
High Performance Memory Requests Scheduling Technique for Multicore Processors

Walid El-Reedy
Electronics and Comm. Engineering

Cairo University, Cairo, Egypt
walid.elreedy@gmail.com

Ali A. El-Moursy
Electrical and Computer Engineering
University of Sharjah, Sharjah, UAE

aelmorsi@sharjah.ac.ae

Hossam A. H. Fahmy
Electronics and Comm. Engineering

Cairo University, Cairo, Egypt
hfahmy@alumni.stanford.edu

Abstract—In modern computer systems, long memory la-
tency is one of the main bottlenecks micro-architects are facing
for leveraging the system performance especially for memory-
intensive applications. This emphasises the importance of
the memory access scheduling to efficiently utilize memory
bandwidth. Moreover, in recent micro-processors, multithread
and multicore is turned to be the default choice for their
design. This resulted in more contention on memory. Hence,
the effect of memory access scheduling schemes is more
critical to the overall performance boost. Although memory
access scheduling techniques have been recently proposed for
performance improvement, most of them have overlooked the
fairness among the running applications. Achieving both high-
throughput and fairness simultaneously is challenging.

In this paper, we focus on the basic idea of memory
requests scheduling, which includes how to assign priorities
to threads, what request should be served first, and how to
achieve fairness among the running applications for multi-
core microprocessors. We propose two new memory access
scheduling techniques FLRMR, and FIQMR. Compared to
recently proposed techniques, on average, FLRMR achieves
8.64% speedup relative to LREQ algorithm, and FIQMR
achieves 11.34% speedup relative to IQ-based algorithm.
FLRMR outperforms the best of the other techniques by 8.1%
in 8-cores workloads. Moreover, FLRMR improves fairness
over LREQ by 77.2% on average.

Keywords-Computer architecture; Memory management;
Multicore processing;

I. INTRODUCTION

Memory access scheduling has been developed for su-
perscalar, multithreaded, and multicore processors to en-
hance their performance. The concept of memory access
scheduling is proposed for superscalar processors in [1]–
[5]. However, in superscalar processors memory access
scheduling was just re-ordering memory requests making use
of memory hardware features to reduce memory access time.
The main reason behind this that although main memory is a
RAM (Randome Access Memory) device which means that
its access time to any memory location should be almost
the same, its access pattern is not random. In other words,
due to the physical implementation of RAM, it is faster
to send one row address and read multiple columns than
to send random requests. Memory requests are correlated.
By recognizing those relations, we may achieve better
scheduling. The enhanced ordering of memory requests may
efficiently utilize the memory bandwidth and accordingly

increase the throughput. In recent processors multicore and
multithreaded architectures are widely used. This resulted
in increasing the number of threads that execute in parallel.
All these threads are competing for shared resources. One
of these most important resources is system main memory.
While execution, each thread sends some requests to the
main memory asking for missing memory blocks. This
created the need of memory access schedulers. The role
of a memory access scheduler is to decide which requests
should be served first and which threads should have higher
priority. A good scheduler can improve overall throughput
and/or fairness by reordering memory requests and threads
priorities. Throughout this paper we made our experiments
on multicore processors but they are applicable for multi-
threaded processors as well. Figure 1 illustrates where the
memory access scheduler exist in the architecture used.

In this paper, we focus on the core idea of memory
requests scheduling algorithms. We try to find a better
answer for the open questions: How to assign priorities
to threads? And what are the requests that will improve
the performance more if served first? In order to achieve
our goal, we decide to make our experiments based on
single memory bank and memory controller. We believe that
achieving good results in this case, can be extended to make
use of the parallelization of memory banks and controllers.

The rest of the paper is organized as follows: Section II
contains the literature survey where we discuss the algo-
rithms close to our work. Section III contains the proposed
memory access scheduling algorithms. Section IV contains
the simulation environment, and machine configuration. The
results are shown in section V. Section VI contains the
related work. Finally, we conclude in section VII.

II. MEMORY ACCESS SCHEDULING

The concept of memory access scheduling is discussed
for SMT processors in [6]. The authors introduced three
thread-aware scheduling algorithms. These algorithms are
request-based, ROB-based (Reorder Buffer- based), and IQ-
based (Issue Queue - based) scheduling algorithms. They
compared these algorithms to some algorithms that were
developed for single-threaded processors, which are hit-first,
read-first, and age-based algorithms.



Figure 1. Multicore architecture with memory access scheduler support

Request-based algorithm gives highest priority to requests
from thread that has the minimum number of pending
requests. In other cases it is named LREQ (Least REQuest).
The idea behind this algorithm is that serving a request
from the thread that has the minimum pending requests
most probably will release more waiting instructions than
serving a request from other threads. ROB-based algorithm
gives highest priority to requests from thread that has the
highest number of reorder buffer entries. The idea behind
this algorithm is that serving a request from the thread
that has the highest number of reorder buffer entries most
probably will release more waiting instructions than serving
a request from other threads. Of course, this algorithm will
help more in the cases when there is contention on reorder
buffer. IQ-based algorithm gives highest priority to requests
from thread that has the highest number of issue queue
entries. The idea behind this algorithm is that serving a
request from the thread that has the highest number of
issue queue entries most probably will release more waiting
instructions than serving a request from other threads. It
will help in the cases when there is contention on issue
queue. Hit-first algorithm gives row buffer hits more priority
than row buffer misses. So, it gives more priority to requests
that take less time. Read-first algorithm gives memory read
operations more priority than memory write operations.
The idea behind this algorithm is that write operations are
not a bottleneck because of the existence of write buffers.
Both hit-first, and read-first algorithms are used together in
collaboration with other algorithms. For instance, in [6] the
authors used hit-first and read-first algorithms combined with
request-based algorithm. In this case, read hit will always
be scheduled before read miss, and read requests in general
will be scheduled before write requests. In addition to this,
the same type of requests is scheduled according to number
of pending request for each thread. i.e. the thread with
the fewest number of pending requests is scheduled first.
Age-based algorithm gives highest priority to oldest request
when more than eight requests are presented to memory.
This algorithm aims to improve fairness but it does not aim
to improve throughput. Fairness is guaranteed because no
thread will use the memory for large time alone. However,
LREQ, ROB-based, and IQ-based, Read-first, and hit-first

algorithms aim to improve throughput but have nothing to
do with fairness.

In [7] a new scheduling algorithm called ME-LREQ
(Memory Efficiency with Least REQuest) is presented. It’s
based on request-based scheduling algorithm (LREQ) but
they added a new parameter to it. This parameter is memory
efficiency. Memory efficiency of an application is defined
as the IPC (Instructions Per Clock) of this application di-
vided by its memory bandwidth usage under the single-core
environment. Memory efficiency can be calculated using
offline profiling. The new scheduling algorithm ME-LREQ
is claimed to improve performance by 6.4% on average and
up to 9.2% over original request-based algorithm. In their
results, they used pre-calculated number for each thread as
memory efficiency of this thread. So, the main drawback of
this algorithm is that offline profiling is not practical.

III. FAIR MOST-RELATED SCHEDULING ALGORITHMS

Taking a look at published memory access scheduling
algorithms, we find that there is a space for improvement.
We introduce two new memory access scheduling algorithms
FLRMR (Fair Least-Request Most Related algorithm), and
FIQMR (Fair Issue-Queue based Most Related algorithm).
These algorithms are based on request-based algorithm
(LREQ) and IQ-based algorithm respectively. Before going
into the details of the proposed algorithms, we want to
declare some common points between them.

First we want to define what related requests are.
Throughout our analysis to memory requests distribution, we
decide to make use of an important feature of cache. This
feature is temporal and spatial locality. Temporal locality is
referencing the same memory location that has been recently
referenced. Spatial locality is referencing a neighboring
memory location to that has been recently referenced. Hence,
the memory block is made to be a number of memory words
and not just one to make use of spatial locality.

So, if the same word has been referenced again (temporal
locality), or the neighboring word has been referenced again
(spatial locality), in both cases the same memory block will
be requested again. This means that if there is a pending
memory request waiting for being served, it can be requested
again while it is waiting. Related requests of thread i are
the total number of memory requests from that thread that
demand blocks existing in the memory requests pending
from that thread. In other words, if thread i requested block
x from main memory, and this block had been requested
before and had not been served yet, then the number of
related requests of thread i would be incremented by one.

Then we want to define the parameter that determines
thread priorities which is the prioritizing factor. Prioritizing
factor (PF) of a thread is a factor calculated by a given
formula to help us give priority to this thread. The next
request to be served will be picked from the requests of the
thread with the highest priority. PF for each algorithm is left



as the original algorithm direction. In the original request-
based algorithm, thread priority increases when number of
requests decreases. So, we kept this relation with the new PF.
In the original IQ-based algorithm, thread priority increases
when number of IQ entries increases. So, we keep this
relation with the new PF.

One of the major drawbacks of request-based algorithm
and IQ based algorithm is that they don’t account for
the fairness among the running threads. We overcome this
drawback in our proposed algorithms by taking starvation
time into consideration. We set starvation time threshold
to guarantee fairness. When a request age exceeds this
starvation time threshold, the request should be scheduled
as soon as possible whatever its thread priority is. The value
of starvation time threshold has been chosen experimentally.

A. FLRMR algorithm

Request-based scheduling algorithm is an effective way
for scheduling, especially in improving throughput [6]–
[8]. Our idea is to improve the request-based algorithm to
enhance the throughput and to keep the algorithm simple
and practical as well.

The first factor that we want to add to request-based
algorithm is related requests. The other factor that we
think it should be included is starvation time threshold. It
guarantees fairness between cores which is a drawback in
request based algorithm currently published.

So, the new algorithm depends on three factors:

1) Number of pending requests (per thread). This is equal
to the number of different memory blocks requested by
this thread i.e. it does not count related requests. The
smaller this number is, the higher priority this thread
should have. The original request-based algorithm
(LREQ) depends only on this factor.

2) Number of related requests (per thread). The larger
this number is, the higher priority this thread should
have.

3) Request age (per request). It guarantees fairness. When
a request stays waiting for more than starvation time
threshold, it should be scheduled as soon as possible
whatever its thread priority is.

We think that combining these factors together will give
better results than any of them alone. Total number of
pending requests per thread is a good factor but it accounts
all the requests equally which is not true. Number of related
requests is, also, a good factor but it counts all the threads
the same which is not true. Some threads have less requests
than others, so the pending requests of these threads are
more likely to free more instructions from the instructions
waiting list of this thread than the pending requests of the
threads with higher number of requests can do. Moreover,
block age and starvation time threshold guarantees fairness
but will not tackle throughput improvement issue. So, we

think combining these factors will give better results than
each one alone.

The question now is: how to combine all these factors to
end up with the new algorithm? We believe that the number
of pending requests should have high weight because it is
the base of the algorithm and should have higher impact
on throughput than related requests. Hence, we propose
the following prioritizing factor. Threads will be prioritized
according to the following factor for thread i:

FLRMR PFi =
# pending requests2i

(# related requestsi + 1)
(1)

where i is the thread ID, FLRMR PFi is the priori-
tizing factor of thread i according to FLRMR algorithm,
#pending requestsi is the total number of pending re-
quests from thread i, and #related requestsi is the total
number of related requests from thread i.

The smaller this factor is, the higher priority this thread
will have. Number of pending requests is squared to have a
higher weight than related requests. The one added to the
number of related requests represents the original request
(i.e. the first request that asks for the block that related
requests are waiting for). If a block is starving (i.e. starvation
time threshold has passed since its arrival), this block will
be served, and removed from the list. If no requests are
starving, the thread with the smallest PF will be in the top
of the list. The oldest request of this thread will be served
first, and removed from the list.

B. FIQMR algorithm

One of the objectives of proposing this algorithm is to
prove that the idea of related instructions can be used com-
bined with many algorithms and can improve the overall per-
formance of these algorithms. Similar to FLRMR algorithm
in subsection III-A, FIQMR uses related instructions and
block starvation time combined with IQ-based algorithm. In
other words, FIQMR algorithm depends on three factors:

1) Number of issue queue entries (per thread). The ra-
tional behind this metric is that number of entries
in the queue indicates the high dependability on the
cache misses. So, to allow the application to make
progress in its execution, it should be given priority
for scheduling. The larger this number is, the higher
priority this thread should have. The original IQ-
based algorithm depends only on this factor. i.e. In
the original IQ-based algorithm, the thread with the
largest number of entries in the issue queue will be
scheduled first.

2) Number of related requests (per thread). The larger
this number is, the higher priority this thread should
have.

3) Request age (per request). It guarantees fairness. When
a request stays waiting for more than starvation time



threshold, it should be scheduled as soon as possible
whatever its thread priority is.

Similar to FLRMR, also, we think that combining these
factors together will give better results than any of them
alone. We believe that the number of IQ entries should
have high weight because it is the core of the algorithm.
So, it is more important and should have higher impact
on throughput than related requests. Hence, we propose
the following prioritizing factor. Threads will be prioritized
according to the following factor for thread i:

FIQMR PFi =

# IQ entries2i ∗ (# related requestsi + 1)
(2)

where i is the thread ID, FIQMR PFi is the priori-
tizing factor of thread i according to FIQMR algorithm,
# IQ entriesi is the number of IQ-entries occupied by
thread i, and # related requestsi is the total number of
related requests from thread i.

The larger this factor is, the higher priority this thread will
have. Similar to FLRMR, number of IQ entries occupied by
the thread is given higher weight than the number of related
requests.

C. Hardware price

Do these new algorithms require extra complex hardware?
The answer is: no, the extra needed hardware is very small.
One of the main advantages of these new algorithms is that
they make use of already existing hardware. We make use
of already existing MSHR (Miss Status Holding Register)
[9], [10]. MSHR tracks information about all the in-progress
misses. Each MSHR entry has a comparator, target infor-
mation whose contents differ according to implementation,
and a valid bit. If all MSHR entries are valid, the cache
should be blocked because there are no more entries to track
miss information. So, all what we need is to make sure that
number of related requests is stored in the target information
(which is implementation-dependent).

We need to add a new register in the context of each
thread. This register contains the total number of related re-
quests from this thread. When a memory block is requested,
if this block exists in the MSHR, the block counter (in
MSHR) and the thread counter (in thread context) should be
incremented. When this block is served, the block counter
should be decremented from the thread context counter.

D. Example of related requests frequency

The first thing may come up to mind when this algorithm
is mentioned is: how much the related requests may affect
the overall performance? Does it really worth making new
algorithms including this factor? To illustrate how related
requests can change the scheduling order, and how frequent
they can be, we will mention here a detailed case from
real benchmarks where FLRMR algorithm gives different

Table I
EXAMPLE ILLUSTRATING related requests FREQUENCY

CoreID Pending Related Arrival
requests requests time

1 2 23 77666
3 1 4 77732
0 1 0 77688
2 2 2 77465

results than LREQ algorithm, and related requests number
of one thread reaches 23 asking for only 2 memory blocks
(i.e. 13 memory requests asking for one memory block, and
10 memory requests asking for another memory block). In
this example, each core runs a single thread. The workloads
running on cores 0 to 3 are gcc, galgel, vpr, and gzip
respectively. All these benchmarks belong to SPEC2000
benchmarks suite.

Table I, contains the details of pending requests from
all running threads ordered according to prioritizing factor
formula in equation 1. First column contains core ID. To
know the benchmark running on this core, please refer to
table ??. Second column contains the number of requests
pending from this core. Third column contains the total
number of requests related to pending requests from this
core. Fourth column contains arrival time of the oldest
request from this core. It is helpful to know if any of these
requests crossed the starvation time threshold.

At time 77789, thread with CoreID 1 has only 2 pending
memory requests (each request is asking for a different
block in memory), but there are 23 instructions requesting
these 2 memory blocks. Similarly, thread with CoreID 3 is
requesting one memory block but there are four instruction
pending on this block. From this example we should know
how the case of related requests is not rare.

IV. SIMULATION METHODOLOGY

A. Simulation environment and Machine configuration

We have used the simulator used in [11]. It is a multi-
core version of Simplescalar-3.0 [12] for the Alpha AXP
instruction set. We have modified the memory access process
in this simulator. Simplescalar used to let instructions access
the memory as if there is no other requests. So, we have
changed this simplified case to make it more practical. We
have implemented FCFS (which is our baseline policy),
RR, LREQ, IQ-based, FLRMR, and FIQMR. All these
algorithms are implemented to schedule read requests only.
Write requests are not a bottleneck because of the existence
of write buffers, so we focus on read requests only.

Table II shows the major simulation parameters used.

B. Benchmarks and Workloads

In our simulation, we have used single-threaded cores.
Each core run a separate application. We have used the
classification of SPEC CPU2000 benchmarks from [7]. They



Table II
MAJOR SIMULATION PARAMETERS

General parameters
Parameters Values
Processor 2/4/8 cores
Branch predictor Bimodal and 2-level comb
Bimodal predictor entries 2048
Level 1 table entries 1024
Level 2 table entries 4096
BTB entries, associativity 2048, 2-way
Branch mispredict penalty 10 cycles
L2 cache 4MB, 4-way, 64B line
L2 cache latency 15 cycles
Main memory latency 100 cycles
Per core parameters
L1 ICache 64KB, 2-way, 64B line
L1 ICache latency 1 cycle
L1 DCache 64KB, 2-way, 64B line
L1 DCache latency 3 cycles
Int. Functional units 2
FP Functional units 1

Table III
BENCHMARKS CLASSIFICATION

Class Benchmark
MEM wupwise, swim, mgrid, applu, vpr, gcc, galgel, art,

mcf, equake, lucas, gap
ILP gzip, mesa, crafty, parser, eon, bzip2, twolf, apsi

are classified into two classes; memory-intensive bench-
marks (MEM), and compute-intensive benchmarks (ILP).
The memory-intensive applications are considered memory-
intensive because they can gain more than 15% performance
when they run within perfect memory system (Zero latency
and infinite bandwidth). We did not use HPC applications
as we believe that multicore processors are no more limited
to HPC.

Table III shows the benchmarks used in our simulation
and their classification. We have tried to make different com-
binations of workloads for 2,4, and 8 cores. We gave each
workload a name to be used in performance evaluation, and
analysis. Workload names and benchmarks included in each
workload are shown in table IV. Workload name consists
of three parts. First part is the number of cores used to run
this workload which is equal to the number of benchmarks
included because we run one benchmark per core. Second
part is either mem (all benchmarks included in this workload
are memory-intensive), or mix (some benchmarks in thus
workload are memory-intensive and others are not). The
third part is the workload ID number within its category.
For example workload 8mix2 is the second workload in
workloads that contain eight benchmarks (four memory-
intensive, and four compute-intensive).

C. Starvation time threshold

According to our experiments, we found that setting
starvation time threshold to (2 * no. of threads * memory

Table IV
WORKLOADS DESCRIPTION

Workload Benchmarks Included
2mem1 mcf, lucas
2mem2 mgrid, vpr
2mix1 galgel, gzip
2mix2 gcc, parser
4mem1 mcf, equake, wupwise, lucas
4mem2 swim, gap, art, vpr
4mix1 gcc, galgel, gzip, parser
4mix2 gzip, apsi, mgrid, applu
8mem1 vpr, gcc, galgel, art, mcf, equake, lucas, gap
8mem2 wupwise, swim, mgrid, applu, vpr, gcc, galgel, art
8mix1 gzip, mesa, crafty, parser, mcf, equake, lucas, gap
8mix2 gcc, galgel, parser, mesa, apsi, mgrid, applu, gzip

latency) is fair enough and gives good throughput results.

D. Performance metric

For throughput comparison, we have used geometric
mean. It is given by the following formula for n threads:

n

√∏
n

IPCnew

IPCold

The advantage of geometric mean is that it is a relative
measure [11]. Hence, the issue of which configuration is
used in getting IPCnew or IPCold is not valid. Another
advantage of geometric mean is that if there is a performance
improvement in one thread and an identical performance
degradation in another running thread, both changes in per-
formance will be affecting the overall performance equally.

V. RESULTS

We compared the results of five different algorithms:
FCFS, RR, LREQ, IQ-based, and our newly proposed al-
gorithms FLRMR, and FIQMR. The baseline algorithm is
FCFS. In the next section we will show how the different
algorithms will behave in different examples.

A. Scheduling Scenario

Here we will show how different algorithms will behave
with requests in table I.Normally, PF calculations can be
done when memory serve the last request and get ready
for serving a new one but we reorder the table entries
each time a new/related request arrives according to 1 to
illustrate the frequency of related requests and their effect
on performance.

At time 77821 as shown in table V, memory served last
request. So, the first block in the list (according to FLRMR
algorithm) is being served now, and removed from the list.
We want to focus on the requests at time 77820. At that time
we are ready to pick one request from all of the requests
listed. We will show how FCFS, RR, LREQ, and FLRMR
will pick the next request to be served.

FCFS will pick the oldest request which will be the oldest
request of core 2. RR algorithm will not take any of these



Table V
EXAMPLE 1 ILLUSTRATING FLRMR ALGORITHM

CoreID Pending Related Arrival
requests requests time

At time 77820: Requests waiting for scheduling
1 2 23 77666
3 1 4 77732
0 1 0 77688
2 2 2 77465

At time 77821: Memory served last request, and
another request is picked from the waiting list

1 1 10 77725
3 1 4 77732
0 1 0 77688
2 2 2 77465

Table VI
EXAMPLE 2 ILLUSTRATING FLRMR ALGORITHM

CoreID Pending Related Arrival
requests requests time

At time 78464: Starting monitoring, a request
is being served until = 78563

1 1 8 78398
2 2 2 77465
0 2 2 77688

At time 78465: Starvation time threshold for
oldest block in core 2 is reached

2 2 2 77465
1 1 8 78398
0 2 2 77688

factors into consideration. It will just pick a request from
the core whose CoreID equals to

(CoreID of last served request+1)%Total no. of cores

LREQ will pick the oldest request of the core with the least
number of requests. So, in this case it will serve a request
from core 0. FLRMR algorithm will look at the pending
requests. If none of these requests exceeds the starvation
time threshold, then we should calculate the prioritizing
factor for each core. It will be 0.1667, 0.2, 1, and 1.333 for
cores 1, 3, 0, and 2 respectively. The core with the smallest
PF is core 1. So, the oldest request of this core will be
served. In this case there are 13 related requests will be
served when this request is served.

Table VI shows another example illustrating how the
starvation time threshold is combined with the prioritizing
factor in this algorithm. Simply, when the request reaches
its starvation time threshold, it will come to the top of
the list regardless the number of pending requests and the
number of related requests. In this example, the starvation
time threshold is 1000 cycles. The arrival time of the oldest
request in core 2 is 77465 and it has reached the cycle 78465.
In this cycle, this request is scheduled to be the next served
one. Hence, starvation time threshold improves fairness and
ensures that no thread is stopped for a long time waiting for
memory requests to be served.

0%

10%

20%

30%

40%

50%

60%

70%

2mix1 2mix2 2mem1 2mem2

Im
p
ro
v
e
m
e
n
t

LREQ

RR

IQ

FLRMR

FIQMR

Figure 2. 2-cores workloads results

-20%

0%

20%

40%

60%

80%

100%

4mix1 4mix2 4mem1 4mem2

Im
p
re
o
v
e
m
e
n
t

LREQ

RR

IQ

FLRMR

FIQMR

Figure 3. 4-cores workloads results

B. Performance Evaluation

Figures 2, 3, and 4 show the percentage of performance
improvement gained by running memory access scheduling
algorithms on 2-cores, 4-cores, and 8-cores workloads re-
spectively. The change in performance in running workloads
2mix2, and 2mem2 is small, and the algorithms results
are changed from one workload to another because there
is small space for scheduling when we schedule requests
from 2 cores only. Hence, it is hard to have a consistent
performance of an algorithm over all the workloads, and
the expected performance improvement gained by applying
any algorithm is less than the improvement when scheduling
requests from larger number of cores. The figures prove the
famous idea about scheduling algorithms that no algorithm
is perfect, and no algorithm can give the best results with
all workloads. This is why we are more concerned with
the results average. Figure 5 shows the average percentage
of performance improvement gained by running memory

-20%

0%

20%

40%

60%

80%

100%

8mix1 8mix2 8mem1 8mem2

Im
p
ro
v
e
m
e
n
t

LREQ

RR

IQ

FLRMR

FIQMR

Figure 4. 8-cores workloads results



0%

10%

20%

30%

40%

50%

60%

avg2 avg4 avg8 avg

Im
p
ro
v
e
m
e
n
t LREQ

RR

IQ

FLRMR

FIQMR

Figure 5. Average results of all workloads

access scheduling algorithms on all workloads. Average
results of executing workloads show that FLRMR improves
the performance over LREQ by 5.45% in case of 2 cores,
16.25% in case of 4 cores, and 4.2% in case of 8 cores.
FIQMR degrades the performance from IQ-based algorithm
by 2.66% in case of 2 cores. However, it improves the
performance over IQ-based algorithm by 18.7% in case of
4 cores, and 18.02% in case of 8 cores.

The total average results show that FLRMR outperforms
all the other algorithms. RR comes next with a difference
of about 3% on average. The differences in performance
improvement between FLRMR and RR are as follows: -
0.8% in 2 cores, 1.3% in 4 cores, and 8.1% in 8 cores.
This means that the difference increases when number of
cores is increased. In other words, in small number of
cores RR can give good results but when the number of
cores is increased RR can’t give such good results. This
makes more sense because in 8 cores, for example, each
core will access the memory every 8 requests whatever the
criticality of the application running or of the waiting re-
quests. FIQMR comes next, then LREQ algorithm. FLRMR
improves the performance of LREQ algorithm by 8.64%
on average. FIQMR improves the performance of IQ-based
algorithm by 11.34% on average. This proves that the idea of
related requests and fair scheduling which is implemented
in algorithms FLRMR, and FIQMR improves the existing
algorithms LREQ, and IQ-based.

The results of LREQ algorithm is getting better when the
number of cores is increased. This does not mean that LREQ
will give best results when the number of cores become 16
or 32. This is because LREQ is not fair, so the performance
of LREQ can be decreased (or at least not increased linearly)
because some cores can be idle until the cores with the least
requests be served. Moreover, FLRMR guarantees fairness
which may degrade the overall performance in some cases.

Now, the question is: Why do FLRMR, and FIQMR give
good results with some workloads and worse results with
others? This is, simply, because some benchmarks have the
nature of reusing data. In other words, different applications
have different ratios of temporal and spatial locality.
Temporal and spatial locality are parametrized in related
requests number in FLRMR and FIQMR algorithms. When

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

4mix1 4mix2 4mem1 4mem2 avg_4

A
v

e
ra

g
e

 l
a

te
n

cy

LREQ

FLRMR

Figure 6. Average latency time (in clock cycles)

an application has high temporal and spatial locality, the
number of related requests is expected to be high. Hence,
FLRMR, and FIQMR algorithms will be more accurate.

To know how FLRMR reduces load latency, and how this
affects the performance, we calculate the average latency
of 4-cores workloads when applying LREQ and FLRMR
algorithms as shown in figure 6. The figure shows that when
applications are scheduled using FLRMR, they have smaller
load latency on average for almost all the workloads used.
Only on 4mem2 workload, LREQ gives less load latency
average time. This is why LREQ gives better performance
than FLRMR in the results of this workload as shown in 3.
FLRMR reduces the average load latency from 475.4 cycles
when scheduling with LREQ to 366.8 cycles.

C. Fairness

To prove that our proposed algorithms are more fair, we
calculate unfairness to know how much it is changed by
our algorithms. In these calculations, we followed [7], [14].
Unfairness for a certain workload is defined as the ratio
between the maximum slowdown to the minimum slow-
down among all the applications running in this workload.
Slowdown is defined as the ratio between the application
stall time because of loads when it is running alone to its
stall time when it is running among other applications in
the workload. Figure 7 shows calculated unfairness for all
4-cores workloads as an example. We compared between
FLRMR and its base algorithm LREQ to emphasize that our
proposal improves fairness. The figure shows that FLRMR
is much more fair than LREQ for all workloads. It reduces
the unfairness in LREQ to 22.8% of its value on average.
This means that FLRMR improves fairness over LREQ by
77.2% on average.

VI. RELATED WORK

There are some other published memory access schedul-
ing algorithms. In [8] they proposed TCM (Thread Cluster
Memory) algorithm which gives good results only with large
number of cores (24 cores). Another algorithm proposed in
[15] is called ATLAS (Adaptive per-Thread Least-Attained-
Service memory scheduling). It gives the highest priority to
the thread with the least attained service from all memory



0.00

5.00

10.00

15.00

20.00

25.00

4mix1 4mix2 4mem1 4mem2 avg_4

U
n
fa
ir
n
e
s
s

LREQ

FLRMR

Figure 7. Unfairness in 4-cores workloads

controllers. ATLAS gives good results only with large num-
ber of memory controllers. In [16] a new scheduling algo-
rithm called PAR-BS (Parallelism-aware Batch Scheduling)
is presented. This algorithm groups memory requests into
batches Then it tries to make use of bank-level parallelism
within the same batch to get better performance. In [17]
they proposed a new memory access scheduling algorithm
designed specifically for parallel applications.

VII. CONCLUSION

We propose two new memory access scheduling algo-
rithms. These algorithms are FLRMR, and FIQMR. They
are based on the idea of adding the related requests fac-
tor to existing algorithms which are LREQ and IQ-based
algorithms respectively. We add starvation time threshold
combined with these algorithms to guarantee fairness. The
average results show that the best results come from FLRMR
algorithm. RR comes next with average throughput worse
than FLRMR by about 3% on average. FLRMR gives better
results than RR in 4-cores and 8 cores workloads. This
means that increasing the number of cores can result in
increasing the gap between FLRMR and RR. FIQMR, and
LREQ algorithms come next after RR, respectively. At the
end of the list, IQ-based algorithm gives worst results.

In general, FLRMR improved the performance of LREQ
algorithm by 8.64%. FIQMR improved the performance of
IQ-based algorithm by 11.34%. This proves that the idea of
related requests and fair scheduling give good results, and
it deserves more care in future research in this point.

VIII. FUTURE WORK

In future work we intend to include the effect of adding
different memory banks, and memory controllers. We are
interested, also, in adapting these algorithms to support
parallel applications. We plan, also, to test these algorithms
on real platforms.

REFERENCES

[1] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.
Owens, “Memory access scheduling,” in ISCA-27, pp. 128–
138, 2000.

[2] S. A. McKee and W. A.Wulf, “Access ordering and memory-
conscious cache utilization,” in HPCA-1, pp. 253–262, Jan.
1995.

[3] S. I. Hong, S. A. McKee, M. H. Salinas, R. H. Klenke, J. H.
Aylor, and W. A.Wulf, “Access order and effective bandwidth
for streams on a direct rambus memory,” in HPCA-5, pp. 80–
89, Jan. 1999.

[4] S. A. Moyar, “Access ordering and effective memory band-
width,” Technical Report TR CS-93-18, April 1993.

[5] B. K. Mathew, S. A. McKee, J. B. Carter, and A. Davis,
“Design of a parallel vector access unit for sdram memory
systems,” in Proceedings of the 6th International Symposium
on High-Performance Computer Architecture, pp. 39–48, Jan.
2000.

[6] Z. Zhu and Z. Zhang, “A performance comparison of dram
memory system optimizations for smt processors,” in ISCA-
11, pp. 213–224, 2005.

[7] H. Zheng, J. Lin, Z. Zhang, and Z. Zhu, “Memory access
scheduling schemes for systems with multi-core processors,”
37th International Conference on Parallel Processing, 2008.

[8] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter,
“Thread cluster memory scheduling: Exploiting differences in
memory access behavior,” MICRO-43, 2010.

[9] D. Kroft, “Lockup-free instruction fetch/prefetch cache orga-
nization,” in Proceedings of the 8th International Symposium
on Computer Architecture, May 1981.

[10] K. I. Farkas and N. P. Jouppi, “Complexity/performance
tradeoffs with non-blocking loads,” in ISCA-21, April 1994.

[11] A. El-Moursy, R. Garg, D. H. Albonesi, and S. Dwarkadas,
“Partitioning multi-threaded processors with a large number
of threads,” in Intl. Symposium on Performance Analysis of
Systems and Software, pp. 112–123, March 2005.

[12] D. Burger and T. Austin, “The simplescalar toolset, version
2.0.,” Technical Report TR-97-1342, June 1997.

[13] R. Gabor, S. Weiss, and A. Mendelson, “Fairness and through-
put in switch on event multithreading,” in Proc. of the 39th
Intl. Symp. on Microarchitecture, pp. 149–160, Dec. 2006.

[14] O. Mutlu and T. Moscibroda, “Stall-time fair memory access
scheduling for chip multiprocessors,” in Proc. of the 40th Intl.
Symp. on Microarchitecture, pp. 208–222, Dec. 2007.

[15] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “Atlas:
A scalable and high-performance scheduling algorithm for
multiple memory controllers,” HPCA-16, 2010.

[16] O. Mutlu and T. Moscibroda, “Parallelism-aware batch
scheduling: Enhancing both performance and fairness of
shared dram systems,” ISCA-35, 2008.

[17] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A.
Joao, O. Mutlu, and Y. N. Patt, “Parallel application memory
scheduling,” MICRO-44, 2011.


