Caches
Implementation
Points to remember

Hossam A. H. Fahmy

Cairo University, Faculty of Engineering

«O» «Fr <

it
v
a
it

Do
1/11



Caches
Implementation
Points to remember

Overview

@ Caches
@ Definitions
o Average Memory Access Time (AMAT)

© Implementation
o Adderss mapping
e Replacement policy
e Writing policy

© Points to remember

2/11



Caches

. Definitions
Implementation

Points to remember Average Memory Access Time (AMAT)

Introduction to caches

o Why do we have memories in computers?

e What is the hierarchy of storage elements (latency,
bandwidth, capacity, and price)?

o Why is there a difference in speed?

Imagine yourself in a large library with many books. You want
to read a number of sections from a few books. What are you
going to do?

3/11



Caches

. Definitions
Implementation

Average Memory Access Time (AMAT)

Points to remember

Why do we have caches?

On the average, our goal is to give the processor the illusion of
a large memory system with a short effective access time.

for (i=0;i<n;i++)
2 sumsq = sumsq + x[i]xx[i] + y[i]*y[i];

-

The basic principles of locality:
@ Spatial locality.
e Sequential access.

© Temporal locality.

4/11



Caches

. Definitions
Implementation

. Average Memory Access Time (AMAT)
Points to remember -

Some definitions

When the processor fetches a piece of information it might be
an instruction or a data value. Hence,

e we may use a unified (integrated) cache for both or
e we may use a split I$ and DS$.

We may also have multiple levels of caches. The processor tries
first to find the information in the nearest (highest) level of the
hierarchy.

o The information request may hit in the cache and the

needed word reaches the processor after the hit time or

@ it may miss in the cache and is retrieved from the lower
level of the hierarchy after an additional miss penalty.
(miss time = hit time + miss penalty)

5/11



Caches

. Definitions
Implementation

Average Memory Access Time (AMAT)

Points to remember

How much time are we loosing on misses?

e Each instruction accesses the memory for its own fetch.
o It may also access the memory for data.

= memory accesses per instruction > 1.
Each instruction may hit or miss. If we profile our applications
we get the hit rate and miss rate and calculate

AMAT = hit time x hit rate + miss time X miss rate

= hit time + miss rate X miss penalty.

6/11



Caches Adderss mapping
Implementation Replacement policy
Points to remember Writing policy

Implementation

To understand how caches work, let us ask a few fundamental
questions. Here are the first two.
@ Where is the block placed in the cache?
o Simplest is Index = (Block address)mod (# blocks in cache).
This is called direct mapping.
@ Is the block available (hit) in the cache?

o Each block in the cache is associated with a tag (and a valid
bit). If the requested block has the same index but a
different tag it is a miss.
Let us think about a cache with 8 blocks, each one word, that is
initially empty and the references: 22, 26, 22, 26, 16, 4, 16,
and 18 to words in the memory.

7/11



Caches
Implementation
Points to remember

Address

Adderss mapping
Replacement policy
Writing policy

Tag Index Offset

B/word

«— Byte address

<— Word address ———

<— Block address —

Let us try to find the size of a cache with 9 bits index in a
machine having 32 bits for its addresses assuming that the word
is four bytes and the block is eight words. Why eight words in a

block?

8/11



Caches Adderss mapping
Implementation Replacement policy
Points to remember ‘Writing policy

Back to fundamentals

Here is another fundamental question
@ In a miss and a need to replace a block, which one shall I
choose?
o Trivial for direct mapping.
e Random, Least recently used, or FIFO for other mapping
techniques that we will study later. Why do we need other
mapping techniques?

9/11



Caches Adderss mapping
Implementation Replacement policy
Points to remember ‘Writing policy

Write policies

The last fundamental question is
@ what happens on write?

Write through: Write to the lower level as well. May slow
things down. = use a write buffer.

Write back: (or Copy back) write only when the block is
replaced. = minimize the traffic by indicating
if the block is dirty.

What about a miss at the time of writing (remember the case of
multiple words per block)?

Write through ‘ Copy back
Write allocate ‘Write allocate‘
No-write allocate‘ No-write allocate

10/11



Caches
Implementation
Points to remember

Now what

A designer seeks to reduce
o the miss penalty,
o the miss rate, and
o the hit time.
We must balance that with the rest of the hierarchy as well.

11/11



	Caches
	Definitions
	Average Memory Access Time (AMAT)

	Implementation
	Adderss mapping
	Replacement policy
	Writing policy

	Points to remember

