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Abstract—This paper proposes a low power high throughput Reed
Solomon decoder designed optimally for handheld devices under
the DVB-H standard. This architecture based on Decomposed
Inversionless Berlekamp-Massey Algorithm (DiBM), where the
error locator and evaluator polynomial can be computed serially.
In the proposed architecture, a new scheduling of 6 Finite
Field Multipliers (FFMs) is used to calculate the error locator
polynomial in a two parallel way and these multipliers are
reused to calculate the error evaluator polynomial in a novel
architecture called two parallel modified evaluator decomposed
inversionless Berlekamp-Massey (MEDiBM) to achieve low energy.
This architecture is tested in a pipelined two parallel decoder. This
decoder has been implemented by 0.13µm CMOS IBM standard
cells for RS(204, 188) and gave gate count of 33K and area
of 1.06mm2. Simulation results show this approach can work
successfully at the data rate 100Mbps with power dissipation of
0.266mW .

I. INTRODUCTION

Among the various kinds of error correcting codes (ECC) in
digital communication systems, Reed-Solomon (RS) code is
is especially suitable for the situation where long codes are
needed, for example, Digital Video Broadcast-Handheld (DVB-
H) system.

The conventional RS decoder architecture [1], can be summa-
rized into four steps : 1) calculating the syndromes from the
received codeword; 2) computing the error locator polynomial
and the error evaluator polynomial; 3) finding the error loca-
tions; and 4) computing error values. It can be modeled with
the Block diagram shown in Figure 1.

The second step is considered the most complex part in RS
decoding, there are two main approaches to compute the error
locator and evaluator polynomials [1], the Berlekamp-Massey
algorithm, and the Euclidean algorithm. Berlekamp-Massey
algorithm gives Lower complexity than the standard Euclidean
algorithm [1].

In wireless communication applications most of RS architec-
tures focused on low power consumption with a reasonable
area. Figure 1 shows the conventional pipelined architectures
for the conventional RS decoder. The bottleneck in this ar-
chitecture is the syndrome and Chien search blocks where
they need n clock cycles to finish, where n is the codeword
legnth. The serial architecture [2] was only interest to minimize
the area so this architecture suggests 3 FFMs implementation
to compute σ(x) and W (x) with latency equal to 3t2 + 3t
clock cycles, where t is the number of symbols that can be
corrected with this code so the throughput of this architecture
is controlled by the syndrome circuit n clock cycles. An
architecture for syndrome and Chien search blocks are proposed
as two parallel syndrome and two parallel Chien search [3]
where they need n

2 clock cycles to finish which make the
bottleneck of the architecture in the algorithm and according
to that the throughput will be controlled of the latency of the
algorithm, then the modified evaluator architecture [4] reduced

the latency of the algorithm to be 2t2 + 5t and according to
this modification the throughput increased and controlled by
the latency of the algorithm.

In this paper a two parallel modified evaluator architecture
for Decomposed inversionless Berlekamp-Massey (DiBM) al-
gorithm is proposed. In this architecture, the locator polynomial
is calculated in two parallel way [5] which needs 6 FFMs in its
calculations, then the error evaluator polynomial is efficiently
implemented by reusing the 6 FFM to reduce the latency of the
algorithm to be t2 +4t+2 which transfers the bottleneck to the
two parallel syndrome block again and make the throughput
controlled by the two parallel syndrome n

2 clock cycles, so
to support the same throughput for architecture [2] and the
proposed and architecture, the proposed architecture needs half
the frequency which is used in architecture [2] which makes
the power dissipation of the proposed architecture is better.

The organization of this paper is as follows: Section 2 in-
troduces the fundamental decoding of Reed-Solomon codes
and the main blocks of RS decoders. Section 3 presents the
proposed architecture of the Key Equation Solver (KES) “two
parallel modified evaluator architecture”. Section 4 discusses
the architecture of the proposed decoder. Section 5 compares
between the proposed architectures and other RS(204; 188)
architectures. Finally, section 6 gives our conclusions.

II. REED SOLOMON CODE

RS codes are non-binary cyclic codes. RS(n, k) codes on m-bit
symbols exist for all n and k for which 0 < k < n ≤ 2m − 1,
where k is the number of data symbols to be encoded, and
n called codeword. This means that the RS encoder takes k
data symbols and adds parity symbols (redundancy) of (n− k)
symbols to make an n symbol codeword in systematic form. For
the most conventional RS(n, k) code (n, k) = (2m−1, (2m−
1)−2t ) where t is the number of symbols that can be corrected
with this code, where t can be expressed as t = b(n− k)/2c

The code generator polynomial g(x) of the code is

g(x) =
n−k∏
i=0

(x− αi+j) (1)

Where j is an arbitrary integer and α is a primitive element of
the field GF(2m), i.e. is a root of field generator polynomial.

Decoding process can be divided into four steps. The first
step is to calculate the syndrome polynomial S(X) with 2t
coefficients Si from the received codeword R(x) as shown in
equations, 3 and 4.
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Figure 1. Main Block Diagram of RS Decoder

R(X) = rn−1x
n−1 + rn−2x

n−2 + · · ·+ r1x+ r0 (2)

S(x) =
2t∑
i=1

Six
i−1 (3)

Si = R(αi) = rn−1(αi)n−1 + rn−2(αi)n−2 + · · ·
+ r1(αi) + r0 (4)

where i = 1, 2, . . . , 2t.
The second step is the key equation solver (KES) which
solves the key equation S(x)σ(x) = W (x)modx2t to produce
the error locator polynomial σ(x) and the error evaluator
polynomial W (x) from the syndrome polynomial S(x). The
key equation solver technique will be explained in detail in
section 3. The third and fourth steps are parallel Chien search
and Forney algorithm respectively to produce the error locations
and error values from equation el = W (α−l)

σ′(α−l)
, where α−l is the

root of σ(x). But the two steps can be combined in one block
which is called error evaluator block.

III. ARCHITECTURE OF TWO PARALLEL MODIFIED
EVALUATOR OF DIBM ALGORITHM

A. Computation of the Error Locator Polynomial σ(x)

The Error Locator Polynomial σ(x) in our architecture is
computed in a 2t step iterative algorithm. The initial conditions
are D(−1) = 0, δ = 1, σ(−1)(x) = T (−1)(x) = 1, and
∆(0) = S1

where σ(i)(x) is the ith step error locator polynomial and σ(i)
j ’s

are the coefficients of σ(i)(x) ;∆(i) is the ith step discrepancy
and δ is a previous nonzero discrepancy; T (i)(x) is an auxiliary
polynomial and D(i) is an auxiliary degree variable in ith step.
then the algorithm proceeds as
for (i = 0 to 2t− 1)

{
σ(i)(x) = δ.σ(i−1)(x) + ∆(i)xT (i−1)(x),
∆(i+1) = Si+2σ

(i)
0 + Si+1σ

(i) + ...+ Si−t+2σ
(i)
t

(5)

if (∆(i) = 0 or 2D(i−1) ≥ i+ 1) then
D(i) = D(i−1), T (i)(x) = xT (i−1)(x)
else
D(i) = i+ 1−D(i−1), δ = ∆(i), T (i)(x) = σ(i−1)(x)
The ith iteration can be decomposed into (

⌈
t+1
2

⌉
+ 1) cycles.

In each cycle two coefficients from σ(i)(x) are calculated in

parallel as shown in equations, 6 and 7, these coefficients need
four FFMs. In the same clock cycle two partial results from
the discrepancy ∆(i+1) are calculated in parallel as shown in
equation 9, this operation needs two FFMs. So it is clear that
we need 6 FFMs in parallel in the proposed architecture to get
the error locator polynomial σ(X).
Define

σ
(i)
2j =

{
δ.σ

(i−1)
0 , for j = 0

δ.σ
(i−1)
2j +∆(i)T

(i−1)
2j−1 , for 1 ≤ j ≤ t

(6)

σ
(i)
2j+1 =

{
δ.σ

(i−1)
2j+1 +∆(i)T

(i−1)
2j , for 0 ≤ j ≤ t (7)

∆(i+1) = ∆
(i+1)
t + ∆

(i+1)
t+1 (8)

where,

∆
(i+1)
2j = Si−2j+2.σ

(i)
2j−1 + ∆

(i+1)
2j−2 , for 0 ≤ j ≤ t/2

∆
(i+1)
2j+1 = Si−2j+1.σ

(i)
2j + ∆

(i+1)
2j−1 , for 0 ≤ j ≤ t/2 (9)

From equation 9, the computation of ∆(i+1)
2j and ∆(i+1)

2j+1

requires σ
(i)
2j−1, σ(i)

2j , ∆i+1
2j−2, and ∆i+1

2j−1, which have been
computed at cycle (j − 1). Similarly, from equations 6 and
7 at cycle j, the computation of σ(i)

2j and σ
(i)
2j+1 require ∆(i)

which has been computed at cycle 0 and σ
(i−1)
2j , and σ

(i−1)
2j+1

which have been computed at the (i− 1)th step.
The proposed architecture shown in Figure 2 computes σ(x)
and W (x) with latency t2 + 4t clock cycles which makes the
latency of our proposal lower than that of the serial [2] and the
modified [4] architectures for all values of t. This enhancement
leads to higher throughput and lower energy at the expense of
a slight increase in area.

B. Efficient Computation Of Error Evaluator Polynomial W (x)

The conventional way to compute the error evaluator polyno-
mial W (x) using the Berlekamp-Massey algorithm is to do it
after the computation of σ(x) [1]. From the key equation and
the Newton’s identity we could derive W (x) as follows [2]:

W (x) = S(x)σ(x)modx2t

= (S1 + S2x+ ...+ S2tx
2t−1)

.(σ0 + σ1x+ ...+ σtx
t)modx2t

= W (0) +W (1)x+ ...+W (t−1)xt−1 (10)
W (i) = Si+1σ0 + Siσ1 + ...+ S1σi, (11)

i = 0, 1, ..., t− 1.
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Figure 2. Implementation of the Two parallel decomposed inversionless
Berlekamp–Massey algorithm

The computation of W (x) can be performed directly after
computation of σ(x). Note that the direct computation requires
fewer multiplications than the iterative algorithm which com-
putes many unnecessary intermediate results, but it needs a lot
of FFMs.
The proposed architecture suggests a 6 FFM implementation
to evaluate σ(x) and W (x). The error locator polynomial
is evaluated by using 6 FFMs. However, the error evaluator
polynomial W (x) reuses these 6 FFMs, as each W (i)can
be calculated in one clock cycle where (i ≤ 6) then the
remaining two coefficients each one is calculated in two clock
cycles. as shown in Figure 2. Compared to the previously
proposed parallel architectures [5] our architecture reduces the
hardware complexity significantly. Compared to a previously
proposed serial and serial modified evaluator architecture [2, 4]
respectively, our architecture reduces the latency significantly
because of the reduction of number of clock cycles which
transfer the bottelneck of the pipelined architecture to the two
parallel syndrome circuit and for the same throughput, the
proposed architecture need half the frequency of architecture
[2], and ∼ 0.6 the frequency of architecture [4], which make
our design more efficient in power consumption.

IV. TWO PARALLEL RS DECODER ARCHITECTURE

In this paper a pipelined two parallel RS(204,188) decoder
using two parallel Modified evaluator DiBM is presented. The
decoder architecture consists of two parallel syndrome [3] block
which calculates the syndromes from the received codewords in
102 clock cycles as shown in Figure 3(a). Figure 3(b) presents
each two parallel syndrome cell. From the syndromes, the key
equation solver (KES) block uses two parallel modified evalua-
tor DiBM architecture to produce the error locator polynomial
then the error evaluator polynomial as discussed in the previous
section, the KES latency is 98 clock cycles. From the error
locator and evaluator polynomials a Chien search algorithm is
used to produce the error locations as shown in Figure 4(a).

The two parallel Chien search [3] circuit is used and Figure
4(b) presents the two parallel Chien search cell with latency
102 clock cycles, but in each clock cycle a new codeword is
corrected, then Forney algorithm is used to calculate the error
values. The two blocks are combined in one block as an error
corrector block and Figure 4(c) presents the circuit diagram of
the complete error corrector.

The bottleneck for this architecture is in the syndrome com-
putation block as the two parallel syndrome circuit needs 102
clock cycles and the KES latency is 98 clock cycles and each
Chien search and Forney need only one clock cycle to correct
one codeword, therefore the total latency of our architecture
will be 202 clock cycles.

Synd

(1)

Synd

(2)

Synd

(2t)

S1 S2
S2t

A: r0,….,rn-3,rn-1

B: r1,…..,rn-2, 0

(a)

(α
i
)

2
α

i

Out

MUXx

8
+

x

r0 ,…,rn-3,rn-1

r1,…,rn-2,0
B

A

0x”00”

8

(b)

Figure 3. Syndrome Circuit

V. RESULTS AND COMPARISON

The architecture was modeled in VHDL and simulated to
verify its functionality. After complete verification of the design
functionality, it was then synthesized using appropriate time
and area constraints. Both simulation and synthesis steps were
carried out on 0.13µm CMOS technology and optimized for
a 1.2V supply voltage, we used this technology to make our
comparison fair with the previously published architectures.
The total number of gates for the proposed decoder is 33, 000
from the synthesized results excluding the FIFO memory, and
the clock frequency up to 660MHz. Simulation results show
this approach can work successfully at the data rate 100Mbps
with power dissipation of 0.266mW .

Table I shows a comparison between different architectures
of RS(255, 239) decoders. It is clear from the table that
architectures [2], [9], [10], [11], and [12] have smaller area
than the proposed architecture, but the proposed architecture
has higher throughput so we can define another parameter
that shows the value of the proposed design which is its
"Efficiency". It is defined as follows:

Efficiency = (throughput / # Gates).

A higher efficiency is better, as it comes from higher throughput
and lower area. These results show that the proposed design
is much better than most designs, The only design that has
higher efficiency than the proposed design is [2]. Table II shows
specific comparison between the proposed architecture and
[2] in terms of power consumption for a constant throughput



Table I
IMPLEMENTATION RESULTS OF THE RS(255,239) DECODERS

Architecture Technology (µm) Total # of Gates Clock (MHz) Latency (clocks) Latency (ns) Throughput (Mb/s) Efficiency
Proposed 0.13 33,000 660 226 434.6 10,500 0.318

[2] 0.13 15,000 700 475 679 5,600 0.373
[4] 0.13 37,600 606 298 491.7 7,357 0.19566
[6] 0.18 49,200 200 512 2560 1,550 0.0315
[7] 0.13 53,200 660 355 537.9 5,300 0.09962
[8] 0.13 44,700 300 287 956.7 2,400 0.05369
[9] 0.18 20,614 400 512 1280 3,200 0.15523

[10] 0.18 18,400 640 519 811 5,022 0.273
[11] 0.13 24,600 625 513 820 5000 0.203
[12] 0.18 20,614 400 513 1283 3,200 0.155
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Figure 4. Error Corrector Block

100Mbps to be suitable for DVB-H application. It is clear
that the proposed architecture in terms of power consumption
is lower than [2] by 17% and this is very useful for the handheld
devices in the DVB-H standard.

Table II
PERFORMANCE COMPARISONS FOR CONSTANT RATE 100Mbps

Technology (µm) architecture [2] proposed
# Gates 15000 33000

Latency (clk cycles) 425 204
clk (MHz) 12.5 6.25
power (µW ) 320 266

VI. CONCLUSION

This paper presents a new architecture for a low energy high-
speed pipelined two parallel RS(204, 188) decoder. In this

proposed architecture a two parallel syndrome and Chien search
circuits are used. The KES block includes 6 FFMs which
make our design between the serial architecture which uses
3 FFM and the parallel architectures which uses multiples
of t FFMs. These 6 FFMs are scheduled in a clever way
to lower the latency of the KES with a slight increase in
area. This scheduling of multipliers has reduced the energy
per symbol significantly. We have investigated hardware gate
count, throughput, and energy per symbol for RS decoders. It
is clear that the proposed architecture has the lowest latency
and highest throughput compared to previous architectures. So
our architecture optimizes the latency, throughput, and power
consumption.
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