:

+ Better branch prediction accuracy.
+ Dynamic information about memory delays.
+ Easier to speculate and recover.
− Finite resources to buffer instructions.
− Complicated hardware (harder to verify, may

lead to slower clock).

13 / 15



Going out of order
VLIW

What did we learn?
Can compilers help?

Compiler techniques

We want to increase the number of independent instructions.

Loop unrolling: Put more than one iteration in sequence in a
wider loop.

Software pipelining: Similar to what happens in hardware, a
part of the first iteration is done with a part of the
second iteration.

Trace scheduling: Programs include other things beyond loops.

Those who are interested can read more about these techniques
in the “Quantitative Approach”.

14 / 15



Going out of order
VLIW

What did we learn?

Where are we now?

Pipelines.

Exceptions.

Muliple issue.

Dynamic scheduling.

Static scheduling.

Next we go to the memory system.

15 / 15


	Going out of order
	Dynamic scheduling
	Register renaming
	Advanced techniques

	VLIW
	Can compilers help?

	What did we learn?

