
Caches
Implementation

Points to remember

Lecture 7: Caches

Hossam A. H. Fahmy

Cairo University, Faculty of Engineering

1 / 11

Caches
Implementation

Points to remember

Overview

1 Caches
Definitions
Average Memory Access Time (AMAT)

2 Implementation
Adderss mapping
Replacement policy
Writing policy

3 Points to remember

2 / 11

Caches
Implementation

Points to remember

Definitions
Average Memory Access Time (AMAT)

Introduction to caches

Why do we have memories in computers?

What is the hierarchy of storage elements (latency,
bandwidth, capacity, and price)?

Why is there a difference in speed?

Imagine yourself in a large library with many books. You want
to read a number of sections from a few books. What are you
going to do?

3 / 11

Caches
Implementation

Points to remember

Definitions
Average Memory Access Time (AMAT)

Why do we have caches?

On the average, our goal is to give the processor the illusion of
a large memory system with a short effective access time.

1 for (i =0; i<n ; i++)
2 sumsq = sumsq + x [i]∗ x [i] + y [i]∗ y [i] ;

The basic principles of locality:
1 Spatial locality.

Sequential access.

2 Temporal locality.

4 / 11

Caches
Implementation

Points to remember

Definitions
Average Memory Access Time (AMAT)

Some definitions

When the processor fetches a piece of information it might be
an instruction or a data value. Hence,

we may use a unified (integrated) cache for both or

we may use a split I$ and D$.

We may also have multiple levels of caches. The processor tries
first to find the information in the nearest (highest) level of the
hierarchy.

The information request may hit in the cache and the
needed word reaches the processor after the hit time or

it may miss in the cache and is retrieved from the lower
level of the hierarchy after an additional miss penalty.
(miss time = hit time + miss penalty)

5 / 11

Caches
Implementation

Points to remember

Definitions
Average Memory Access Time (AMAT)

How much time are we loosing on misses?

Each instruction accesses the memory for its own fetch.

It may also access the memory for data.

⇒ memory accesses per instruction ≥ 1.
Each instruction may hit or miss. If we profile our applications
we get the hit rate and miss rate and calculate

AMAT = hit time× hit rate + miss time×miss rate

= hit time + miss rate×miss penalty.

6 / 11

Caches
Implementation

Points to remember

Adderss mapping
Replacement policy
Writing policy

Implementation

To understand how caches work, let us ask a few fundamental
questions. Here are the first two.

1 Where is the block placed in the cache?

Simplest is Index = (Block address)mod (# blocks in cache).
This is called direct mapping.

2 Is the block available (hit) in the cache?

Each block in the cache is associated with a tag (and a valid
bit). If the requested block has the same index but a
different tag it is a miss.

Let us think about a cache with 8 blocks, each one word, that is
initially empty and the references: 22, 26, 22, 26, 16, 4, 16,
and 18 to words in the memory.

7 / 11

Caches
Implementation

Points to remember

Adderss mapping
Replacement policy
Writing policy

Address

Tag Index Offset B/word

�

�

�

Block address

Word address

Byte address

-

-

-

Let us try to find the size of a cache with 9 bits index in a
machine having 32 bits for its addresses assuming that the word
is four bytes and the block is eight words. Why eight words in a
block?

8 / 11

Caches
Implementation

Points to remember

Adderss mapping
Replacement policy
Writing policy

Back to fundamentals

Here is another fundamental question
3 In a miss and a need to replace a block, which one shall I

choose?

Trivial for direct mapping.
Random, Least recently used, or FIFO for other mapping
techniques that we will study later. Why do we need other
mapping techniques?

9 / 11

Caches
Implementation

Points to remember

Adderss mapping
Replacement policy
Writing policy

Write policies

The last fundamental question is

4 what happens on write?

Write through: Write to the lower level as well. May slow
things down. ⇒ use a write buffer.

Write back: (or Copy back) write only when the block is
replaced. ⇒ minimize the traffic by indicating
if the block is dirty.

What about a miss at the time of writing (remember the case of
multiple words per block)?

Write through Copy back

Write allocate Write allocate

No-write allocate No-write allocate

10 / 11

Caches
Implementation

Points to remember

Now what

A designer seeks to reduce

the miss penalty,

the miss rate, and

the hit time.

We must balance that with the rest of the hierarchy as well.

11 / 11

	Caches
	Definitions
	Average Memory Access Time (AMAT)

	Implementation
	Adderss mapping
	Replacement policy
	Writing policy

	Points to remember

