
Design and Implementation of
AHD–2494, a 24–bit RISC Processor on

a VLSI Chip

Hossam Fahmy
Dept. of Communications and Electronics,

Faculty of Engineering,
Cairo University, Cairo, EGYPT.

Abstract

This paper presents the work done by the
three students: Ahmed El-Wakeel, Hossam
Fahmy and Dalia El-dib during their
graduation project.

A 24 bit RISC processor following the Von
Neumann architecture and having two
modes of operation (operating system
mode/user mode) was designed. It has 16
general purpose registers and executes one
instruction per clock cycle. The instruction
set contains 16 instructions all of fixed 24 bit
length. It follows a load/store architecture.
Simulation results show that a clock speed of
10 MHz driving a 50pf load off-chip
capacitance can be used.

The implementation was done on a semi-
custom process, the sea-of-gates fishbone
image which is a 1.6 micron CMOS
technology with two metal layers. The
layout and layer interconnects were done
manually in the basic cells. The full design
consists of about 120 000 transistors.

Introduction

The RISC versus CISC debate during the
past decade resulted in a lot of
improvements to the microprocessor
industry and finally RISC dominated the
majority of the designs [1, 2]. Another
factor that helped also in this improvement

was the introduction of more powerful and
easy to use CAD tools.

It was thus thought that undergraduate stu-
dents should begin designing and imple-
menting such architectures using available
CAD’s. The objective was to produce a
RISC processor with comparable
characteristics to those already built by
researchers in universities in the past [2].

The design is done using the OCEAN CAD
tools available from Delft university in the
Netherlands where the final chip is to be
fabricated. This affected the choice of
architecture since the packaging allows 32
pins only. Therefore a reduced architecture
was implemented, while a more powerful
one was originally thought of. It may be im-
plemented in the future by a group having
less limitations.

Proposed Architecture

This architecture was based on the academic
course we took on computer architectures
and on our personal readings [1, 2, 3, 4].

• All instructions are 24 bits long.

• Four types of instructions are present
and are differentiated according to the
first 2 bits of the instruction word:

00: integer ALU instructions

01: floating point (only in full
architecture)

10: control flow instructions

11: privileged system instructions

• The data buses are 24 bits wide.

• The addresses are 24 bits long giving
up to 16 Megawords of memory (16
Megawords = 48 MBytes).

• The register file has 2 read ports and 1
write port and is composed of:

– 8 registers for operating system
usage.

– 8 integer registers for user programs.

Of these registers, register number
zero is a special one. It is hardwired to
the value 0 and any output of the ALU
having R0 as destination will be dis-
carded [4]. All the registers are one
word wide.

• Memory reference instructions
addressing mode uses “base register +
signed offset”. The base register may
be the program counter (PC) or R0 or
any other register which enables this
scheme to be very versatile and allows
it to perform direct, relative and
indexed modes. The signed offset is 11
bits long.

• The condition code flags may be
conditionally affected according to a
bit in the instruction word. The user
accessible flags are: carry, zero,
negative, overflow. Other flags are
special to the operating system and
used only in the system mode. This
will be explained in details later.

• Three-stage pipeline is used with no
interlocks nor data forwarding done.
Such dependencies must be taken care
of by the compiler.

• Instruction formats used:

Bits ALU
operation

Control flow

23–22 00 1x

21–19 opcode opcode

18–15 Rdest Rs/d or cond.jmp

14–11 Rop1 Rbase

10–7 Rop2 |

6 c Signed offset

5–0 shift |

where

Rdest:
destination register where result is
stored,

Rop1;
the first operand register,

Rop2;
the second operand register,

c:
a bit indicating to set the flags or no,

shift:
amount of shift required on the result,

Rs/d:
source register for Store and Out
instructions and the destination regis-
ter for Load and In instructions,

cond.:
same field, used to indicate the condi-
tion for conditional instructions
(Jump,Call,..)

Rbase:
register holding the base address

signed offset:
offset added to the base address.

• The output of the ALU is connected to
a barrel shifter. So, ALU operations
are:
Rdest= rotation [(Rop1) operation
(Rop2)] .

• If the c bit is set, the flags will be
affected according to the result of the
instruction, otherwise the flags will
remain unaffected.

• For the shifting a bit in the shift field
specifies whether it is to left or right,
another bit is used to indicate if it is
logical shift or a rotate and the
remaining 4 bits specify the amount of
the shift.

The choice of the instructions was
influenced by the following factors:

• They must all be directly implemented
by the hardware without iterations in
order to facilitate the control unit and
the pipeline implementation.

• Simple formats must be used to ease
the decoding.

• They should not have any side effects
on registers other than the destination
register to minimize the data
dependency [4].

• Simple and versatile instructions
should be used in order to get the
maximum possibilities out of the
defined instruction set.

• Support to the ideas present in the
operating system world must be
provided [1]. For example, privileged
system instructions, security for
system registers, user mode/system
mode, etc.

Proposed instruction set

The instruction set is presented in table (1).
The integer operations are from number 1 to
7 where A is considered to be Rop1 and B is
Rop2 (any 2 of the 16 registers.) The control
flow operation are from 8 to 13. And the
system instructions are from 14 to 16.

These instructions are quite versatile when
used with R0. Examples are:

Negate: R0–B,
Transfer: R0+B,
Increment: R0+B+1,
Decrement: A–R0–1,
Clear: Rdest=R0+R0,
Compare: R0=A–B and set flags,
Complement: R0–B–1,
NOP: R0=R0+R0

Table (1):

function mnemonic operation

1. addition ADD A+B

2. ADD+1 ADDP A+B+1

3. SUB–1 SUBM A–B–1

4. subtraction SUB A–B

5. logic and AND A and B
Bit by bit and

6. logic or OR A or B
Bit by bit or

7. logic xor XOR A xor B
Bit by bit XOR

8. loading LOAD Rdest=
Memory[Rbase+si
gned offset]

9. storing STORE Memory[Rbase+si
gned offset] =
Rsource

10. Cond.jump JUMP upon condition:
PC=Rbase+
signed offset

11. Cond.call CALL upon condition:
save PC;
PC=Rbase+
signed offset

12. Cond.re-
turn

RET upon condition:
retrieve PC

13. system call
SYS

SYS upon condition:
switches to
system mode in
the program
status word and
jumps to system
code

14. I/O input IN Rdest=
I/O[Rbase+
signed offset]

15. I/O output OUT I/O[Rbase+
signed offset]=
Rsource

16. system
RET

SRET upon condition:
switches back to
user mode and
retrieves PC

I/O instructions are used only by the
operating system to communicate with other
chips and/or processors over the board.

A bit in the condition code register indicates
the processor mode. If one of the privileged
instructions is detected while in user mode it
is treated as if it was a No OPeration (NOP)
instruction. This bit as well as another flag
for the program counter are only accessible
when in system mode.

Implementation

The design was implemented using the sea-
of-gates technology as already mentioned.
This is a prefabricated “image” consisting of
MOS transistors. Using the OCEAN tools
[5] to implement a circuit reduces to
interconnecting these transistors with metal
wires.

The full layout with all the routing channels
for the internal buses covered the area of
about 120 000 transistors. All the internal
buses are 24–bits wide. Due to pins
limitations multiplexing the data and
address buses was necessary at the output
stage.The layout and interconnections of the
basic cells was done manually, and for these,
efficient area utilization was an important
factor as well as regularity of the whole
design.

The simulations were done using the switch
level simulator SLS available with OCEAN.
This powerful simulator, used on an HP
workstation, allows the simulation of the
whole processor on the transistor level while
reading and executing a multiplication
program taking a real time of 30 micro
seconds within two minutes only.

However, the basic cell of the register file
got special attention because of its effect on
the overall speed of the processor and the
complications of its design. That’s why
several iterations were needed to design it,
simulate it using SPICE, evaluate the

performance and redesign it. Simulation
results show that an external two phase clock
of 10 MHz can be used to supply the
processor when it has a 50pf capacitive load
on its pins.

The rising and falling edges of both phases
are used to synchronize different events
within the pipeline, the control unit and the
output pins interface. The pipeline is
composed of three stages which are
performed each clock cycle. This
corresponds to state T0 in the control unit
which is repeated till an instruction of a type
other than the ALU instructions is detected
in stage two of the pipe. Only the LOAD,
STORE, IN and OUT instructions use more
than 3 clocks and thus stall the pipeline
causing the control unit to shift to other
states than the simple T0.

The different conditionally executed
instructions which alter the value of the
program counter(PC) needed to be finished
within three clock cycles, too. To
accomplish this, a bit in the condition codes
register is used to enable or disable the
copying of the PC to register R15. Normally
PC is copied to R15 every clock cycle, this
allows relative addressing by using R15 as
the base. When a CALL, RET or SYS
instruction is to be executed, this copying is
disabled, the address of the called routine is
stored in R13, and control is transferred to
the system code. The operating system thus
has full control over calling and returning
from subroutines and can make any desired
checks, saving of the task data, etc. Then it
uses R15 to know the return address and R13
to know the destination address and switches
to the user code again.

This idea together with the use of R0 for a
large number of functions enabled a very
efficient and easy implementation of the
pipeline and gave much power to the

addressing mode used (Rbase + signed off-
set).

Conclusion

The processor was sent for fabrication last
March and it passed the preliminary tests,
but in the final tests before fabrication in
May a misalignment in the metalization
layers of one of the cells was detected. This
fault is corrected now and it will go to the
next run. This is real life!! Nothing is easy as
it appears to be when simulating!!!

However, to stress again on the basics, the
processor has the following main features:

24-bit RISC microprocessor, clock speed
10MHz with 50pf capacitive loading,
3-stage pipelined architecture, throughput
of 1 instruction per clock cycle, 5V supply,
2-layer metal, static CMOS, semi-custom
VLSI chip, 1.6 micron technology, 24–bit
multiplexed address/data bus, hardware
protected instructions and registers for the
operating system, 16 general purpose
registers 24 bits each, supporting up to 16
MegaWords (48 MegaBytes) of physical
memory.

Acknowledgments:
The members of the project wish to thank
their supervisors: Prof.Dr. M.S. Metwally
and Dr. A. Badawi. Thanks are due also to
Dr. A.E. Salama for his help and
encouragement.

To contact with the author via email send to:
fahmy@cairo.eun.eg

References

[1] Stephen B. Furber, VLSI RISC
architecture and organization, Marcel
Dekker Inc., 1989.

[2] D.A. Patterson, “Reduced Instruction
Set Computers”,Communications of the
ACM, vol. 28, No. 1, Jan. 1985, pp 8–21.

[3] M. Morris Mano, Computer
engineering Hardware design, Prentice
Hall, 1988, (chap. 7–10).

[4] V. Carl Hamacher; Zvonko G. Vranesic;
Safwat G. Zaky, Computer organization,
McGraw Hill, 1990, (chap. 11).

[5] P. Groeneveld and P. Stravers, Ocean:
the Sea-of-Gates Design System.
This is the manual of OCEAN. The OCEAN
package is free software and can be retrieved
via anonymous ftp: donau.et.tudelft.nl,
directory pub/ocean.

