
Hardware Algorithms for Division, Square Root

and Elementary Functions

by

Sherif Amin Tawfik Naguib

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

July 2005

Hardware Algorithms for Division, Square Root

and Elementary Functions

by

Sherif Amin Tawfik Naguib

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS

Under the Supervision of

Serag E.-D. Habib Hossam A. H. Fahmy

Professor Assistant Professor

Elec. and Com. Dept. Elec. and Com. Dept.

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

July 2005

Hardware Algorithms for Division, Square Root

and Elementary Functions

by

Sherif Amin Tawfik Naguib

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS

Approved by the

Examining Committee

Prof. Dr. Serag E.-D. Habib, Thesis Main Advisor

Prof. Dr. Elsayed Mostafa Saad

Associate Prof. Dr. Ibrahim Mohamed Qamar

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

July 2005

Acknowledgments

I would like first to thank God for making everything possible and for giving me

strength and good news at times of disappointment. I would like also to thank

my advisers. Special thanks go to my second adviser Dr. Hossam Fahmy for his

continuous advises, helpful notes and friendly attitude. I would like to thank also

my family specifically my mother and two brothers for giving me support all my

life and for having faith in my abilities.

ii

Abstract

Many numerically intensive applications require the fast computation of division,

square root and elementary functions. Graphics processing, image processing and

generally digital signal processing are examples of such applications. Motivated

by this demand on high performance computation many algorithms have been

proposed to carry out the computation task in hardware instead of software. The

reason behind this migration is to increase the performance of the algorithms

since more than an order of magnitude increase in performance can be attained

by such migration. The hardware algorithms represent families of algorithms that

cover a wide spectrum of speed and cost.

This thesis presents a survey about the hardware algorithms for the com-

putation of elementary functions, division and square root. Before we present

the different algorithms we discuss argument reduction techniques, an important

step in the computation task. We then present the approximation algorithms. We

present polynomial based algorithms, table and add algorithms, a powering algo-

rithm, functional recurrence algorithms used for division and square root and two

digit recurrence algorithms namely the CORDIC and the Briggs and DeLugish

algorithm.

Careful error analysis is crucial not only for correct algorithms but it may

also lead to better circuits from the point of view of area, delay or power. Error

analysis of the different algorithms is presented.

We made three contributions in this thesis. The first contribution is an algo-

rithm that computes a truncated version of the minimax polynomial coefficients

that gives better results than the direct rounding. The second contribution is

about devising an algorithmic error analysis that proved to be more accurate and

led to a substantial decrease in the area of the tables used in a powering, division

iii

and square root algorithms. Finally the third contribution is a proposed high

order Newton-Raphson algorithm for the square root reciprocal operation and a

square root circuit based on this algorithm.

VHDL models for the powering algorithm, functional recurrence algorithms

and the CORDIC algorithm are developed to verify these algorithms. Behavioral

simulation is also carried out with more than two million test vectors for the

powering algorithm and the functional recurrence algorithms. The models passed

all the tests.

iv

Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

1.1 Number Systems . 1

1.2 Survey of Previous Work . 5

1.3 Thesis Layout . 7

2 Range Reduction 9

3 Polynomial Approximation 13

3.1 Interval Division and General Formula 13

3.2 Polynomial Types . 15

3.2.1 Taylor Approximation . 16

3.2.2 Minimax Approximation 18

3.2.3 Interpolation . 21

3.3 Implementation . 23

3.3.1 Iterative Architecture . 23

3.3.2 Parallel Architecture . 24

3.3.3 Partial Product Array . 26

3.4 Error Analysis . 28

3.5 Muller Truncation Algorithm . 31

3.6 Our Contribution: Truncation Algorithm 34

3.7 Summary . 37

v

4 Table and Add Techniques 39

4.1 Bipartite . 39

4.2 Symmetric Bipartite . 43

4.3 Tripartite . 47

4.4 Multipartite . 51

4.5 Summary . 52

5 A Powering Algorithm 53

5.1 Description of the Powering Algorithm 53

5.2 Theoretical Error analysis . 57

5.3 Our Contribution:

Algorithmic Error Analysis . 58

5.4 Summary . 62

6 Functional Recurrence 64

6.1 Newton Raphson . 65

6.2 High Order NR for Reciprocal 68

6.3 Our Contribution

High Order NR for Square Root Reciprocal 69

6.3.1 A Proposed Square Root Algorithm 70

6.4 Summary . 73

7 Digit Recurrence 75

7.1 CORDIC . 75

7.1.1 Rotation Mode . 76

7.1.2 Vectoring Mode . 79

7.1.3 Convergence Proof . 80

7.1.4 Hardware Implementation 81

7.2 Briggs and DeLugish Algorithm 83

7.2.1 The Exponential Function 83

7.2.2 The Logarithm Function 85

7.3 Summary . 87

vi

8 Conclusions 88

8.1 Summary . 88

8.2 Contributions . 89

8.3 Recommendations for Future Work 90

vii

List of Figures

3.1 Dividing the given interval into J sub-intervals. From a given ar-

gument Y we need to determine the sub-interval index m and the

distance to the start of the sub-interval h 14

3.2 Example of a minimax third order polynomial that conforms to

the Chebychev criteria . 19

3.3 Illustration of second step of Remez algorithm 21

3.4 The Iterative Architecture . 25

3.5 The Parallel Architecture . 26

3.6 The Partial Product Array Architecture 27

3.7
√
g and its first order minimax approximation δ0 + δ1g 32

4.1 The architecture of the Bipartite algorithm 42

4.2 The architecture of the symmetric Bipartite algorithm 46

4.3 The architecture of the Tripartite algorithm 50

5.1 Architecture of the Powering Algorithm 56

5.2 The error function versus h when p ∈ [0, 1] and we round cm up . 61

5.3 The error function versus h when p /∈ [0, 1] and we truncate cm . . 61

6.1 Illustration of Newton-Raphson root finding algorithm 65

6.2 Hardware Architecture of the Proposed Square Root Algorithm. . 72

7.1 Two vectors and subtended angle. In rotation mode the unknown

is the second vector while in vectoring mode the unknown is the

subtended angle between the given vector and the horizontal axis 76

7.2 The CORDIC Architecture . 82

viii

List of Tables

3.1 Results of our algorithm for different functions, polynomial order,

number of sub-intervals and coefficients precision in bits (t) 38

5.1 Comparison between the theoretical error analysis and our algo-

rithmic error analysis. The coefficient is not computed with the

modified method. 62

ix

x

Chapter 1

Introduction

Computer Arithmetic is the science that is concerned with representing numbers

in digital computers and performing arithmetic operations on them as well as

computing high level functions.

1.1 Number Systems

Numbers systems are ways of representing numbers so that we can perform arith-

metic operations on them. Examples of number systems include weighted posi-

tional number system WPNS, residue number system RNS and logarithmic num-

ber system LNS. Each of these systems has its own advantages and disadvantages.

The WPNS is the most popular. We can perform all basic arithmetic operations

on numbers represented in WPNS. Moreover the decimal system which we use

in our daily life is a special case of the WPNS. The RNS has the advantage

that the addition and multiplication operations are faster when the operands are

represented in RNS system. However division and comparison are difficult and

costly. LNS has the advantage that multiplication and division are faster when

operands are represented in LNS system. However addition is difficult in this

number system. From this point on we concentrate on the WPNS because it is

the most widely used number system and because it is most suitable for general

purpose processors.

1

In WPNS positive integers are represented by a string of digits as follows:

X = xL−1xL−2 . . . x3x2x1x0

such that

X =
i=L−1
∑

i=0

xiµ
i (1.1)

Where µ is a constant and it is called the radix of the system. Each digit xi

can take one of the values of the set {0, 1, 2, . . . , µ− 1}. The range of positive

integers that can be represented with L digits is [0, µL− 1]. It can be shown that

any positive integer has a unique representation in this number system.

The decimal system is a special case of the WPNS in which the radix µ = 10.

We can represent negative numbers by a separate sign that can be either +

or −. This is called sign-magnitude representation or we can represent negative

numbers by adding a constant positive bias to the numbers hence the biased

numbers that are less than the bias are negative while the biased numbers that

are greater than the bias are positive. This is called biased representation. We

can also represent negative integers using what is known as the radix complement

representation. In such representation if X is a positive L digits number then −X

is represented by RC(X) = µL −X. It is clear that RC(X) is a positive number

since µL > X. RC(X) is also represented in L digits. To differentiate between

positive and negative numbers we divide the range of the L digits number which

is [0, µL − 1] into two halves. We designate The first half to positive integers and

the second half to negative integers in radix complement form. The advantage of

using the radix complement representation to represent negative numbers is that

we can perform subtraction using addition. Adding µL to an L digits number

doesn’t affect its L digits representation since µL is represented by 1 in the L+1

digit position. Hence when we subtract two L digits numbers X1 − X2 it is

equivalent to X1 − X2 + µL = X1 + RC(X2). Hence to perform subtraction we

simply add the first number to the radix complement of the second number. The

radix complement RC(X) can be easily obtained from X by subtracting each

digit of X from the radix µ then we add 1 to the result.

2

We extend the WPNS to represent fractions by using either the fixed point

representation or the floating point representation. In the former we represent

numbers as follows:

X = xL2−1xL2−2 . . . x3x2x1x0.x−1x−2 . . . x−L1 (1.2)

such that

X =
i=L2−1
∑

i=−L1

xiµ
i for positive numbers (1.3)

X =
i=L2−1
∑

i=−L1

xiµ
i − µL2 for negative numbers (1.4)

The digits to the right of the point are called the fraction part while the digits to

the left of the point are called the integer part. Note that the number of digits

of the fraction part as well as the integer part is fixed hence the name of the

representation.

In Floating point representation we represent the number in the form:

X = ±µe0.x−1x−2 . . . x−L

such that

X = ±µe(
i=−1
∑

i=−L

xiµ
i)

where e is called the exponent and 0.x−1x−2 . . . x−L is called the mantissa of the

floating point number. x−1 is non-zero. For the case of binary radix (µ = 2) the

leading zero of the mantissa can be a leading 1.

Negative exponents are represented using the biased representation in order

to simplify the comparison between two floating point numbers. According to

the value of the exponent the actual point moves to either the left or the right of

its apparent position hence the name of the representation.

The gap of the representation is defined as the the difference between any two

consecutive numbers. In case of fixed point representation the gap is fixed and is

equal to the weight of the rightmost digit which is µ−L1 . On the other hand the

gap in floating point representation is not fixed. It is equal to µe multiplied by

3

the weight of the rightmost digit. Therefore the gap is dependent on the value

of the exponent. The gap is small for small exponents and big for big exponents.

The advantage of the floating point format over the fixed point format is that it

increases the range of the representable numbers by allowing the gap to grow for

bigger numbers.

In digital computers we use string of bits to represent a number. Each bit can

be either 0 or 1. Some information in the representation is implicit such as the

radix of the system. The explicit information about the number is formatted in

a special format. The format specifies the meaning of every group of bits in the

string. For example IEEE floating point numbers are represented as follows:

Sign Exponent Fraction

s e x

X = s× 2e × 1.x

Where the sign s is represented by 1 bit s = 0 for positive sign and s = 1 for

negative sign, e is the exponent that is represented by 8 bits for single precision

format and 11 bits for double precision format and finally x is the fraction. It

is represented by 23 bits for single precision format and 52 bits for the double

floating format. The radix of the system which is 2 and the hidden 1 of the

mantissa are implicit information and are not stored. More details about the

floating IEEE standard can be found in [1].

The presence of such standard is necessary for information exchange between

different implementation. Internally numbers can be represented in the computer

in a different format but when we write the number to the memory it should be

in the IEEE floating point standard in order to be easily transfered between the

different platforms.

An important modification in the WPNS is the introduction of redundancy.

We add redundancy by increasing the digit set. In the non-redundant represen-

tation each digit xi ∈ {0, 1, 2, . . . , µ− 1} and that caused each number to have a

unique representation. In the redundant representation we increase the number

of elements of the digit set and the digits can be negative. In such representation

4

a number can have more than one representation. This feature is used to speed up

the arithmetic circuits. More details on redundant representation can be found

in [2, 3]

1.2 Survey of Previous Work

The arithmetic circuits represent the bulk of the data path of microprocessors.

They also constitute large parts of specific purpose digital circuits. These circuits

process numbers represented by a certain format in order to compute the basic

arithmetic operations as well as elementary functions.

In this thesis we are primarily interested in the arithmetic circuits that com-

pute division, square root and elementary functions. Such circuits will use adders

and multipliers as building blocks. Historically division, square root and elemen-

tary functions were computed in software and that led to a long computation

time in the order of hundreds of clock cycles. Motivated by computationally in-

tensive applications such as digital signal processing hardware algorithms have

been devised to compute the division, square root and elementary functions at a

higher speed than the software techniques.

The hardware approximation algorithms can be classified into four broad cat-

egories.

The first category is called digit recurrence techniques. The algorithms that

belong to this category are linearly convergent and they employ addition, sub-

traction, shift and single digit multiplication operations. Examples of such algo-

rithms are division restoring algorithm [4], division non-restoring algorithm [4],

SRT division algorithm [4], CORDIC [5, 6],Briggs and DeLugish algorithm [7, 8],

BKM [9] and online algorithms [10].

The second category is called functional recurrence. Algorithms that belong

to this category employ addition, subtraction and full multiplication operations

as well as tables for the initial approximation. In this class of algorithms we

start by a given initial approximation and we feed it to a polynomial in order

to obtain a better approximation. We repeat this process a number of times

until we reach the desired precision. These algorithms converge quadratically or

5

better. Examples from this category include Newton-Raphson for division [11,

12], Newton-Raphson for square root [12] and high order Newton-Raphson for

division [13].

The third category is the polynomial approximation. This category is a diverse

category. The general description of this class is as follows: we divide the interval

of the argument into a number of sub-intervals. For each sub-interval we approx-

imate the elementary function by a polynomial of a suitable degree. We store the

coefficients of such polynomials in one or more tables. Polynomial approximation

algorithms employ tables, adders and multipliers. Examples of algorithms from

this category are: Initial approximation for functional recurrence [14, 15, 12, 16].

The powering algorithm [17] which is a first order algorithm that employs a table,

a multiplier and a special hardware for operand modification. This algorithm can

be used for single precision results or as an initial approximation for the functional

recurrence algorithms. Table and add algorithms can be considered a polynomial

based approximation. These algorithms are first order polynomial approxima-

tion in which the multiplication is avoided by using tables. Examples of table

add techniques include the work in [18] Bipartite [19, 20], Tripartite [21] and

Multipartite [21, 22, 23] Examples of other work in polynomial approximation

include [24, 25]. The convergence rate of polynomial approximation algorithms

is function-dependent and it also depends to a great extent on the range of the

given argument and on the number of the sub-intervals that we employ.

The fourth category is the rational approximation algorithms. In this cate-

gory we divide the given interval of the argument into a number of sub-intervals.

For each sub-interval we approximate the given function by a rational function.

A rational function is simply a polynomial divided by another polynomial. It

employs division operation in addition to tables, addition and multiplication op-

erations. The rational approximation is rather costly in hardware due to the fact

that it uses division.

Range reduction is the first step in elementary functions computation. It aims

to transform the argument into another argument that lies in a small interval.

Previous work in this area can be found in [26, 27]. In [26] an accurate algorithm

for carrying out the modular reduction for trigonometric functions is presented

6

while in [27] useful theorems on range reduction are given from which an algorithm

for carrying out the modular reduction on the same working precision is devised.

1.3 Thesis Layout

The rest of the thesis is organized as follows:

In chapter 2 We present range reduction techniques. We give examples for

different elementary functions and we show how to make the range reduction

accurate.

In chapter 3 we present the general polynomial approximation techniques. In

these techniques we divide the interval of the argument into a number of sub-

intervals and design a polynomial for each sub-interval that approximates the

given function in its sub-interval. We then show how to compute the coefficients

of such polynomials and the approximation error. We also give in this chapter

three hardware architectures for implementing the general polynomial approxi-

mation. Another source of error is the rounding error. We present techniques

for computing bounds of the accumulated rounding error. We also present an

algorithm given in [25] that aims to truncate the coefficients of the approximat-

ing polynomials in an efficient way. The algorithm is applicable for second order

polynomials only. Finally we present our algorithm for truncating the coefficients

of the approximating polynomials in an efficient way and which is applicable for

any order.

In chapter 4 we present table and add algorithms, a special case of the poly-

nomial approximation techniques. In these algorithms we approximate the given

function by a first order polynomial and we avoid the multiplication by using

tables. In bipartite we use two tables. In tripartite we use three tables and in

the general Multipartite we use any number of tables. A variant of the bipartite

which is called the symmetric bipartite is also presented.

In chapter 5 we present a powering algorithm [17] that is a special case of

the polynomial approximation. It is a first order approximation that uses one

coefficient and operand modification. It uses smaller table size than the general

first order approximation technique at the expense of a bigger multiplier hence

7

the algorithm is practical when a multiplier already exists in the system. We also

present an error analysis algorithm [28] that gives a tighter error bound than the

theoretical error analysis.

In chapter 6 we present the functional recurrence algorithms. These algo-

rithms are based on the Newton-Raphson root finding algorithm. We present

the Newton-Raphson algorithm and show how it can be used to compute the

reciprocal and square root reciprocal functions using a recurrence relation that

involves multiplication and addition. We present also the high order version of

the Newton-Raphson algorithm for the division [13] and for the square root re-

ciprocal [29]. A hardware circuit for the square root operation is presented. This

circuit is based on the powering algorithm for the initial approximation of the

square root reciprocal followed by the second order Newton-Raphson algorithm

for the square reciprocal and a final multiplication by the operand and rounding.

A VHDL model is created for the circuit and it passes a simulation test composed

of more than two million test vectors.

In chapter 7 we present two algorithms from the digit recurrence techniques.

The first is the CORDIC algorithm [5, 6] and the second is the Briggs and DeL-

ugish algorithm.

8

Chapter 2

Range Reduction

We denote the argument by X and the elementary function by F (X). The

computation of F (X) is performed by three main steps. In the first step we

reduce the range of X by mapping it to another variable Y that lies in a small

interval say [a, b]. This step is called the range reduction step. In the second step

we compute the elementary function at the reduced argument F (Y) using one

of the approximation algorithms as described in the following chapters. We call

this step the approximation step. In the third step we compute the elementary

function at the original argument F (X) from our knowledge of F (Y). The third

step is called the reconstruction step.

The range reduction step and the reconstruction step are related and they

depend on the function that we need to compute.

The advantage of the range reduction is that the approximation of the ele-

mentary function is more efficient in terms of computation delay and hardware

area when the argument is constrained in a small interval.

For some elementary functions and arithmetic operations the range reduction

is straightforward such as in reciprocation, square root and log functions. For

these functions the reduced argument is simply the mantissa of the floating point

representation of the argument. The mantissa lies in a small interval [1, 2[. The

reconstruction is also straightforward as follows:

The reciprocal function: F (X) = 1
X

X = ±2e1.x (2.1)

9

F (X) =
1

X
= 2−e 1

1.x
(2.2)

where e is the unbiased exponent and x is the fraction. Equation 2.2 indicates

that computing the exponent of the result is simply performed by negating the

exponent of the argument. Hence we only need to approximate 1
Y
where Y is the

mantissa of the argument X, Y = 1.x. To put the result in the normalized form

we may need to shift the mantissa by a single bit to the left and decrement the

exponent.

The log function: F (X) = logX

X = +2e1.x (2.3)

F (X) = log(X) = e log(2) + log(1.x) (2.4)

From equation 2.4 we only need to approximate F (Y) = logY where Y = 1.x and

we reconstruct F (X) by adding F (Y) to the product of the unbiased exponent

and the stored constant log(2).

The trigonometric functions F (X) = sin(X) and F (X) = cos(X) and the

exponential function F (X) = exp(X) requires modular reduction of the argument

X. That is we compute the reduced argument Y such that:

X = N × A+ Y (2.5)

0 ≤ Y < A

Where A is a constant that is function-dependent and N is an integer. For

the trigonometric functions sin(X) and cos(X) A = 2π or A = π or A = π
2
or

A = π
4
. As A gets smaller the interval of the reduced argument Y becomes smaller

and hence the approximation of F (Y) will become more efficient at the expense

of complicating the reconstruction step. For example if A = π
2
we reconstruct

sin(X) as follows:

sin(X) = sin(N × π

2
+ Y) (2.6)

sin(X) = sin(Y) , N mod 4 = 0 (2.7)

sin(X) = cos(Y) , N mod 4 = 1 (2.8)

10

sin(X) = −sin(Y) , N mod 4 = 2 (2.9)

sin(X) = −cos(Y) , N mod 4 = 3 (2.10)

On the other hand if A = π
4
we reconstruct sin(X) as follows:

sin(X) = sin(N × π

4
+ Y) (2.11)

sin(X) = sin(Y) , N mod 8 = 0 (2.12)

sin(X) =
cos(Y) + sin(Y)√

2
, N mod 8 = 1 (2.13)

sin(X) = cos(Y) , N mod 8 = 2 (2.14)

sin(X) =
cos(Y)− sin(Y)√

2
, N mod 8 = 3 (2.15)

sin(X) = −sin(Y) , N mod 8 = 4 (2.16)

sin(X) =
−sin(Y)− cos(Y)√

2
, N mod 8 = 5 (2.17)

sin(X) = −cos(Y) , N mod 8 = 6 (2.18)

sin(X) =
sin(Y)− cos(Y)√

2
, N mod 8 = 7 (2.19)

The reconstruction of cos(X) is similar.

For the exponential function A = ln(2). The reconstruction step is as follows:

exp(X) = exp(N × ln(2) + Y) (2.20)

= 2N × exp(Y) (2.21)

Since 0 ≤ Y < ln(2) therefore 1 ≤ exp(Y) < 2. This means that exp(Y) is the

mantissa of the result while N is the exponent of the result.

From the previous examples it is clear that the range reduction step is per-

formed so that the approximation step becomes efficient and at the same time

the reconstruction step is simple.

To perform the modular reduction as in the last two examples we need to

compute N and Y . We compute N and Y from X and the constant A as follows:

N =
⌊

X

A

⌋

(2.22)

Y = X −N × A (2.23)

11

To carry out the above two equations we need to store the two constants A

and 1
A
to a suitable precision. We multiply the argument by the second constant

1
A
and truncate the result after the binary point. The resulting integer is N . We

then perform the equation 2.23 using one multiplication and one subtraction.

These two equations work fine for most arguments. However for arguments

that are close to integer multiples of A a catastrophic loss of significance will

occur in the subtraction in equation 2.23. This phenomenon is due to the errors

in representing the two constants A and 1
A
by finite precision machine numbers.

An algorithm given in [26] gives an accurate algorithm for carrying out the

modular reduction for trigonometric functions. The algorithm stores a long string

for the constant 1
2π
. It starts with the reduction process by a a subset of this

string. If significance loss occurs the algorithm uses more bits of the stored

constant recursively to calculate the correct reduced argument.

Useful theorems for range reduction are given in [27]. An algorithm based

on these theorems is also given. The algorithm seeks the best representation for

the two constants A and 1
A

such that the reduction algorithm is performed on

the same working precision. The theorems also give the permissible range of the

given argument for correct range reduction.

12

Chapter 3

Polynomial Approximation

We denote the reduced argument by Y . It lies in the interval [a, b]. We denote

the function that we need to compute by F (Y).

One of the prime issues in polynomial approximation is the determination

of the polynomial order that satisfies the required precision. If we approximate

the given function in the given interval using one polynomial the degree of the

resulting polynomial is likely to be large. In order to control the order of the

approximating polynomial we divide the given interval into smaller sub-intervals

and approximate the given function using a different polynomial for each sub-

interval.

The rest of this chapter is organized as follows: We give the details of the

interval division and the general formula of the polynomial approximation in

section 3.1. Techniques for computing the coefficients of the approximating poly-

nomials are given in section 3.2. Three possible implementation architectures

are given in section 3.3. We present techniques for error analysis in section 3.4.

An algorithm due to Muller [25] that aims at truncating the coefficients of the

approximating polynomial is given in section 3.5. Finally we give our algorithm

that has the same aim as that of Muller’s in section 3.6.

3.1 Interval Division and General Formula

We divide the given interval [a, b] uniformly into a number of divisions equal to

J . Therefore every sub-interval has a width ∆ = b−a
J
, starts at am = a + m∆

13

and ends at bm = a + (m + 1)∆ where m = 0, 1, . . . , J − 1 is the index of the

sub-interval. For a given argument Y we need to determine the sub-interval index

m in which it lies and the difference between the argument Y and the beginning

of its sub-interval. We denote this difference by h as shown in figure 3.1.

���

��� m=J-�

Y

h

…….

a b

Figure 3.1: Dividing the given interval into J sub-intervals. From a given argu-
ment Y we need to determine the sub-interval index m and the distance to the
start of the sub-interval h

We can determine m and h from a, b and J as follows:

∆ =
b− a

J
(3.1)

m = ⌊Y − a

∆
⌋ (3.2)

h = Y − am = Y − (a+m∆) (3.3)

We usually set the width of the interval [a, b] to be power of 2 and we choose

J to be also power of 2. With such choices the computation of m and h becomes

straightforward in hardware. For example if the interval [a, b] = [0, 1[hence Y

has the binary representation Y = 0.y1y2 . . . yL assuming L bits representation.

If J = 32 = 25 then we calculate m and h as follows:

∆ =
b− a

J

= 2−5 (3.4)

14

m = ⌊Y − a

∆
⌋

= ⌊(Y − 0)× 25⌋

= y1y2y3y4y5 (3.5)

h = Y − (a+m∆)

= Y − (0 +m× 2−5)

= 0.00000y6y7 . . . yL (3.6)

For every sub-interval we design a polynomial that approximates the given

function in that sub-interval. We denote such polynomial by Pmn(h) where m

stands for the index of the sub-interval while n denotes the order of the polyno-

mial.

F (Y) ≈ Pmn(h)

= cm0 + cm1h+ cm2h
2 + · · ·+ cmnh

n (3.7)

The coefficients are stored in a table that is indexed by m.

It is to be noted that as the number of sub-intervals J increases the width of

every sub-interval and hence the maximum value of h decreases enabling us to

decrease the order of the approximating polynomials. However more sub-intervals

means larger coefficients table. Therefore we have a trade off between the number

of sub-intervals and the order of the approximating polynomials. This trade off

is translated in the iterative architecture to a trade off between area and delay

and it is translated in the parallel and PPA architectures to a trade off between

the area of the coefficients table and the area of the other units as we show in

section 3.3.

3.2 Polynomial Types

We discuss in this section three techniques for computing the coefficients of the

approximating polynomials. They are Taylor approximation, minimax approxi-

mation and interpolation.

Taylor approximation gives analytical formulas for the coefficients and the

15

approximation error. It is useful for some algorithms that we present in later

chapters namely the Bipartite, Multipartite, Powering algorithm and functional

recurrence.

Minimax approximation on the other hand is a numerical technique. It gives

the values of the coefficients and the approximation error numerically. It has

the advantage that it gives the lowest polynomial order for the same maximum

approximation error.

Interpolation is a family of techniques. Some techniques use values of the

given function in order to compute the coefficients while others use values of

the function and its higher derivatives to compute the coefficients. Interpolation

can be useful to reduce the size of the coefficients table at the expense of more

complexity and delay and that is by storing the values of the function instead of

the coefficients and computing the coefficients in hardware on the fly [30].

In the following three subsections we discuss the three techniques in detail.

3.2.1 Taylor Approximation

We review the analytical derivation of the Taylor approximation theory. We

assume the higher derivatives of the given function exist. From the definition of

the integral we have:

F (Y)− F (am) =
∫ t=Y

t=am

F ′(t)dt (3.8)

Integration by parts states that:

∫

udv = uv −
∫

vdu (3.9)

We let u = F ′(t) and dv = dt hence we get du = F ′′(t)dt and v = t−Y . Note

that we introduce a constant of integration in the last equation. Y is considered

as a constant when we integrate with respect to t. We substitute these results in

equation 3.8 using the integration by parts technique to obtain:

16

F (Y)− F (am) = [(t− Y)F ′(t)]t=Y
t=am

+

t=Y
∫

t=am

(Y − t)F ′′(t)dt (3.10)

F (Y) = F (am) + (Y − am)F
′(am) +

t=Y
∫

t=am

(Y − t)F ′′(t)dt (3.11)

In equation 3.11 we write the value of the function at Y in terms of its value

at am and its first derivative at am. The remainder term is function of the second

derivative F ′′(t).

We perform the same steps on the new integral involving the second derivative

of F ′′(t). We set u = F ′′(t) and dv = (Y − t)dt hence du = F (3)(t)dt and

v = −1
2
(Y − t)2. We use the integration by parts on the new integral to obtain:

F (Y) = F (am)+ (Y − am)F
′(am)+

1

2
(Y − am)

2F ′′(am)+
1

2

t=Y
∫

t=am

(Y − t)2F (3)(t)dt

(3.12)

Continuing with the same procedure we reach the general Taylor formula:

F (Y) = F (am) + (Y − am)F
′(am) +

(Y − am)
2

2!
F ′′(am) + · · ·

+
(Y − am)

n

n!
F (n)(am) +

∫ t=Y

t=am

(Y − t)n

n!
F (n+1)(t)dt (3.13)

Rn =
∫ t=Y

t=am

(Y − t)n

n!
F (n+1)(t)dt (3.14)

The reminder given by equation 3.14 decreases as n increases. Eventually it

vanishes when n approaches infinity. Using the mean value theorem the remainder

can be also written in another form that can be more useful

Rn =
(Y − am)

n+1

(n+ 1)!
F (n+1)(ζ) (3.15)

where ζ is a point in the interval [am, Y]. Since the point ζ is unknown to us

we usually bound the remainder term by taking the maximum absolute value of

F (n+1).

Equations 3.13 and 3.15 give the formula of Taylor polynomial and the ap-

proximation error respectively. To link the results of Taylor theorem with the

17

general formula given in the previous section we set am to the start of the sub-

interval m in which the argument Y lies hence Y − am = h. Taylor polynomial

and approximation error(remainder) can now be written as follows:

F (Y) ≈ Pmn(Y) = F (am) + F ′(am)h+
F ′′(am)

2!
h2 + · · ·

+
F (n)(am)

n!
hn (3.16)

ǫa =
(h)n+1

(n+ 1)!
F (n+1)(ζ) (3.17)

We use equation 3.16 to compute the coefficients of the approximating polyno-

mials. By comparison with the general polynomial formula given in the previous

section we get the coefficients

cmi =
F (i)(am)

i!
(3.18)

i = 0, 1, . . . , n

While equation 3.17 gives the approximation error.

3.2.2 Minimax Approximation

Minimax approximation seeks the polynomial of degree n that approximates the

given function in the given interval such that the absolute maximum error is

minimized. The error is defined here as the difference between the function and

the polynomial.

Chebyshev Proved that such polynomial exists and that it is unique. He also

gave the criteria for a polynomial to be a minimax polynomial[31]. Assuming

that the given interval is [am, bm] Chebyshev’s criteria states that if Pmn(Y) is

the minimax polynomial of degree n then there must be at least (n+2) points in

this interval at which the error function attains the absolute maximum value with

alternating sign as shown in figure 3.2 for n = 3 and by the following equations:

am ≤ y0 < y1 < · · · < yn+1 ≤ bm

F (yi)− Pmn(yi) = (−1)iE (3.19)

i = 0, 1, . . . , n+ 1

18

E = ± max
am≤y≤bm

|F (y)− Pmn(y)| (3.20)

0

y

F(y) − P
mn

(y)

a
m b

m

E

− E

Figure 3.2: Example of a minimax third order polynomial that conforms to the
Chebychev criteria

The minimax polynomial can be computed analytically up to n = 1. For

higher order a numerical method due to Remez [32] has to be employed.

Remez algorithm is an iterative algorithm. It is composed of two steps in

each iteration. In the first step we compute the coefficients such that the differ-

ence between the given function and the polynomial takes equal magnitude with

alternating sign at (n+ 2) given points.

F (yi) − Pmn(yi) = (−1)iE (3.21)

F (yi) − [cm0 + cm1(yi − am) + cm2(yi − am)
2

+ · · ·+ cmn(yi − am)
n] = (−1)iE (3.22)

cm0 + cm1hi + · · ·+ cmnh
n
i + (−1)iE = F (yi) (3.23)

i = 0, 1, 2, . . . , n+ 1

Equation 3.23 is a system of (n + 2) linear equations in the (n + 2) unknowns

19

{cm0, cm1, . . . , cmn, E}. These equations are proved to be independent [32] hence

we can solve them using any method from linear algebra to get the values of the

coefficients as well as the error at the given (n+ 2) points.

The second step of Remez algorithm is called the exchange step. There are

two exchange techniques. In the first exchange technique we exchange a single

point while in the second exchange technique we exchange all the (n+ 2) points

that we used in the first step.

We start the second step by noting that the error alternates in sign at the

(n + 2) points therefore it has (n + 1) roots, one root in each of the the in-

tervals: [y0, y1], [y1, y2], . . . , [yn, yn+1]. We compute these roots using any nu-

merical method such as the method of chords or bisection. We denote these

roots by z0, z1, . . . , zn. We divide the interval [am, bm] into the (n + 2) intervals:

[am, z0], [z0, z1], [z1, z2], . . . , [zn−1, zn], [zn, bm]. In each of these intervals we com-

pute the point at which the error attains its maximum or minimum value and

denote these points by y∗0, y
∗
1, . . . , y

∗
n+1.

We can carry out the last step numerically by computing the root of the

derivative of the error function if such root exists otherwise we compute the error

at the endpoints of the interval and pick the one that gives larger absolute value

for the error function.

We define k such that

k = max
i

|F (y∗i)− Pmn(y
∗
i)| (3.24)

In the single point exchange technique we exchange yk by y∗k while in the

multiple exchange technique we exchange all the (n+ 2) points {yi} by {y∗i }.
We use this new set of (n+2) points in the first step of the following iteration.

We repeat the two steps a number of times until the difference between the old

(n+2) points and the new (n+2) points lies below a given threshold. Figure 3.3

illustrates the second step graphically for a third order polynomial. The initial

(n+ 2) points are selected arbitrarily.

It is to be noted that Remez algorithm gives also the value of the maximum

absolute error from the computation of the first step represented by the variable

E.

20

0

Y

e (Y)

y
0
* y

1
* y

2
* y

3
* y

4
*

E

− E

Figure 3.3: Illustration of second step of Remez algorithm

3.2.3 Interpolation

There are two main Interpolation techniques. The first technique makes use of

the values of the given function at some points in the given interval in order to

compute the coefficients of the approximating polynomial. The second technique

makes use of the values of the function and its higher derivatives at some point

in the given interval in order to compute the coefficients of the approximating

polynomial. The second technique is actually a family of techniques because it

has many parameters such as the derivative order to use, the number of points,

etc. . ..

In the first Interpolation technique we select n+ 1 points arbitrarily (usually

uniformly)in the given interval [am, bm]. We force the approximating polynomial

to coincide with the given function at these n+ 1 points

am ≤ y0 < y1 < · · · < yn ≤ bm

F (yi) = Pmn(yi) (3.25)

= cm0 + cm1(yi − am) + cm2(yi − am)
2 + · · ·

+ cmn(yi − am)
n (3.26)

21

Equation 3.26 is a system of (n + 1) linear equations in the (n + 1) unknowns

cm0, cm1, . . . , cmn. The equations are independent and hence can be solved numer-

ically by methods from linear algebra to yield the desired coefficients. There are

many techniques in literature for computing the coefficients of the approximating

polynomial from equation 3.26 such as Lagrange, Newton-Gregory Forward,Gauss

Forward, Stirling, Bessel, etc. . . They all reach the same result since the solution

is unique.

The approximation error is given by the following equation [33]:

ǫa =
∣

∣

∣(Y − y0)(Y − y1) · · · (Y − yn)
F (n+1)(ζ)
(n+1)!

∣

∣

∣ (3.27)

am ≤ ζ ≤ bm

The approximation error can also be computed numerically by noting that the

error function is zero at the n + 1 points {yi} hence it has a maximum or mini-

mum value between each pair. We divide the interval [am, bm] into the intervals

[am, y0], [y0, y1], [y1, y2], . . . , [yn−1, yn]. In each of these intervals we compute the

extremum point and denote them by
{

y∗0, y
∗
1, . . . y

∗
n+1

}

. The approximation error

is then given by max |F (y∗i)− Pmn(y
∗
i)|.

An algorithm given in [30] uses the second order interpolation polynomial.

It computes the coefficients using the Newton-Gregory Forward method. Since

n = 2 therefore we need three points in the interval in order to compute the

three coefficients. The algorithm uses the two endpoints of the interval together

with the middle point. Instead of storing the coefficients in a table we store the

function value at the chosen three points and the coefficients are computed in

hardware. The gain behind this architecture is that the end points are common

between adjacent intervals thus we don’t need to store them twice hence we reduce

the size of the table to almost two thirds.

An algorithm that belongs to the second Interpolation technique is given

in [34]. This interpolation algorithm is called MIP. It simply forces the approxi-

mating polynomial to coincides with the given function at the end points of the

given interval and forces the higher derivatives of the approximating polynomial

up to order n−1 to coincides with that of the given function at the starting point

22

of the given interval.

F (am) = Pmn(am) = cm0 (3.28)

F (bm) = Pmn(bm) = cm0 + cm1∆+ cm2∆
2 + · · ·+ cmn∆

n (3.29)

F (i)(am) = p(i)mn(am) = (i!)cmi (3.30)

i = 1, . . . , n− 1

3.3 Implementation

In this section three different architectures that implements equation 3.7 in hard-

ware are presented.

The first architecture is the iterative architecture. It is built around a fused

multiply add unit. It takes a number of clock cycles equal to the order of the

polynomial (n) in order to compute the polynomial.

The second architecture is the parallel architecture. It makes use of special-

ized powering units and multipliers to compute the terms of the polynomial in

parallel and finally adds them together using a multi-operand adder. The delay

of this architecture can be considered to be independent of the polynomial order.

However as the order increases more powering units and multipliers and hence

more area are needed.

The final architecture is the partial product array. In this architecture the

coefficients and the operand are written in terms of their bits and the polynomial

is expanded symbolically at design time. The terms that have the same numerical

weight are grouped together and put in columns. The resulting matrix resembles

the partial product array of the parallel multiplier and hence they can be added

together using the multiplier reduction tree and carry propagate adder.

3.3.1 Iterative Architecture

We write equation 3.7 using horner method as follows:

Pmn(h) = cm0 + cm1h+ cm2h
2 + · · ·+ cmnh

n

= cm0 + (· · ·+ (cm(n−2) + (cm(n−1) + cmnh)h) · · ·)h (3.31)

23

Equation 3.31 can be implemented iteratively using a fused multiply add unit

(FMA) as follows:

cmnh + cm(n−1) → T0 (3.32)

T0h + cm(n−2) → T1 (3.33)

T1h + cm(n−3) → T2 (3.34)

...

Tn−2h + cm0 → Tn−1 (3.35)

From the above equations we let T0, T1, . . . , Tn−1 be stored in the same register

that we denote by T and thus in every clock cycle we just read a coefficient from

the coefficients table and add it to the product of T and h. After n clock cycles

the value stored in T is the value of the polynomial that we seek to evaluate.

The first cycle is different from the rest in that we need to read two coefficients

to add the cm(n−1) coefficient to the product of cmn and h. To accomplish this

special case we keep the cmn coefficients in a separate table and use a multiplexer

that selects either cmn or the register T to be the multiplier of the FMA. The

multiplexer selects cmn at the first clock cycle and selects T at the remaining

(n− 1) cock cycles.

Figure 3.4 depicts the details of this architecture. We note here that as the

number of sub-intervals J increases the size of the coefficients table increases and

vice versa. Also as the polynomial order n increases the number of cycles of this

architecture increases and vice versa. Hence the trade off between the number of

intervals J and the polynomial order n is mapped here as a trade off between the

area of the tables and the delay of the circuit.

This architecture can be used to evaluate more than one function by simply

adding coefficients tables for each function and selecting the output of the proper

tables for evaluating the required function.

3.3.2 Parallel Architecture

The parallel architecture employs specialized powering units. The specialized

powering units consumes less area than when implemented with multipliers and

24

FMA

Register

Table
Cmi

m

Counter
i=n -���

F(Y)

i

Table
Cmn

MUX
� � S

S= � when i=n-�
	
� ��������

X

+

m h

Y

Figure 3.4: The Iterative Architecture

they are faster [35]. Furthermore the specialized powering units can be truncated.

We use the powering units to compute the powers of h then we multiply them

by the coefficients in parallel and hence the name of the architecture. Finally we

add the results using a multi operand adder as shown in figure 3.5.

The amount of hardware in this architecture can be prohibitive for higher

order polynomials. It is only practical for low order polynomials. The speed of

this architecture is independent of the polynomial order.

We note here as the number of sub-intervals J increases and consequently the

polynomial order n for each sub-interval decreases the coefficients table increases

in size and the number of powering units and multipliers decrease and vice versa.

Thus the trade off between the number of sub-intervals and the polynomial order

is mapped in this architecture as a trade off between the size of the coefficients

table and the number of other arithmetic units and their sizes.

It is also to be noted that the arithmetic units used in this architecture can

25

F(Y)

()�

()� …...

()n

X

X

X

X
 …...

m h

Table

Multi -operand adder

Y

Figure 3.5: The Parallel Architecture

be shared over more than one function. For each function we only need a new

coefficients table. In this case the optimal design is dependent on the number of

the functions that we need to implement.

3.3.3 Partial Product Array

The partial product array technique was first proposed to evaluate the division

operation [36].

The idea behind this method is that we write the coefficients and h in equa-

tion 3.7 in terms of their bits then we expand the polynomial symbolically. We

next group the terms that have the same power of 2 numerical weight and write

them in columns. The resulting matrix can be considered similar to the partial

products that we obtain when we perform the multiplication operation. Hence we

can add the rows of this matrix using the reduction tree and the carry propagate

adder of the multiplier.

Figure 3.6 gives the general architecture of this technique.

26

m h

Table

PP generator

Reduction tree

CPA

Y

F(Y)

Figure 3.6: The Partial Product Array Architecture

We give a simple example to further illustrate the concept of this implemen-

tation technique. We assume n = 2 and that each of h, cm0, cm1 and cm2 is

represented by two bits as follows:

h = h12
−5 + h22

−6 (3.36)

cm0 = c00 + c012
−1 (3.37)

cm1 = c10 + c112
−1 (3.38)

cm2 = c20 + c212
−1 (3.39)

We next expand the polynomial Pm2(h) symbolically and group the terms that

have the same power of 2 numerical weight as follows:

Pm2(h) = c00 + c012
−1 + c10h12

−5 + (c10h2 + c11h1)2
−6

+ c11h22
−7 + (c20h1 + c20h1h2)2

−10 + (c21h1 + c21h1h2)2
−11

27

+ c20h22
−12 + c21h22

−13 (3.40)

We next write them in the form of a partial product array as follows:

c00 c01 0 0 0 c10h1 c10h2 c11h2 0 0 c20h1 c21h1 c20h2 c21h2

c11h1 c20h1h2 c21h1h2

By adding these two vectors we obtain P (Y). For larger problems the number

of partial products will be larger and hence we need a reduction tree and a final

carry propagate adder. The individual terms in the partial products are obtained

using AND gates.

3.4 Error Analysis

The main goal of arithmetic circuits is the correctness of computation. Correct-

ness in the context of the basic five arithmetic operations of the IEEE standard

is defined as the rounded version of the infinite precision representation of the

result. On the other hand in the context of elementary functions correctness is

defined to be the case that the computed result is correct within one unit in the

last place (1 ulp) of the infinite precision result which means that the computed

result can be higher than the true result by no more than 1 ulp and it can be less

than the true result by no more than 1 ulp.

In order to achieve this correctness goal careful error analysis has to be per-

formed. There are two sources of error that need to be taken into consideration

when performing error analysis. The first source is the approximation error. This

error stems from the fact that we approximate the given function in a given in-

terval by a polynomial. This error was given in section 3.2 along with the details

of coefficients computation. The second source of error is the rounding error. It

is implementation specific. Storing finite precision coefficients and rounding in-

termediate results are responsible for this error. The total error is the sum of the

approximation error and rounding error. The basic principle used in estimating

the rounding error is by bounding it as we see next.

We present techniques for bounding the rounding error that can be applied

28

to any architecture. All the hardware units used in the arithmetic circuits can be

modeled by arithmetic operation specifically addition, multiplication or simple

equality coupled with rounding of the result. We need to compute the bounds

of the rounding error for any operation and most importantly we need to com-

pute such bounds when the arguments themselves have suffered rounding from a

previous step.

We need some notations before giving the bounding technique. We define the

error as the difference between the true value and the rounded one. We denote

the rounding error by ǫr. The error analysis seeks to find the bounds on the

value of ǫr. Assuming that we have three variables, we denote their true values

by P̂1, P̂2 and P̂3 and we denote their rounded values by P1, P2 and P3 hence the

rounding errors are ǫr1 = P̂1 − P1, ǫr2 = P̂2 − P2 and ǫr3 = P̂3 − P3.

In case that we add the two rounded variables P1 and P2 and introduce a new

rounding error ǫ after the addition operation we need to determine the accumu-

lated rounding error in the result. If we denote the result by P3 then we can

bound ǫr3 as follows:

P3 = P1 + P2 − ǫ (3.41)

= P̂1 − ǫr1 + P̂2 − ǫr2 − ǫ (3.42)

= P̂3 − ǫr1 − ǫr2 − ǫ (3.43)

ǫr3 = ǫr1 + ǫr2 + ǫ (3.44)

From Equation 3.44 we determine the bounds on the rounding error of P3 from

knowing the bounds on the rounding errors of P1, P2 and the rounding error after

the addition operation.

min(ǫr3) = min(ǫr1) +min(ǫr2) +min(ǫ) (3.45)

max(ǫr3) = max(ǫr1) +max(ǫr2) +max(ǫ) (3.46)

In case of multiplication, if we multiply P1 and P2 and introduce a round-

ing error after the multiplication equal to ǫ we need to bound the accumulated

rounding error of the result. Again we denote the result by P3 and its rounding

29

error that we seek by ǫr3.

P3 = P1 × P2 − ǫ (3.47)

= (P̂1 − ǫr1)× (P̂2 − ǫr2)− ǫ (3.48)

= P̂1 × P̂2 − P̂2ǫr1 − P̂1ǫr2 + ǫr1ǫr2 − ǫ (3.49)

= P̂3 − P̂2ǫr1 − P̂1ǫr2 + ǫr1ǫr2 − ǫ (3.50)

ǫr3 = P̂2ǫr1 + P̂1ǫr2 − ǫr1ǫr2 + ǫ (3.51)

Using equation 3.51 we can bound the rounding error of the result from our

knowledge of the bounds of the rounding errors of the inputs and the multiplica-

tion operation. Note that we can neglect the third term in equation 3.51 since it

is smaller than the other terms and have opposite sign and that will result in a

slight over estimation of the rounding error.

min(ǫr3) = min(P̂2)×min(ǫr1) +min(P̂1)×min(ǫr2)

− max(ǫr1)×max(ǫr2) +min(ǫ) (3.52)

max(ǫr3) = max(P̂2)×max(ǫr1) +max(P̂1)×max(ǫr2)

− min(ǫr1)×min(ǫr2) +max(ǫ) (3.53)

What remains for complete rounding error analysis is the bounding of the

rounding error that results from rounding a variable before storing in a table

or after an arithmetic operation whether it is addition or multiplication. The

rounding error depends on the sign of the variable and the rounding method.

The most common rounding methods used are the truncation and the round to

nearest.

If we truncate a positive variable after t bits from the binary point then the

rounding error ǫr lie in the interval [0, 2−t]. That is the rounding has a minimum

value of 0 and a maximum value of 2−t. If however the variable is negative then

ǫr ∈ [−2−t, 0].

Rounding to nearest after t bits from the binary point will cause a round-

ing error that is independent of the sign of the variable and lies in the interval

[−2−t−1, 2−t−1]. The reason that makes the rounding error independent of the

30

sign of the variable is because the rounding can be either up or down for both

cases.

3.5 Muller Truncation Algorithm

Muller [25] presents an algorithm to get the optimal second order approximating

polynomial Pm2(h) = cm0 + cm1h + cm2h
2 with truncated coefficients. The de-

crease of the coefficients widths has an implementation advantage in the parallel

architecture since it decreases the area of the multipliers. Compared to the direct

rounding of the coefficients, Muller’s algorithm gives results that are up to three

bits more precise.

The algorithm is based on the observation that the maximum value of h is

usually small and hence the maximum value of h2 is even smaller. This obser-

vation leads to the conclusion that rounding cm1 has more effect on the final

error than rounding cm2. Based on this fact the algorithm first rounds cm1 to the

nearest after t bits from the binary point and then seeks a new value for cm0 and

cm2 to compensate part of the error introduced by rounding cm1. We denote the

new coefficients by ĉm0, ĉm1 and ĉm2. We then round ĉm0 and ĉm2 such that the

resulting new rounding error is negligible compared to the total approximation

error.

The goal of the algorithm is to make

cm0 + cm1h+ cm2h
2 ≈ ĉm0 + ĉm1h+ ĉm2h

2 (3.54)

h ∈ [0,∆]

That is we seek the polynomial that has truncated coefficients such that it is as

close as possible to the original polynomial. After the first step of the algorithm

we obtain ĉm1 by rounding cm1 to the nearest. We then rearrange equation 3.54

as follows:

(cm1 − ĉm1)h ≈ (ĉm0 − cm0) + (ĉm2 − cm2)h
2 (3.55)

31

We substitute g = h2 in equation 3.55 to get:

(cm1 − ĉm1)
√
g ≈ (ĉm0 − cm0) + (ĉm2 − cm2)g (3.56)

g ∈ [0,∆2]

If we approximate
√
g by the first order minimax polynomial δ0 + δ1g we can

obtain ĉm0 and ĉm2 as follows:

ĉm0 = cm0 + (cm1 − ĉm1)δ0 (3.57)

ĉm2 = cm2 + (cm1 − ĉm1)δ1 (3.58)

We can determine the values of δ0 and δ1 analytically using Chebychev min-

imax criteria given in section 3.2 directly without the need to run Remez algo-

rithm. We define the error by e(g) =
√
g − δ0 − δ1g. From the concavity of the

square root function it is clear that |e(g)| takes the maximum value at the three

points 0,∆2 and a point in between that we denote by α as shown in figure 3.7.

0

0

g
∆2

δ
0
 + δ

1
 g

√g

α

Figure 3.7:
√
g and its first order minimax approximation δ0 + δ1g

32

We can determine the value of α using calculus as follows:

∂e(g)

∂g
=

1

2
√
g
− δ1 = 0 |g=α (3.59)

α =
1

(2δ1)2
(3.60)

For δ0 + δ1g to be a minimax approximation to
√
g the absolute maximum

error must be equal at the three points 0, α and ∆2 and alternating in sign i.e.

e(0) = −e(α) = e(∆2). Thus we have two equation in two unknowns δ0 and δ1.

We solve the two equations as follows:

e(0) = e(∆2)

−δ0 = ∆− δ0 − δ1∆
2

δ1 =
1

∆
(3.61)

e(0) = −e(α)

−δ0 = −(
1

4δ1
− δ0)

δ0 =
1

8δ1
=

∆

8
(3.62)

The maximum error in approximating
√
g is given by the error at any of the three

points a, α or ∆2. The error is thus equal to ∆
8
.

We now substitute the values of δ0 and δ1 in equations 3.57 and 3.58 to get

the values of the coefficients ĉm0 and ĉm2

ĉm0 = cm0 + (cm1 − ĉm1)
∆

8
(3.63)

ĉm2 = cm2 + (cm1 − ĉm1)
1

∆
(3.64)

The error added by this rounding algorithm is equal to the error in approx-

imating
√
g multiplied by the factor (cm1 − ĉm1). Therefore the total error ǫ is

given by the following equation:

ǫ = ǫa + |(cm1 − ĉm1)|
∆

8
(3.65)

Where ǫa is the original approximation error before applying the truncation al-

33

gorithm.

If we use simple rounding of cm1 without modifying cm0 and cm2 then the

error introduced by this rounding is equal to |(cm1 − ĉm1)|max(h) and since

the maximum value of h is equal to ∆ therefore the rounding error is equal

to |(cm1 − ĉm1)|∆ hence the total error is equal to ǫa + |(cm1 − ĉm1)|∆.

Comparing this error to the one we obtain from the algorithm it is clear

that Muller’s algorithm is better and for the case that the rounding error is

larger than the approximation error Muller’s algorithm gives a total error that is

approximately one eighth of that of the direct rounding.

3.6 Our Contribution: Truncation Algorithm

In this section we present a similar algorithm to the one given in the previous

section. The similarity lies in their goals but they differ in their approaches

completely.

The motivation behind our algorithm is that we need to find an optimal

approximating polynomial that has truncated coefficients but not necessarily re-

stricted to the second order polynomial.

The algorithm we present is a numerical algorithm that is based on mathe-

matical programming specifically Integer Linear Programming, ILP.

We modify the last iteration in Remez algorithm in order to put constraints

on the widths of the coefficients. We modify the first step by first modeling equa-

tion 3.23 as a linear programming (LP) problem then we relax the requirement

that the error at the given (n+ 2) points are equal in magnitude by introducing

tolerance variables. This relaxation enables us to add precision constraints on the

coefficients and the LP model becomes an ILP model. We solve the ILP model

using the branch and bound algorithm to get the values of the coefficients. We

then run the second step of Remez algorithm without modification in order to

compute the maximum and minimum bounds of the approximation error.

Since we don’t constrain the width of cm0 therefore we can make the maximum

approximation error centered around the origin by adding the average of the

maximum and minimum value of the approximation error to cm0.

34

We modify equation 3.23 as follows

F (yi) − [cm0 + cm1(yi − am) + cm2(yi − am)
2

+ · · ·+ cmn(yi − am)
n] = (−1)i(q − si)

si ≥ 0

i = 0, 1, . . . , n+ 1

(3.66)

Note that in the above equation we replaced E by q in order to avoid the

tendency to assume that they are equal in magnitude.

In order to be as close as possible to the original equation we need to minimize

the values of the {si}variables. We can do that by minimizing their maximum

value since they are all positive and the resulting model is an LP model.

Minimize max(si)

Subject to

F (yi) − [cm0 + cm1(yi − am) + cm2(yi − am)
2

+ · · ·+ cmn(yi − am)
n] = (−1)i(q − si)

si ≥ 0

i = 0, 1, . . . , n+ 1

(3.67)

This model is not in the standard LP form. We can convert it to the standard

form by introducing a new variable s that is equal to max({si}) hence s ≥ si, i =

0, 1, . . . , n+ 1. The model becomes:

Minimize s

Subject to

F (yi) − [cm0 + cm1(yi − am) + cm2(yi − am)
2

+ · · ·+ cmn(yi − am)
n] = (−1)i(q − si)

si ≥ 0

s ≥ 0

35

s ≥ si

i = 0, 1, . . . , n+ 1

(3.68)

The presence of the tolerance variables permits us to add more precision

constraints on the coefficients since without the tolerance variables the system

has a unique solution and any more added constraints will render the system

infeasible. The precision constraints are simply constraints on the number of bits

after the binary point in the binary representation of the coefficients. We denote

these number of bits by t. Such constraint can be seen as an integer constraint

on the value of the coefficient multiplied by 2t.

Hence the model becomes an ILP model as follows:

Minimize s

Subject to

F (yi)− [cm0 + cm1(yi − am) + cm2(yi − am)
2

+ · · ·+ cmn(yi − am)
n] = (−1)i(q − si)

si ≥ 0

s ≥ 0

s ≥ si

i = 0, 1, . . . , n+ 1

cmk has tk bits after the binary point

k = 1, 2, . . . , n

(3.69)

We solve the ILP model 3.69 using the branch and bound algorithm [37].

Some results of our algorithm and Muller’s algorithm are given in table 3.1

It is clear from this table that our algorithm gives close results to that of

Muller’s algorithm. Both algorithms outperform the direct rounding. However

our algorithm is applicable for high order.

36

3.7 Summary

This chapter presents polynomial approximation technique. In this technique

we divide the interval of the reduced argument into a number of sub-intervals.

For each sub-interval we design a polynomial of degree n that approximates the

elementary function in that sub-interval. The coefficients of the approximating

polynomials are stored in a table in the hardware implementation.

Techniques for designing the polynomial are given and compared. They are

specifically Taylor approximation, Minimax approximation and Interpolation.

For each of these polynomial types the approximation error is given.

Hardware Implementation is discussed using three hardware architectures, the

iterative architecture, parallel architecture and the PPA architecture.

Another error arises from the rounding of the coefficients prior to storing them

in tables and from rounding the intermediate variables during the computation.

Techniques for bounding such errors are given. Such techniques are general and

can be applied to any architecture.

Two algorithms for rounding the coefficients in an algorithmic method instead

of direct rounding are presented. The first algorithm [25] is applicable for second

order polynomials. It outperforms the direct rounding by up to 3 bits of precision

in the final result. The second algorithm is applicable for any order. It gives close

results to those of the first algorithm.

37

Function Interval order J t error

Muller Rounding Our Work

2 8 4 2−10.8 2−8 2−10.97

2 8 5 2−11.75 2−9.1 2−11.88

2 8 6 2−13.1 2−10.2 2−13.1

2 16 6 2−13.8 2−11 2−13.94

Exp(x) [0, 1[2 14 9 2−15 2−12.1 2−15

2 32 9 2−17.9 2−15 2−18

2 64 14 2−23.27 2−20.9 2−23.33

3 16 14 - 2−19 2−23

4 8 15 - 2−19.4 2−24.3

2 8 6 2−12.3 2−9.87 2−12.89

2 32 10 2−18.7 2−16 2−18.88

Log(x) [1, 2[2 64 14 2−23.5 2−21 2−23.6

3 16 14 - 2−18.9 2−23.1

4 8 15 - 2−19 2−24

2 8 5 2−11.2 2−9 2−11.86

2 16 7 2−14.66 2−12.54 2−15.3

Sin(x) [0, 1[2 64 14 2−23.67 2−21 2−23.17

3 16 14 - 2−19 2−23

4 8 14 - 2−18.35 2−23

2 8 6 2−12.65 2−10 2−13

2 16 10 2−17.65 2−15 2−17.8

1√
(x)

[1, 2[2 64 14 2−23.3 2−21 2−23.2

3 16 15 - 2−20 2−23.8

4 8 15 - 2−19.3 2−24

Table 3.1: Results of our algorithm for different functions, polynomial order,
number of sub-intervals and coefficients precision in bits (t)

38

Chapter 4

Table and Add Techniques

We present in this chapter a class of algorithms called the Table and Add tech-

niques. These are a special case of polynomial approximation. They are based

on the first order polynomial approximation Pm1(Y) = cm0 + cm1h in which the

multiplication in the second term is avoided. The multiplication is avoided by

approximating the second term by a coefficient (Bipartite) or the sum of two co-

efficients (Tripartite) or the sum of more than two coefficients (Multipartite). We

use a multi-operand adder to add cm0 and the other coefficients that approximate

cm1h. As the number of coefficients that approximate cm1h increase we approach

the normal first order approximation that involves one multiplication and one

addition since a multiplication can be viewed as a multi-operand addition. Hence

the Multipartite is practical when the number of coefficients is small.

The rest of this chapter is organized as follows: In section 4.1 We present the

Bipartite algorithm. In section 4.2 we present a variant of the Bipartite algorithm

that makes use of symmetry to decrease the size of the table that hold the coeffi-

cient that approximates cm1h. We present in section 4.3 the Tripartite algorithm

as a step before we give the general Multipartite algorithm in section 4.4.

4.1 Bipartite

The Bipartite was first introduced in [19] to compute the reciprocal. A generalized

Bipartite for computing other functions and formal description of the algorithm

based on Taylor series was later given in [20, 21]. We present in this section the

39

formal description that is based on Taylor series.

Without loss of generality we assume the argument Y lies in the interval

[1, 2[and has the binary representation Y = 1.y1y2y3 . . . yL. We split the ar-

gument Y into three approximately equal parts m1, m2 and m3 such that m1 =

1.y1y2y3 . . . yu,m2 = 2−u0.yu+1yu+2 . . . y2u andm3 = 2−2u0.y2u+1y2u+2 . . . yL. Hence

Y = m1 +m2 +m3. We approximate F (Y) by the first order Taylor polynomial

as follows:

F (Y) ≈ F (m1 +m2) + F ′(m1 +m2)(m3) (4.1)

ǫa1 = F ′′(ζ1)
m2

3

2
(4.2)

ζ1 ∈ [m1 +m2, Y]

ǫa1 ≤ 2−4u−1max(F ′′) (4.3)

where ǫa1 is the approximation error caused by retaining the first two terms of

the Taylor series and discarding the other terms.

To compute F (Y) using equation 4.1 we need one multiplication and one

addition. In order to get rid of the multiplication we approximate F ′(m1 +m2)

by the zero order Taylor expansion

F ′(m1 +m2) ≈ F ′(m1) (4.4)

ǫa2 = F ′′(ζ2)(m2) (4.5)

ζ2 ∈ [m1,m1 +m2]

ǫa2 ≤ 2−umax(F ′′) (4.6)

where ǫa2 is the error committed in such approximation. We substitute this result

in equation 4.1 to get:

F (Y) ≈ F (m1 +m2) + F ′(m1)(m3) = c1(m1,m2) + c2(m1,m3) (4.7)

ǫa = ǫa1 + (m3)ǫa2 (4.8)

ǫa ≤ 2−4u−1max(F ′′) + 2−3umax(F ′′) (4.9)

40

Using equation 4.7 we store the first term c1(m1,m2) in a table that is indexed

by m1 and m2 and we store the second term c2(m1,m3) in another table that is

indexed by m1 and m3. The resulting architecture is shown in figure 4.1. If

the lengths of m1, m2 and m3 are approximately equal and equal to L
3
then the

number of address bits for each table is 2L
3
. This causes a significant decrease in

the area of the tables over the direct table lookup that requires L address bits.

Another error arises from rounding c1 and c2. If we round both of c1 and c2

to the nearest after t fraction bits then the rounding error is given by

ǫr ≤ 2× 2−t−1 = 2−t (4.10)

Note that the second coefficient is small and less than 2−2uF ′(m1) hence it will

have a number of leading zeros or ones depending on its sign. Those leading

zeros or ones needn’t be stored. That will decrease the size of the second table.

The exact number of leading zeros or ones depends on the function that we are

approximating.

The total error is equal to the sum of the approximation error, coefficients

rounding error and the rounding of the final result. The total error must lie

within 1 ulp of the true value in order to be a faithful approximation.

41

�� �� ��

Table �

����� �

Carry Propagate
Adder

Y

F(Y)

Figure 4.1: The architecture of the Bipartite algorithm

42

4.2 Symmetric Bipartite

A variant of the Bipartite algorithm is given in [20]. It is called the symmetric

Bipartite. It makes use of symmetry in the second table in order to decrease its

size to the half of its original size at the expense of adding simple logic gates

before and after the second table.

Again we split the argument Y into three parts m1, m2 and m3. To be more

general we let the the three parts have unequal sizes u1, u2 and L− u1 − u2 bits.

m1 = 1.y1y2 . . . yu1

m2 = 2−u10.yu1+1yu1+2 . . . yu1+u2

m3 = 2−u1−u20.yu1+u2+1yu1+u2+2 . . . yL

such that Y = m1 + m2 + m3. We approximate F (Y) using first order Taylor

series as follows:

F (Y) ≈ F (m1 +m2 + λ2) + F ′(m1 +m2 + λ2)(m3 − λ2) (4.11)

λ2 = 2−u1−u2−1 − 2−L−1 (4.12)

λ2 is exactly halfway between the minimum and maximum of m3. The error

committed by this approximation is given by

ǫa1 = F ′′(ζ1)
(m3 − λ2)

2

2
(4.13)

ζ1 ∈ [m1 +m2, Y] (4.14)

ǫa1 ≤ 2−2u1−2u2−3max(F ′′) (4.15)

We approximate F ′(m1 + m2 + λ2) by the zero order Taylor expansion as

follows:

F ′(m1 +m2 + λ2) ≈ F ′(m1 + λ1 + λ2) (4.16)

λ1 = 2−u1−1 − 2−u1−u2−1 (4.17)

λ1 is exactly halfway between the minimum and maximum of m2. The error

43

committed by this approximation is given by

ǫa2 = F ′′(ζ2)(m2 − λ1) (4.18)

ζ2 ∈ [m1,m1 +m2] (4.19)

ǫa2 ≤ 2−u1−1max(F ′′) (4.20)

By substituting in equation 4.11 we get:

F (Y) ≈ F (m1 +m2 + λ2) + F ′(m1 + λ1 + λ2)(m3 − λ2) (4.21)

ǫa = ǫa1 + (m3 − λ2)ǫa2 (4.22)

ǫa ≤ 2−2u1−2u2−3max(F ′′) + 2−2u1−u2−2max(F ′′) (4.23)

where ǫa is the total approximation error. The rounding error is the same as in

the previous section.

Equation 4.21 defines the two coefficients of the symmetric Bipartite algorithm

F (Y) = c1(m1,m2) + c2(m1,m3) (4.24)

c1(m1,m2) = F (m1 +m2 + λ2) (4.25)

c2(m1,m3) = F ′(m1 + λ1 + λ2)(m3 − λ2) (4.26)

We store c1 in a table that is indexed by m1 and m2. We can store c2 in

a table that is indexed by m1 and m3. However we can reduce the size of the

table that stores c2 to about the half by making use of the following symmetry

properties

1. 2λ2 −m3 is the one’s complement of m3

2. c2(m1, 2λ2 −m3) is the negative of c2(m1,m3)

To reduce the size of the table that stores c2 we examine the most significant

bit of m3 if it is 0 we use the remaining bits to address the table and read the

coefficient. If the most significant bit of m3 is 1 we complement the remaining

bits of m3 and address the table and then complement the result.

44

Note here that we approximate the negative of the table output by its one’s

complement. The error of such approximation is equal to 1 ulp. This error is to

be taken into consideration when computing the total error.

This way we decreased the number of address bits of the second table by 1

hence we decreased its size to the half. Figure 4.2 gives the resulting architecture.

45

�� m �!

Table �

"#$%&

Carry Propagate
Adder

Y

XOR

XOR

c

c

msb

F(Y)

Figure 4.2: The architecture of the symmetric Bipartite algorithm

46

4.3 Tripartite

We generalize the Bipartite algorithm by splitting the argument Y to more than 3

parts. We present in this section the Tripartite algorithm [21] in which we divide

the argument Y into 5 parts. In the following section we present the general case

in which we divide the input argument into any odd number of parts. We divide

the argument Y into the five parts of approximately equal number of bits:

m1 = 1.y1y2 . . . yu

m2 = 2−u0.yu+1yu+2 . . . y2u

m3 = 2−2u0.y2u+1y2u+2 . . . y3u

m4 = 2−3u0.y3u+1y3u+2 . . . y4u

m5 = 2−4u0.y4u+1y4u+2 . . . yL

such that Y = m1 +m2 +m3 +m4 +m5. We approximate F (Y) using the first

order Taylor expansion as follows:

F (Y) ≈ F (m1 +m2 +m3) + F ′(m1 +m2 +m3)(m4 +m5) (4.27)

The approximation error caused by keeping the first two terms of Taylor expansion

and discarding the rest is given by:

ǫa1 = F ′′(ζ1)
(m4 +m5)

2

2
(4.28)

ζ1 ∈ [m1 +m2 +m3, Y]

ǫa1 ≤ 2−6u−1max(F ′′) (4.29)

We then split the second term of equation 4.27 into the two terms F ′(m1 +m2 +

m3)m4 and F ′(m1 +m2 +m3)m5. We approximate them as follows:

F ′(m1 +m2 +m3)m4 ≈ F ′(m1 +m2)m4 (4.30)

F ′(m1 +m2 +m3)m5 ≈ F ′(m1)m5 (4.31)

(4.32)

47

The approximation error is given by

ǫa2 = F ′′(ζ2)m3m4 (4.33)

ζ2 ∈ [m1 +m2,m1 +m2 +m3]

ǫa2 ≤ 2−5umax(F ′′) (4.34)

ǫa3 = F ′′(ζ3)(m2 +m3)m5 (4.35)

ζ3 ∈ [m1,m1 +m2 +m3]

ǫa3 ≤ (2−5u + 2−6u)max(F ′′) (4.36)

By substituting in equation 4.27 we get

F (Y) ≈ F (m1 +m2 +m3) + F ′(m1 +m2)m4 + F ′(m1)m5 (4.37)

and the total approximation error is given by

ǫa = ǫa1 + ǫa2 + ǫa3 (4.38)

ǫa ≤ (2−6u−1 + 2−5u + 2−5u + 2−6u)max(F ′′) ≈ 2−5u+1max(F ′′) (4.39)

Equation 4.37 defines the three coefficients of the Tripartite algorithm which we

denote by c1, c2 and c3

F (Y) = c1(m1,m2,m3) + c2(m1,m2,m4) + c3(m1,m5) (4.40)

c1(m1,m2,m3) = F (m1 +m2 +m3) (4.41)

c2(m1,m2,m4) = F ′(m1 +m2)m4 (4.42)

c3(m1,m5) = F ′(m1)m5 (4.43)

The architecture is given in figure 4.3. The length in bits of each of m1, m2, m3,

m4 and m5 is approximately equal to L
5
hence the number of address bits for the

first and second tables is 3L
5

each and the number of address bits for the third

table is 2L
5
. The second and third coefficients have a number of leading zeros or

ones depending on the sign of the coefficients. These leading ones or zeros needn’t

be stored in the tables and they can be obtained by extending the sign bit. If we

48

round the three coefficients to the nearest after t fraction bits then the rounding

error is given by

ǫr = 3× 2−t−1 (4.44)

The total error is thus given by

ǫ = 2−5u+1max(F ′′) + 3× 2−t−1 (4.45)

49

'(') '*

Table (

+,-./)

Carry Propagate
Adder

Y

'0 '1

+,-./ *

Carry Save Adder

F(Y)

Figure 4.3: The architecture of the Tripartite algorithm

50

4.4 Multipartite

The previous algorithms can be generalized to what is called the Multipartite [21].

Similar work is found in [22] and it is called STAM or symmetric Table Addition

Method. We present in this section the Multipartite algorithm.

We divide the argument Y into 2W+1 parts which we denote bym1,m2, . . . m2W+1.

Each part has u bits such that L = (2W + 1)u. Hence mi ≤ 2−(i−1)u for

i = 2, 3,

Y =
i=2W+1
∑

i=1

mi

We approximate F (Y) by the first order Taylor expansion as follows

F (Y) = F (
i=W+1
∑

i=1

mi) + F ′(
i=W+1
∑

i=1

mi)(
i=2W+1
∑

i=w+2

mi) (4.46)

We decompose the second term of the Taylor expansion into W terms and ap-

proximate each term as follows

F ′(
i=W+1
∑

i=1

mi)mj ≈ F ′(
i=2W+2−j

∑

i=1

mi)mj (4.47)

j = w + 2, w + 3, . . . , 2w + 1

Substituting in equation 4.46 we get

F (Y) = F (
i=W+1
∑

i=1

mi) +
j=2w+1
∑

j=w+2

(F ′(
i=2W+2−j

∑

i=1

mi)mj) (4.48)

Each term in equation 4.48 is stored in a separate table that is addressed by the

bits of the argument that affect its value as follows:

c1 = F (
i=W+1
∑

i=1

mi) (4.49)

c2 = F ′(
i=W
∑

i=1

mi)mW+2 (4.50)

c3 = F ′(
i=W−1
∑

i=1

mi)mW+3 (4.51)

...

cW+1 = F ′(m1)m2W+1 (4.52)

51

The output of these tables are added by a multi-operand adder to give the ap-

proximation to F (Y).

The approximation error is given by:

ǫa ≤ (2(−2W−2)u +W2(−2W−1)u)max(F ′′) (4.53)

If we round the coefficients to the nearest after t fraction bits then the rounding

error is given by:

ǫr = (W + 1)2−t−1 (4.54)

The total error is the sum of the approximation and rounding error in addition

to the rounding of the final output.

4.5 Summary

This chapter presents Table and Add algorithms. Such algorithms are well suited

for single precision approximation. They employ two or more tables and addition.

They are a special case of the polynomial approximation technique. They are

a first order polynomial approximation based on Taylor approximation in which

the multiplication involved in the second term is avoided by using one or more

tables.

They are classified according to the number of tables they employ into Bipar-

tite (two tables), Tripartite (three tables) and generally Multipartite (more than

three tables).

More tables don’t imply more area. In fact the more tables we use the less

area we need for the tables at the expense of the delay of adding the outputs of

such tables.

A variant of the Bipartite is presented. It is called the Symmetric Bipar-

tite [20]. It makes use of a symmetry property in the second table in order to

decrease its size to almost the half.

52

Chapter 5

A Powering Algorithm

In this chapter we present an algorithm that is given in [17]. We give the descrip-

tion of the algorithm in section 5.1, its theoretical error analysis in section 5.2.

In section 5.3, we propose [28] a new algorithmic error analysis for the powering

algorithm that gives a tighter bound on the maximum error.

5.1 Description of the Powering Algorithm

This powering algorithm is based on the first order Taylor approximation. It

differs from the normal Taylor approximation in that instead of storing the two

coefficients cm0 and cm1 it stores one coefficient that we denote by cm and multiply

it by a modified operand that we denote by Ỹ . The modification of the operand

is simply through rewiring and inversion of some bits for some cases and the use

of a special booth recoder in other cases. The advantage of this algorithm over

the ordinary first order approximation is that it uses smaller storage area since it

stores one coefficient instead of two. Moreover it uses one multiplication instead

of a multiplication and addition and that decreases the area and the delay of the

hardware implementation. The multiplier size is larger than the ordinary first

order approximation hence this algorithm is practical when we have an existing

multiplier.

We assume without loss of generality that the argument Y lies in the inter-

val [1, 2[and therefore has the binary representation Y = 1.y1y2y3 . . . yL. The

algorithm computes the function F (Y) = Y p where p is a constant that can take

53

the forms: p = ±2k1 or p = ±2k1 ± 2k2 where k1 is an integer while k2 is a

non-negative integer.

We split the argument Y into two parts m = 1.y1y2y3 . . . yu and

h = 2−u0.yu+1yu+2 . . . yL hence Y = m + h. Simple mathematical manipulations

give:

Y p = (m+ h)p = (m+ 2−u−1 + h− 2−u−1)p (5.1)

= (m+ 2−u−1)p(1 +
h− 2−u−1

m+ 2−u−1
)p (5.2)

We expand the second factor in equation 5.2 using Taylor method to get

Y p ≈ (m+ 2−u−1)p(1 + p
h− 2−u−1

m+ 2−u−1
) (5.3)

Y p ≈ (m+ 2−u−1)p−1(m+ 2−u−1 + p(h− 2−u−1)) (5.4)

The first factor in equation 5.4 is the coefficient cm which is stored in a table

that is addressed by m while the second factor is Ỹ which can be computed

from Y by simple modification. The resulting hardware architecture is shown

in figure 5.1. There are five cases for the value of p for which we show how to

compute Ỹ from Y .

case(1): p = 2−k where k is a non-negative integer. In this case Ỹ = (m +

2−u−1 + 2−kh− 2−k−u−1)) Expanding Ỹ in bits gives:

Ỹ =1.y1· · ·yu1 0 · · · 0 yu+1yu+2· · ·yL
−0.0 · · ·0 0 0 · · · 0 1 0 · · ·0

Ỹ =1.y1· · ·yu0 0 · · · 0 yu+1yu+2· · ·yL
+0.0 · · ·0 0 1 · · · 1 1 0 · · ·0

Ỹ =1.y1· · ·yuyu+1yu+1 · · ·yu+1yu+1yu+2· · ·yL

There are k yu+1 between yu+1 and yu+2. It is clear that Ỹ can be obtained

from Y by simple rewiring and inversion in this case.

case(2): p = −2−k where k is a non-negative integer. In this case Ỹ =

(m+ 2−u−1 − 2−kh+ 2−k−u−1)) Expanding Ỹ in bits gives:

54

Ỹ =1.y1 · · ·yu1 0 · · · 0 1 0 · · ·0
−0.0 · · ·0 0 0 · · · 0 yu+1yu+2· · ·yL

Ỹ =1.y1 · · ·yu1 0 · · · 0 1 0 · · ·1
+1.1 · · ·1 1 1 · · · 1 yu+1yu+2· · ·yL

Ỹ =1.y1 · · ·yuyu+1yu+1 · · ·yu+1yu+1yu+2· · ·yL
+2−L−k

There are k yu+1 bits between yu+1 and yu+2. We neglect the term 2−L−k and

therefore Ỹ can be obtained from Y by simple rewiring and inversion for some

bits.

case(3): p = 2k where k is a positive integer. In this case Ỹ = (m + 2−u−1 +

2kh− 2k−u−1)). We decompose Ỹ into two bit vectors m+ 2−u−1 = 1.y1y2 . . . yu1

and 2kh − 2k−u−1 = 2k−u(0.ŷu+1yu+2 . . . yL) such that ŷu+1 = 0 when yu+1 = 1

else ŷu+1 = −1. We sum the two vectors using a special booth recoder described

in [17]. The delay of this recoder is independent of L.

case(4): p = −2k where k is a positive integer. In this case Ỹ = (m+2−u−1−
2kh+ 2k−u−1)). We decompose Ỹ into two bit vectors m+ 2−u−1 = 1.y1y2 . . . yu1

and 2k−u−1 − 2kh = 2k−u(0.ŷu+1yu+2 . . . yL) + 2−L−k such that ŷu+1 = 0 when

yu+1 = 0 else ŷu+1 = −1. By neglecting the 2−L−k term We obtain Ỹ from Y

by using inverters and a special booth recoder as in case(3). The delay of such

modification is constant and independent on L.

case(5):p = ±2k1 ± 2−k2 where k1 is an integer while k2 is a non-negative

integer. In this case Ỹ = (m + 2−u−1) + (±2k1 ± 2−k2)(h − 2−u−1). We split Ỹ

into two parts (m+2−u−1)± 2−k2(h− 2−u−1) and ±2k1(h− 2−u−1). The first part

can be obtained as in case (1) or (2) while the second part can be added to the

first using a special booth recoder.

55

m h

Y

Table

Multiplier

PY

Modifier

Figure 5.1: Architecture of the Powering Algorithm

56

5.2 Theoretical Error analysis

The error is defined as the difference between the true value and the computed

value. There are two sources of error in this algorithm. The first error is the

approximation error ǫa. It results from approximating the second factor in equa-

tion 5.2 by the first two terms of its Taylor expansion. The second error is the

rounding error ǫr that results from truncating the coefficient cm to t bits after the

binary point. The total error ǫ is the sum of these two errors.

The error in Taylor approximation is given by the first omitted term evaluated

at an unknown point ζ. We bound the approximation error by choosing the value

of ζ that maximizes the error expression.

The approximation error is thus given by the third term of Taylor expansion

of the second factor of equation 5.2 multiplied by the first factor and the value

of h and m are chosen to maximize the resulting expression.

ǫa =
p(p− 1)

2
(h− 2−u−1)2(m+ 2−u−1)p−2 (5.5)

|ǫa| ≤
∣

∣

∣

∣

∣

p(p− 1)

2
2−2u−2(m+ 2−u−1)p−2

∣

∣

∣

∣

∣

(5.6)

|ǫa| ≤
∣

∣

∣

∣

∣

p(p− 1)

2
2−2u−2

∣

∣

∣

∣

∣

,p ≤ 2 (5.7)

|ǫa| ≤
∣

∣

∣

∣

∣

p(p− 1)

2
(2−2u−2)(2p−2)

∣

∣

∣

∣

∣

,p > 2 (5.8)

|ǫa| ≤
∣

∣

∣

∣

∣

p(p− 1)

2
(2−2u−2)max(1, 2p−2)

∣

∣

∣

∣

∣

(5.9)

ǫa is negative when p lies in the interval [0,1] and it is positive otherwise.

Therefore

ǫa ∈ [
p(p− 1)

2
(2−2u−2)max(1, 2p−2), 0] ,0 < p < 1 (5.10)

ǫa ∈ [0,
p(p− 1)

2
(2−2u−2)max(1, 2p−2)] ,p < 0orp > 1 (5.11)

The approximation error can be improved as described in [17] by adjusting the

value of the coefficient cm. When cm is given by the following equation:

cm = mp−1 + (p− 1)2−u−1mp−2 + (p− 1)(3P − 4)2−2u−4mp−3 (5.12)

57

The absolute value of the approximation error becomes half its old value however

the approximation error in this case can be positive or negative. It is not directed

in one side of the origin as in the previous case.

The rounding error is caused by rounding the coefficient cm. If we truncate

cm after t bits from the binary point then the maximum rounding error in repre-

senting cm is 2−t and since we multiply cm by Ỹ to get the final result therefore

the maximum rounding error is equal to 2−t multiplied by the maximum value of

Ỹ which is 2 hence the interval of the rounding error is given by:

ǫr ∈ [0, 2−t+1] (5.13)

If we round cm to the nearest after t bits from the binary point then the rounding

error is given by:

ǫr ∈ [−2−t, 2−t] (5.14)

If we round cm up after t bits from the binary point then the rounding error is

given by:

ǫr ∈ [−2−t+1, 0] (5.15)

The total error ǫ is the sum of the approximation error ǫa and the rounding error

ǫr hence the interval in which ǫ lies is equal to the sum of the two intervals of ǫa

and ǫr.

5.3 Our Contribution:

Algorithmic Error Analysis

The error analysis in the previous section is not tight. It gives a bound to the

total error of the algorithm. In this section, we propose an algorithm given in [28]

that computes a tight bound to the total error of this powering method.

Since we define the error as the difference between the true value and the

58

computed value therefore the error can be given by the following equation:

ǫ = Y p − cmỸ (5.16)

ǫ = (m+ h)p − cm(m+ 2−u−1 + ph− p2−u−1) (5.17)

Where cm depends on m, p and u and is given by the first factor of equation 5.4

or the modified version given by equation 5.12.

In order to find the maximum value of ǫ we may think of using exhaustive

search for all the combinations of m and h. This technique is not feasible for

large operand width because of the excessive time this search takes. However

if we manage to remove h from the equation of ǫ we can use exhaustive search

on m since the number of combinations of m is small. We can remove h from

the equation of ǫ by finding the value of h that maximizes the magnitude of ǫ

analytically as follows:

∂ǫ

∂h
= p(m+ h)p−1 − cmp (5.18)

∂2ǫ

∂h2
= p(p− 1)(m+ h)p−2 (5.19)

In case that p lies in the interval [0, 1] then the value of the second derivative

of ǫ with respect to h is negative hence the extreme point obtained from equating

equation 5.18 to zero is a local maximum. On the other hand when p lies outside

the interval [0, 1] the second derivative is positive hence the extreme point is a

local minimum. The error function ǫ is a convex function versus h hence we need

to consider only the endpoints of h: 0 and 2−u− 2−L as well as the extreme point

(local minimum or local maximum) c
1

p−1 −m. Substituting these three values in

equation 5.17 we get three different error functions that we denote by ǫ1, ǫ2 and

ǫ3. These error functions are independent of h. We perform exhaustive search on

the value of m in these three functions and pick the minimum and the maximum

to be the endpoints of the error interval.

Note that the error is in one direction from the origin when p ∈ [0, 1] and

cm is rounded up or when p /∈ [0, 1] and cm is truncated as shown in figures 5.2

and 5.3. Otherwise the error can be either + or −.

59

In the case that p ∈ [0, 1] and cm is rounded up the error is negative and thus

the maximum error is 0 and we don’t need to consider the local maximum point.

In the case that p /∈ [0, 1] and cm is truncated the error is positive hence the

minimum error is 0. Therefore in this case we don’t need to consider the local

minimum point.

Hence in these two cases we need only consider the endpoints of h. In other

cases we need to consider the endpoints of h as well as the extreme point.

60

0

0

Figure 5.2: The error function versus h when p ∈ [0, 1] and we round cm up

0

h

E
rr

or

Figure 5.3: The error function versus h when p /∈ [0, 1] and we truncate cm

61

p u t Coefficient Theoretical Algorithmic

Rounding Bound Bound

−0.5 8 21 Trunc [0, 2−18.67] [0, 2−19]
−0.5 9 23 Trunc [0, 2−20.67] [0, 2−21]
−0.5 7 16 Nearest [−2−16, 2−15.54] [−2−16, 2−16]
−1 7 16 Trunc [0, 2−14.4] [0, 2−15]
−1 7 16 Nearest [−2−16, 2−15] [−2−16, 2−15.7]
0.5 7 20 Up [−2−18, 0] [−2−18.54, 0]

Table 5.1: Comparison between the theoretical error analysis and our algorithmic
error analysis. The coefficient is not computed with the modified method.

In table 5.1 we give some results of our algorithm compared to the theoretical

error analysis given in the previous section. It is clear from this table that our

algorithm gives a tighter bound to the total error of the powering algorithm.

The difference is in the order of half a bit. Although the difference is not so big

yet it can cause significant reduction in the size of the coefficient table in some

cases especially when the output of the powering algorithm is used as an initial

approximation to a functional recurrence algorithm.

5.4 Summary

This chapter presents a powering algorithm for special powers. The algorithm

is based on the first order Taylor approximation with one modification. It uses

one coefficient instead of two coefficients and it modifies the argument before

multiplying it by the coefficient. The modification of the argument requires simple

hardware that has constant delay.

The reduction in the number of used coefficients from two to one reduced

the area of the used tables significantly. Such reduction in the size of the tables

comes at the expense of using a larger multiplier. Hence this algorithm has an

advantage over the usual first order polynomial approximation when there is an

existing multiplier in the system. It also has an advantage when more than one

function is implemented and share the multiplier.

A complete theoretical error analysis is presented and a proposed algorithmic

error analysis is also presented. The two error analysis schemes are compared.

It is shown that the algorithmic error analysis gives a tighter bound on the total

62

error.

Such more accurate error analysis leads to a significant reduction in the size

of the table especially when the output of the powering algorithm is used as an

initial approximation for a functional recurrence algorithm.

63

Chapter 6

Functional Recurrence

In this chapter we present a class of algorithms called functional recurrence. In

this class of algorithms we start by an initial approximation to the elementary

function that we need to compute and apply this initial approximation to a recur-

rence function. The output of this recurrence function is a better approximation

to the elementary function. We can then reapply this new better approximation

to the recurrence function again to obtain yet a better approximation and so

on. The initial approximation can be obtained by a direct table lookup or by

polynomial approximation or by any other approximation technique.

Functional Recurrence techniques are based on the Newton-Raphson root find-

ing algorithm. The convergence rate of these techniques is quadratic i.e. after

every iteration on the recurrence function the number of correct bits of the result

is approximately doubled. The functional recurrence techniques can be general-

ized to what is known as high order Newton-Raphson. For these techniques the

convergence rate can be cubic, quadruple or better.

The rest of this chapter is organized as follows: In section 6.1 we describe the

Newton-Raphson algorithm and how it can be used to compute the reciprocal

and square root reciprocal functions . In section 6.2 we present the high order

version of the Newton-Raphson algorithm for the reciprocal function while in

section 6.3 we present the high order Newton-Raphson algorithm for the square

root reciprocal function.

64

6.1 Newton Raphson

Newton-Raphson algorithm is a numerical algorithm that aims to find the root

of a given function φ(α) from a starting crude estimate. We denote the initial

estimate by αi. The basic idea of the algorithm is to draw a tangent to the

function at the initial estimate. This tangent will intersect the horizontal axis at

a closer point to the root that we seek as shown in figure 6.1. We denote this

new estimate by αi+1. We repeat the above procedure with αi+1 taking the role

of αi. After several iterations we reach the root at the desired precision.

0

α

 φ(α)

α
i
 α

i+1

Root

Tangant at α
i

β

Figure 6.1: Illustration of Newton-Raphson root finding algorithm

The recurrence function can be obtained by determining the equation of the

tangent and then finding the intersection point between the tangent and the

horizontal axis. The tangent has a slope that is equal to the first derivative of

φ(α) evaluated at αi and it passes through the point (αi, φ(αi)) hence if we denote

the vertical axis by β then the equation of the tangent is given by:

β − φ(αi)

α− αi

= φ′(αi) (6.1)

The tangent intersects the horizontal axis at the point (αi+1, 0) hence we can get

65

αi+1 by setting β = 0 in the tangent equation.

αi+1 = αi −
φ(αi)

φ́(αi)
(6.2)

Equation 6.2 is the recurrence relation from which we get αi+1 from αi.

The convergence of the Newton-Raphson algorithm is guaranteed if:

∣

∣

∣

∣

∣

φ(α)φ′′(α)

(φ′(α))2

∣

∣

∣

∣

∣

< 1 (6.3)

We can use this root finding algorithm to compute the reciprocal and the

square root reciprocal by choosing φ(α) suitably.

If we choose φ(α) such that φ(α) = 1
α
− Y then the root that we seek is

α = 1
Y
. Therefore we can compute the reciprocal function using such a choice for

φ(α). We can also compute the division operation by multiplying the dividend by

the reciprocal of the divisor. Substituting in equation 6.2 the recurrence relation

becomes:

αi+1 = αi(2− Y αi) (6.4)

In this case we compute the reciprocal of Y using a recurrence function that

involves addition and multiplication only specifically two multiplications and one

addition. Hence every iteration on the recurrence relation takes two clock cycles

when we use a parallel multiplier.

Assuming that αi is less than the root 1
Y
by a value ǫi that is αi =

1
Y
− ǫi. By

substituting this value of αi in the recurrence relation above we get

αi+1 = (
1

Y
− ǫi)(2− Y (

1

Y
− ǫi))

= (
1

Y
− ǫi)(1 + Y ǫi)

=
1

Y
− Y ǫ2i (6.5)

ǫi+1 = Y ǫ2i (6.6)

From equation 6.6 if Y ∈ [0.5, 1] then ǫi+1 ≤ ǫ2i therefore the error decreases

66

quadratically after every application of the recurrence relation. For example

if ǫi = 2−8 then after applying the recurrence relation once the error becomes

ǫi+1 = 2−16 and after another application of the recurrence relation the error

becomes ǫi+2 = 2−32. Hence the number of correct bits in representing 1
Y
doubles

after each application of the recurrence relation. The initial error ǫ0 and the final

precision will dictate the number of iterations on the recurrence relation.

By Choosing φ(α) such that φ(α) = 1
α2 −Y the root will become equal to 1√

Y
.

Therefore we can compute the reciprocal square root function with such choice

for φ(α). We can also compute the square root from the square root reciprocal

by multiplying the latter by the argument Y . Substituting in equation 6.2 the

recurrence relation becomes:

αi+1 =
αi

2
(3− α2

iY) (6.7)

The recurrence relation thus involves only addition and multiplication specifically

three multiplications and one addition. Hence every iteration on the recurrence

relation takes three clock cycles when we use a parallel multiplier.

If αi is less than
1√
Y

by a value ǫi that is αi =
1√
Y
− ǫi then by substituting

this relation in the recurrence relation above we get

αi+1 =

1√
Y
− ǫi

2
(3− (

1√
Y

− ǫi)
2Y)

αi+1 =
1√
Y

− 3

2
ǫ2i
√
Y +

1

2
ǫ3iY (6.8)

ǫi+1 =
3

2
ǫ2i
√
Y − 1

2
ǫ3iY (6.9)

Equation 6.9 gives the error after applying the recurrence relation in terms of the

error before applying the recurrence relation. The error decreases quadratically.

In general φ(α) can take other forms in order to compute other functions

recursively. For practical consideration φ(α) is constrained to certain forms that

gives recurrence relations that involves addition and multiplication only in order

to be suitable for hardware implementation.

67

6.2 High Order NR for Reciprocal

The first order Newton-Raphson algorithm converges quadratically at the cost of

two clock cycles per iteration for the case of reciprocation. The delay cost of the

first order Newton-Raphson for reciprocation is thus an integer multiple of two

clock cycles.

In this section we present the high order version of the Newton-Raphson

algorithm for computing the reciprocal [13]. The advantage of the higher order

NR is that the delay cost can vary at a finer step of one clock cycle thus the

designer has more freedom in selecting the delay cost of the algorithm and hence

its area cost.

The recurrence relation for high order NR algorithm for the reciprocal func-

tion can be derived as follows: We define D = 1 − α0Y where α0 is the initial

approximation to 1
Y
.

D = 1− α0Y (6.10)

1

Y
=

α0

1−D
(6.11)

1

Y
= α0(1 +D +D2 + · · ·) (6.12)

αr = α0(1 +D +D2 + · · ·+Dr) (6.13)

Equation 6.13 is the recurrence relation for the high order NR reciprocation algo-

rithm. We compute D in one clock cycle and we compute αr using horner formula

in r clock cycles as follows [12]:

D ×D +D → T0

T0 ×D +D → T1

T1 ×D +D → T2

...

Tr−2 × α0 + α0 → Tr−1

We perform only one iteration of the recurrence relation. From the given error

in α0 we choose the value of r so that the final error in αr lies within the desired

68

precision. If α0 =
1
Y
− ǫ0 then by substitution in equation 6.13 we get:

D = 1− (
1

Y
− ǫ0)Y = ǫ0Y (6.14)

αr = (
1

Y
− ǫ0)(1 + (ǫ0Y) + (ǫ0Y)2 + · · ·+ (ǫ0Y)r)

αr =
1

Y
− Y rǫr+1

0 (6.15)

ǫr = Y rǫr+1
0 (6.16)

Equation 6.16 indicates that the algorithm is (r+1)-convergent i.e. when r = 1 it

is quadratically convergent and when r = 2 it is cubically convergent and so on.

The delay cost is (r+1) clock cycles. We can choose r to be any integer starting

from 1 and above. Therefore the delay in clock cycles can vary at a step of one

clock cycle.

6.3 Our Contribution

High Order NR for Square Root Reciprocal

In this section we present the high order version of the NR algorithm for the

square root reciprocal function. It has the same advantage as in reciprocation

and that is the fine steps in the area delay curve. The delay in the high order

NR can increase at a step of one clock cycle instead of three as in the first order

NR. Hence the high order NR gives the designer more freedom in choosing the

number of clock cycles of the algorithm.

We derive the recurrence relation for the high order NR algorithm for the

square root reciprocal as follows: We define D = 1 − α2
0Y where α0 is an initial

approximation to 1√
Y
.

D = 1− α2
0Y (6.17)

1√
Y

=
α0√
1−D

(6.18)

1√
Y

= α0(1 +
1

2
D +

3

8
D2 + · · ·) (6.19)

αr = α0(1 +
1

2
D +

3

8
D2 + · · ·+ (1)(3)(5) · · · (2r − 1)

2rr!
Dr) (6.20)

69

Equation 6.20 is the recurrence relation for the high order Newton-Raphson al-

gorithm for square root reciprocal function. We compute D in two clock cycles

and then we compute αr in (r+ 1) clock cycles. For the case that r = 1 or r = 2

we compute αr in r clock cycles by an additional relatively small hardware [29].

We perform only one iteration of the recurrence relation. From the given error

in α0 we choose the value of r so that the final error in αr lies within the desired

precision. If α0 =
1√
Y
− ǫ0 then by substitution in equation 6.20 we get:

D = 1− (
1√
Y

− ǫ0)
2Y = 2ǫ0

√
Y − ǫ20Y (6.21)

αr =
1√
Y

−O(Y rǫr+1
0) (6.22)

ǫr = O(Y rǫr+1
0) (6.23)

Equation 6.23 indicates that the algorithm is (r+1)-convergent i.e. when r = 1 it

is quadratically convergent and when r = 2 it is cubically convergent and so on.

The delay cost is (r + 3) clock cycles for r > 2 and can be (r + 2) clock cycles

for r = 1 or r = 2. We can choose r to be any integer starting from 1 and above.

Therefore the delay in clock cycles can vary at a step of one clock cycle.

6.3.1 A Proposed Square Root Algorithm

In this sub-section we present a square root algorithm that is based on the second

order NR algorithm for square root reciprocal [29].

The algorithm computes the square root for the double precision format.

The algorithm employs the powering method for the initial approximation of

the square root reciprocal. It then performs one iteration of the second order

Newton-Raphson algorithm followed by a multiplication by the operand to get

an approximation to the square root. Finally the algorithm rounds this result

according to one of the four IEEE Rounding modes. The initial approximation

parameters u and t have the values 8 and 21 respectively.

Fig. 6.2 presents the proposed architecture. The box labeled ‘T’ is a temporary

register to hold the intermediate results of the calculation. The main block in the

figure is the fused multiply add (FMA) unit. The given double precision floating

point number is X = s2e1.x. We denote Y = 1.x. Y is split into two parts m and

70

h such that Y = m + h, the steps of the algorithm for calculating the mantissa

of the result are:

1. From m and the lookup table → cm,

from Y → Ỹ ,

cmỸ → α0

2. α0 × α0 → T1

3. 1− α1 × T1 → D

4. 3
8
D + 1

2
→ T2

5. 1 +D × T2 → T3

6. α0 × T3 → T4

7. T4 × Y → T5. For RZ or RM modes, round T5 to the nearest value using

the guard bits and jump to step 8. For RP mode round T5 to the nearest

value using the guard bits and jump to step 9. For RN mode truncate the

guard bits of T5 and jump to step 10.

8. If T 2
5 − Y > 0, then result = T5 − 1ulp. Otherwise, result = T5.

9. If T 2
5 − Y < 0, then result = T5 + 1ulp. Otherwise, result = T5.

10. If (T5 + 0.5ulp)2 − Y > 0, then result = T5. Otherwise, result = T5 + 1ulp.

In steps 8, 9 and 10 the FMA acts as a multiply subtract unit by adding the

two’s complement of the third operand.

The complete error analysis of the proposed square root algorithm can be

found in [28]

Note that in the proposed algorithm we compute 3
8
D2 + 1

2
D + 1 in two clock

cycles. We can compute the same expression in one clock cycle at the expense of

adding a small hardware in the FMA reduction tree. The idea is as follows: we

multiply D times D and reduce them into two partial products right before the

carry propagate adder of the FMA. We denote these two partial products by z1

71

s e x

m h

s e x

LUT Modifier

2345 2346

FMA

7859:

M
U
X
;

Truncate

D <= T

T >?@ D

A

5
5B6

Y

C 5

+ D55 + Cin

Cin

±±±± ulp

234E

FG HI ′′′′T

′′′′T

MSB

LSB

55

J

D;

*
+

DK DK

D;

55E

DK

D6

Figure 6.2: Hardware Architecture of the Proposed Square Root Algorithm.

72

and z2 that is D2 = z1 + z2. The expression 3
8
D2 can be expanded as follows:

3

8
D2 = (

1

4
+

1

8
)(z1 + z2) (6.24)

=
1

4
z1 +

1

4
z2 +

1

8
z1 +

1

8
z2 (6.25)

Therefore we need to reduce the five partial products 1
4
z1,

1
4
z2,

1
8
z1,

1
8
z2 and 1+D

into two partial products that are then fed to the carry propagate adder of the

FMA in order to evaluate the desired expression above.

A VHDL model is created for this circuit and a behavioral simulation is car-

ried out with more than two million test vectors. The circuit passes these tests

successfully.

6.4 Summary

This chapter presents functional recurrence algorithms. Such algorithms are

based on Newton-Raphson root-finding algorithm. They are also called Newton-

Raphson algorithm for this reason. They start by a crude approximation and

refine it recursively by evaluating a recursive relation.

Such algorithms are applicable for a certain class of arithmetic operations

and elementary functions for which the recurrence relation involves addition and

multiplication only in order to be implemented in hardware efficiently.

The reciprocal and square root reciprocal are examples of arithmetic opera-

tions which can be efficiently implemented using the functional recurrence algo-

rithm. The details of using NR algorithm for evaluating reciprocal and square

root reciprocal is presented.

High order NR algorithm for reciprocal and square root reciprocal are pre-

sented. The high order version of the NR algorithm offers the designer more

freedom in selecting the number of clock cycles of the resulting hardware circuit.

A hardware circuit for evaluating the square root operation is presented. It

is based on the second order NR algorithm for square root reciprocal followed by

multiplication by the operand and one of the IEEE rounding modes. The initial

approximation is based on the powering algorithm that is presented in chapter 5.

73

A VHDL model of the circuit was simulated with two million random test vectors

and passed all the tests with no errors.

74

Chapter 7

Digit Recurrence

In this chapter we present digit recurrence algorithms. These algorithms are also

called shift and add algorithms because they employ adders and shifters in their

hardware implementation. They converge linearly i.e. they recover a constant

number of bits each iteration.

Examples of algorithms that belong to this class include the division restoring

and non-restoring algorithms, SRT algorithm, online algorithms, CORDIC, an

algorithm due to Briggs and DeLugish for computing exponential and logarithm

and finally the BKM algorithm that generalizes the last two algorithms. In sec-

tion 7.1 we present the CORDIC algorithm while in section 7.2 we present the

Briggs and DeLugish algorithm

7.1 CORDIC

The CORDIC algorithm was invented by Volder [5]. The name stands for CO-

ordinate Rotation Digital Computer. There are two modes of operation for the

CORDIC algorithm. The first mode is called the rotation mode. In this mode

we are given a vector (α1, β1) and an angle θ and we are required to rotate this

vector by the angle θ to obtain the new vector (α2, β2). The second mode is

called the vectoring mode. In the vectoring mode we are given a vector (α1, β1)

and we are required to compute the subtended angle between this vector and the

horizontal axis (ρ) as shown in figure 7.1.

75

0

0
α

β

(α1,β1)

(α2,β2)

θ
ρ

Figure 7.1: Two vectors and subtended angle. In rotation mode the unknown is
the second vector while in vectoring mode the unknown is the subtended angle
between the given vector and the horizontal axis

7.1.1 Rotation Mode

The equations that relates the two vectors (α1, β1) and (α2, β2) and the angle θ

are :

α2 = α1cos(θ)− β1sin(θ) (7.1)

β2 = α1sin(θ) + β1cos(θ) (7.2)

These two equations can be written as:

α2 = cos(θ)(α1− β1tan(θ)) (7.3)

β2 = cos(θ)(α1tan(θ) + β1) (7.4)

The basic idea of the CORDIC algorithm is to decompose the angle θ into a

76

sum of weighted basis angles as follows:

θ =
i=L−1
∑

i=0

diωi (7.5)

(7.6)

such that the basis angles ωi are computed as follows

ωi = tan−1(2−i) (7.7)

and di ∈ {−1, 1} Note that the basis angles form a decreasing set.

The rotation process is thus decomposed into L steps. In each step we rotate

by ωi in the clockwise or anti-clockwise direction according to the value of di. By

substituting θ by diωi in equations 7.3 and 7.4 we get the basic equations of each

step:

αi+1 =
1√

1 + 2−2i
(αi − diβi2

−i) (7.8)

βi+1 =
1√

1 + 2−2i
(βi + diαi2

−i) (7.9)

Note that in these two previous equation the external factor does not depend

on the value of di hence we can lump the external factors of all the steps and

account for them at the beginning or the end of the algorithm. The lumped factor

which we denote by fa is given by the following equation:

fa =
i=L−1
∏

i=0

1√
1 + 2−2i

(7.10)

fa = 0.60725293500888 for L = 52. The modified equations without the external

factor become:

αi+1 = (αi − diβi2
−i) (7.11)

βi+1 = (βi + diαi2
−i) (7.12)

These two equations are implemented in hardware using two shifters and two

adders as shown in figure 7.2

77

We need to determine how to compute di. We define a new variable γ such

that γ is equal to the difference between θ and the sum of the rotated basis angles

till step i. We need to force γ to be zero which is identical to forcing the sum

of the weighted basis angles to be equal to θ. We initialize γ to the angle θ i.e

γ0 = θ. If γi is positive then we set di = 1 in order to rotate in the anti-clockwise

direction and subtract ωi from γi to get γi+1. On the other hand if γi is negative

we set di = −1 in order to rotate in the clockwise direction and add ωi to γi to

get γi+1. In both cases we force the value of γ to approach zero. Hence we force

the difference between θ and
∑i=L−1

i=0 diωi to approach zero as well.

γ0 = θ (7.13)

di = 1 if γi >= 0

= −1 if γi < 0 (7.14)

γi+1 = γi − diωi (7.15)

The complete equations of the rotation mode are as follows:

α0 = fa× α1 (7.16)

β0 = fa× β1 (7.17)

γ0 = θ (7.18)

di = 1 if γi >= 0

= −1 if γi < 0 (7.19)

αi+1 = (αi − diβi2
−i) (7.20)

βi+1 = (βi + diαi2
−i) (7.21)

γi+1 = γi − diωi (7.22)

i = 0, 1, 2, . . . , L− 1

We initialize α , β, γ and d then we run the last four equations for L iterations.

Note that in the above equations we only use addition operation and multiplica-

tion by 2−i which is a right shift operation.

A direct application to the CORDIC algorithm rotation mode is the com-

78

putation of the two elementary functions cos and sin. We compute cos(Y) and

sin(Y) simultaneously using the CORDIC algorithm by setting α1 = 1, β1 = 0

and θ = Y (see equations 7.1 and 7.2). Therefore α0 = fa, β0 = 0 and γ0 = Y .

At the end of the L iterations of the algorithm αL = cos(Y) and βL = sin(Y).

7.1.2 Vectoring Mode

In vectoring mode we start with the given vector and rotate it in the direction

of the horizontal axis. In iteration i we rotate with the basis angle ωi in the

direction of the horizontal axis and accumulate the angles with which we rotate.

At the end of the algorithm we reach the horizontal axis and the accumulated

basis angles give the angle between the given vector and the horizontal axis ρ.

At the horizontal axis β = 0 hence to approach the horizontal axis we rotate

in the clockwise direction when the vector is above the horizontal axis (βi > 0)

and we rotate in the anti-clockwise otherwise.

The equations that govern the vectoring mode are thus given as follows:

α0 = α1 (7.23)

β0 = β1 (7.24)

γ0 = 0 (7.25)

di = 1 if βi <= 0

= −1 if βi > 0 (7.26)

αi+1 = (αi − diβi2
−i) (7.27)

βi+1 = (βi + diαi2
−i) (7.28)

γi+1 = γi − diωi (7.29)

i = 0, 1, 2, . . . , L− 1

Note that we don’t account for the scale factor in the vectoring mode because

we are only seeking the value of the angle and not the vector and because we

compare the vertical component of the vector βi with zero hence the absence of

the scale factor doesn’t affect the comparison result. We may need to account

for the scale factor in case we need to compute the length of the given vector

79

(α1, β1) since at the end of the algorithm αL = 1
fa

√
α12 + β12.

In vectoring mode we compute the angle between the given vector and the

horizontal axis. This angle is equal to tan−1(β1
α1
). Therefore we can compute the

elementary function F (Y) = tan−1(Y) by setting β1 = Y and α1 = 1.

7.1.3 Convergence Proof

In the rotation mode we decompose the angle θ into a sum of weighted basis

angles ωi as in equation 7.5 and this decomposition is carried out sequentially

by nulling the variable γ which is initialized to θ. In the vectoring mode on the

other hand we start with the vector (α1, β1) that has an angle ρ and we rotate

this vector in the direction of the horizontal axis by nulling βi hence we are also

decomposing ρ into a sum of the basis angles ωi. We need to prove that this

decomposition converges. The following two conditions on the basis angles are

necessary and sufficient to guarantee such convergence.

|θ or ρ| ≤ ω0 + ω1 + · · ·+ ωL−1 + ωL−1 (7.30)

ωi ≤ ωi+1 + ωi+2 + · · ·+ ωL−1 + ωL−1 (7.31)

From the first condition we get the limits on the value of θ that can be used

in the algorithm. For L = 24, |θ| ≤ 1.74328662047234 radian.

We prove the above statement for the rotation mode and the same procedure

can be applied to the vectoring mode by replacing θ by ρ. In each step of the

rotation mode we rotate in the direction that will decrease the absolute value of

the variable γ by the amount of the current basis angle that is |γi+1| = ||γi| − ωi|
γ0 = θ hence from the first condition we have

|γ0| ≤ ω0 + ω1 + · · ·+ ωL−1 + ωL−1 (7.32)

−ω0 ≤ |γ0| − ω0 ≤ ω1 + ω2 + · · ·+ ωL−1 + ωL−1 (7.33)

From the second condition we get

ω0 ≤ ω1 + ω2 + · · ·+ ωL−1 + ωL−1 (7.34)

80

−ω0 ≥ −(ω1 + ω2 + · · ·+ ωL−1 + ωL−1) (7.35)

By using the last inequality in inequality 7.33 we get

−(ω1 + ω2 + · · ·+ ωL−1 + ωL−1) ≤ |γ0| − ω0

≤ ω1 + ω2 + · · ·+ ωL−1 + ωL−1 (7.36)

||γ0| − ω0| ≤ ω1 + ω2 + · · ·+ ωL−1 + ωL−1 (7.37)

|γ1| = ||γ0| − ω0| ≤ ω1 + ω2 + · · ·+ ωL−1 + ωL−1 (7.38)

After one step the value of γ1 is bounded as in the inequality 7.38. By repeat-

ing the same procedure for the other steps we get

|γL| ≤ ωL−1 (7.39)

And since ωi is a decreasing sequence as given by equation 7.7 and for large L

ωL−1 ≤ 2−L+1 hence |γL| ≤ 2−L+1 and this concludes the proof that γ approaches

zero as L increases provided that the basis angles ωi satisfy the two convergence

conditions. It can be proved that the basis angles as given by equation 7.7 satisfy

the two convergence conditions hence the CORDIC algorithm converges.

7.1.4 Hardware Implementation

The hardware Implementation is given in figure 7.2. We use two adders-subtractors

and two shifters for the two variables αi and βi. We use a table to store the basis

angles ωi and we use an adder-subtractor for the variable γi. di depends on the

sign of either γi or βi for rotation and vectoring modes respectively and it con-

trols the adders-subtractors whether to add or subtract. The given architecture

is called the sequential architecture. Another architecture called the unfolded

architecture repeats the hardware units of the sequential architecture in order to

accomplish more than one step in the same clock cycle at the expense of increased

delay of each clock cycle.

The CORDIC algorithm is generalized to compute other elementary functions

such as hyperbolic functions, multiplication and division [6]

81

L M

Table
N

O

Adder / Sub
±

MUX

Adder / Sub ±
Adder / Sub

±

P i P i

MUX MUX

LQ MQ

Counter
R S T UV W-X

YZ

di id

di

MUX

di

MSB
[

MSB
M

Mode

Figure 7.2: The CORDIC Architecture

82

7.2 Briggs and DeLugish Algorithm

This section presents an algorithm [7] that computes the exponential and loga-

rithm functions.

7.2.1 The Exponential Function

We are given the reduced argument Y and we need to compute exp(Y). We

decompose Y as a sum of weighted basis values as follows:

Y =
i=L−1
∑

i=0

diωi (7.40)

such that

ωi = ln(1 + 2−i) (7.41)

and di ∈ {0, 1}. The basis weights given by equation 7.41 form a decreasing set

that is ω0 > ω1 > · · · > ωL−1

With such decomposition exp(Y) =
∏i=L−1

i=0 (1 + 2−i)di . We can thus compute

exp(Y) sequentially as follows

α0 = 1 (7.42)

αi+1 = αi + 2−iαi if di = 1 (7.43)

αi+1 = αi if di = 0 (7.44)

i = 0, 1, . . . , L− 1

Note that in the above recursive equation we use only addition and shift opera-

tions.

The above algorithm is incomplete. We still need to devise a method to

compute di. We can carry out this task by defining a new variable β that we

initialize to zero. In each step if when we add ωi to β the sum is less than the

argument then we set di = 1 and add ωi to β otherwise we set di = 0 and leave

83

β unchanged. We denote the variable β in step i by βi.

β0 = 0 (7.45)

di = 1 if βi + ωi ≤ Y (7.46)

di = 0 otherwise (7.47)

βi+1 = βi + diωi (7.48)

i = 0, 1, . . . , L− 1

The necessary and sufficient conditions for the convergence of this algorithm

are:

0 ≤ Y ≤ ω0 + ω1 + · · ·+ ωL−1 + ωL−1 (7.49)

ωi ≤ ωi+1 + ωi+2 + · · ·+ ωL−1 + ωL−1 (7.50)

From the first condition we get the convergence range of Y . For L = 24 we

get 0 ≤ Y ≤ 1.56202383321850.

Since β0 = 0 hence from the first condition we get

0 ≤ Y − β0 ≤ ω0 + ω1 + · · ·+ ωL−1 + ωL−1 (7.51)

if β0 + ω0 ≤ Y then β1 = β0 + ω0. From inequality 7.51 we get

0 ≤ Y − β1 = Y − β0 − ω0 ≤ ω1 + ω2 + · · ·+ ωL−1 + ωL−1 (7.52)

On the other hand if β0 + ω0 > Y then β1 = β0. From the second convergence

condition we get

0 ≤ Y − β1 = Y − β0 ≤ ω0 ≤ ω1 + ω2 + · · ·+ ωL−1 + ωL−1 (7.53)

Hence after the first step of the algorithm we have

0 ≤ Y − β1 ≤ ω1 + ω2 + · · ·+ ωL−1 + ωL−1 (7.54)

84

If we repeat the same procedure for the remaining L− 1 steps we reach:

0 ≤ Y − βL ≤ ωL−1 (7.55)

Therefore the variable β approaches the given argument Y and the difference

between the argument Y and the variable β after L steps is bounded by ωL−1.

In each step of the algorithm αi = exp(βi) hence the variable α approaches

exp(Y). We define the approximation error to be ǫa = exp(Y)− αL. Hence from

inequality 7.55 we get:

0 ≤ Y − βL ≤ ωL−1 (7.56)

βL ≤ Y ≤ βL + ωL−1 (7.57)

exp(βL) ≤ exp(Y) ≤ exp(βL + ωL−1) (7.58)

αL ≤ exp(Y) ≤ αL(1 + 2−L+1) (7.59)

ǫa = exp(Y)− αL (7.60)

0 ≤ ǫa ≤ αL2
−L+1 (7.61)

Hence the relative error is bounded as follows:

0 ≤ exp(Y)− αL

exp(Y)
≤ 2−L+1 (7.62)

Therefore we conclude that at the (L+ 1) step the algorithm computes L signif-

icant bits correctly without taking into account the accumulated rounding error.

ωi as given by equation 7.41 satisfies the convergence conditions [38] hence

the algorithm converges to the desired function value exp(Y).

7.2.2 The Logarithm Function

The same algorithm is used to compute the logarithm function F (Y) = ln(Y).

We assume we know the value of the function and we compute its exponential

which is obviously the argument Y The modified algorithm is as follows:

α0 = 1 (7.63)

85

β0 = 0 (7.64)

di = 1 if βi + ωi ≤ ln(Y)

di = 0 otherwise (7.65)

αi+1 = αi + diαi2
−i (7.66)

βi+1 = βi + diωi (7.67)

i = 0, 1, . . . , L− 1

The above algorithm computes the exponential of ln(Y) hence α approaches Y

and since αi = exp(βi) therefore β approaches ln(Y). However in computing di

in the above algorithm we use the value of ln(Y) that we don’t know. therefore

we use an equivalent comparison by taking the exponential of both sides of the

inequality. the resulting algorithm becomes:

α0 = 1 (7.68)

β0 = 0 (7.69)

di = 1 if αi + αi2
−i ≤ Y

di = 0 otherwise (7.70)

αi+1 = αi + diαi2
−i (7.71)

βi+1 = βi + diωi (7.72)

i = 0, 1, . . . , L− 1

In the above algorithm αL approaches the argument Y . The invariant in the

above algorithm is that αi = exp(βi) hence βi approaches the logarithm of the

given argument ln(Y).

An algorithm due to Muller [9] which is called the BKM algorithm generalizes

both the CORDIC algorithm and the Briggs algorithm presented in this chapter.

The BKM algorithm computes the complex exponential and logarithm. It has

the advantage that in each step di can be either −1, 0 or 1 hence it is can be

implemented using redundant number systems and that reduces the delay of

each step.

86

7.3 Summary

This chapter presents two algorithms from the Shift and Add techniques. The

first algorithm is the CORDIC while the second algorithm is the Briggs and

DeLugish algorithm.

The CORDIC algorithm computes the functions: sin(Y), cos(Y) and tan−1(Y)

directly. It is generalized to compute the hyperbolic functions sinh(Y), cosh(Y)

and tanh−1(Y) and multiplication and division. It is used also to compute other

elementary functions indirectly. The Briggs and DeLugish algorithm on the other

hand is used to compute the exponential and the logarithm functions.

For both algorithms we decompose the argument into a sum of weighted basis

values. The decomposition is carried out sequentially. In each step we employ

shift and add operations only.

These algorithms converge linearly that is the number of sequential steps is

proportional to the number of correct bits in the final output.

The derivation of these two algorithms is presented with the convergence

proof. The hardware implementation for the CORDIC algorithm is presented.

87

Chapter 8

Conclusions

8.1 Summary

We have presented in this thesis a survey of hardware algorithms for computation

of division, square root and elementary functions.

The computation of these functions is performed by three steps. The first is

the range reduction step that is usually based on a modular reduction technique.

The second step is the approximation step which can be performed by digit recur-

rence algorithms or polynomial approximation algorithms or functional recurrence

algorithms. The third and last step is the reconstruction step.

The range reduction and reconstruction steps are related and they were pre-

sented in chapter 2. Careful range reduction is crucial for correct computation.

Approximation algorithms were given in the other chapters. We presented

general polynomial approximation techniques, interval division, coefficient com-

putation, hardware implementation and error analysis.

We presented some work in this area such as the work in [25] that aims at

truncating the coefficients of the second order polynomial efficiently.

We also presented the table and add algorithms which are a special case from

the polynomial approximation technique. They employ tables to avoid multipli-

cation.

Another special type of the polynomial approximation techniques which is the

powering algorithm [17] was also presented.

We also presented functional recurrence algorithms for the computation of the

88

reciprocal and square root reciprocal both the first order and high order versions.

Finally we presented the digit recurrence algorithms specifically the CORDIC

algorithm and Briggs and DeLugish algorithm.

8.2 Contributions

We made three contributions in this thesis.

The first contribution [39] is an algorithm for truncating the coefficients of

the approximating polynomials in an efficient manner. The proposed algorithm

modifies the last iteration of Remez algorithm and employs integer program-

ming. Compared to the direct rounding our algorithm gives results that are more

precise by 3 to 5 bits. Compared to Muller’s algorithm presented in [25] our al-

gorithm gives comparable results, slightly better in some cases and slightly worse

in other cases. The advantage of our algorithm over Muller’s algorithm is that

our algorithm is applicable for any polynomial order while Mulller’s algorithm is

applicable for second order only.

The second contribution [28] is an algorithmic error analysis for the powering

algorithm [17] and for a novel square root algorithm. When compared with

the theoretical error analysis it was shown that the theoretical error analysis

overestimated the error by about half a bit. The more accurate algorithmic

error analysis can lead to a significant decrease in the memory requirement of

the algorithm specially when we use the output of the powering algorithm as

a seed approximation for the functional recurrence algorithm. The square root

circuit presented in subsection 6.3.1 is based on the powering algorithm for initial

approximation. The use of the more accurate algorithmic error analysis we were

able to reduce the size of the table used in the powering algorithm to half of its

value had we relied on the theoretical error analysis.

The third contribution [29] is the high order Newton-Raphson algorithm for

the square root reciprocal. The advantage of using high order Newton-Raphson

algorithm is that it gives the designer more freedom in selecting the number of

clock cycles of the circuit. In the first order Newton-Raphson the number of clock

cycles of the circuit is an integer multiple of three.

89

We also gave a complete design for the square root circuit in which we use

the powering algorithm for the initial approximation then we the second order

Newton-Raphson algorithm to approximate the square root reciprocal then mul-

tiply it by the operand to get the square root and finally we round the result

according to one of the IEEE rounding modes. The rounding algorithm was also

presented.

The use of the powering algorithm in the initial approximation leads to a

decrease in the table size used in the initial approximation stage. The table size

of the powering algorithm is approximately two thirds of that of the first order

Taylor approximation. That reduction in the table size comes at the expense of

increasing the size of the required multiplier however since we have an existing

multiplier in the FMA that we use in the functional recurrence stage therefore the

total area of the square root circuit is reduced when using the powering algorithm

for initial approximation.

8.3 Recommendations for Future Work

There are still many areas to explore in computer arithmetic in general and in

elementary functions in specific.

One important field is the power aware designs. It became quite important re-

cently to reduce the power consumption of the digital circuits for battery-operated

devices such as the mobile phone or mp3 player. It is also important to reduce

the power consumption so that the overall heat dissipation of the complicated

chips is reduced and that can lead to a further increase in the integration density

of the chips.

Another interesting area is the more exact modeling of the area and delay

functions. Wiring area and delay should be taken into account. This direction

is justified by the increasing operating frequencies and the increasing packing

density. The former results in more wiring delay while the latter results in more

interconnections and thus increased wiring area.

Application specific processors are gaining attention because we have more

optimization freedom in their design. Examples of application specific processors

90

include graphics processor and processing circuits for embedded systems. For

such specific applications statistical analysis can be performed to discover the

frequency of using specific high level functions. Efficient Algorithms for imple-

menting the frequently used functions in hardware should be devised to increase

the overall performance of the systems.

The emerging technologies open new areas for migrating the present computer

arithmetic algorithms to cope with such technologies.

91

References

[1] IEEE Standard for Binary Floating-Point Arithmetic, (ANSI/IEEE Std 754-

1985). New York, NY: IEEE press, Aug. 1985.

[2] I. Koren, “Hybrid signed-digit number systems: A unified framework for

redundant number representations with bounded carry propagation chains,”

IEEE Transactions on Computers, vol. 43, pp. 880–891, Aug. 1994.

[3] B. Parhami, “Generalized signed-digit number systems: A unifying frame-

work for redundant number representations,” IEEE Transactions on Com-

puters, vol. 39, pp. 89–98, Jan. 1990.

[4] A. A. Liddicoat, High-Performance Arithmetic For Division And Elementary

Functions. Ph.D thesis, Stanford University, Stanford, CA, USA, Feb. 2002.

[5] J. E. Volder, “The CORDIC trignometric computing technique,” IRE Trans-

actions on electronic Computers, pp. 330–334, Sept. 1959.

[6] J. S. Walther, “A unified algorithm for elementary functions,” in Proceedings

of the AFIPS Spring Joint Computer Conference, pp. 379–385, 1971.

[7] W. H. Specker, “A class of algorithms for ln x, exp x, sin x, cos x, tan−1x,

cot−1x,” IEEE Transactions on Electronic Computers, vol. EC-14, pp. 85–86,

Feb. 1965.

[8] B. G. DeLugish, “A class of algorithms for automatic evaluation of certain

elementary functions in a binary computer,” Tech. Rep. 399, Department

of Computer Science, University of Illinois at Urbana-Champaign, Urbana,

Illinois, 1970.

92

[9] S. K. Jean-Claude Bajard and J.-M. Muller, “BKM: A new hardware algo-

rithm for complex elementary functions,” IEEE Transactions on Computers,

vol. 43, pp. 955–963, Aug. 1994.

[10] P. K.-G. Tu, On-line Arithmetic Algorithms for Efficient Implementation.

Dissertation, University of California, Los Angeles, Los Angeles, CA, USA,

1990.

[11] M. J. Flynn, “On division by functional iteration,” IEEE Transactions on

Computers, vol. C-19, pp. 702–706, Aug. 1970.

[12] M. Ito, N. Takagi, and S. Yajima, “Efficient initial approximation and fast

converging methods for division and square root,” in Proceedings of the 12th

IEEE Symposium on Computer Arithmetic, Bath, England, pp. 2–9, July

1995.

[13] A. A. Liddicoat and M. J. Flynn, “High-performance floating point divide,”

in Proceedings of Euromicro Symposium on Digital System Design , Warsaw,

Poland, pp. 354–361, Sept. 2001.

[14] D. D. Sarma and D. W. Matula, “Measuring the accuracy of ROM reciprocal

tables,” IEEE Transactions on Computers, vol. 43, no. 8, pp. 932–940, 1994.

[15] D. D. Sarma and D. W. Matula, “Faithful interpolation in reciprocal ta-

bles,” in Proceedings of the 15th IEEE Symposium on Computer Arithmetic,

Asilomar, California, USA, pp. 82–91, July 1997.

[16] P. Kornerup and J.-M. Muller, “Choosing starting values for Newton-

Raphson computation of reciprocals, square-roots and square-root recipro-

cals,” in presented at RNC5, Lyon, France, Sept. 2004.

[17] N. Takagi, “Generating a power of an operand by a table look-up and a

multiplication,” in Proceedings of the 13th IEEE Symposium on Computer

Arithmetic, Asilomar, California, USA, pp. 126–131, July 1997.

[18] H. Hassler and N. Takagi, “Function evaluation by table look-up and addi-

tion,” in Proceedings of the 12th IEEE Symposium on Computer Arithmetic,

Bath, England, pp. 10–16, July 1995.

93

[19] D. D. Sarma and D. W. Matula, “Faithful bipartite ROM reciprocal tables,”

in Proceedings of the 12th IEEE Symposium on Computer Arithmetic, Bath,

England, pp. 17–28, July 1995.

[20] M. J. Schulte and J. E. Stine, “Symmetric bipartite tables for accurate func-

tion approximation,” in Proceedings of the 13th IEEE Symposium on Com-

puter Arithmetic, Asilomar, California, USA, pp. 175–183, July 1997.

[21] J.-M. Muller, “A few results on table-based methods,” Research Report,

vol. 5, Oct. 1998.

[22] M. J. Schulte and J. E. Stine, “The symmetric table addition for accurate

function approximation,” Journal of VLSI Signal Processing, vol. 21, no. 2,

pp. 167–177, 1999.

[23] A. T. Florent de Dinechin, “Some improvements on multipartite table meth-

ods,” in Proceedings of the 15th IEEE Symposium on Computer Arithmetic,

Vail, Colorado, USA, pp. 128–135, June 2001.

[24] P. T. P. Tang, “Table-lookup algorithms for elementary functions and their

error analysis,” in Proceedings of the 10th IEEE Symposium on Computer

Arithmetic, Grenoble, France, pp. 232–236, June 1991.

[25] J.-M. Muller, “Partially rounded small-order approximation for accurate,

hardware-oriented, table-based methods,” in Proceedings of the 16th IEEE

Symposium on Computer Arithmetic, Santiago de Compostela, Spain, June

2003.

[26] M. H. Payne and R. N. Hanek, “Radian reduction for trignometric func-

tions,” SIGNUM Newsletter, no. 18, pp. 19–24, 1983.

[27] S. B. Ren-Cang Li and M. Daumas, “Theorems on effcient argument reduc-

tions,” in Proceedings of the 13th IEEE Symposium on Computer Arithmetic,

Asilomar, California, USA, July 1997.

[28] S. A. Tawfik and H. A. H. Fahmy, “Error analysis of a powering method and

a novel square root algorithm,” in Proceedings of the 17th IMACS World

94

Congress, Scientific Computation, Applied Mathematics and Simulation ,

Paris, France, pp. 126–131, July 2005.

[29] S. A. Tawfik and H. A. H. Fahmy, “Square root and division: An improved

algorithm and implementation,” To be published, 2005.

[30] J. C. Jun Cao, Belle W. Y. Wei, “High-performance architectures for ele-

mentary function generation,” in Proceedings of the 15th IEEE Symposium

on Computer Arithmetic, Vail, Colorado,USA, June 2001.

[31] N. L. Carothers, A Short Course on Approximation Theory.

http://personal.bgsu.edu/∼carother/Approx.html, 1998.

[32] L. Veidinger, “On the numerical determination of the best approximations

in the Chebychev sense,” Numerische Mathematik, vol. 2, pp. 99–105, 1960.

[33] E. Kreyszic, Advanced Engineering Mathematics. Wayne Anderson, 1993.

[34] V. K. Jain and L. Lin, “High-speed double precision computation of non-

linear functions,” in Proceedings of the 12th IEEE Symposium on Computer

Arithmetic, Bath, England, pp. 107–114, July 1995.

[35] A. A. Liddicoat and M. J. Flynn, “Parallel square and cube computations,”

in Proceedings of the 34th Asilomar Conference on Signals, Systems, and

Computers, California, USA, Oct. 2000.

[36] E. M. Schwarz and M. J. Flynn, “Hardware starting approximation for the

square root operation,” in Proceedings of the 11th IEEE Symposium on Com-

puter Arithmetic, Windsor, Ontario, Canada, pp. 103–111, July 1993.

[37] R. J. Vanderbei, Linear Programming: Foundations and Extensions.

http://www.princeton.edu/∼rvdb/LPbook/index.html, 2001.

[38] N. Revol and J.-C. Yakoubsohn, “Accelerated shit-and-add algorithms for

an hardware implementation of elementary functions,” tech. rep., École Nor-

male Supérieure de Lyon, Mar. 1999.

[39] S. A. Tawfik and H. A. H. Fahmy, “Algorithmic truncation of minimax poly-

nomial coefficients,” To be published, 2005.

95

