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Aim

By the end of the class the student should be able to:

1. recognize, explain, and analyze the microarchitecture features of current
processor designs,

2. indicate the advantages and disadvantages of the various interconnection
schemes used to connect these processors and other system components
especially memories and input/output devices,

and

3. design simple interface circuits (including analog to digital and digital to
analog conversion) between processors and other system components.

Introduction

This class builds on the previous classes dealing with digital logic design and
micorprocessors. The microprocessors studied thus far are basic simple units.
The structures studied exist in current microcontrollers and simple processors
used in embedded systems.

Advanced processors use more elaborate ideas. In this class, we study the re-
maining important techniques: pipelines, branch prediction, and caches. These
techniques are widely used in all high performance digital systems and not just
processors.

Once we finish the internals of the processor, we start exploring what lies
beyond the processor: buses, serial/parallel interconnects, input/output inter-
facing, . . .

General outline (tentative)

Pipelines: Pipelines, exception handling, branch prediction, multiple issue ma-
chines, static and dynamic scheduling. (5 lectures)

Memories: memory types, caches, interleaving, virtual memory, translation
look-aside buffers. (5 lectures)

Interconnections: serial versus parallel, serial and parallel bus standards, ar-
bitration, split bus transactions, multiple masters, UART, USRT, USART,
PCI, SATA, SCSI. (4 lectures)
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D/A and A/D: Analog interfacing, interfacing D/As, interfacing A/Ds.(4 lec-
tures)

Assessment (tentative)

Quiz and classwork 10%
Midterm 20%
Final exam 70%
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Latency and throughput

Performance

Performance is usually measured using one of two ways:

latency: the time delay taken to finish the task or

throughput: the number of tasks finished in a fixed time.

Are they the inverse of each other?
If not are they completely independent?
Real life examples:

baking bread,

passengers in a train station, or

moving to and from the university using a bus versus a car.

Depending on the application for which we optimize the design
we choose the appropriate measure. (Usually throughput.)
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Latency and throughput

Moving one step at a time

A fire started in a farm. There is a nearby well and some
buckets.

Only one person fills a bucket, runs to the fire, throws the
water, and goes back to repeat. One entity does everything.

A group is there and forms a line. One fills a bucket and
those in the line move the filled bucket forward to the one
near the fire to extinguish it. When the bucket is empty,
the line returns it to be refilled. Each does a specific job
but the flow is not continuous.

Even better: while the bucket is moving forward, the one
near the water fills another bucket and the process repeats.
Each does a specific job. The flow is continuous due to
parallelism in the action.

(We plan to extinguish the fire with multiple lines in future lectures!)
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Ideal case
Real case

Processor pipelines

One long cycle: IF, D, EX, Mem, WB

Several short cycles: One instruction at a time.

i IF D EX M WB

i+ 1 IF D EX M WB

Pipelined: With an overlap there is a pipeline.

i IF D EX M WB

i+ 1 IF D EX M WB

The time taken by each instruction is not decreased but we
have a much higher throughput and the program ends in a
shorter time. (Remember the fire.)
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Ideal speedup

There is nothing magical about five stages. Some processors
have more than twenty! For a processor with n stages,

without a pipeline, we start a new instruction each n clock
cycles;

with a pipeline, we start a new instruction every clock
cycle.

For N instructions in the program and a clock cycle time of τ
we have a speedup of

N × n× τ
N × 1× τ = n.

⇒ divide the task into a large number of stages (superpipeline)
to get a higher clock frequency and hence a higher throughput.
This is not completely true.
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Down to reality

It is easier to decode while reading the registers if the
instruction format has fixed field sizes. With a varying
width format pipelining is harder.

The pipeline latches add some time overhead.

What if we need to access memory for data and for
instructions simultaneously? This is a structural hazard.

What if a hardware device sends an interrupt to the
processor? We must handle exceptions correctly.

Somethings are not equal: a floating point division takes
longer than an integer addition! Some instructions take
more cycles.
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Resource limitation

Dependences and hazards

Dependence: when instructions in the program are dependent

they use the same hardware, (structural)
they use the same data storage, (data)
one instruction indicates whether the other
one is executed or not. (control)

Hazard: two dependent instructions are in the pipeline
together.

For structural and data hazards we may stall the following
instructions. For control hazards we flush the pipeline.

8 / 12



Performance
Pipelines
Hazards

Points to take home

Resource limitation

Structural hazards

For a simple system we may get

Ld IF D EX M WB

i+ 1 IF D EX M WB

i+ 2 IF D EX M WB

i+ 3 IF D EX M WB

i+ 4 IF D EX M WB

which we transform to (Do you see another solution?)
Ld IF D EX M WB

i+ 1 IF D EX M WB

i+ 2 IF D EX M WB

i+ 3 stall IF D EX M WB

i+ 4 IF D EX M WB
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Resource limitation

Avoiding structural hazards

The replication of the resource

gives a good performance
but increases the area and may have some timing overheads.

Good for cheap resources or highly contended ones (such as
caches).

The use of a pipeline in the contended resource

gives a good performance with a small area
but is sometimes complicated to implement (example
RAM).

Good for divisible multi-cycle resources.
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Resource limitation

Design to minimize structural hazards

A better design might help

1 Each instruction uses a given resource only once.

2 Each instruction uses a given resource for one cycle.

3 All instructions use a given resource in the same stage.

This is why ALU instructions go through the M stage

although they do not do anything in it.

This may be less than optimal!

Some instructions (ex: divide) are much longer than others.
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Revise your previous knowledge

Look around you for exciting examples of performance
improvement

Think about the problems of pipelines
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Where are we?

It is easier to pipeline instructions that have a fixed format:

all the instructions are of the same size
and
in all instructions the fields have a fixed size and occupy
fixed locations.

The use of more pipeline stages increases the frequency of
operation but it adds

timing overheads
and
more hazards.

3 / 13

Hazards
Extended pipelines

Exceptions
Looking forward

RAW, RAR, WAW, WAR
Control hazards

Data hazards

What are the dependencies that you see in the following code?

I1: DIV R3, R1, R2

I2: ADD R5, R3, R2

I3: MUL R1, R2, R6

I4: ADD R5, R1, R5

I5: MUL R4, R2, R6

4 / 13
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Types of dependencies

If instruction i precedes instruction j and the sources or
destinations match then we have a dependency.

Di S1i or S2i

S1j or S2j Essential, RAW RAR
Dj Output, WAW Ordering, WAR
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Bypass instead of RAW stalls

It is better to forward (or bypass) the data instead of stalling.

Add R5, R3, R2 IF D EX M WB

Sub R6, R5, R1 IF D EX M WB

Add R4, R5, R7 IF D EX M WB

Add R8, R5, R4 IF D EX M WB
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Some must stall

Unfortunately, we cannot always bypass
Ld R5, 0(R3) IF D EX M WB

Sub R6, R5, R1 IF D stall EX M WB

Add R4, R5, R7 IF stall D EX M WB

Add R8, R5, R4 stall IF D EX M WB
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Control hazards

For these we must flush any instructions from the wrong
direction

We will deal with “prediction” in the coming few lectures.
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Multi-cycle execution

Extending the basic pipeline

We started by forcing all the integer instructions to pass
through the same number of stages even if they do not use
them. Why?
However, the execution of a double precision floating point
divide takes from 4 (most aggressive techniques) to over
50 (simple algorithms) cycles.

Extend the clock cycle. Everything is slow!

Allow some instructions to take multiple cycles in their
execution.
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Multi-cycle execution

Multi-cycle instructions

Assume multiply takes 5 cycles and add takes 3 cycles.
Ld.D F4, 0(R2) IF D EX M WB

Mul.D F0, F4, F6 IF D stall EXM1 EXM2 EXM3 EXM4 EXM5 M WB

Ld.D F8, 0(R3) IF stall D EX M WB

Add.D F6, F4, F6 IF D EXA1 EXA2 EXA3 M WB

Add.D F2, F0, F8 IF D stall1 stall2 EXA1 EXA2 EXA3 M WB

S.D F2, 0(R2) IF stall1 stall2 D EX stall3 M WB

A specific unit deals with each of the extended instructions.

Multi-cycle instructions increase the number of stall cycles.

Now, we get in order start but out of order termination.

We may also get multiple instructions in the M or

WB stage. ⇒ Stall either at the D or at the WB

stage.
Is it really necessary to stall?
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The exceptions

We have external interrupts and internal exceptions. These
events have several classifications.

1 User requested versus coerced.

2 Maskable versus nonmaskable.

3 Terminate versus resume.

4 Asynchronous versus synchronous.

5 Between versus within instructions.

In general, the first alternative of these pairs is easier to
implement and may be handled after the completion of the
current instruction.
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Precise exceptions

An exception is precise if all the instructions before the exception
finish correctly and all those after it do not change the state. Once the
exception is handled, the latter instructions are restarted from scratch.
Ld.D F4, 0(R2) IF D EX M WB

Mul.D F0, F4, F6 IF D stall EXM1 EXM2 EXM3 EXM4 EXM5 M WB

Ld.D F8, 0(R3) IF stall D EX M WB

Add.D F6, F4, F6 IF D EXA1 EXA2 EXA3 M WB

Add.D F2, F0, F8 IF D stall1 stall2 EXA1 EXA2 EXA3 M WB

S.D F2, 0(R2) IF stall1 stall2 D EX stall3 M WB

Exception at EXA1 of Add.D F6, F4, F6: Allow the Mul.D and

Ld.D to complete and flush the two Add.D and S.D.

Exception at EXM5 of Mul.D: The following Ld.D has already

completed! ⇒ either force in order WB or “undo”.

Both of the above: Which one has the higher priority? Why?
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Looking forward

Prediction on the branches.

Multiple pipelines in parallel.

Dynamic scheduling of the instructions by the hardware.
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Branches

There are two important questions.

When is the target address ready?

When is the condition resolved?

In a simple RISC processor with simplified branch instructions,
we might add more hardware in the decode stage to

calculate the target address and

resolve the simple conditions.

Downside: complex tests must be done by separate instructions
and the decode stage is even more complicated now.
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Delayed branches

Assuming a fast branch, with all the information known by the
end of the decode stage, what shall I do with instruction i+1?
Branch IF D EX M WB

i+1 IF D EX M WB

target IF D EX M WB

target+1 IF D EX M WB

Flush it and lose one cycle.
Assume that the effect of the branch is delayed by one
cycle and bring something from before the branch to put it
in this slot. (Maybe even from after it as long as it is not
“harmful”.)

⇒ Delayed branches expose the internal organization to the
compiler writer and complicates interrupt handling. Moreover,
most processors have complicated branches where the result is
not known till a few cycles pass. 4 / 18
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Speculation

We have already seen a few ‘solutions’ to branches:

stall,

fast branches evaluated completely at the decode stage, and

delayed branches.

Can we do better by predicting the decision and executing
speculatively?
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The speculation game

1 Guess the branch target.

2 Execute the branch to verify the guess.

3 Meanwhile, start execution at the guessed position.

We should attempt to minimize the penalty if our guess is right
to almost zero. If our guess is wrong the penalty might be
higher.

⇒ How often is our guess correct?

⇒ How can we improve this probability?

⇒ What are the penalties?
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Branch prediction

It is one of the heavily researched areas in computer
architecture during the 1990s.

Fixed: As an example, a processor may always fetch
in-line on true conditional branches.

Static: The strategy varies by opcode type but is
predetermined.

Dynamic: The strategy varies according to the program
behavior and depends on the history of this
branch. ⇒ Use up-down saturating counters.

Perfect prediction simply converts the delay for conditional
branch into that for unconditional branch (branch taken). The
important goal is the minimization of the branch delay not just
a higher prediction accuracy.
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Static options

The prediction to continue in-line is quite easy since we already
know the target (it is at PC + 4). However, this is not efficient.

Most branches (especially backward) are taken.

Generate the profile of your target applications.

Find out the most probable decision for each type of
branch.

Implement the hardware to predict statically based on this
information.
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Dynamic behavior

Was this branch taken or not taken in the past iterations?

How many iterations shall we consider?

The simplest case is to look for the last time only in a branch
history table (BHT).

⇒ Use the least significant bits of the PC to index a small
table.

⇒ Each entry in the table is one bit indicating if the last time
was taken or not. Use this bit as your prediction.

⇒ In case of a misprediction, complement this bit.
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Problems of the BHT

The BHT is simple to implement but

multiple PCs may alias to the same location and

we may have many mispredictions.

Let us look at an inner loop with four iterations.

Prediction N T T T N T T T N T T T
branch outcome T T T N T T T N T T T N
Misprediction? + + + + + +

We get two misprediction in four decisions.
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Improvement: 2-bit prediction

What if we look at the last two iterations? A prediction is not
changed untill it misses twice.

Taken

Taken

Taken

Taken

Not Taken

Not Taken

Not Taken

Not Taken

01 00
predict Not Takenpredict Not Taken

11

predict Taken predict Taken

10

The inner loop with four iterations.

Prediction N N T T T T T T T T T T
branch outcome T T T N T T T N T T T N
Misprediction? + + + + +

We get only one misprediction in four decisions.
11 / 18
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Another 2-bit idea

We can use a saturating up-down two bit counter.

strong Not taken weak not taken weak taken strong Taken
00 01 10 11
N n t T

The inner loop with four iterations once more.

Prediction n t T T t T T T t T T T
branch outcome T T T N T T T N T T T N
Misprediction? + + + +

We get only one misprediction in four decisions.
This can be easily extended to more than two bits although
2-bit predictors are good enough for many systems.
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Branch prediction buffer

This is a table accessed during the fetch cycle by the least
significant bits of the PC.

Each entry may be a 2-bit predictor.

If we decode the instruction to be a branch, we have the
prediction for it.

This leads to a predicition accuracy in the high 80% to over
99% in some applications.
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Correlating predictors

1 i f ( aa==2)
2 aa = 0 ;
3 i f (bb==2)
4 bb = 0 ;
5 i f ( aa !=bb) { . . . . }

The decision on the third branch depends on the previous
two.

We can correlate the branches!
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Global history

A branch history shift register keeps the history of the
previous few branches. One bit for each branch. For
example, for a history of two branches we have two bits
and four possible cases: 00, 01, 10, and 11.

We have a table (of the branch prediction buffer) for each
case and decide the prediction on the least significant bits
of the PC and the global history.
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Hybrid schemes

Different predictors work best for different branches.
⇒ Let us combine them and choose the best.
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Branch Target Buffer

...
...

...

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
Branch Branch Branch

instruction prediction target
address statistics

If the IF “hits” in the BTB, the target instruction that was previously
stored in the BTB is now fetched and forwarded to the processor at its

regularly scheduled time.
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Conclusions

There are many ways to minimize the effect of control
hazards.

We can achieve very high prediction ratios.

We must also minimize the penalty of the branch.
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Out of the bottleneck

Let us look at the example of the fire and the well again.

One person is at the well. There are two lines of people
from the well location to the fire. The person at the well
fills a bucket and hands it to the next person in one of the
lines.

Two persons are at the well each filling a bucket and then
providing it to the lines.

Which one will put the fire down faster? Why?
The “issue rate” of CPI = IPC = 1 is called Flynn bottleneck.

3 / 13

Multiple pipelines
Dependences

Summary
ILP

ILP

Instruction Level Parallelsim (ILP) is a property of the software
not the hardware. The hardware supports ILP by

pipelining,

superscalar in order execution such as in Sun UltraSparc, or

superscalar out of order execution such as in Intel
Pentium4.

The reordering (scheduling) may be dynamic at run time by the
hardware or static at compile time by the software.
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Going to multiple issue

We will look today at in order execution to solve its problems
and detect any dependences. How can we issue two, four, or in
general n instructions per cycle?

Fetch n instructions per cycle,

decode n instructions per cycle,

execute n instructions per cycle,

may access n locations in memory per cycle, and

may write into n locations in the registers.
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Wide fetch

We are not getting the instructions from the real memory but
from an instruction cache.

Instructions are sequential

Do they fall on the same ‘line’ in cache? Similar to the issue
of aligned and non-aligned accesses to half-words in the
memory.

Instructions are not sequential

Two serial accesses? No! You will not know the target
address and complete the second fetch within one clock
cycle.
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Solution to wide fetch

Problem: On a taken branch all the fetch slots after the
branch are thrown away. ⇒ a low utilization of the
fetch unit and eventually a low IPC.

Solution: Trace cache

In addition to the regular cache, store the
dynamic instruction sequence.
Fetch from the trace cache but make sure that
the branch directions are correct.
If you miss get the correct instructions from
the regular cache or even from the memory.

A trace cache is used in Pentium4.
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Wide decode

Decode: The decoding of a number of instructions

is easy if they are of fixed length and fixed
formats
but is harder (although possible) for variable
length.

Read operands: We should check the dependencies and read the
operands.

With n instructions, we have at most
2n operands to read in one cycle. ⇒ 2n read
ports and the register file becomes
proportionally slower.
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Dependences for n instructions

Remember that we have to stall sometimes even with a
complete bypassing network.
Ld R5, 0(R3) IF D EX M WB

Sub R6, R5, R1 IF D stall EX M WB

We check

(s1Dec
= DEx)&(opEx = Ld) | (s2Dec

= DEx)&(opEx = Ld)

With two instructions going in the decode, the number of
checks quadruples and not just doubles! n2 growth in circuits
for stall and bypass.

(s1Dec1
= DEx1)&(opEx1 = Ld) | (s2Dec1

= DEx1)&(opEx1 = Ld)

|(s1Dec1
= DEx2)&(opEx2 = Ld) | (s2Dec1

= DEx2)&(opEx2 = Ld)

|(s1Dec2
= DEx1)&(opEx1 = Ld) | (s2Dec2

= DEx1)&(opEx1 = Ld)

|(s1Dec2
= DEx2)&(opEx2 = Ld) | (s2Dec2

= DEx2)&(opEx2 = Ld)
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Wide execute

Shall we put n execution units?

Yes for ALU.

No for floating point division since it is big and used
infrequently.

⇒ based on the instruction statistics, provide a mix of units.

RS/6000: 1 ALU/memory/branch + 1 FP

Pentium II: 1 ALU/FP + 1 ALU + 1 load + 1 store + 1
branch

Alpha 21164: 1 ALU/FP/branch + 2 ALU + 1 load/store
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n2 bypass

The bypass detection logic grows as n2. This is acceptable since
the sources and destinations are small fields (5 bits for
32 registers).
However, the bypass buses also grow as n2. This is not
acceptable. The busses are 32 or 64 bits wide each.

It is difficult to layout and route all of these wires.

Wide multi-input multiplexers are slow.

⇒ Group functional units into clusters and issue the dependent
instructions to the same cluster.
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Wide memory and write back

There is nothing too special about these two stages for wide
issue. Their complexity just grows and they may become
slower.

Additional ports.

Conflict detection logic for simultaneous multiple reads and
writes to the same bank.
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The are some problem spots for in order superscalar processors.

Fetch and branch prediction: may use trace cache.

Decode: the dependence checks grow as n2.

Execution: Clustering may solve the n2 bypass buses problem.
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What did we learn?
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Where are we?

We pipeline the instructions to enhance the throughput.

We included long instructions.

We handled exceptions.

We managed in order issue to multiple pipelines in parallel.

Now we are ready to have out of order execution.

Dynamic scheduling in the hardware.

Static scheduling in the software.
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Why do we go out of order?

Div.f F0, F1, F2 IF D EXD1 EXD2 EX... EXD9 M WB

Add.f F3, F0, F4 IF D stall1 stall... stall8 EXA1 EXA2

Mul.f F8, F2, F5 IF stall1 stall... stall8 D EXM1

The Add.f must wait because of the RAW hazard.

The Mul.f does not need to wait. It can start before the
Add.f instruction.
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Dynamic scheduling

Execution: is non-sequential (not the original order)

This reduces stalls,
improves the utilization of the functional
units, and
enables parallel execution.

Exceptions: must be precise. We must maintain the appearance
of sequential execution. This is important but
hard.

5 / 15

Going out of order
VLIW

What did we learn?

Dynamic scheduling
Register renaming
Advanced techniques

Instruction buffer

Instructions are brought from memory and dispatched to
the decoder in order.

The decoder must be able to look at multiple instructions
to re-order.

Some instructions will be issued (started) while others are
waiting.

The instructions reside in the instruction buffer while the
decoder checks them. (Different names are used by various
people.)
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Dispatch and Issue

Dispatch: is the first part of decoding.

The new instructions get a location in order
in the instruction buffer.
If the buffer is full, the dispatching unit stalls
all the following instructions.

Issue: is the second part of decoding

Start the execution, i.e. send instructions from
instruction buffer to execution units out of
order.
An instruction that has to wait does not delay
the following instructions.
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Going out of order
VLIW

What did we learn?

Dynamic scheduling
Register renaming
Advanced techniques

Register renaming

Div.f F0, F1 ,F2
Add.f F3, F0, F4
Mul.f F0, F1, F2
Add.f F4, F0, F2

⇒
Div.f L0, L1 ,L2
Add.f L3, L0, L4
Mul.f L5, L1, L2
Add.f L6, L5, L2

Think of the registers as names not specific locations.

On a write, allocate a new location and record it in a map
table.

On a read, find the location in the table of the most recent
write.

De-allocation occurs when the dependent RAW hazards are
cleared.

This is a neat idea that might be implemented in either the
hardware or the software. It eliminates WAW and WAR
hazards.
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Going out of order
VLIW

What did we learn?

Dynamic scheduling
Register renaming
Advanced techniques

Other techniques: Scoreboards and Tomasulo’s
algorithm

The scoreboard technique uses a centralized approach to
check and resolve the dependencies. It was first
implemented in CDC6600 in 1964.

The Tomasulo data flow technique uses a distributed
approach where the reservation station may also contain
the value of the register not just a tag. This amounts to a
register renaming scheme. It was first implemented in
IBM 360/91 in 1967.

Those who are interested can read more about these techniques
in the “Quantitative Approach”.

9 / 15

Going out of order
VLIW

What did we learn?
Can compilers help?

Very Long Instruction Word

We have seen some problems with multiple issue superscalars:

N2 dependence checks (large stall and bypass logic),

N2 bypass buses (partially fixed with clustering), as well as

wider fetch and problems with branch prediction.

In VLIW,

a single issue pipeline that has N parallel units is used,

the compiler only puts independent “instructions” in the
same group,

VLIW travels down the pipeline as one unit, and

in pure VLIW machines the processor does not need to do
any dependence checks.
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Going out of order
VLIW

What did we learn?
Can compilers help?

VLIW purity

In a pure (classical/ideal) VLIW design the compiler schedules
the pipeline including the stall cycles.

⇒ The compiler must know the exact latencies and
organization of the pipeline.

Problem 1: These details vary in different implementations.
We must recompile the code. (TransMeta
recompiles on the fly.)

Problem 2: Even for a specific implementation, the latencies
are not fixed. What shall the hardware do for a
cache miss?

Real implementations are not ideal.
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Going out of order
VLIW

What did we learn?
Can compilers help?

Scheduling and issuing

Schedule: Decide the order of the instructions.

Put independent instructions between the
slow operations and the instructions that need
their results.

Issue: Decide the time a specific instruction starts.

Once all the dependencies are clear we can
start.

Schedule Issue
Pure VLIW SW SW
In-order superscalar SW HW
Out-of-order (dynamic) HW HW
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Going out of order
VLIW

What did we learn?
Can compilers help?

Scheduling: Compiler or HW

Compiler:

+ Large scope (may be the whole program).
+ Leads to a simpler hardware.
− Low branch prediction accuracy.
− No information about memory delays (cache

misses).
− Difficult to speculate and recover.

Hardware:

+ Better branch prediction accuracy.
+ Dynamic information about memory delays.
+ Easier to speculate and recover.
− Finite resources to buffer instructions.
− Complicated hardware (harder to verify, may

lead to slower clock).
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Going out of order
VLIW

What did we learn?
Can compilers help?

Compiler techniques

We want to increase the number of independent instructions.

Loop unrolling: Put more than one iteration in sequence in a
wider loop.

Software pipelining: Similar to what happens in hardware, a
part of the first iteration is done with a part of the
second iteration.

Trace scheduling: Programs include other things beyond loops.

Those who are interested can read more about these techniques
in the “Quantitative Approach”.
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Going out of order
VLIW

What did we learn?

Where are we now?

Pipelines.

Exceptions.

Muliple issue.

Dynamic scheduling.

Static scheduling.

Next we go to the memory system.
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2 Classification of memories
Basic operations
In relation to time

3 Organization
Memory cells
SRAM and DRAM

4 Summary

2 / 13

Digital ICs
Classification of memories

Organization
Summary

Inside large digital integrated circuits

Memories

for temporary storage of results (registers),
for the reduction of the information retrieval time
(caches),
or as the main store of information (main memory,
virtual memory).

Control logic blocks handle the flow of information and assure that
the circuit performs what is desired by the user.

Datapath blocks

the real engine that performs the work.
Mainly perform either some arithmetic or logic
operations on the data.

Communications between all the elements is via wires usually
arranged in the form of buses.
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Digital ICs
Classification of memories

Organization
Summary

Basic operations
In relation to time

Classification: write, read, and erase

Some technologies allow only a single writing and many
reads, others allow re-writing.

In some technologies a new writing overrides the older
information, other technologies need an erase cycle.

How do you classify: clay, pottery, paper (pencils and pens),
and classboards?
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Digital ICs
Classification of memories

Organization
Summary

Basic operations
In relation to time

Classification: sequential versus random access

Random access means that we access any location (that you
choose randomly) in the same amount of time.

Does the tape provide random access?

Is the ROM a random access memory?

Think of turning your eyes in a large room versus moving with
your legs.

5 / 13

Digital ICs
Classification of memories

Organization
Summary

Basic operations
In relation to time

Classification: volatility

Do we loose the information when we turn the power off?

Non-volatile: such as ROM, Flash, CD, . . .

Volatile: such as RAMs.

Contrast pottery to a statement written in the sand on the
beach.
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Digital ICs
Classification of memories

Organization
Summary

Basic operations
In relation to time

Access time and capacity

Let us order the memories within a computer according to
the time taken to retrieve the information.

Now, let us do it according to the capacity.
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Memory cells
SRAM and DRAM

Memory chip organization

The size of the memory grows exponentially with the number of

bits in the address. Capacity = 2address lines × data lines︸ ︷︷ ︸
Organization

.
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What is the effect of the number of address lines and data lines
on the speed? Why?
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Digital ICs
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Summary

Memory cells
SRAM and DRAM

Inside the cell

The design of the cells leads to different memory technologies.

Wire ROM
Fuse PROM
Floating gate EPROM, EEPROM, Flash
Latch Static RAM
1T+1C Dynamic RAM
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Summary

Memory cells
SRAM and DRAM

SRAM and DRAM

Static RAM Dynamic RAM
Cell composition many transistors 1 T + 1 C
Cell size bigger smaller
Density lower higher
Capacity smaller larger
Speed faster slower
Power consumption more less
Retention as long as power is on needs refreshing

Which one do we use in caches? And in the main memory?
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Memory cells
SRAM and DRAM

Back to DRAM chips

DRAM addressing is divided to rows and columns.
CAS

/
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/Row address
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Digital ICs
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Memory cells
SRAM and DRAM

DRAM enhancements

The DRAM controller multiplexes the address and provides the
RAS and CAS to the chip. To get a faster access, we use

a fast page mode,

SDRAM (S for synchronous) or DDR SDRAMs, or

RDRAMs (R for Rambus).
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Memory summary

A memory is an entity that holds the information for a later
use.

A memory with a small capacity fetches the information
faster than another with a larger capacity. Why?

A memory with a small capacity may use larger cells with
more power to provide an even faster operation. Why does
a bigger cell and more power translate to speed?

Decoding is in levels. Remember your own algorithm to
reach the room 8208.
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Caches
Implementation

Points to remember

Definitions
Average Memory Access Time (AMAT)

Introduction to caches

Why do we have memories in computers?

What is the hierarchy of storage elements (latency,
bandwidth, capacity, and price)?

Why is there a difference in speed?

Imagine yourself in a large library with many books. You want
to read a number of sections from a few books. What are you
going to do?

3 / 11

Caches
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Definitions
Average Memory Access Time (AMAT)

Why do we have caches?

On the average, our goal is to give the processor the illusion of
a large memory system with a short effective access time.

1 for ( i =0; i<n ; i++)
2 sumsq = sumsq + x [ i ]∗ x [ i ] + y [ i ]∗ y [ i ] ;

The basic principles of locality:
1 Spatial locality.

Sequential access.

2 Temporal locality.
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Definitions
Average Memory Access Time (AMAT)

Some definitions

When the processor fetches a piece of information it might be
an instruction or a data value. Hence,

we may use a unified (integrated) cache for both or

we may use a split I$ and D$.

We may also have multiple levels of caches. The processor tries
first to find the information in the nearest (highest) level of the
hierarchy.

The information request may hit in the cache and the
needed word reaches the processor after the hit time or

it may miss in the cache and is retrieved from the lower
level of the hierarchy after an additional miss penalty.
(miss time = hit time + miss penalty)
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Caches
Implementation

Points to remember

Definitions
Average Memory Access Time (AMAT)

How much time are we loosing on misses?

Each instruction accesses the memory for its own fetch.

It may also access the memory for data.

⇒ memory accesses per instruction ≥ 1.
Each instruction may hit or miss. If we profile our applications
we get the hit rate and miss rate and calculate

AMAT = hit time× hit rate + miss time×miss rate

= hit time + miss rate×miss penalty.
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Implementation
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Adderss mapping
Replacement policy
Writing policy

Implementation

To understand how caches work, let us ask a few fundamental
questions. Here are the first two.

1 Where is the block placed in the cache?

Simplest is Index = (Block address)mod (# blocks in cache).
This is called direct mapping.

2 Is the block available (hit) in the cache?

Each block in the cache is associated with a tag (and a valid
bit). If the requested block has the same index but a
different tag it is a miss.

Let us think about a cache with 8 blocks, each one word, that is
initially empty and the references: 22, 26, 22, 26, 16, 4, 16,
and 18 to words in the memory.
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Caches
Implementation

Points to remember

Adderss mapping
Replacement policy
Writing policy

Address

Tag Index Offset B/word

�

�

�

Block address

Word address

Byte address

-

-

-

Let us try to find the size of a cache with 9 bits index in a
machine having 32 bits for its addresses assuming that the word
is four bytes and the block is eight words. Why eight words in a
block?
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Back to fundamentals

Here is another fundamental question
3 In a miss and a need to replace a block, which one shall I

choose?

Trivial for direct mapping.
Random, Least recently used, or FIFO for other mapping
techniques that we will study later. Why do we need other
mapping techniques?
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Write policies

The last fundamental question is

4 what happens on write?

Write through: Write to the lower level as well. May slow
things down. ⇒ use a write buffer.

Write back: (or Copy back) write only when the block is
replaced. ⇒ minimize the traffic by indicating
if the block is dirty.

What about a miss at the time of writing (remember the case of
multiple words per block)?

Write through Copy back

Write allocate Write allocate

No-write allocate No-write allocate

10 / 11

Caches
Implementation

Points to remember

Now what

A designer seeks to reduce

the miss penalty,

the miss rate, and

the hit time.

We must balance that with the rest of the hierarchy as well.
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Access time and bandwidth
Wide memories
Interleaved memories

Access time and bandwidth

Let us look at a large system: many processors each with its
own cache accessing the memory system.

The access time of the memory is the period from the time the
address is given to the memory chip till the data is
ready to be sent to the requester.

The bandwidth is the number of bytes (or requests) served per
unit time.

The bandwidth is not simply the inverse of the access time.
Why? How can you increase the bandwidth given a fixed access
time?
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Performance
CPU time
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Access time and bandwidth
Wide memories
Interleaved memories

Higher bandwidth: wide memories

Example 1 In a system, the access time of main memory is

10 clock cycles. The cache block size is 16 bytes. The address

is transfered on the bus in one clock cycle and any result from the

memory is transfered back in one cycle. What is the bandwidth for

a narrow bus and memory (4 bytes) and that of a wide bus and

memory (16 bytes)?
Solution: We may assume that the address of the whole block is
sent only once and that the memory results are not overlapped with
the memory access.

Tn = 1 + 4× (10 + 1) = 45 cycles.

BWn = 16/45 ≈ 0.3556 bytes/cycle

Tw = 1 + 10 + 1 = 12 cycles.

BWw = 16/12 ≈ 1.3333 bytes/cycle

Is it worth the price?
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Access time and bandwidth
Wide memories
Interleaved memories

Higher bandwidth: interleaved memories

What about multiple memory banks but a single narrow bus?

Example 2 Now, if we use a simple interleaving scheme where
four banks are used and each clock cycle one of them starts
to access its data, what is the bandwidth?
Solution: In this case, at time 0 the address is sent then at
time 1 the first bank starts and its data is ready at time 11.
The second bank starts at time 2 and its data is ready at
time 12 and so on.

Ti = 1 + 10 + 4× 1 = 15 cycles.

BWi = 16/15 ≈ 1.0667 bytes/cycle

In word interleaved systems, the bank number is

(word address)mod(# banks).
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How much time are we loosing on misses?

Each instruction accesses the memory for its own fetch.

It may also access the memory for data.

⇒ memory accesses per instruction ≥ 1.
In addition to AMAT, we calculate the total CPU time for the
program.

CPU time = (CPU cycles + Stall cycles)× Clock cycle

= (CPU cycles + Read Stalls +Write Stalls)× Clock cycle

CPU time ≈ IC × (CPI +
Mem access

Inst.
×miss rate×miss penalty)

× Clock cycle
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Simple example

Example 3 A system with CPI of 1 has load/store frequency
of 25% with cache miss rate 5% and miss penalty 10 cycles.
A suggested change to the cache reduces the miss rate to 2%
but increases the size of the clock cycle by 20%. Should you
use this change?
Solution: We should calculate the CPU time for both cases
to decide

T1 = IC(1 + (1 +
25

100
)× 0.05× 10)× cycle

T2 = IC(1 + (1 +
25

100
)× 0.02× 10)× 1.2cycle

T1

T2
=

1 + 1.25× 0.5

(1 + 1.25× 0.2)× 1.2
=

1.625

1.5

Yes, this change is beneficial.
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Is ‘faster’ really that much better?

Example 4 The gcc compiler runs on a system with a miss
rate of 5% for instructions and 10% for data. The perfect CPI
is 1 cycle, the miss penalty is 12 cycles, and the load/store
frequency is 33%. Study the effect of changing to 1) a faster
architecture with CPI = 0.5 instead of 1 and 2) a faster
system with three times the clock frequency.
Solution: First let us calculate the original CPU time

Torig = IC(1 + 0.05× 12 +
1

3
× 0.10× 12)× cycle

= IC(1 + 1)× cycle
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Is ‘faster’ really that much better?

The changed CPU times are

TCPI = IC(0.5 + 0.05× 12 +
1

3
× 0.10× 12)× cycle

= IC(0.5 + 1)× cycle

Tfreq = IC(1 + 0.05× 36 +
1

3
× 0.10× 36)× 1

3
cycle

= IC(1 + 3)× 1

3
cycle

The smaller CPI gives only 1.5/2 = 3/4 reduction while the
higher frequency gives only (4/3)/2 = 2/3.
Remember that marketing is different from engineering!
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Final notes

The hit time is also important.

Spatial locality leads us to blocks with multiple words.

A larger block size may increase the miss penalty. We must
balance different factors.

Wide and interleaved memories boost the system
performance.

The total time taken by a program is a very important
measure.
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Virtual memory
Implementation of virtual memory

Points to remember
Disk technology

Virtual memory

Caches and main memory give the processor the illusion of a
large and fast memory.
A second level of the hierarchy is between the main memory
and hard disk. This level gives the illusion of a much larger
memory at a reasonable speed.
We will look at the same set of questions.

1 Where to put the “block” (page)?

2 How to find it?

3 What if it is not found (page fault)?

4 What is the writing policy?
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Why?

A much larger memory helps in two main aspects.

1 Now, a single program may be larger than the physical real
memory.

2 The programs use a virtual address but is located in the
real memory at a physical address. This virtual to physical
translation helps in multiprogramming.

Relocation: A process is loaded in any physical frame.
Protection: Each process is isolated from other processes

and cannot access their physical addresses.
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Disk technology

Disks have cylinders, tracks, and sectors.

Outer tracks are physically longer than inner ones.

Old disks used the same data size for all sectors.
New disks use a constant linear recording density and put
more data on outer tracks.
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Virtual memory
Implementation of virtual memory

Points to remember
Disk technology

Disk times

Seek time: Time for the arm to reach the track. Disk
companies publish the maximum and minimum
seek time between cylinders. Their average is not
what you should use!

Rotational time: Time for the disk to rotate and get the
required sector under the head. The average is
usually taken as half of the time for a full rotation.
(0.5/RPM)

Transfer time: Time for the disk to read the data and provide it
to the controller. (sector size/transfer rate)

Controller overhead: Time taken to connect to the bus and
resolve any queuing delays.
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Virtual memory
Implementation of virtual memory

Points to remember
Disk technology

Implications of slow disks

Direct mapping leads to conflict misses although we might
have other empty slots. Can we use a better mapping to
minimize the page fault rate?

Disks transfers are in sectors, we should not think about
individual words. Page sizes are typically between 4 kB
and 16 kB.
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Virtual memory
Implementation of virtual memory
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Mapping
Replacement policy
Write policy

Mapping the blocks

Instead of a high conflict miss due to direct mapping (the block
goes to exactly one location) we can map the block to a set of
locations. Within the set, the block may be placed randomly.

Index = (Block address)mod (# sets in cache)
For a cache that may host n blocks

a direct mapped cache has n sets,

a two way set associative has n/2 sets (each set has two
locations),

a four way set associative has n/4 sets (each set has four
locations), and

a fully associative cache has one set where any block may
be placed in any location.

For virtual memory, we use fully associative mapping.
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Mapping
Replacement policy
Write policy

Address translation

Virtual page number page offset

↓ ↓
Physical page number page offset

This translation is done by a page table located in memory.
Does that mean that we access the memory twice for each
request once for the translation and the second for the actual
transfer?
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Implementation of virtual memory
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Mapping
Replacement policy
Write policy

The page table

It is a table addressed by the virtual address and containing the
physical address. Do we need tags? Do we need a valid bit?

If the virtual address is 32 bits, the physical address is
32 bits, and the page size is 4 kB, how many pages can we
have?

If each entry in the page table is 4 bytes, what is the
expected size of the table?

If the page is not in the physical memory its disk address
may be recorded in the page table or in a separate
structure maintained by the OS.
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Virtual memory
Implementation of virtual memory

Points to remember

Mapping
Replacement policy
Write policy

Page table size limitation

A single limit register.

If the programming memory model has two segments (heap
and stack) then maybe use two limit registers.

An inverted page table has a number of entries equal to the
number of physical pages only.

Can we page the the page table?
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Mapping
Replacement policy
Write policy

Replacement

In direct mapping the replacement is trivial. In fully
associative, we must think about it.

First In First Out.

Least Recently Used.

Random.

Do we need any extra bits to implement LRU replacement?
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Mapping
Replacement policy
Write policy

Write policy

Since disks are much slower than semiconductor memories, we
use write back (also called copy back) and not write through.
We must use an additional dirty bit to know if the page was
changed while in memory or not.
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Summary

Naming convention

caches virtual memory

block (a few words) page (4kB to 16kB)
miss fault

Policies are heavily influenced by the much slower disk.

Page placement fully associative
Page identification via translation by the OS
Replacement LRU (sophisticated)
Write strategy write back with write allocate
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TLB followed by cache
TLB and cache in parallel

Translation look-aside buffer (TLB)

Spatial locality means that the program will be accessing
the same page many times. There is no need to retranslate.

Temporal locality means that the program will be accessing
the pages that were recently accessed.

⇒ Use a small storage within the processor to buffer the recent
translations. This TLB is effectively a type of ‘cache’ for the
page table.
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Translation look-aside buffer (TLB)
Protection
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TLB followed by cache
TLB and cache in parallel

TLB design

Each entry has the virtual page number and the physical
page number as well as the reference and dirty bits of the
page.

The block size is one or two page table entries and the
TLB size is between 32 and 1024 blocks.

A fully associative mapping is used with a random
replacement policy. Why not LRU?

A write back policy is used. The only part that might
change is the reference and dirty bits.
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TLB followed by cache
TLB and cache in parallel

Sequence of events

1 The processor generates the virtual address.
2 It is checked in the TLB.

In case of a TLB hit, the virtual address is translated.
For a miss, the TLB is updated and the translation
completed.

If the page is not in physical memory, then allocate it.

3 The physical address goes to the cache.

In case of a cache hit, the data is retrieved and sent to the
processor.
In a miss, the data is retrieved from the main memory.
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TLB followed by cache
TLB and cache in parallel

Can we make things faster?

A virtually addressed cache may lead to aliasing when two
programs attempt to access the same location (as in
printing a file) with two different virtual addresses.

If the whole cache index falls within the bits of the page
offset then the access to both the cache and TLB can occur
in parallel.
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Protection

User programs must be protected from any process that tries to
access their private data.

The OS maps the virtual address space of each process to a
different set of physical pages.

The user programs cannot alter the page table.

The sharing of data between processes is controlled by the
OS including the permissions for reading and writing.
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Translation look-aside buffer (TLB)
Protection

Misses at the different levels
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Requirements for protection

The minimum requirements are

1 two operation modes: a user mode and a system mode,

2 the CPU must allow the user program to request a service
from the system (this switches the mode bit in the CPU
state to the system mode),
and

3 some instructions are privileged and are only allowed in
system mode.

In the case of context switching, we either invalidate all the
data in the TLB or we include the process ID in the entries and
allow each process to access its own entries only.
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Page faults are exceptions

Page faults must be precise exceptions.

1 All the instructions before the exception finish correctly.

2 All the instructions after it do not change the state.

3 Once the exception is handled, the latter instructions are
restarted from scratch.

The CPU saves the cause the of the exception (page fault) and
the the program counter value of the instruction that must be
restarted then switches to the system mode.
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Handling the page fault

Because it is a page fault, the OS will

find the location of the referenced page on the disk,

choose a physical page to replace (if it is dirty, write it to
the disk),

start a read to bring the needed page from the disk,

save the whole state of the current process,
and

start another process while the disk is bringing the page.
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Misses

Four C’s cause misses in caches. These same types affect the
virtual memory and the TLB as well.

Compulsory misses: The first time we reference a word.

reduce it by using multiple words in the block.

Capacity misses: No free space in the cache.

reduce it by using a larger cache.

Conflict misses: Multiple blocks map to the same location.

reduce it by using a higher associativity.

Coherence misses: Another system component (another
processor or I/O) invalidates the cache location.

reduce it by limiting parallelism!

The miss rate reduction techniques just mentioned may increase
the hit time and increase the cost.
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Summary

Caches

Split versus integrated
Direct, set associative, and fully associative.
Replacement and write policies.

Main memory

Wider memories and interleaving for higher bandwidth.
Virtual memory for larger programs and multiprogramming.

TLB

To quickly implement the virtual to physical translation.

12 / 12


