
PARAMETERIZED ARABIC FONT

DEVELOPMENT FOR COMPUTER

TYPESETTING SYSTEMS

by

Ameer Mohamed Sherif Mahmoud Hamdy

A Thesis Submitted to the
Faculty of Engineering at Cairo University

in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
in

Electronics and Electrical Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
January 2008

PARAMETERIZED ARABIC FONT

DEVELOPMENT FOR COMPUTER

TYPESETTING SYSTEMS

by

Ameer Mohamed Sherif Mahmoud Hamdy

A Thesis Submitted to the
Faculty of Engineering at Cairo University

in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
in

Electronics and Electrical Communications Engineering

Under the Supervision of

Amin M. Nassar Hossam A. H. Fahmy

Professor Assistant Professor
Elec. and Com. Dept. Elec. and Com. Dept.

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
January 2008

PARAMETERIZED ARABIC FONT

DEVELOPMENT FOR COMPUTER

TYPESETTING SYSTEMS

by

Ameer Mohamed Sherif Mahmoud Hamdy

A Thesis Submitted to the
Faculty of Engineering at Cairo University

in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
in

Electronics and Electrical Communications Engineering

Approved by the
Examining Committee

Prof. Amin M. Nassar, Main Thesis Advisor

Prof. Mohsen A. Rashwan, Member

Prof. Mohamed Y. El Hamalawy, Member

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
January 2008

ii

Acknowledgments

First, I would like to thank Allah for granting me the chance to join this depart-

ment, in which I have enjoyed learning and teaching for the past eight years. It

gave me the opportunity to meet many people who have influenced my life in

many ways. I also thank Him for surrounding me with those I mention below.

Many thanks goes to my supervisors, Prof. Amin Nassar for his assistance

and habit of making things easy and enjoyable, and to Dr. Hossam Fahmy for

his encouragement, patience, and lively discussions. His guidance and support

reached far beyond scientific research, and was more of a mentor than a supervisor.

I would also like to express my gratitude to ‘Abdel-Nasser Ghoneim for his

assistance on using TEX and his many ideas, Mr. Sameer El-‘Aidy, and Mr. Khaled

El-Husseiny for their invaluable addition to my knowledge of calligraphy. Thanks

also to Prof. Donald Knuth for the wonderful work he has done in developing

TEX and METAFONT without which this work could not have been done. Also

thanks for the people behind the Crimson Editor and the King Fahd complex for

printing the Holy Qur’an for their freely distributed tools.

Very special thanks goes to Amir El Sherbiny, Sheikh Sa‘id, and my colleagues

at the department, Hany Abol-Magd, ‘Amr ‘Essawy, and Mohamed Ismail who

have been true friends and very encouraging on many occasions during this work.

Finally, I am thankful to my father, mother, siblings, and my many other

family members for the complete support they provided through my entire life. I

must also acknowledge my fiancée, Aya, without whose love and encouragement,

I would not have finished this thesis.

iii

iv

Abstract

This thesis presents new approaches to Arabic font development for computer

typesetting systems. In order to achieve an output quality close to that of Arabic

calligraphers, we model the pen nib and the way it is used to draw curves as closely

as possible using a font description language – METAFONT. Parameterized fonts

are introduced to enable the drawing of whole words as single entities, this results

in improved quality since the Arabic script is cursive by nature.

We utilize the true meta-design capability of METAFONT, analogous to the

Computer Modern typeface families, and hence our design of Arabic letters in-

cludes a number of parameters which used to connect glyphs together, form liga-

tures, control kerning, and extend character lengths. We divide each letter glyph

into smaller primitives that exist in multiple glyphs. Designing a primitive and

then reusing it reduces design time.

We compare our method to the basic binding of glyphs using simple box and

glue mechanisms that are used in most of today’s word processors and typesetting

systems, and also to currently existing font design technologies. Our method

enables better connectivity of glyphs, hence better calligraphic quality, and more

dynamic fonts, enabling more flexible typesetting. This comes at the expense of

higher complexity of glyph designs. Meta-design of Arabic letters is discussed in

detail through many examples, and methods of connecting glyphs to form words

are also presented.

Finally, a subjective test was conducted for evaluating words produced using

our parameterized font in comparison to other widely used fonts.

v

vi

Contents

Acknowledgments iii

Abstract v

1 Introduction 2

1.1 Historical Review of the Arabic Script 2

1.2 Differences with Latin Script . 6

1.3 Goal of Thesis . 9

1.4 Motivation . 14

2 Digital Typography 18

2.1 Typesetting Systems . 19

2.2 Basic Typographic Concepts . 21

2.3 Arabic Typesetting Requirements 29

3 Font Technologies 32

3.1 OpenType . 33

3.2 Metafont . 38

4 Pen Modeling 44

4.1 Pen Nib Outline . 44

4.2 Pen Stroke . 49

4.2.1 Describing Curves . 49

4.2.2 Drawing with Pens . 50

vii

5 Arabic Meta-Design 66

5.1 Meta-Design Methodology . 67

5.1.1 Point Selection . 68

5.1.2 Point Dependencies . 70

5.2 Primitives . 71

5.2.1 Type-1 Primitives . 72

5.2.2 Type-2 Primitives . 77

5.2.3 Type-3 Primitives . 84

5.3 Primitive Substitution . 88

5.4 Diacritic Glyphs . 92

6 Forming Words 94

6.1 Joining Glyphs with Kashidas . 94

6.2 Vertical Placement of Glyphs . 98

6.3 Word Lengths . 100

6.4 A Final Example . 101

6.5 Design of a Graphical User Interface 103

7 Results and Future Work 106

7.1 A Subjective Test . 106

7.1.1 Testing Methodology . 106

7.1.2 Design of the Test . 107

7.1.3 Test Results . 111

7.1.4 Comments and Conclusion on Results 113

7.2 Future Work . 113

7.2.1 Font Technology . 113

7.2.2 Typesetting System . 115

7.2.3 Output Format . 116

viii

List of Figures

1.1 Writing systems of the world. 3

1.2 The writing styles of Arabic . 5

1.3 A photo showing Arabic metal type. 10

1.4 Development of Arabic typesetting. 11

1.5 Part of the Holy Qur’an written by a calligrapher. [1] 13

1.6 Sample output of AlQalam system. 15

2.1 Boxes and glue. 22

2.2 A numerical example of justification using the box/glue model. . . 23

2.3 Line-breaking examples. 24

2.4 Ligatures in English. 25

2.5 Kerning examples. 25

2.6 Optical considerations. 26

2.7 Optically uneven spacing. 27

2.8 Example of rivers in a paragraph. 28

2.9 Examples of orphans and widows. 29

2.10 Problems of Arabic justification. 30

3.1 A screenshot from an outline font editor, FontCreator 5.5. 34

3.2 Sample fonts from TrueType and OpenType. 35

3.3 Problems with OpenType fonts. 36

3.4 Part of the character code tables allocated to Arabic ligatures. . . 37

3.5 Optical scaling example. 38

ix

3.6 Different fonts generated by a single METAFONT program. 39

3.7 Sample METAFONT glyphs of the letter ‘y’. 41

3.8 Sample METAFONT program describing the letter ‘y’. 42

4.1 A photo of an Arabic pen. 45

4.2 Various pen nib shapes in METAFONT. 45

4.3 A circular pen digitized after scaling. 46

4.4 Arabic pen nib outline defined. 47

4.5 The letter alif drawn with 3 different pen nibs. 48

4.6 A Bézier curve. 50

4.7 One path traced by two different pens. 51

4.8 The effect of pen rotation. 52

4.9 Drawing with the penstroke macro. 53

4.10 The first problem with penstroke – razor pen 54

4.11 The second problem with penstroke – figure-8 shape. 55

4.12 The third problem with penstroke – bad pen approximation. . . 56

4.13 A stroke with multiple crossings of right and left paths. 57

4.14 First solution of stroke modeling - filldraw. 59

4.15 Second solution of stroke modeling - astroke. 60

4.16 Third solution of stroke modeling - qstroke 62

4.17 Fourth solution of stroke modeling - envelope 64

5.1 Choosing points to define the path of the letter ’alif. 69

5.2 Usage of primitives in roman letters. 72

5.3 The tail primitive. 73

5.4 Four consequent tails in a word. 73

5.5 The base primitive. 76

5.6 The helya primitive. 77

5.7 The bow primitive. 78

5.8 The letters faa’ and qaf as drawn by three calligraphers. 79

x

5.9 The waw head primitive. 80

5.10 The sād head primitive. 82

5.11 The ’alif primitve. 83

5.12 Approximate directions in calligraphy books. 84

5.13 The kasa primitive. 85

5.14 The letter noon shown with kasa widths of 3, 9, 10 and 13 nuqtas. 87

5.15 The initial form of the letter haa’ with two different kashida lengths. 89

5.16 Many primitive glyphs used to produce the different forms of haa’. 90

5.17 Isolated and ending forms of the letter dal. 91

5.18 The shara of kaf and the hamza. 92

5.19 The dot as drawn by different pen orientation. 93

6.1 Changing length of kashida between two letters. 97

6.2 Sample placing of kashidas using TrueType fonts. 97

6.3 The word yahia as it is written using four font technologies. . . . 99

6.4 Tracing a word from left-to-right to know starting vertical position. 100

6.5 Multiple instance of a word with different lengths. 102

6.6 Block diagram of GUI. 103

6.7 Screenshot of the designed GUI. 104

6.8 Screenshot of the DVI previewer displaying the output word. . . . 104

7.1 Different forms of the letters baa’ and seen. 114

7.2 Example of variable diacritic lengths and their placement. 114

7.3 Dependence of letter’s shape on following letters. 116

xi

List of Tables

7.1 MOS results for each font. 111

7.2 MOS results for individual words in the test. 112

xii

List of Listings

4.1 METAFONT code for drawing the letter baa’ using penstroke. . . 54

4.2 METAFONT code of both the original penstroke and its modified

version. 58

4.3 METAFONT code showing the modification to penpos macro. . . . 61

4.4 METAFONT code of the qstroke macro. 62

4.5 METAFONT code of the envelope macro. 63

5.1 METAFONT code describing the tail primitive. 74

5.2 METAFONT code describing the base primitive. 75

5.3 METAFONT code describing the helya primitive. 76

5.4 METAFONT code describing the bow primitive. 78

5.5 METAFONT code describing the waw head primitive. 80

5.6 METAFONT code describing the saad head primitive. 81

5.7 METAFONT code describing the alif primitive. 83

5.8 METAFONT code describing the kasa primitive. 86

5.9 METAFONT code describing the letter dal. 91

5.10 METAFONT code describing the shara and the hamza. 92

6.1 METAFONT code showing how effect of the kashida on glyphs. . . 96

xiii

xiv

Chapter 1

Introduction

The Arabic alphabet is used in writing many languages in many places in Africa

and Asia. It is used to write Arabic in the Arab world, Persian in Iran, Urdu

and Punjabi in India and Pakistan, Dari and Pashto in Afghanistan, Uyghur in

some parts of China, Kashmiri in Kashmir, and Jawi in Malaysia and Indonesia

are just some. Millions of people around the world use the alphabet’s letters to

write their languages. It was first used to write Arabic, and most importantly, the

Qur’an. With the spread of Islam, this alphabet was then used to write languages

different than Arabic, and in the process additional characters and symbols have

been added to the original set in order to accommodate some of these languages.

See Fig. 1.1

1.1 Historical Review of the Arabic Script

According to contemporary studies, Arabic writing is a member of the Semitic

alphabetical scripts in which mainly the consonants are represented. The Arabic

script was developed in a comparatively brief span of time, and its alphabet today

is second in use only to the Roman alphabet.

The Arabic alphabet is a script of 28 letters and uses long but not short

vowels. The letters are derived from only 17 distinct forms, distinguished from

1

Figure 1.1: Writing systems of the world.

one another by one or more dots placed above or below the letter. Short vowels

are indicated by small diagonal strokes above or below letters.

The Arabic script was first introduced during the 5th century in the north-

eastern part of Arabia. As the teachings of Islam spread beyond the boundaries

of the Arabian Peninsula, an enormous number of people worldwide became Mus-

lims. The new Muslims interpreted the art of writing as an abstract expression of

Islam, each according to their own cultural and aesthetic systems. The influx of

this cultural diversity led to two major events: the birth of regional calligraphic

schools and styles such as Ta‘liq in Persia and Diwani in Turkey, and the need

to reform the Arabic script. A clear and universal language with legible script

was needed if the non-Arab Muslims were to learn Arabic and become part of

the Islamic melting pot.

Sophistication of the Arabic Letterforms

While many religions have made use of figural images to convey their core con-

victions, Islam has instead used the shapes and sizes of words or letters. Because

Islamic leaders saw in figural arts a possible implication of idolatry, the artistry

of calligraphy was used for religious expression. In Islamic and Arabic cultures,

2

calligraphy became highly respected as an art – the art of writing.

Anthony Welch in his book “Calligraphy in the Arts of the Muslim World”

in 1979 says: “Written from right to left, the Arabic script at its best can be

a flowing continuum of ascending verticals, descending curves, and temperate

horizontals, achieving a measured balance between static perfection of individual

form and paced and rhythmic movement. There is great variability in form: words

and letters can be compacted to a dense knot or drawn out to great length; they

can be angular or curving; they can be small or large. The range of possibilities

is almost infinite, and the scribes of Islam labored with passion to unfold the

promise of the script.”

Arabic lettering has achieved a high level of sophistication, and Arabic scripts

can vary from flowing cursive styles like Naskh and Thuluth to the angular Kufi.

On a traditional Islamic building, a number of different writing styles may appear

on, for example, the walls, windows, or minarets. Most of the inscriptions are not

only from the Qur’an but also the Hadith and are in harmony with the religious

purposes of the building.

Arabic calligraphy is a symbol representing power and beauty. Its history is

the integration of artistry and scholarship. Through the abstract beauty of the

lines, energy flows in between the letters and words. All the parts are integrated

into a whole. These parts include positive spacing, negative spacing, and the flow

of energy that weaves together the calligrapher’s rendering. The abstract beauty

of Arabic calligraphy is not always easily comprehended – but this beauty will

slowly reveal itself to the discerning eye.

Arabic Writing Styles

There are six major writing styles for Arabic: Kufi, Thuluth, Naskh, Riq’aa,

Deewani, and Ta’liq. See Fig. 1.2 showing different Arabic writing styles. As the

figure shows there are great differences between the different styles. These styles

3

Figure 1.2: The writing styles of Arabic

as we write them today had undergone development through a long period of

time, and each was developed by different people in different parts of the Arabic

and Islamic worlds.

In most Arab countries in the Middle East, Naskh and Riq’aa, are the two

most common styles of writing. Riq’aa is usually used in handwriting since it

is simpler to write than other styles. Naskh is standard for printing books since

a long time. This thesis focuses on implementing the rules of writing Naskh

on computers. Other styles will need considerable modifications on the work

developed in this thesis in order to be implemented in the same way.

4

1.2 Differences with Latin Script

There are many differences between the Arabic and Latin scripts. Most important

is the fact that Arabic is cursive. Many other differences evolve from this fact.

When a script is cursive each letter in a word is affected by the preceding and

succeeding letters. In Latin, the look and shape of each letter normally does not

depend on neighboring letters, and hence has a fixed shape.

Another consequence of being cursive is the existence of ligatures. Ligatures

are special forms of characters joined together. In Latin, there are very few

ligatures in each language. For example in English, combinations of the letter ‘f’

followed by ‘i’ or ‘l’ should take a special form, different from just bring shapes of

both letter together, this is done according aesthetic considerations. In Arabic,

the situation is different. Almost all letters join together forming ligatures, and to

make things more complicated, ligatures may result from combinations of more

than two letters, instead of . Taking this further will show us that any

word in Arabic, may be considered as a single ligature, hence we may conclude

that ligatures in Arabic are infinite, compared to only few in Latin scripts.

Still more differences due to being cursive, is that in Arabic, the baseline of

a word is that of the ending letters. Letters at the start of a word may be raised

above their default baseline when a ligatures is formed, as in with the letter meem

of the word Muhammad in Fig. 1.2. But note that ligatures are in many cases

optional, and it is possible to write whole words in Naskh with all letters having

the same baseline.

In its early development stages, the Arabic script did not contain any dots or

diacritics. As time passed, it was seen a necessity to add suck additional marks

for the purpose of simplifying the reading process especially for Muslims who

were not originally Arabs. Without these marks it was difficult to identify a lot

of letters, since many letters had similar shapes and were only identified from the

context of the text. Although these marks did in fact make it easier to read and

5

comprehend what was written, it made the writing more complicated, especially

for computer systems. Diacritics other than dots are also called ‘tashkeel’, and

indicated vowel sounds, to be added to the word.

Yet another result of cursive script is the extensibility of Arabic letters. An

Arabic letter has no fixed dimensions like Latin letters, and may spread in length

for different reasons. One reason may be to fill up the space left in a line, another

use is in mathematical writings to describe limits is an example. Calligraphers

may also use this extension for aesthetic reasons.

In Latin scripts, there is a difference between printed and handwritten text,

in Arabic, this difference is not supposed to exist. Latin letters were originally

used in writing through carving on stones, while Arabic letters were first used to

write on animal skin using pens. These different methods of writing affected the

shapes of letters in both cases. Printed Latin letters are difficult to draw using

normal pen strokes. Due to its cursive nature, Arabic words are written using

pens, and continuous strokes, that may span the whole word, to the extent that

some words may be written without removing the pen nib from the paper.

Another difference is not in the shape of the script but in the unit of measure-

ment used. Latin calligraphers and punch cutters use the ‘point’ as the unit of

measurement for glyph dimensions. A point is approximately equivalent to 1/72

of an inch. Arabic calligraphers on the other hand use the ‘nuqta’ or dot as unit

of measurement. The dot is the length of the diagonal of the rectangular dot

drawn by a specific pen.

It is acceptable to vary the space between adjacent words in order to justify

a line to the margins of a page in Latin. In Arabic, however, it is not. Inter-word

spacing in Arabic is fixed and minimal. Line justification if required, is achieved

by extending some letters, or breaking and forming ligatures. Even the direction

of text is different, while most languages are written from left-to-right, very few

languages like Arabic and Hebrew are written the other way round, right-to-left.

6

The Arabic alphabet, written from right to left, is composed of 28 basic letters.

Adaptations of the script for other languages such as Malay, Persian and Urdu

have additional letters. There is no such thing as upper and lower case letters

nor is there a difference between written and printed letters. Most of the letters

connect directly to the letter which immediately follow, which gives written text

an overall cursive appearance. Each individual letter can have up to four distinct

forms, based upon where the letter appears in a word.

Considering all the above mentioned differences, it is very easy to understand

why Arabic is classified in most computing classifications as a ‘Complex Script’.

And as a further conclusion, it is easy to understand why most computer typeset-

ting systems still lack in supporting Arabic, while their support to Latin is very

advanced.

How the Problem Came to Existence?

In the light of the previously mentioned and vast differences between Arabic and

Latin text, we shall now see the situation of current desktop publishing software

that is most used to write Arabic, and how it has developed in such a way.

The movable type was invented in the early 1400s by Johann Gutenberg in

Germany. This invention made book production far more cost effective than be-

fore. It took him 10 years of experimentation. His books had to look handwritten

because that was the market. For hundreds of years printing was only carried

out on Latin text, and as mentioned before, Latin text is far simpler than Arabic,

and each letter can be isolated in a separate box. When this technology was

applied to Arabic, some sort of simplification was needed in order to isolate each

glyph alone in analogy to Latin. Important or obligatory ligatures like lam-alef

were cast on separate boxes. The mechanical process had imposed limitations on

Arabic. Fig. 1.3 shows an example with the problem of metal type. The shadda

diacritic is placed on a separate box, hence it will appear beside the word instead

7

of above it.

One of those limitations beside totally isolated letters was apparent in adding

dots and tashkeel. Although the skeleton of letters like haa, jeem, and khaa is

identical, a dot is what separates them. A metal cast had to be made for each

of them since it was not feasible to arrange boxes above each other. Each letter

had a cast of a box’s shape and reserved all the vertical space. In order to add

tashkeel then each of these letters can have a fatha, damma, kasra or shadda or

even tanween, and many more. In order create a metal cast for each one, add to

that the combinations of the dots would require an enormous amount of casts.

And finally it this letter may occur more than once in a page. The practical

solution was to add tashkeel on additional kashidas. This made the diacritics not

on top of the corresponding letter but it was the only solution possible. See the

top right word in Fig. 1.4.

When computers were invented and desktop publishing software developed,

this limitation of the metal type mechanism migrated with the letters as if it was

indeed part of the language. In computers nowadays, the boxes containing the

letters are virtual and it is very possible to overlap them or stack them on top of

each other. This fact was in fact exploited to improve the placement of dots and

diacritics. Only lately did the original curves of cursive Arabic had been added

to computerized Arabic fonts, but still the limitation of boxes themselves was

not relieved. See Fig. 1.4 for a comparison of the printed word using metal and

modern word processors versus that written by a calligrapher.

1.3 Goal of Thesis

Now, that we have identified the deficiencies in current Arabic typesetting sys-

tems, and mentioned the importance of filling the gap between the works of

calligraphers, and the outputs of computer systems, we present our view of the

solution and what is thought to be achieved through this thesis.

8

Figure 1.3: Metal type showing a word consisting of two ligatures and diacritics.

The goal of this thesis is to produce high quality Arabic text both for display

on computers and for printing on paper. Our approach is to model how calligra-

phers write Arabic as accurately as possible to provide, to provide the required

calligraphic quality, and the typesetting flexibility of the Arabic script. To pro-

vide better quality, we shall design better letterforms that truly follow the rules

of Arabic calligraphy, and model the pen [2] and the way it is used to trace paths

as accurately as possible.

As we mentioned before, the Arabic script being cursive, can be dynamic and

hence should allow more flexibility in typesetting, like in line breaking and justifi-

cation, which is limited in Latin text to just inter-word spacing and hyphenation.

In order to achieve this flexibility on computers we will enable the decisions to

add tatweel and form ligatures in a natural way.

Our proposed solution is to model as closely as possible how people, in general,

handwrite the Arabic script, and more specifically, how calligraphers do it. Hence

letters have to be completely interactive with neighboring ones and like in the

real world, an Arabic writer in fact looks at a single word as one entity and all

letters in it are drawn accordingly, hence it is like one large ligature.

The calligrapher also decides the positioning of the word above the reference

line as a single entity not for each letter alone. Moreover, if the line has a limited

horizontal space left for one word, the calligrapher will make use of additional

9

Figure 1.4: Develeopment of Arabic typesetting. The top left shows the word
as it is written by a calligrapher. The top right figure shows the same word as
printed using metal type, with the diacritics places on separate kashidas. The
second row shows the word as it is written using a modern word processor – MS
Word 2003. Note how the placement of the diacritics is all at one horizontal
line, unlike when written by a calligrapher, and also how they are not well spaced
from each other. Adding the diacritics also forced the word processor to break the
noon-yaa’ ligature. The final row shows the word extended by adding kashidas,
which are purely straight lines.

10

ligatures and compress letters together if space is small, or break some ligatures

and extend some letters if the space is large. Of course there are rules for breaking

and forming ligatures and also for extending or compressing letters. Some of

these rules have been documented in recent papers written in English [3, 4, 5].

Moreover, it is not acceptable to justify the lines only by varying the width of

the spaces between words in the Arabic script.

We illustrate the previous ideas with examples obtained from al-Madinah

Qur’an [1], one of the most popular printed editions in use. Breaking and forming

ligatures is evident in words as becoming , and also becoming .

Other examples show how the kashida or tatweel (elongation stroke) is used to

give words extra length like in , , and . Note that in the latter example,

the letter haa’ can have different lengths of tatweel, hence it does not make sense

to store all these different lengths as glyphs to be substituted when needed.

In some cases, the calligrapher may need to extend more than one letter in

a word, for example extended to or even . Notice how the second

and third forms are almost 1.5 and 2 times as wide as the first. This property of

cursive Arabic script, if made possible in computer typesetting, would make the

flexibility of justification in Arabic text more than the previous method of using

spaces, which is unacceptable in the first place. We aim to produce a final output

comparable to the works of calligraphers, see Fig. 1.5 for a scan of a page from

the Holy Qur’an written by a calligrapher [1]. Note how different forms of the

letters are used, with sometimes extended or compressed versions.

This thesis is among other works within AlQalam project. A project that was

initiated 3 years ago with the intention of typesetting Qur’anic text, hence it is

our goal to produce output of similar quality to a calligrapher written Qur’an,

which happens to be the majority of Qur’ans in print today. In other words we

are targeting the maximum achievable quality and typesetting flexibility. In the

past two decades, the approach to typesetting Arabic on computers was through

11

Figure 1.5: Part of the Holy Qur’an written by a calligrapher. [1]

12

simplifying the Arabic script for easier modeling. Haralambous [6] discusses the

typographical simplifications that have been applied to the Arabic script in these

past years. Nowadays, with the existence of computers with more powerful pro-

cessing ability, it makes sense to try and model the Arabic writing more accu-

rately. The work done in AlQalam project until now, was in line justification and

in adding Qur’anic marks to text. Fig. 1.6 shows a sample output from AlQalam.

1.4 Motivation

A final note before moving on to the next chapters is to indicate the importance

of such a thesis and its possible applications. First of all, the Arabic language

is the language of the Qur’an, and due to this fact we see that it deserves to be

given the attention and more care in order to adapt computers to correctly view

it and present it.

Secondly, we hope that such a work will help in preserving even on a very

small scale the Arabic language and how we write it. We see that the current

situation of typing Arabic on computers is very deficient and with time people

will get used to its output and forget how the language should have be written.

So called modern Arabic fonts, are slowly departing from the original letterforms,

and are slowly transforming into non-cursive letters, to the extent that some of

these fonts use shapes derived from the Latin alphabet.

The heritage of Islamic arts is largely based on calligraphy. This heritage

was highly valued in the past, and is in fact decreasing. It is imperative that

we try and preserve the beautiful art of calligraphy by bringing Arabic desktop

publishing a little closer to the quality and beauty of the past.

Corporations worldwide are trying to build systems that mimics closely the

way Arabic is written, and have made advancements, but still it is not satisfactory

as we shall see in the fore coming chapters. Microsoft, Adobe, Tradigital, and

many more, none of them is based in the Arab world and we see that it is time

13

Figure 1.6: Sample output of AlQalam system.

14

that we, the Arabs, take a step to help the computer write Arabic the way it

should be.

Most of these companies also sell their products as closed systems, and at

high costs. Our work in AlQalam project is aimed at producing an open source

system that will give all people the ability to write Arabic on computers in the

best possible output for free.

Finally, with a base of more than 500 million people using the Arabic alphabet

in their everyday writing, and 27 countries having Arabic as an official language,

it is evident that it is worthwhile to develop such a system, and that its consumer

base is huge.

15

16

Chapter 2

Digital Typography

In order to realize our goal of producing calligraphic output on computers, we will

first need to understand how computers are now used to create digital documents,

and how word processors and typesetting systems are used in the process, and

what do these names mean in the first place. In this chapter we will define what

typography is, and then we will review the currently available computer tools

that enable us to apply digital typography.

Digital typography is defined by Richard Rubinstein [7] as “the technology of

using computers for the design, preparation, and presentation of documents, in

which the graphical elements are organized, positioned, and themselves created

under digital control.” This is the digital part of it, but typography itself is an

old and conservative field, and so is calligraphy, which is the precise aim of this

thesis. Hundreds of years of development have gone into creating our methods of

presenting written information, and for developing the Arabic script as we write

it today.

The means of producing printed material has changed several times in the

past decades, with the newest method being electronic publishing. The problem

for building electronic publishing systems is retaining high quality while replacing

old printing methods. Understanding what is good about traditional printing and

calligraphy is surprisingly hard. Typography is a design specialty, an art, and a

17

truly multidisciplinary field. George Bernard Shaw once stated in an article on

typography that “well-printed books are just as scarce as well-written ones”.

Rubinstein [7] also mentions that the goal of digital typography lies within

three questions: “Will books be easy to read or tiring? Will they communicate

efficiently, or slow the reader and provoke errors? Will they give pleasure to their

owners?”. The judgment of a good composed text is often a matter of human

perception and thus cannot be defined very precisely by some formulae, but still

it will be noticed by the trained eye if a certain text is well written or not,

and even the untrained eye will feel at ease reading from a well composed text.

The main objective of text composition is to place letterforms together to form

words and lines. While the objective sounds rather simple and straightforward,

its implementation is not trivial at all. Composition is a difficult task, because it

has to obey many rules. The most important requirement of good composition

is the harmony of the typeset text. It is often said that typography should be

invisible, i.e. well typeset text should not call attention to itself and distract the

reader from the textual contents.

In the next section we will review currently existing typesetting systems, then

we will follow it by explaining some of the basic rules of typography which will

be important in understanding the thesis, and finally we will talk about specific

requirements of Arabic typesetting in the light of these rules.

2.1 Typesetting Systems

Typesetting systems are computer programs that simply apply the definition of

digital typography just mentioned in this chapter. They can be classified into

many categories, most commonly is the word processors category, which includes

programs that are interactive, and show the users the expected output as they

are typing. Microsoft Word1 is the most common word processor in use today. Its

1We are here talking about the version included in the 2003 Microsoft Office suite.

18

advantages are simplicity of use, good user interface, and interactivity — always

previewing the current state of the document at hand.

Yet it has disadvantages, and probably too many which ironically spur from

the above mentioned advantages. Being very interactive results in the users being

forced to take care of their documents’ layout manually, and thus wasting a lot

of time on the looks instead of the message they are trying to communicate

through the document. Add to that, the fact that most users are not aware of the

rules of good typography and layout, and therefore often produce unprofessional

output. It is also not easy to maintain a consistent formatting style in a very

large document using MS Word. In order to be interactive and show results as

the user is typing, Word skips advanced typographic rules and issues for the sake

of reducing complexity. But in the end, it is mainly targeted at personal and

small office use.

Hence the existence of more professional layout programs like Adobe Frame-

Maker, QuarkXPress, Corel Ventura, and LATEX among others that target the

more professional printing and publishing industries. Of these systems, LATEX is

the only open source and free program. LATEX is a typesetting system based on

TEX, a very powerful typesetting engine developed in the late 70’s by Professor

Donald E. Knuth [8] at Stanford University. The main objective of TEX was to

get high quality typesetting, and special care was paid to very fine details of com-

posing that had been secrets of typographers. TEX was among the first computer

typesetting systems with support for advanced typography like ligatures, kern-

ing, control of spacing around punctuations and hyphenation, we have already

mentioned some of them in the previous chapter, but we will describe them in

detail in the next section.

One of TEX’s most powerful capabilities is the ability to typeset complex

mathematical expressions rather easily than most other tools. This ability is

what makes it a very favourable technical writing tool in academia.

19

Another very important advantage of TEX over other typesetting systems is

that it is open source and free, hence developing new systems can be based on

it, and indeed over the years tens of systems were developed on top of it. In this

thesis, we chose TEX as the platform for creating our target system. It provides

unsurpassed flexibility to try new typesetting approaches, and over the years

many researchers tried to build systems that typeset Arabic with more quality

using TEX and came up with systems like Omega ([9] and [10]), ArabTEX ([11]

and [12]), RyDArab [13] and Arabi. In the next section we will explain briefly

basic typographic rules, and will mention how TEX handles them.

2.2 Basic Typographic Concepts

Now we will discuss basic concepts that were used by typographers and printers

since long years ago and how these concepts are now being digitized (more details

can be found in [7], [8], and [14]), especially through TEX on which our work is

based. This will clarify what we are trying to do for typesetting Arabic in analogy

to what was performed for Latin script typesetting.

Boxes and Glues

In the early years of printing punch-cutter created small metal boxes, each box

with a letter carved on it. The printers aligned those boxed letters beside each

other to create the lines. This is what is still done today in the most advanced

typesetting systems, but the only difference is that the computer is the one who

aligned them together and we can instruct it to produce sometime better results

than when done by humans.

TEX uses a model for typesetting, based on three elements, namely box, glue

and penalty. This model is used by TEX to perform line-breaking, the process by

which a line is broken and the rest of the words are pushed to the next line.

A box represents some material that should be typeset. A box can be a char-

20

acter or a sequence of characters from a font, but it can also be a much more

complex object, e.g. a mathematical formula or a line or a composition of other

boxes. The contents of a box, however, are not important for the line-breaking

algorithm. The only relevant information about a box for the line breaking pro-

cess is its width. We can simply think of a box as a word (or a segment of a

hyphenated word), where its width is the sum of the widths of the associated

letters.

Glue represents a blank space whose width can vary. Glue has natural size,

standing for the normal width of the glue. Apart from natural size, glue may

have stretchability, which is the maximum extra amount that the glue can be

increased by. Similarly, glue shrinkability stands for the maximum amount that

the glue can be decreased by. The natural size, stretchability and shrinkability

together are called the glue specification. In the context of line breaking, the

inter-word space is represented as glue with its specification depending on the

selected font. Fig. 2.1 shows how boxes have different dimensions depending on

what they contain and how glues can be visualized as the stretchable substance

between the boxes.

A penalty is the cost we pay or the reward we gain for breaking a line at a

certain place. Using penalties allows the control of line breaking in a flexible way

by specifying appropriate values of the penalty at the desired places. For example,

when we wish to limit breaking at a certain place, we can insert a high penalty.

Figure 2.1: The boxes containing the letters of the sentence “Boxes and glue”
have different dimensions, and the glue shown in black is the virtual substance
filling the space between them.

21

An infinite penalty means prohibition of breaking at its location. Similarly, a

negative penalty indicates a desirable place for breaking and an infinite negative

penalty forces breaking at its location.

Line-breaking and Justification

TEX uses the box/glue/penalty model to decide on where to break the line using

a cost function based on the line’s width and the values of the widths of boxes

and glues [8]. Fig. 2.2 shows an example how this calculation is performed. The

process of line-breaking is strongly related to justification, which is based on the

results of the line-breaking algorithms.

Figure 2.2: A numerical example of justification using the box/glue model. The
above figure shows 4 boxes, of different widths, and the specifications of the glue
between them. Below it shows the same boxes and glues but adjusted to fill up
a different line width.

The performance of TEX in line-breaking and justification surpasses that of

simple word processing programs like MS Word, since TEX applies its algorithms

on paragraphs as a whole not just on single lines. The concept of considering a

paragraph as a whole while breaking it into individual lines, i.e. the total-fit al-

gorithm, in fact has become the fundamental algorithm for paragraph formatting

by computers.

22

Figure 2.3: Two different line-breaking and justification algorithms applied on
the same paragraph. Small marks between the letters of a word indicate possible
break points. The numbers on the right indicate the cost function (badness)
of each line, −ve meaning the line is compressed, and +ve meaning the line
is stretched beyond normal length. TEX enables the minimization of the cost
function on the whole paragraph to be applied. [15]

The tools available in Latin text to provide the flexibility required for line

justification are hyphenation, inter-word and inter-letter spacing. Hyphenation

is the most flexible, since it enables breaking long words into halves. Almost

all typesetting systems also use inter-word spacing for justification, but it does

have limitations, beyond which a line will look very crowded or very sparse in

space. Inter-letter spacing introduces micro-adjustments to the spaces between

letters in order to assist in justification. However, it is rarely used, since changing

this inter-letter spacing affects legibility greatly [7]. Fig. 2.3 shows a paragraph

typeset using two different line-breaking algorithms utilizing hyphenation and

inter-word spacing.

23

fire flower
fire flower

Figure 2.4: Common ligatures in English, the ‘fi’ and ‘fl’ pair, shown in the top
line without ligature replacement, and below with correct ligatures used.

Table
Table

Figure 2.5: Kerning example in the letter pair ‘Ta’, on the above line without
kerning, and below with the correct kerning applied by bringing the two letters
closer together.

Ligatures and Kerning

Ligatures are combinations of letters that by rule should be typeset differently

when following each other. Ligatures in the English script are very few, the most

common ones are shown in Fig. 2.4.

Kerning is the process of adjusting spacing between letter pairs, like ‘Ta’ and

‘AV’. Fig. 2.5 shows an example on the effect of kerning.

Optical Considerations

Human perception is a very important aspect affecting typography rules, and

should always be put into consideration. Fig. 2.6 on the following page shows the

enlargement of a group of letters, indicating how some letter like the letter ‘o’

do actually extend below the baseline of other letters in order to appear on the

same line when used in small size. This is just one example of how optical issues

should be considered in designing type faces.

Reading text on computer screens is in general different from reading from

printed text on paper. The chief cause is the low resolution of computer screens

as compared to resolution of printed text. We need at least two or three times as

24

Figure 2.6: Human perception requires that the letter ‘o’ extend below the base-
line in order to appear of same size as other lowercase letters.

more pixels on screen to begin to approach the quality of the printed page [16].

The most notable disadvantage of such low resolution is that reading on screens

is hard on the eyes. It is then important to figure out ways to present text that

is both aesthetically pleasing and easy to read and comprehend on computer

screens. One such way that is already being applied on most screens is the use

of pixels of different shades of gray together with the black and white pixels used

to display characters, a process known as anti-aliasing. So work has to be done

in order to make both paper and screen viewing as similar as possible.

Color

Color (or greyness) is the term used for the overall darkness of a block of text.

Color depends on four factors: interline spacing, inter-word spacing, inter-letter

spacing and the font design. The font and inter-line spacing used in a book (or a

document) is given by the layout design and therefore is predetermined for com-

posing. On the contrary, inter-word (and sometimes inter-letter) spacing depends

on how line breaking is done and how extra spaces are distributed into inter-word

spaces. The greyness of a paragraph therefore strongly depends on the uniformity

of inter-word spacing. Even greyness of typeset text is difficult to achieve, as to

attain even inter-word spacing is always a challenging demand. Moreover, the

inter-word spaces in all lines must be optically rather than mechanically equal,

which cannot be done without the assistance of human vision yet, see Fig. 2.7

on the next page. The inter-word space can appear wider or narrower than its

mechanical width, depending on the shapes of the adjacent characters on either

25

rear view letters alike

Figure 2.7: Note the spacing between the words on the left and those on the right.
Although spacing between ‘rear’ and ‘view’ is mechanically equal (i.e. the boxes
containing the spaces are of same width) to that between ‘letters’ and ‘alike’, it
is optically unequal. This is due to the shapes of different letters, and how they
occupy space in their corresponding boxes.

side. For example, a space after a period will look wider than it is, because there

is a lot of white space in the shape of the period.

For this reason, sometimes no inter-word space is needed between a period

and some capital letters like T, V, etc. All current systems try to make inter-word

spaces to be mechanically equal, but there is also some effort to compensate the

effect of such optical illusions. Some high quality fonts can contain kerning data

with respect to the space character for certain characters that need adjustment

when ending up next to an inter-word space. Common cases of such characters

are comma, period, quotes, etc. However, there is no known typesetting system

that tries to compensate inter-word space according to the shape of characters

on both sides. So far this can be only achieved by hand composition.

Rivers

Rivers are vertical alignments of inter-word spaces in typeset text. This phe-

nomenon disturbs the uniformity of typeset text and distracts the readers atten-

tion from text contents. Usually rivers appear in typeset text with loose inter-

word spacing, as larger inter-word spaces can easily form vertical white strips

in typeset text. When text is typeset with tight and uniform inter-word spac-

ing, there is less chance for rivers to appear. Improvement of inter-word spacing

therefore helps to avoid an appearance of rivers. However, even in the case that

inter-word spaces are tight and uniform, rivers can arise, as there is no guarantee

that inter-word spaces will never be aligned vertically. So far, none of automated

26

Figure 2.8: Examples of rivers in a paragraph. Looking at the paragraph from
a distance makes rivers much more distinguishable. The original paragraph is
shown on left, while a more ‘hazy’ form of the same paragraph, makes rivers
clearer to see.

composing systems provides the ability to prevent rivers, as their appearance can

be only easily detected by human eyes. This is still a challenge for implementers

of typesetting systems to provide a river detector for automated composing. A

problem similar to rivers is the alignment of identical or similar words in consecu-

tive lines. This effect is most disturbing at the margins of text, that is, when the

first or the last word in consecutive lines are identical. Unlike rivers, this effect

happens independently of inter-word spacing. Fig. 2.8 shows a paragraph with

two rivers affecting its overall look.

Orphans and Widows

These exist due to bad page-breaking algorithms which does not take whole para-

graphs into consideration and instead looks at single lines. As Fig. 2.9 on the

following page indicates, an orphan is a line that is written at the bottom of the

page, where it should have been pushed to the next page with other text it is

related to, while a widow is the same situation but the other way round. Both

affect the page layout negatively.

27

Figure 2.9: Examples of orphans and widows.

2.3 Arabic Typesetting Requirements

Now that typography rules in typesetting Latin texts are understood, we shall

now see the corresponding rules in typesetting Arabic. First of all, as mentioned

in the introduction chapter, the box/glue model should not be applied to Arabic,

since it is cursive, and its letters do have a great deal of interaction between them.

Similarly, the tools of applying justification are completely different. There is no

such thing as hyphenation in most of the Arabic script languages, and it is not

possible to use inter-letter spacing, since letters are already joined together.

Inter-word spacing should rarely be used, as a calligraphic rule, yet some

available word processors use them extensively. Instead of these tools, typeset-

ting flexibility in Arabic is possible with the use of ligatures, wider letter forms,

kashı̄das, and finally inter-word and even inter-letter can rarely be used. This

thesis aims at providing these two tools in order to achieve better line-breaking,

justification, orphans, widows, rivers and color control. The most prominent ex-

ample on how typesetting Arabic can be a complex process is the Qur’anic text

itself, where most chapters are written to occupy exactly 20 pages. This is only

violated in few chapters of the Madinah Qur’an [1]. Other prints of the Qur’an

achieved this rule for all chapters, except of course for the last chapter (chap-

28

Figure 2.10: Arabic justification in MS Word 2003. The leftmost text is without
justification, while the middle one uses spaces for justification, and the rightmost
used straight kashida segments in the process. All three texts result in non-
satisfactory results based on calligraphic rules.

ter 30), which includes lots of small surahs, hence many titles that take a large

amount of space. This is not possible to achieve on any existing typesetting sys-

tem. Fig. 2.10 shows the poor performance of the justification performed by MS

Word 2003.

Other specific requirements in Arabic are for Ligatures which are unlike Latin,

almost infinite and hence need special treatment. Kerning is exists in Arabic, and

also in many more letter combinations than in Latin, for example the letter wāw

followed by an ’alif . These are the major differences between Arabic and Latin

typographic rules. Now that the requirement for Arabic is apparently different,

in the next chapter we will review current font technologies to discover if they

can be used to provide the flexibility needed for typesetting.

29

30

Chapter 3

Font Technologies

All electronic publishing tools consist of two parts, a typesetting system that

places letters and images on the page, and the font technology which supplies the

letterforms to be used by the typesetter. In this chapter we do a quick review

on existing font technologies, and then discuss two of them in detail: OpenType1

and the METAFONT [17].

A font technology is a standardized file format that specifies font glyphs to

be used in a typesetting system. This standard may include information beyond

just the glyphs of a specific font, like which glyphs can be substituted instead

of others, and which pairs need kerning and by how much and other similar

information. Font development changed a lot from the 1980’s. The first fonts

were simply bitmaps of glyphs drawn pixel by pixel, and this worked just fine

when the screen and printing resolutions were very primitive. A strong drawback

of bitmap fonts is that scaling them to obtain different font sizes is not possible,

and produces very bad results, hence glyphs for different sizes have to be drawn

manually.

As output devices advanced with higher resolutions, came the need for a

higher quality type of fonts, one that is called vector or outline fonts. This type

of fonts has no maximum viewing resolution since they are defined by curves

1OpenType specification available at http://www.microsoft.com/typography/otspec/

31

that are reconstructed using vectors at any required resolution. Examples of

such outline fonts are the Microsoft TrueType, Adobe Type-1 fonts, and the

latest OpenType standard. There is a third category of font tool, that is known

as algorithmic font design tools [7]. Typefaces are generated by programs that

describe them mathematically, hence the name algorithmic. METAFONT is a

kind of this category of tools. It enables the production of different font sizes

in different resolutions but with bitmapped output. METAFONT was created by

Donald Knuth in order to be used with the TEX he created.

3.1 OpenType

OpenType is currently the de facto font technology. It is replacing older font

standards like TrueType and Type-1 fonts. It has a lot of features that support a

very wide variety of languages and scripts. It is adopted by Microsoft and Adobe,

and thus it is the most supported standard format. It has glyph positioning

(GPOS) and glyph substitution (GSUB) tables which allow kerning and ligatures

in Arabic. It also has other layout features that help connecting glyphs in cursive

scripts like Arabic.

Being the most common font standard lead to the existence of many editors

and tools that help design the outline of its glyphs. Designing the outline of a

glyph is done by selecting points on the outline interactively using the mouse,

like the glyph shown in fig. 3.1 on the next page showing a screenshot of a glyph

in the editing screen of FontCreator 5.5. Some tools such as Microsoft’s Visual

OpenType Layout Tool2 (VOLT), provide simple graphical interfaces for editing

the GPOS and GSUB tables among other features. Fig. 3.2 on page 35 shows

a words written using two TrueType fonts then using an OpenType, one of the

best Arabic fonts currently existing, Naskh by Tradigital3.

2Available for download at http://www.microsoft.com/typography/developers/volt/
3Company’s web page at http://www.tradigital.de/

32

Figure 3.1: A screenshot from an outline font editor, FontCreator 5.5.

Despite the many features provided by OpenType, including those dedicated

to the Arabic script they are not sufficient. The whole concept of letter boxes

connecting together via other boxes of elongation strokes is not suitable for max-

imum quality Arabic typesetting as the following examples illustrate.

Outline fonts can be used to draw glyphs of characters in different forms

very well when these glyphs are isolated. When connecting glyphs together, the

junctions rarely fit perfectly, since adjacent letter glyphs usually have different

stroke directions at the starting and ending points. Although this imperfection

may not be visible for small font sizes, it is quite clear in large font sizes. An

extreme example is the use of these fonts to write large banners or signs. Even for

small fonts, when it is required to add a tatwil, a ready made kashı̄da of specific

length is used to connect the glyphs together. Of course, such a kashı̄da will not

match perfectly with all the different glyphs. Fig. 3.3 on page 36 shows examples

of problems at junctions. Two of those problems are due to using kashı̄das. The

junction after the kāf has no kashı̄da but it shows the stroke width being non-

uniform. It would be possible of course to edit the outline of these two glyphs in

order to match, but it will certainly make them mismatch with yet other glyphs.

Another limitation is the use of already stored glyphs for different ligatures,

33

Figure 3.2: A word written with 3 fonts, from top to bottom: TrueType Simplified
Arabic, TrueType Traditional Arabic and OpenType Naskh by Tradigital. Note
how the OpenType version uses ligatures and natural looking curves in an attempt
to satisfy the cursive nature of Arabic.

34

Figure 3.3: An example word typeset with an OpenType font indicating prob-
lems with junctions between glyphs. Word obtained from sample products by
Tradigital, a sister company of DecoType, with typesetting system developed by
Thomas Milo. Note that this font represents the highest quality in OpenType
Arabic fonts we have seen, and if viewed at its standard original size, without
enlargement, these imperfections are not visible.

but since the number of possible ligatures is very large, only a selected portion can

be made ready. If we would like to model the Arabic script more accurately then

each word should be considered a ligature and hence we would have an infinite

number of ligatures, which is impossible to be made ready for use. The Uni-

code standard has numerous glyphs called presentation forms, each representing

a unique ligature form. The current Unicode version 5 [18], includes around 500

codes for different glyphs, just to describe different forms of only 28 Arabic char-

acters, not including additional codes for short vowels, diacritics, and Qur’anic

marks. Fig. 3.4 on the following page shows some of the complex ligatures allo-

cated codes. The provision of a code point for each ligature is an inefficient and

non-scalable design in our opinion. As indicated earlier, each Arabic word can in

fact be considered one ligature, following this method of code allocation to cover

all ligature forms, which would be theoretically infinite in number, would take up

all the remaining free codes. The process of selecting a ligature should be left to

the typesetting application instead.

A final feature, that is more feasible to implement in METAFONT than in

OpenType is the capability to program and embed information regarding the

scaling of glyphs to different sizes in the fonts themselves. This enables optical

35

Figure 3.4: Part of the character code tables indicating code allocation to com-
plicated ligatures, combining up to 3 letters.

scaling to be achieved instead of linear scaling. The optical scaling is even more

important when two strokes meet as in the medial form of the letter
˙
sād in the left-

hand side of Fig. 3.5. At a small scale this stroke crossing produces a black blotch

as when it is used in a word. Knuth [17] discussed this problem, and its solution

in METAFONT by decreasing the thickness of the strokes as they intersect. This

change of thickness makes the words at small sizes appear of uniform darkness,

see the ‘sad’ in the right-hand side of Fig. 3.5 on the next page. This solution can

be parameterized such that as the size decreases, the pen width at intersections

decreases, thus giving a feel of uniform darkness at all sizes.

Last but not least, OpenType is a proprietary standard, where modifications

and developments to the standard’s specifications are not possible to all. Add

to that the fact that most of fonts created using this technology are commercial

and very expensive, and since our target is to develop a system for all to use, and

that produces better quality, we chose to use METAFONT in our thesis research

instead of OpenType.

36

Figure 3.5: Optical scaling requires that stroke widths become thinner at inter-
sections, in order to give an appearance of uniform blackness for a word at smaller
scale. Left-hand figure shows a letter ‘sad’ in its medial form as it should appear
correctly. When linearly scaled and used in a word, a black blotch appears at
stroke intersections. The right-hand side, shows how the ‘sad’ should be changed
in order to appear properly at smaller size.

3.2 Metafont

These limitations in new font technologies like OpenType led us back to META-

FONT which existed in its current form since 1986. It is a font description lan-

guage to specify how glyphs are drawn under varying conditions, not just drawing

them in a special case. What new font technologies are trying to achieve nowa-

days was mostly feasible by METAFONT since it was created, but it is only due

to its complexity that it is not widely used.

One of the most powerful advantages of METAFONT is the notion of pens,

and strokes that are very similar to real strokes by real pens. And since this is

a requirement for writing Arabic, it is very difficult to draw the strokes of letters

with outline font tools as drawing the whole stroke with a pen, means that the

width of the stroke at each point along a path should have a specific width.

Another powerful advantage is that it enables the mathematical description of

the glyphs enabling the creation of parameterized fonts; fonts that are dynamic

and can be controlled through parameters.

The Computer Modern (CM) typeface family produced by Donald Knuth [19]

using METAFONT is a main source of motivation for this thesis. It is one of the

landmarks in producing parameterized fonts. Despite the differences between

Latin and Arabic characters, it is possible to apply the same concepts used to

design the CM fonts to Arabic ones.

37

Figure 3.6: Four different lowercase letter ‘a’ forms generated by a single descrip-
tion program. From left to right: roman, sans serif, typewriter, and bold.

The CM family is a marvelous work of art intermingled with engineering.

Its design utilized the concept of meta-design to its maximum. In this thesis we

demonstrate that METAFONT which was used to produce fonts like CM and AMS

Euler can be utilized to create Arabic fonts of comparable quality and flexibility.

The design of CM was such that each character or symbol had a program written

to describe it. The font glyphs are defined by spline curves, but unlike current

outline fonts, these curves are defined in a clear mathematical way, that can be

parameterized allowing them flexibility.

The only aspect of this design which some may see as a drawback is its diffi-

culty. Knuth described his work to produce parameterized CM fonts to be “much,

much more difficult than [he] ever imagined” when he started to make them in

1977. He received help from several of the world’s finest type designers, and his

job, as stated by himself, was “to translate some of their wisdom into precise

mathematical expressions”. [19]

His final design of CM fonts, uses 62 parameters delivered to the programs

describing the characters to produce 75 different standard fonts. These numbers

clearly indicate the extent to which these fonts were meta-designed. Fig. 3.6

shows four of the lowercase letter ‘a’ generated by the CM family. These a’s and

many more result from a single description program.

We aim to produce Arabic fonts that are as meta-designed as CM. Of course

the parameters would be very different, for example many of those used in CM

fonts describe the serifs. In Arabic there are no serifs, but instead there are other

38

parameters to connect the glyphs together to form the ligatures.

Despite METAFONT’s advantages and capabilities just mentioned, it has dis-

advantages. The most important is its lack of editing tools and simple graphical

design interface, as with OpenType. Instead, METAFONT programs are written

in a text file then are compiled to produce output that can be viewed using a

DVI viewer. Another disadvantage is that it is difficult to learn and to use, i.e. it

is not for the faint hearted or artists, but still it is not an engineer’s job to design

letter forms.

Or in other words as described by Knuth [17]: “A top-notch designer of type-

faces needs to have an unusually good eye and a highly developed sensitivity to

the nuances of shapes. A top-notch user of computer languages needs to have

an unusual talent for abstract reasoning and a highly developed ability to ex-

press intuitive ideas in formal terms. Very few people have both of these unusual

combinations of skills; hence the best products of METAFONT will probably be

collaborative efforts between two people who complement each others abilities.”

So in order to use METAFONT to produce good quality glyphs that are truly

meta-designed it is required to have an artist together with an engineer, and this

is what happened as Donald Knuth teamed with Hermann Zapf, a well known

type designer in order to produce AMS Euler. Fig. 3.7 on the next page shows

three different forms produced by Knuth’s CM definition of the letter ‘y’ and

Fig. 3.8 on page 42 shows the program used to meta-design the letter. It is

obvious that such a program is very complicated.

Adding to the complexity is that when errors occur in METAFONT programs,

it is very difficult to debug. Still, the unmatched abilities of the language attracted

us to try and use it to its maximum to develop a truly dynamic and parameterized

Arabic font. The rest of this thesis describes how we model Arabic pen strokes

accurately, meta-design Arabic glyphs, and join letters together all using META-

FONT.

39

Figure 3.7: Three different forms of the letter ‘y’ as generated by one description
program shown on the next page.

40

Figure 3.8: The program used to describe the letter ‘y’ in CM producing the
three different forms of the letter shown on the previous page.

41

42

Chapter 4

Pen Modeling

In order to model the writing of a calligrapher, it is common sense to consider

modeling the pen first. This chapter deals with pen modeling, both using the

plain METAFONT macros then with enhanced macros developed during the work

of this thesis. In most books used for teaching the art and technique of Arabic

calligraphy, the pens used are the first topic to be explained. The pens used in

writing Arabic are of different types and were previously discussed in previous

works towards digital Arabic typography as that of Benatia [3]. In order to

produce fonts that look very much like a calligrapher’s output, we need to model

three factors; the pen nib, pen stroke [2], and ink spread. We will discuss the

first two in the next sections, and will mention more on the ink spread effect as

a future research topic in Section 7.2.1 on page 113.

4.1 Pen Nib Outline

The first factor we need to model is the shape of the pen nib. There are differences

between pens used to write different Arabic styles. Naskh for example, uses a

pen that is cut at an inclined angle of approximately 40 degrees. The pen used

can be made of wood, and when sharpened carefully by cutting on one side, a nib

is created having a shape that is in the midst of a rectangle and a thin section of

43

Figure 4.1: A photo of an Arabic pen, notice the shape of the nib: curved on the
right side and straight on the left.

Figure 4.2: Various pen nib shapes in METAFONT. From left to right: circle,
inclined ellipse, square, inclined rectangle, and a octagon created by makepen

macro.

a circle, see Fig. 4.1 for an Arabic pen’s nib.

One of METAFONT’s powerful features, as discussed previously is having

the notion of the pen already available. It also provides predefined pen nibs;

pencircle and pensquare that provide circular and squared pen nib shapes re-

spectively. Each of these can be scaled, with different scaling factors in each

direction, to form a multitude of elliptical or rectangular shapes. The nibs can

be further transformed by rotation around a specific axis. This is of extreme im-

portance since Arabic is written using the pen nib inclined at an angle. Fig. 4.2

shows a circular nib of pencircle, a squared one of pensquare, and a trans-

formed version of each.

Other pen nibs defined in METAFONT are the penrazor and nullpen. The

penrazor is a rectangular pen having a finite length and zero width, as if we are

using a razor to draw, hence the name. The nullpen is a theoretical pen with

44

Figure 4.3: A circular pen digitized after scaling. The segments connecting the
outline points are straight lines, not curves. It happens that this nib is a 40
sided polygon (the number of sides depends on the transformation applied on
pencircle [17]). Note that the actual pens used to draw in METAFONT are all
converted to polygons like this one before used in drawing.

zero cross-sectional area, this pen is used internally by METAFONT to outline

contours that need to be filled. These two types of pens, are of little use when

modeling the Arabic pen.

The most important pen macro in METAFONT is the makepen. This macro

enables the user to define any other pen nib shape required, as long as it is

a convex polygonal shape. The polygonal shape is define by the a number of

coordinates connected by straight lines. The rightmost pen nib in Fig. 4.2 on

the preceding page shows a polygonal nib produced by makepen. The pen nib

outline defined this way can not have curves in it. However, even pencircle

and pensquare when used after transformation, they are first digitized before

being used to trace a path, and this leads to faster computation of the resulting

stroke. When a circular nib is scaled for example, it is digitized after scaling as

in Fig. 4.3.

Taking into consideration the shape of the Arabic pen’s nib, we chose after

long experimentation, to define the Arabic pen to be used in our font by:

45

pickup makepen((−16, −2) - - (16, −2) - - (15, 2) - - (0, 3)
- - (−15, 2) - - cycle);

As said previously makepen can only make polygons without curves, hence

our choice which is approximation to the actual nibs. It is of course possible to

modify the outline by defining more points. Adding more points to define pen

nib outline more accurately will increase computations and slow drawing down.

Fig. 4.4 shows the selected nib.

Figure 4.4: Arabic pen nib outline defined.

The more accurate the nib, the better looking the final glyph produced. It

was found that using our custom defined nib, produces better letters than circular

or squared nibs, even with transformations. Fig. 4.5 on the next page shows the

letter ’alif drawn using three different pens. Observing the endings of the main

stroke, shows that the custom nib (on the left), does not produce as many sharp

edges as the rectangular nib in the middle, nor does it produce excess roundness

in edges like the rightmost elliptical nib. The hamza on top of the letter is drawn

with a pen of half length, same pen nib outline but scaled by half. Although It

can be said that the stem of the custom pen is best, the same can’t be said for

46

Figure 4.5: The letter alif drawn with 3 different pen nibs. From the left: custom,
rectangular, and elliptical pens. Notice the edges of the stem of the letter.

the hamza. This is due to the fact that the smaller pens usually have smaller

length to width ratio, because if we keep the same length-to-width ratio, then the

nib is very thin and hence easy to break. Also the ink spreading effect in reality

is more observable for smaller pens, since the ink spreads the same amount on

the same paper, but with respect to the smaller diacritic dimensions, it is more

noticeable.

47

4.2 Pen Stroke

After defining the pen nib to be used in drawing, comes the path to trace and

the pen’s stroke following this path. In the next two sections we mention how

METAFONT enables the description of paths and then we discuss methods used

to model the pen’s stroke on a given path.

4.2.1 Describing Curves

Describing a path, either straight or curved in METAFONT is a very simple mech-

anism, yet flexible and powerful. In order to define a curve we first define some

points that lie on the path using Cartesian coordinates. Then we state the order

in which this path goes through the points, and the direction and angle through

each one. METAFONT then automatically evaluates the best smooth curve that

satisfies the information given. The curves evaluated are mathematically repre-

sented using a special curve family called Bézier curves. These are 3rd degree

polynomials represented as

z(t) = (1− t)3z1 + 3(1− t)2tz2 + 3(1− t)t2z3 + t3z4.

As the parameter t varies from 0 to 1, the curve is traced as we move from

point z1 to z4. Although a Bézier curve is defined using 4 coordinated, it is

possible to state only two of them, the starting and ending points, z1 and z4. The

middle points, z2 and z3, are called the control points, and can be calculated from

the direction of the curve at z1 and z4. For example Fig. 4.6 on the following

page shows the curve drawn using the statement:

draw z1{dir 70} . . z4{dir −30};

48

The two dots ‘..’ is a primitive in METAFONT that evaluates the Bézier curve,

and the dir is another primitive that specifies the direction by which the path

passes through the points, measured from the x-axis.

Figure 4.6: A Bézier curve. Points 2 and 3 are the control points of the curve,
and are calculated by METAFONT from the tangential direction of the curve at
the ending points.

There are other options provided by METAFONT to gain more control of the

resulting curve. One of those is to specify the tension of the curve. The default

tension of a curve is ‘1’. If, for example we increase the tension, the control

points approach closer to the starting and ending points, with the direction at

these points constant. A tension of infinity will result in a straight line between

z1 and z4.

4.2.2 Drawing with Pens

Now that a path is defined, the next step is to pick up a pen and use it to draw

along the path. As we discussed earlier, many Arabic letters require the pen to

change inclination angle while moving across the path in order to achieve different

stroke thicknesses. This requirement was not addressed fully in METAFONT since

Latin letters can be drawn with a fixed inclination of the pen nib. The next

section mentions built-in macros of METAFONT that try to produce real pen-like

strokes and discusses their limitations. Then we will explain improvements and

modifications to these macros, to better model the stroke of a rotating pen.

49

Plain METAFONT Drawing Macros

Plain METAFONT is a file that contains a collection of standard METAFONT

macros analogous to the standard header files of the C language. Plain META-

FONT has 3 main drawing macros that help simulate how pens are used to draw

specific paths. These macros are fill, draw, and penstroke.

The fill macro is used to fill the inside of a closed contour. It does not model

a pen, but it will be demonstrated later how it can be used within other macros

to do so. The draw macro uses a pen with a defined fixed inclination to trace

the path. The algorithm used to define the points that the pen covers with ink

was developed by John Hobby [20]. Fig. 4.7 shows a path drawn using the draw

macro but with different pens.

Figure 4.7: One path traced by two different pens [17]. The left-hand path was
drawn using a circular pen, and the right-hand path used a elliptical pen inclined
at 40 degrees from the x-axis. Both strokes are drawn with the statement:
draw z5..z4..z1..z3..z6..cycle;

The limitation of the draw macro is that it draws paths in the glyph with a

fixed pen inclination. But in Arabic calligraphy, this is not the case. Many letters

require that the calligrapher keep on changing the inclination of the pen as he

traces the path to draw. An example is the letter nūn in its extended form, see

Fig. 4.8 on the following page. Its lower segment should be thick at the middle

and thin at the tips, and this requires pen rotation while tracing.

The third drawing macro in METAFONT is the penstroke. This macro is an

50

Figure 4.8: The letter noon written with a rotating pen on right, and on left with
a fixed inclination pen. Note the segment between points 1 and 4. In the right
glyph, the pen inclination measured from the x-axis changes from 70◦ to 120◦ as
it moves from point 1 to 4 (85◦ at point 2 and 110◦ at point 3). In the glyph on
the left, the same segment is drawn with a pen of fixed inclination of 70◦.

approximation to a razor pen, used to trace a path while rotating. It is used

together with another macro called penpos, which specifies the inclination angle

and the length of the razor pen at every point. An example output of penstroke

and penpos is the stroke in Fig. 4.9 on the next page, which is a result of the

following piece of code being executed:

penpos1(1.2pt , 30);
penpos2(1.0pt , 45);
penpos3(0.8pt , 90);
penstroke z1e . . z2e{dir 90} . . {dir 90}z3e;

Note that the METAFONT code shown above is a formatted version of the

actual code, and this is done for better legibility. Whenever METAFONT code is

listed in the thesis, different types of reserved words are typeset either in bold or

italic and coordinate points have their numbers subscripted. Actually the above

piece of code without formatting looks like this:

penpos1(1.2pt,30);

penpos2(1.0pt,45);

penpos3(0.8pt,90);

penstroke z1e..z2e{dir 90}..{dir 90}z3e;

51

Figure 4.9: A path drawn using penstroke macro [17]. Note how the pen incli-
nation changes as it moves across the path, resulting in different path thickness
at different parts, an effect that is difficult to model with outline fonts.

Now, back to our discussion. The reason penstroke macro uses a razor pen

with zero-width instead of a polygonal pen, is that it makes the underlying al-

gorithms simpler. The algorithms used to execute the draw macro were complex

enough with the pen not rotating, adding this variable will complicate calcula-

tions way further. It was not that much of a problem since the Latin glyphs can

be drawn and described perfectly with only draw and penstroke, but for Arabic

these two macros are not sufficient.

Problems with Plain METAFONT Drawing Macros

Due to the fact that the penstroke macro uses only a razor pen, three problems

jump to the surface when it is used to draw Arabic letters. Although it did

solve the problem of pen rotation three problems arise. Most notably, due to the

pen used being a razor pen with zero width, some unwanted effects appear as

shown in Fig. 4.10 on the following page when we try to draw the letter bā’ . The

upper figure shows the pen inclination at each location, with the pen width kept

constant. The lower figure is the same with the pen orientations removed. Close

observation of the resulting glyph shows two problems directly resulting from the

razor pen used that lend the result unsatisfactory. One problem, is the left tip of

the letter being too thin, indicating that the pen used has no width. The second

flaw is at the bottom of the rightmost tooth of the letter intersecting with the

52

Figure 4.10: The first problem with penstroke – razor pen

base of the letter. This intersection is thinner than usual due to the same reason

related to the pen. The code used to draw the letter bā’ using penstroke is

shown in Listing 4.1:

bot z3 = (0.35w, 0);
z2 = (w, y3 + 0.18w);
z1 = (0.95w, y3 + 0.4w);
lft z4 = (0, y3 + 0.14w);
z5 = (0.02w, y3 + 0.3w);
penpos1(1.8dy , 70);
penpos2(1.8dy , 70);
penpos3(1.8dy , 90);
penpos4(1.8dy , 75);
penpos5(1.8dy , 70);
penstroke z1e{dir −55} . . z2e{dir −95};
penstroke z2e{dir −135} . . tension 1.3 . . z3e{left} . . z4e . . z5e{dir 85};

Listing 4.1: METAFONT code for drawing the letter baa’ using penstroke.

53

Yet, this is not the only issue with penstroke, and not even the most promi-

nent. There are two more problems with this macro. These problems are due to

the way penstroke is defined in the plain METAFONT file. First, when penpos

is used at a coordinate, METAFONT calculates the position of the left and right

ends of the razor pen at each coordinate. It then forms 2 paths, right and left

ones, connects them at the endpoints with straight lines, then fills the resulting

contour. In fact the macro expands to:

fill path l - - reverse path r - - cycle;

Where path_.l is the path passing through all the left points, and similarly for

the right path.

Figure 4.11: The second problem with penstroke – figure-8 shape.

This internal description of the macro causes two problems. The first is when

we try to draw a shape like that in Fig. 4.11. In this figure both paths intersect,

resulting in the contour dividing into two, and sometimes more regions. META-

FONT does not have the capability to fill such complex regions that overlap

themselves, and hence produces errors. To draw such a shape, a modification

was done in our work by detecting the cross points of the paths, then filling each

region separately. Such crossings occur frequently when drawing Arabic glyphs.

The definition of penstroke, with both left and right paths evaluated inde-

pendently, results in the macro being a bad approximation of even a razor pen.

54

Being evaluated independently means that at some points, the distance between

both paths may vary in a way that can not result from a fixed length pen. It

is not always easily perceptible, but in some cases when there are sharp bends

in a path or large amounts of pen rotation, the resulting stroke becomes a very

bad approximation of a razor pen as in Fig. 4.12. In drawing Arabic glyphs, such

large rotation in pen inclination rarely occurs, but this extreme example shows

that penstroke is not an accurate model of a razor pen. Fig. 4.11 on the previous

page also shows the same problem as a significant chunk of the stroke is missing

at the middle of the path.

Figure 4.12: The third problem with penstroke – bad pen approximation.

Although the draw and penstroke are good attempts to simulate pens in

action, they do not fulfill the needs of Arabic pens. One does not allow pen

rotation, while the other uses a pen with zero thickness. It is obvious that both

macros are not sufficient, and we need the best of both worlds, of draw and

penstroke; a polygonal pen that traces a path while rotating. The next section

discusses in detail a very important part of the work done in this thesis in order

to correctly model the Arabic pen strokes. These solutions to the problem use

the previously mentioned plain METAFONT macros in various ways.

Enhancements to plain METAFONT drawing macros

In this section we describe four proposed methods, all aiming to provide better

modeling of the pen nib tracing a path while rotating. The order in which these

methods are presented is of ascending quality. With the last being the most

55

accurate drawing method. The first two methods make use of the penstroke

macro. But before we discuss them we will briefly mention how the errors arising

from penstroke’s left and right paths crossing, discussed in the previous section

is solved.

The error as previously mentioned is due to METAFONT not being able to

fill a non-simple contour that crosses itself. In order to solve this, we proposed a

solution by finding the cross points and then dividing the contour into segments,

and filling each one separately. Since we do not know the number of crossings be-

forehand we do a forever loop until there are no more cross points. The original

and modified penstroke codes are shown in Listing 4.2. The intersectiontimes

macro used in this code is a plain METAFONT macro that returns the time of

the location on the path. Points on any path in METAFONT are defined in time.

If a path goes from point 1 to point 2, then time 0 is point 1, time 1 is point

2 and time 0.2 is a point on the path between both points but closer to point

1 and so on. The intersectiontimes when returning the times of intersection

on right and left paths, these timed points may not have the exact coordinates

in the x-y plane, hence the use of the eps constant, which is a very small value,

that will ensure that the resulting contours have no micro loops at the crossing

points. Fig. 4.13 shows an example of a stroke drawn by a pen that rotates 180◦

from point 1 to 2 and then 180◦ more from point 2 to 3, hence rotating 360◦ in

total. Such a stroke would result in an error if the plain penstroke is used.

Figure 4.13: The error resulting from left and right paths crossing is resolved.
Even in the case of multiple crossings.

56

% Original penstroke
def penstroke text t =

forsuffixes e = l, r: path e := t; endfor
if cycle path l: cyclestroke
else: fill path l - - reverse path r - - cycle fi enddef ;

% Modified penstroke
def penstroke text t =

forsuffixes e = l, r: path e := t; endfor
forever:

numeric v, u;
(v, u) = path l intersectiontimes path r;
if v 6= −1:

fill subpath(0, v − eps) of path l

- - subpath(u− eps, 0) of path r - - cycle;
path l := subpath(v + eps, infinity) of path l;
path r := subpath(u + eps, infinity) of path r;

else:
fill path l - - reverse path r - - cycle; fi

exitif v = −1;
endfor;

enddef ;

Listing 4.2: METAFONT code of both the original penstroke and its modified

version.

Now, we will explain each of the four proposed drawing macros. The penstroke

used is the modified version just explained.

- First Solution (filldraw stroke):

This technique is used a lot in Knuth’s definition of CM character glyphs. It fixes

the problem of penstroke having zero width at certain points of a contour. In-

stead of just filling the penstroke contour, with the fill macro, another META-

FONT macro, filldraw is used to fill the contour then trace its outline with a

small circular pen nib, thus adding thickness to very thin segments of the “virtual

pen stroke”. The reason we say it is virtual, is because of Knuth’s definition of

a glyph like the ‘e’ keeps the pen rotating in a way such that the left and right

57

Figure 4.14: First solution - filldraw. Letter ‘e’ is shown on the top right as
it is used in the CM fonts, and on the left how it would look like if drawn using
penstroke instead of filldraw stroke. The top pair of letter baa’ shows the
skeleton of the letter, i.e. the closed contour. The left contour is drawn with a
very fine pen nib, while on the right with a thicker nib. The pair of baa’ at the
bottom show the same contours after filling.

paths of penstroke do not cross, and this is certainly different from what a person

would do while drawing the ‘e’, hence not a real pen stroke. The stroke macro

is provided in the CM base file, and it merely defines the closed contour created

by penstroke but without filling it. Fig. 4.14 shows the letter ‘e’ and bā’ with

penstroke and then with filldraw stroke. Note the thickness effect and how

Knuth used this method to give letter tips round edges. Letter bā’ is shown with

its contour and after filling with penstroke on left and with filldraw stroke

on right.

58

- Second Solution (astroke):

Another solution to the problem of zero-width pen, is to model the pen nib with

multiple penstroke’s, one for each side of the pen. For a rectangular pen nib, a

macro was defined which essentially breaks into 4 penstroke’s, each to model the

area covered by a side of the rectangle. penpos macro also had to be modified in

order to evaluate the 4 corner points of the pen nib (l, r, n, and m) instead of only

2 (left and right). Fig. 4.15 shows in the top figure 2 of the 4 penstroke’s resulting

from the pen nib shown. The pen nib is enlarged for better understanding. The

bottom figure shows all 4 penstroke’s but with reasonable pen nib dimensions.

Note that it is also possible to produce same output with only 2 penstroke’s

(l-r) and (n-m) together with 2 nib dots at start and end, since the need for the

smaller sides is usually limited to the tips, since it is rare that a pen used to

write Arabic is moved in the direction of the smaller side. The modified code for

penpos is shown in Listing 4.3.

Figure 4.15: Second solution - astroke. penpos defines 4 points for each coordi-
nate pair, named l, r, n, and m, see dot at top. astroke macro then produces 4
penstroke’s, top figure shows 2 of these sides (l-r) and (n-m).

59

% Original penstroke
vardef penpos@#(expr b, d) = % b is the width of the pen

(x@#r − x@#l, y@#r − y@#l) = (b, 0) rotated d; % d is the inclination
x@# = .5(x@#l + x@#r); y@# = .5(y@#l + y@#r) % of the pen

enddef ; % (x,y) is between
% left and right pts.

% Modified penstroke
vardef penpos@#(expr b, d) =

(x@#r − x@#l, y@#r − y@#l) = (b, 0) rotated d;
transform t[];
t2 = identity shifted (((py/2), 0) rotated (d + 90));
(x@#, y@#) = (.5(x@#l + x@#r), .5(y@#l + y@#r)) transformed t2;
t3 = identity shifted (((py/2), 0) rotated (d− 90));
(x@#m − x@#n, y@#m − y@#n) = (b, 0) rotated d;
(x@#, y@#) = (.5(x@#n + x@#m), .5(y@#n + y@#m)) transformed t3;

enddef ;

Listing 4.3: METAFONT code showing the modification to penpos macro.

These two previous modifications, although are improvements to the existing

macros, they still have a drawback. That is they do make use of penstroke, which

is as said earlier, just an approximation to a razor pen. When the rotation of the

pen and the bends of the curve are limited in a segment, this approximation is

close to the actual pen stroke. However, to see that it is merely an approximation,

when tested with sharp bends or large pen rotation, it is possible to see that it is

a bad approximation, like in Fig. 4.12 on page 56. The next two approaches do

not use penstroke, in order to try and model the strokes more accurately.

- Third Solution (qstroke):

This macro solves the problem of penstroke being just an approximation of a

razor pen traced path. The glyph is simply created by drawing footprints of the

pen nib with different inclination angles at many consecutive locations along a

path. The angle of the pen at each location is an interpolation of segment starting

and ending inclination angles. At a given finite resolution, a finite number of pen

60

Figure 4.16: Third solution of stroke modeling - qstroke

dots will give the effect of a continuous pen stroke. As the distance of path

increases, the more pen footprints are needed. Also due to the path times in

METAFONT not being linearly distributed, more instances are needed, so is the

case when the pen rotation is large in a specific segment. The code describing

qstroke is shown in Listing 4.4 and a sample letter bā’ drawn using the macro

is shown in Fig. 4.16.

vardef qstroke(expr t, a, b, c, d) =
numeric v, k;
tilt0(a); tilt1(b); tilt2(c); tilt3(d);
path qpath; qpath := t;
for v = 0 step .005 until length qpath:
k := floor v;
int ang := ang [k] + v ∗ (ang [k + 1]− ang [k]);
pickup pensquare xscaled px yscaled py rotated int ang ;
drawdot(point v of qpath);
endfor

enddef ;

Listing 4.4: METAFONT code of the qstroke macro.

61

- Fourth Solution (envelope):

For high resolutions, the previous macro will need to draw even more dots so

that the stroke is smooth. A refinement to this idea is to compute the exact

envelope of the razor pen and then fill it. This macro moves along the path at

small intervals, evaluating at each point two equidistant corresponding points on

the left and right paths depending on the pen inclination. The output is a much

accurate model of a razor pen than the penstroke, see Fig. 4.17 on the next

page. Applying 4 of this new stroke as in the astroke solution produces the

most accurate glyph. The code describing the macro is shown in Listing 4.5.

vardef envelope(expr t, a, b, c, d) =
numeric v, k, j; j = 0.01;
tilt0(a); tilt1(b); tilt2(c); tilt3(d);
path path l, path r, path med;
path med := t;
path l = (point 0 of path med) shifted ((px/2, 0) rotated (ang0));
path r = (point 0 of path med) shifted ((px/2, 0) rotated (ang0 − 180));
for v = 0 step j until (length path med):

k := floor v;
int ang := ang [k] + (v − k) ∗ (ang [k + 1]− ang [k]);
pickup pencircle;
path l := path l{direction v of path med}

. . {direction(v + j) of path med}(point v of path med)
shifted ((px/2, 0) rotated (int ang));

path r := path r{direction v of path med}
. . {direction(v + j) of path med}(point v of path med)

shifted ((px/2, 0) rotated (int ang − 180));
endfor
fill path l - - reverse path r - - cycle;

enddef ;

Listing 4.5: METAFONT code of the envelope macro.

It is evident of course that more accurate models require more calculations and

hence more computing resources. For nominal resolutions, the qstroke macro

will produce a final output as good as the more accurate but more complex macro,

62

Figure 4.17: Fourth solution of stroke modeling - envelope

envelope, hence it is preferred.

Now that we have obtained a satisfactory model of the pen nib and the way

it is used to draw strokes, we will explore in the next chapter how parameterized

glyphs are designed.

63

64

Chapter 5

Arabic Meta-Design

In the previous chapter, we discussed the modeling of the Arabic pen nib and

its use it to draw strokes like real calligraphers. In this chapter we move on

to the next step, which is how does the calligrapher draw the different letters.

The design of the letter forms must conform to traditional calligraphic rules.

Three books [21], [22], and [23] were used as references along with face-to-face

instructions from calligraphers. It is not our aim to evaluate the letterforms

created in this thesis aesthetically against other commercial fonts available in the

market. The main focus in this chapter is the underlying design using META-

FONT.

The main approach used here to model the writings of calligraphers was to

make the writing as dynamic as possible. This enables us to simulate the cur-

sive nature of the Arabic script. In order to do that we present a font design

that is parameterized in many ways. This parameterization comes in two forms;

parameterization of coordinates and of curves.

Parameterization of coordinates means that points in the x-y plane are not

given fixed locations. Any point location either depends on parameters or is re-

lated to another point in the plane sometimes also through parameters. Parame-

terization of curves on the other hand, means that either the tangential direction

of a curve at some points or the tension on a curve segment is dependent on

65

parameters, and sometimes both together. This almost complete (since there are

more advanced parameters like the pen moving speed when writing which affects

the ink spread and hence the look of the stroke, however we did not include it

in this thesis but discussed it in the Future Work chapter) parameterization of

the glyphs will enable us to join letters better together, extend them easily, and

optically scale the font.

This process of designing the glyphs is then better described as meta-designing,

since we not only design the shape of the letter, but describe how it is to be

drawn which is more difficult. Outline vector fonts like TrueType can be created

by merely scanning a handwritten sample then digitizing it by converting it to

vectors. The more meta-designed the glyph the more difficult and more time it

takes.

5.1 Meta-Design Methodology

The Arabic alphabet, although consisting of 28 different letters, depends on only

17 different skeletons. The dots added above or below these skeletons differentiate

one letter from another. For example the letters ǧı̄m and
˘
hā’ have the same

shape as the letter
˙
hā’ , but ǧı̄m has a dot below, and

˘
hā’ has a dot above. When

we discuss primitives we only mention its use in the groups of letters having

same skeleton, not individual letters, and this simplifies further our design. The

placements of dots and other diacritics in our work is not parameterized, and

their locations are fixed relative to the skeletons they belong to. We discuss their

dynamic placement in the Future Work chapter.

Although the placement of dots will not be discussed in this thesis, we will

need to mention them for another reason. In the process of designing Latin

letters, there are some constants that are used as units of measurement, like the

point, em, or ex. The point is around 1/72 of an inch, while em and ex are the

corresponding widths of a lowercase ‘x’ and an uppercase ‘M’ correspondingly. In

66

Arabic however, the unit of measurement is different, and it is the dot or nuq
˙
tā.

The choice of the nuq
˙
tā as such, was by Ibn-Muqla. He chose it in order to have

some fixed measurements between different letter forms. For example, in the

Naskh style, the height of ’alif is 4 dots, and the width of an isolated nūn is 3

dots. The dot is that made by the pen used, i.e. it is not something fixed like

the point used by Latin typographers. It is approximately equal to the diagonal

of a dot drawn by the pen, and if the dot is a square then the nuq
˙
tā is equal to

the pen’s width multiplied by the square root of 2, and in our work we take it as

1.4× pen width and in METAFONT programs it is simply abbreviated as n.

5.1.1 Point Selection

The first step in the process of meta-designing any primitive or letter, is to select

the points through which the pen strokes pass. This is not an easy choice. The

solution made when designing outline fonts, is usually to scan a handwritten

letterform, digitize its outline, then make any necessary modifications. We did

not adopt this approach because Arabic letters do not have fixed forms, and

depend on the calligrapher’s style, and since we are meta-designing, we are more

concerned with how the letter is drawn not just its final resulting shape. Hence

our choice of the points, should not be dependent on just one calligrapher, our

output glyph instead of capturing the fine details of a specific calligrapher, should

capture the general features of the letter. To do this we based our design on the

works of more than one calligrapher at the same time.

Now that our point selection strategy is made clear, how many points should

we select? The answer to this question is very difficult, because there is no definite

answer. Very few points will make it very difficult to capture the important

features of the letter, and will make curve descriptions very complex. While

many points are a sign of a poor meta-design, and will be more like outline fonts

designs, where tens of points are used to define just one glyph. Furthermore, the

67

more points we chose, the more difficult it is to parameterize the glyph. In our

design, we look for the minimum possible choice of points that will enable us to

correctly capture the main features of a letter and that will also facilitate the

parameterization of the glyph.

The minimum number of points to describe any glyph is 2, since a stroke

needs at least two points to exist, and a pen stroke at one point only will not be

a stroke. The letter ’alif for example can be designed with just two coordinate

points but it could also be designed with 4 or even 5 points which makes path

definitions easier, but adding parameters much more difficult. The letter ’alif is

shown in Fig. 5.1 with three different possibilities of point selection. The leftmost

glyph has to have the angles at points 1 and 2 explicitly specified, where in the

middle glyph, just connecting the points 1-3-4-2 with a Bézier curve can produce

the same curve without explicitly specifying any angles. Theoretically speaking,

we can specify the path using an infinite number of points, but the less points

there are, the better the design, and the easier we can parameterize it. Adding

more points that also lie on the same path can be done as in the rightmost glyph,

but many points can be redundant like point 5 since the stroke is symmetric, and

with it or without it we can produce the same path without explicitly specifying

any angles or tension. Hence the decision of using such a point in this case would

definitely be a bad design.

Figure 5.1: Choosing points to define the path of the letter ’alif.

68

This example, shows that the minimum points to choose for any stroke is 2,

and their locations are at the endpoints of the stroke, these are the easiest points

to select. Intermediate points are then chosen when curve parameters such as

starting and ending directions and tension are not enough to define the curve as

needed, capturing the important features. Hence more points are usually needed

in stroke segments with sharp bends or at non-symmetric strokes, as shall be

discussed in the primitives section, with baa’ as an example.

5.1.2 Point Dependencies

After deciding on the number of points needed to describe a glyph and their posi-

tions, it is possible to define the curves, then draw the strokes needed. However,

part of the meta-design parameterization, is the dynamic location of the coor-

dinate points themselves, which requires that their locations be relative to each

other. But then we faced the question, whether to relate all points in a glyph to

one point or to many points? For example, if a stroke passes through points 1 to

5. Should all points be defined relative to 1 or to 5?

In our design, we model the direction of the stroke as it is drawn by the

calligrapher, i.e. the stroke of the letter ’alif is drawn from top to bottom, not

the other way round. The numbering of points in our designs is based on this

natural direction, so for the letter ’alif , point 1 is the top point, and point 2 is

the bottom one. However, a calligrapher chooses his starting point of the stroke

depending on the location of the base line, he should write on. This means that

point 1 is chosen relative to point 2, so we define 1 depending on 2. META-

FONT is a declarative language, not an imperative one. So the two statements:

z1 = z2 + 3; and z2 = z1 - 3; evaluate exactly the same, yet we try to make

the dependencies propagate in the natural logical order, which then makes editing

the glyph an easier job. We shall see more examples when explaining the different

primitives designed.

69

In the coming pages, we will explain the most commonly used primitives, and

will also mention some of their characteristics which are not mentioned explic-

itly in most calligraphic books. These characteristics were discovered during our

meta-designing process, where we try to model the letters as closely as possible.

When calligraphers describe their letters in books, their descriptions are approx-

imate, and many detailed features of the letters are embedded implicitly in their

curves as they learned them by practice. An example to illustrate this is the

use of the ’alif stroke in a letter like the lām. Most calligraphers describe the

straight stroke in the lām as being identical to the ’alif . But we discovered that

this is not correct, and there are in fact differences between both strokes. (See

the ’alif primitive description in Section 5.2.2 for more details)

5.2 Primitives

Meta-design enables us to break the forms of glyph into smaller parts, or prim-

itives. These primitives can be whole letters or just parts of letters that exist

exactly as they are or with little modifications in other letters. With the use

of primitives we can save design time, by reusing those primitives already meta-

designed. Philippe Coueignoux [24] studied the utilization of primitives to form

Latin letters. Fig. 5.2 shows an example of how he classified these primitives.

In Knuth’s work on CM fonts [19] primitives were not explicitly defined, as

black boxes then reused. This is due to the fact that it was already difficult to

add parameters to each letter as a whole, and making use of primitives would

mean much more parameterization. For him, the use of primitives was cost

effective only in small and limited flexibility shapes like serifs and arcs, for which

he wrote subroutines. The difference between his work work and ours, is that he

parameterized letters to get a very large variety of outputs, but we parameterize

primitives to make the letters more flexible and better connected, not to produce

different fonts. In this thesis, only the Naskh writing style is of concern.

70

Figure 5.2: Usage of primitives in roman letters. [7]

In this section we explain how we meta-designed some of the most important,

used, and dynamic primitives in the Arabic letters. We classified them into 3

categories:

• Type-1 primitives are used without any modifications in many letters

• Type-2 primitives are dynamic and change shape slightly in different letters

• Type-3 primitives are also dynamic but much more flexible

5.2.1 Type-1 Primitives

This is the first class of primitives, and includes primitives that are used as they

are without modifications in many letters. We will describe the design of 3 of

71

such primitives in this section.

Tail Primitive

This primitive is used as the ending tail in letters like wāw, rā’ , and zāy in both

their isolated and ending forms. It has not flexibility parameters at all. Even in

cases where kerning is applied on letters containing this primitive, calligraphers

move the letter as a whole in order not to modify the tail’s shape. Fig. 5.3 shows

the tail designed using METAFONT at the left and its use in wāw and rā’ , and

Fig. 5.4 shows an example of kerning applied to letters with tails.

Figure 5.3: The tail primitive.

Figure 5.4: Four consequent tails in a word from the Qur’an [1] - [26:148]

The code for the tail is shown in Listing 5.1. Note the natural direction of

the stroke, from point 3 to 4 to 5. Actually, the stroke is only between 3 to 4,

the last part of the tail, is called a shā
˙
zya, and is usually drawn using the tip of

72

the pen nib, and then filled, here we use filldraw for that purpose. Also note

the coordinate points dependencies, z4 depends on z3 and z5 depends on z4 not

z3. This makes modification of the glyph much easier, by separating between the

definition of of the stroke segment and that of the shā
˙
zya. i.e. if we modify the

stroke, the shā
˙
zya is not affected, unlike if z5 was function of z3.

z4 = z3 + (−1.7n, −2n);
z5 = z4 + (−2n, .36n);
path raa body ;
raa body = z3{dir −95} . . tension 1.3 . . z4{dir −160};
qstroke(raa body , 85, 100, 0, 0);
path shathya;
shathya = (x4, top y4){dir −160} . . {dir 160}z5{dir −38}

. . tension 1.3 . . (rt bot z4){dir 15} - - cycle;
pickup pencircle scaled 1.2;
filldraw shathya;

Listing 5.1: METAFONT code describing the tail primitive.

The first and second lines in Listing 5.1 are interchangeable, and order is not

important in such a declaration although the second line seems to depend on z4,

this is due to METAFONT being a declarative language not an imperative one.

The primitive is made up of two segments, each having an independent path.

The first one, is a stroke and is drawn using the qstroke macro, which takes

the path to draw and the pen inclination angle at each point on the path. The

current definition of the macro needs at least four angles, but here since we have

only two, we send the other two as zeros. The second path defines the shā
˙
zya

outline. The top command obtains the coordinate of the top point of the last

pen used, and in this case a pen inclined by a 100 degrees, used in the qstroke

macro. cycle on the other hand closes the path in order for us to close the path

for filling. The filling is done by tracing the outline with a small pencircle and

filling the inside. We used filldraw instead of fill in order to give thickness to

73

the shā
˙
zya edge at point 5.

Base Primitive

The base primitive, is the main body of the letter bā’ , and is also used in isolated

fā’ and ending kāf , fā’ , and bā’ . Of course it is also used in other letters of

the bā’ family such as tā’ and
¯
tā’ . The reason the bā’ is not drawn with a

single stroke, is because its starting tip or senn– having the shape of the Arabic

numeral ‘ ’ – can be used in many other letters and hence is considered a separate

primitive. Fig. 5.5 shows the base primitive and its use in isolated bā’ and fā’

connecting to them through point 3. The extended version of the bā’ is very

similar to the type-3 primitive of the nūn to be discussed in the next pages. See

Listing 5.2 for the code explaining the primitive.

bot z4 = (4n, 0);
z4 = z3 + (−3.6n, −n);
z5 = z3 + (−5.5n, −.15n);
z6 = z5 + (.05n, .8n);
path base;
base = z3{dir −135} . . tension 1.5 . . z4{left} . . z5 . . z6{dir 80};
qstroke(base, 75, 85, 80, 70);

Listing 5.2: METAFONT code describing the base primitive.

All points of the base are defined relative to z3, except for point 6, which

is defined relative to z5 since this ending part of the glyph is independent from

the main stroke. This facilitates glyph editing by isolating the final tip of the

glyph. Note that we could not have defined the base without point 4, as the curve

between 3 and 5 is not symmetric. If it was, then point 4 would not be needed.

Point 4 is almost two thirds the distance from 3 to 5 and is the thickest part

of the stroke, hence we input the pen inclination at its location to the qstroke

74

macro as 85 degrees. The path input to the macro is based on 4 points, and this

is why we pass four angles representing the pen inclination at each point.

Figure 5.5: The base primitive.

Helya Primitive

The word
˙
helya is the Arabic for decoration. There are many decorative prim-

itives in the Naskh style, Fig. 5.6 shows the most common one and its use in

three letters. It is a simple stroke between two points, and is used on top of the

’alif stroke in lām (isolated and initial), kāf (isolated), and
˙
tā’ (all forms). The

code defining the
˙
helya is shown in Listing 5.3.

path helya;
z2 = z1 + (0.43n, −0.35n);
helya = z1{dir −110} . . tension 1.3 . . z2{dir −10};
qstroke(helya, 70, 75, 0, 0);

Listing 5.3: METAFONT code describing the helya primitive.

75

Figure 5.6: The helya primitive.

5.2.2 Type-2 Primitives

This class of primitives has few parameters that enable only slight variations in

the primitive’s shape in order to be used in different letters. We will discuss 4

primitives of this type.

Bow Primitive

The bow designed here is used in the isolated and final forms of the families of

the
˙
hā’ and ‘ayn, hence is used in 5 different letters: ǧı̄m,

˙
hā’ ,

˘
hā’ , ‘ayn, and

ġayn. Fig. 5.7 shows the bow in both families. The code in Listing 5.4, indicates

that the 4 points used are fixed, and only the curve and stroke definitions vary

between the bows of the two families. The bow in the ‘ayn goes further down

and left between 3 and 4 and the starting inclination of the pen is different in

both letters in order to merge well with the head of either the ‘ayn or
˙
hā’ . The

bow in both cases uses a pen tip drawn shā
˙
zya at the end.

76

path bow ; path shathya;
z3 = z2 + (−3.2n, −4.1n);
z4 = z3 + (3.94n, −1.9n);
z5 = z4 + (1.57n, 0.58n);
shathya = (x4, top y4){dir 0} . . {dir 10}z5{dir −140}

. . tension 1.5 . . (lft x4, bot y4){dir −180} - - cycle;
fill shathya;
bow = z2{dir −160} . . {dir −85}z3 . . z4{dir 5}; % bow of ‘ayn
qstroke(bow , 70, 60, 75, 0);
bow = z22{dir −175} . . {dir −80}z3 . . z4{dir 5}; % bow of haa’
qstroke(bow , 65, 65, 75, 0);

Listing 5.4: METAFONT code describing the bow primitive.

Figure 5.7: The bow primitive.

Waw Head Primitive

This primitive is used in the starting and isolated forms of the letters wāw, fā’ ,

and qāf . It consists of two parts, the head and the neck. In most calligraphy

books, while the neck is said to be slightly different, the head is described as being

exactly the same in all three letters. However in the meta-design process, it was

discovered that there are small differences between the different heads resulting

77

from the connections with different letter skeletons. Fig. 5.8 shows the letters fā’

and qāf as drawn in three books. Note how the head does in fact look different

in both letters, yet none of these book mention that there are variations in the

head.

Figure 5.8: The letters faa’ and qaf as drawn by three calligraphers, from top to
bottom: Afify [21], Mahmoud [22], and Zayed [23].

78

This wāw head primitive consists of 2 strokes, one between points 1-2 the

other between points 2-3-4, see the code in Listing 5.5. The largest difference

between the different forms is in the neck between points 3-4 see Fig. 5.9. This

same primitive can be modified slightly to be used in ending forms as well, by

moving point 1 down to the right, to connect to a preceding letter or kashı̄da.

path head [];
z2 = z1 + (−1.2n, 0.2n);
z3 = z2 + (0.6n, 0.6n);
z3 = z4 + (−0.7n, 1.4n);
head1 = z1{dir −130} . . z2{dir 90};
qstroke(head1, 75, 75, 0, 0);
head2 = z2{dir 70} . . tension 1.1 . . z3 . . tension 1.3 . . z4{dir −100};
qstroke(head2, 75, 85, 85, 0);

Listing 5.5: METAFONT code describing the waw head primitive.

Figure 5.9: The waw head primitive.

79

Saad Head Primitive

This head is used in the letters
˙
sād,

˙
dād,

˙
tā’ , and

˙
zā’ in all their forms, see

Fig. 5.10 for examples of the primitive in use. There are two differences between

that of the
˙
sād and the

˙
tā’ . These differences are due to the ’alif of the tā’

which makes the impression of applying pressure on the head making it flatter

and taller. It is not easily noticeable and is not mentioned in most books, yet is

applied. The head is made of two strokes, between 10-11-12 and 13-14.

The difference in the design of the two forms are: the tension in the 10-

11 segment, and in the curvature of the lower 13-14 segment (controlled by the

location of point 14 and curve tension). The
˙
tā’ has a tighter tension in the upper

segment, and has less curvature in the lower segment. Although the distance

between 10 and 13 is constant, the length of the inside of the head is less in the

˙
sād due to the lower curvature. The code in Listing 5.6 shows the description of

the primitive as used in the
˙
sād letter. Note how maximum thickness is obtained

at point 14 by setting the pen inclination at 90 degrees to the stroke direction.

Of course, when the
˙
tā’ is in the final position, we end the lower segment with a

shā
˙
zya.

z11 = z10 + (2.8n, 1.5n); z12 = z11 + (1.1n, −0.85n);
z13 = z12 + (−0.37n, −0.44n); z14 = z13 + (−4n, 0.2n);
saad top = z10{dir 40} . . tension 1.5 . . z11{dir 10}

. . tension 1.05 . . z12{dir −110};
qstroke(saad top, 50, 50, 50, 0);
saad base = z13{dir −155} . . tension 1.5 . . z14{dir 135};
qstroke(saad base, 50, 90, 0, 0);

Listing 5.6: METAFONT code describing the saad head primitive.

80

Figure 5.10: The sād head primitive.

’Alif Primitive

The stem of the ’alif is used in many letters: lām (all forms), kāf (isolated and

final forms), mı̄m (final form), and
˙
tā’ (all forms). Fig. 5.11 shows on the far

right the isolated ’alif , and to its left the modified ’alif that is used in lām

and kāf . It is thinner with less curvature at the middle, or in other words more

tension, together with more overall inclination. As the code for both forms shown

in Listing 5.7 indicates, they both have the same height, and the thickness of the

stem is achieved by increasing pen nib inclination.

81

% Description for isolated ’alif
curve := −100; incline := 70; height := 4.5n;
z2 = z1 + (0, −height);
path saaq ;
saaq = z1{dir curve} . . tension 1.4 . . z2{dir curve};
qstroke(saaq , incline, incline, 0, 0);

% Description for ’alif used in lam and kaaf
curve := −95; incline := 79; height := 4.5n;
z2 = z1 + (0.3n, −height);
path saaq ;
saaq = z1{dir curve} . . tension 1.4 . . z2{dir curve};
qstroke(saaq , incline, incline − 3, 0, 0);

Listing 5.7: METAFONT code describing the alif primitive.

Figure 5.11: The ’alif primitve.

As mentioned before, many characteristics of the primitives were discovered

during the meta-deigning process, since they were not mentioned explicitly in

most calligraphy books. This is because when calligraphers don’t measure their

strokes with rulers and their description are only approximate. Detailed fea-

tures of the letters are embedded implicitly in their curves as they learned them

82

by practice. But in our design, we represent the stroke mathematically which

requires very accurate descriptions. The ’alif is one of those primitives.

Most calligraphers describe the straight stroke in the lām, kāf , and
˙
tā’ as

being identical to the ’alif . However, as just explained above, this is untrue.

There are differences in the thickness, curvature, and height (in case of the
˙
tā’)

between the isolated ’alif and the one used in other letters. Fig. 5.12 shows part

of a page from a calligraphy book [22] stating inaccurate directions about the

form of the ’alif stroke being exactly the same in different letters.

Figure 5.12: Approximate directions in calligraphy books.

5.2.3 Type-3 Primitives

Type-3 primitives are glyphs that have a wider dynamic range, and greater flex-

ibility. We will discuss in this section, the kashı̄da and the skeleton of the letter

nūn, also called the kasa. These primitives can be used in line justification thanks

to their flexibility.

Kasa Primitive

The body of the letter nūn is used in the isolated and ending forms of sı̄n, šı̄n,

˙
sād,

˙
dād, lām, qāf , and yā’ . Fig. 5.13 shows the kasa as it is used in five letters.

The kasa has two forms, short and extended. The short is almost 3 nuq
˙
tās in

width in the case of nūn, one nuq
˙
tā longer in yā’ , and slightly shorter in lām.

This is difference between the kasa of the lām and the nūn is not well documented

in calligraphy books, where most calligraphers mention that both are the same

and only few state that that it is slightly smaller.

83

An important property of the kasa is that it can be extended to much larger

widths. In its extended form, it can range from 9-13 nuq
˙
tās. The code describing

the kasa in different forms is shown in Listing 5.8, and Fig. 5.14 shows the short

form together with three instances of the longer form generated from the same

code. Note that its width can take any value between 9-13, not just integer values,

depending on line justification requirements. Also note how the starting senn of

the letter is shorter in extended forms.

Figure 5.13: The kasa primitive.

84

% noon’s kasa

if form = 1: kasa width := 3.1n; % setting kasa width
elseif form = 2: kasa width := tatwil ∗ n; % can be passed as parameter
fi

path senn; % defining paths of senn and kasa
path kasa;
if form = 1:

z1 = z2 + (−0.65n, 2n);
z5 = (4n, −0.3n);
z2 = z5 + (kasa width, 0);
senn = z1 . . z2{dir −95};
z3 = z5 + (kasa width, 0);
z4 = z5 + (0.4 ∗ kasa width, −1.2n);
z6 = z5 + (0.15n, n);
kasa = z3 . . z4{left} . . z5{up} . . z6;

elseif form = 2:
z1 = z2 + (−0.35n, 1.2n);
z3 = z2 + (−0.14n, −0.5n);
z5 = endpoint + (0, −0.6n);
z5 = z3 + (−kasa width, 0);
senn = z1 . . z2{dir −90};
z8 = z5 + (0.25 ∗ kasa width, −1.2n);
z7 = z5 + (0.75 ∗ kasa width, −1.2n);
kasa = z3{dir −(120 + 4 ∗ (tatwil − 9))} . . tension 1.5

. . z7 . . z8 . . z5{dir(135 + 2 ∗ (tatwil − 9))};
fi

if form = 1: % drawing the strokes
qstroke(senn, 75, 80, 0, 0);
qstroke(kasa, 80, 85, 82, 78);
z14 = point 0.25 of senn;

elseif form = 2:
qstroke(senn, 75, 80, 0, 0);
qstroke(kasa, 70, 85, 110, (120 + tatwil − 9));
z14 = point 0.25 of senn;

fi

if form = 1: z10 = 0.35[z5, z3] + (0, 2.8n); % drawing the dot
else: z10 = 0.5[z5, z3] + (0, 1.6n);
fi
put nuqta(z10);

Listing 5.8: METAFONT code describing the kasa primitive.

85

Figure 5.14: The letter noon shown with kasa widths of 3, 9, 10 and 13 nuqtas.

86

Kashida Primitive

Another very important primitive when it comes to justification, the kashı̄da can

be used in almost all connected letters. Here we illustrate the kashı̄da in use

with the letter
˙
hā’ as an illustrative example. Fig. 5.15 shows the letter

˙
hā’ in

its initial form with two different kashı̄da lengths, differing by 3 nuq
˙
tās. The

parameter tatwil controls this length by varying the distance between points 9

and 10, both the horizontal and vertical components, as shown in the following

line of code:

z9 = z10 + (1.74 ∗ n, 0.116n) + (0.5tatwil , 0.025 ∗ tatwil) ∗ n;

As tatwil increases, point 9 moves far away from point 10 both to the right di-

rection and up. This vertical change helps maintain the curvature in the kashı̄da.

If the no vertical adjustment is made, longer kashı̄das will look more like straight

lines, which does not happen in practice since calligraphers like to draw curved

lines more than straight ones producing better shapes, aesthetically.

In the definition of the stroke, the tangential direction at point 9 is left free

depending on the distance between 9 and 10. We will see in the next chapter,

how kashı̄das are adjusted to join letters together smoothly.

5.3 Primitive Substitution

As already known about the Arabic script, each letter has 4 positional forms

depending on its location in a word, either it is initial, medial, ending or isolated.

In order to model the writing of calligraphers, we have to go a step further and

that is by providing different glyphs for each location within a word. The selection

of the appropriate glyph is called glyph substitution. The approach we use is

87

Figure 5.15: The initial form of the letter haa’ with two different kashida lengths.

very different from other existing standards like OpenType, and this substitution

is not related only to ligatures as understood in such standards. In our work

we utilize primitive glyph substitution instead of whole letters or ligatures glyph

substitution. We will illustrate the concept of multiple forms using two examples,

one of the letter
˙
hā’ and another of the letter dāl.

In our design each letter has many forms, not just the 4 positional forms.

For example, the
˙
hā’ in its initial position alone has more than 4 forms. Our

methodology of designing primitive glyphs and combining them enables us to

avoid designing tens of different glyphs, then assign different codes for each letter

like in the current Unicode standard [18]. Fig. 5.16 shows different primitives

that join with the head of the
˙
hā’ to produce different shapes. Each of these

primitives can have parameters of its own. Note how the head itself changes

form when preceded by a bā’ for example, becoming more flat as in the top

right figure. Depending on the form required in a word, we perform primitive

substitution instead of whole ligature glyph substitution.

Another example of the multiple forms designed for each letter is for the dāl.

The code shown below describes the two different forms of the letter: isolated

and final. The code is written in a macro form with two input parameters: form

and tatwil. Depending on these two inputs we can get the letter’s different

88

Figure 5.16: Many primitive glyphs used to produce the different forms of haa’.

forms. Fig. 5.17 shows two instances of the final form and one of the isolated

form. The difference between the two final forms is very small, and is only in the

connecting part called the stem of the dāl. This part is parameterized in order to

join well with preceding letters or kashı̄das. The dāl on the far left of the figure

has less curvature in the connecting part - as better illustrated with the curve

below it - and hence connects better if preceded by long kashı̄das. The tatwil

parameter affects how the the stem appears by affecting its tension as the code in

Listing 5.9 shows. In the next chapter we will discuss the connections of glyphs

using kashı̄das in more detail.

89

Figure 5.17: Isolated and ending forms of the letter dal.

def dal(expr form, tatwil) = % dal forms: 1 = isolated

path base; % and 2 = ending
z4 = endpoint ;
z3 = z4 + (2.14n, 0.357n);
z5 = z4 + (−0.18n, 0.18n);
base = z3{dir −150} . . z4{dir 165} . . z5;

path bow ;
z2 = z3 + (0.05n, 0.05n);
z1 = z2 + (−1.8n, 1.93n);
bow = z1{dir 60} . . tension 1.5 . . z2{dir −90};

path stem;
z6 = z3 + (2.14n, −0.71n) + (0.5tatwil , 0) ∗ n;
z7 = z3 + (0.4n, 0);
z8 = z3 + (−0.36n, 2.5n);
stem = z6{dir 180} . . tension(1 + 0.1 ∗ tatwil)

. . z7 . . tension 1.3 . . z8{dir 100};

if form = 1: qstroke(bow , 75, 85, 0, 0);
elseif form = 2: qstroke(stem, 75, 80, 85, 0);
fi
qstroke(base, 80, 90, 95, 0);

if form = 1: endpoint := endpoint + (3.5n, 0);
elseif form = 2: endpoint := z6;
fi
clearxy;
enddef ;

Listing 5.9: METAFONT code describing the letter dal.

90

5.4 Diacritic Glyphs

This section discusses in brief, the design of three diacritic glyphs. Fig. 5.18

shows the shāra of the letter kāf and the hamza and below is the code producing

them. The tstroke macro used in the code in Listing 5.10 is the same as qstroke

explained in Chapter 4 but it uses a pen of half the width in order to be used in

drawing diacritic marks.

Figure 5.18: The shara of kaf and the hamza.

path shaara;
z17 = z16 + (−0.7n, −0.4n);
z18 = z17 + (0.55n, −0.26n);
z19 = z18 + (−0.7n, −0.5n);
shaara = z16{dir 80} . . tension 1.5 . . {dir −120}z17

. . tension 1.8 . . z18{dir −110} . . {dir −150}z19;
tstroke(shaara, 75, 75, 70, 20);

path hamza[];
z7 = z6 + (−0.65n, −0.4n);
z8 = z7 + (0.9n, −0.1n);
z9 = z8 + (−1.1n, −0.6n);
z10 = z7 + (0.2n, 0.45n);
hamza1 = z6{dir 100} . . z10 . . {dir −75}z7 . . tension 1.3 . . {dir 25}z8;
hamza2 = z8{dir −160} . . z9;
tstroke(hamza1, 70, 50, 60, 60);
tstroke(hamza2, 60, 50, 60, 60);

Listing 5.10: METAFONT code describing the shara and the hamza.

Drawing the dot is also worth mentioning, since it is better to be drawn using

91

a different pen nib. In reality, calligraphers draw their dots using only one side

of the pen nib, which is the straight side, hence the pen nib we have selected in

Chapter 4 can not be used as is. Instead, we draw with a perfectly rectangular

pen nib. Fig. 5.19 shows the pen orientation with respect to the paper and the

dots it produces. Calligraphers use the one on the right to draw dots, and we use

a rectangular (or razor) pen to model this effect. Note how the top left side of

the dot on the left is a little curved at its ends.

Figure 5.19: The dot as drawn by different pen orientation.

The nuq
˙
tā, kāf ’s shāra, and the hamza are all static, and can be regarded

as Type-1 primitives. However, other diacritics like the short vowels: fat
˙
ha and

kasra are dynamic, and do change length and inclination angle. More about

them will be told when we discuss future developments in the final chapter of

this thesis.

92

Chapter 6

Forming Words

The preceding two chapters discussed in great detail how we model pens as closely

as possible, and then how we meta-design Arabic letters. The next logical step is

how such glyphs are joined together, which we will explain in this chapter. This

step is the most important, and the final towards achieving the goal of the thesis,

which is to produce Arabic script that is as cursive and flexible as calligraphers’

writings. The parameterization of the glyphs is aimed at joining the glyphs

perfectly as if they were joined with just one continuous stroke. At the end of

this chapter we explain how a simple graphical user interface was developed to

experiment with the developed font.

6.1 Joining Glyphs with Kashidas

As said before, the glyph used most in connecting other letters is that of the

kashı̄da. In this section we will explain the mechanism we use in order to make

the junction between letters as smooth as possible. In the most widely used font

standards, like OpenType and TrueType, kashı̄das are made into ready glyphs

with pre-defined lengths, and are substituted when needed between letters to give

the feeling of extending the letter. But since the kashı̄da is static, so as the rest

of the surrounding letters, they rarely join well, and it is evident that the word

93

produced is made of different segments joined by merely placing them close to

each other.

In our work, the kashı̄da is dynamic and can take continuous values, not

just predefined or discrete values. We believe that when a kashı̄da is extended

between any two letters, it does not belong to just one of them, instead it is a

connection between both. This belief is the result of experimenting with different

joining methods.

Let us take an example to illustrate the kashı̄da joining mechanism we de-

veloped. If we consider the simple joining of the two letters
˙
hā’ and dāl, both

designs of which we discussed in detail in the previous chapter. We first experi-

mented with adding the kashı̄da together with the initial
˙
hā’ glyph, and keeping

the dāl static. It did not work because as the kashı̄da length changes, its ending

left tip to be connected to the dāl changes its ending direction. Hence the macro

of the dāl glyph also had to receive the length of the kashı̄da as a parameter.

This parameter which we call the tatwil, was first used to change the direction

of the final dāl form to match that of the kashı̄da, as explained in 5.3. Results

we still not satisfactory, since the ending direction of the kashı̄da on the
˙
hā’ side

was left to be decided automatically by METAFONT to produce the best Bézier

curve possible.

The solution we arrived at was to pass the tatwil parameter to the macros

producing the two glyphs, and the kashı̄da length is distributed equally between

both glyphs. This enabled us to fix the ends of the glyphs to be joined at one

angle, which is along the x-axis, since any kashı̄da must at one point move in

this direction before going up again. Listing 6.1 shows how both macros are

affected by the tatwil parameter. Each glyph ending point is moved further

from its letter, and in order to accommodate long kashı̄das, these points are

moved slightly downwards. Long kashı̄das need more vertical space in order to

curve smoothly, sometimes pushing the letters of a word upwards.

94

Other than affecting the ending points, the parameter also affects the curve

definition on both sides by varying the tensions, while keeping the direction of

the curves at the intersection along the −ve x-axis, since the stroke is going from

right to left, hence the 180 degrees shown in the code. The resulting word at

many different kashı̄da lengths is shown in Fig. 6.1 which can be compared with

the adding of kashı̄das using TrueType fonts freely available in Microsoft Office

2003 in Fig. 6.2 resulting in flat horizontal connections.

% path definition of the dal’s stem
path stem;
z6 = z3 + (2.14n, −.71n) + (.5tatwil , 0) ∗ n;
z7 = z3 + (.4n, 0);
z8 = z3 + (−.36n, 2.5n);
stem = z6{dir 180} . . tension(1 + .1 ∗ tatwil)

. . z7 . . tension 1.3 . . z8{dir 100};

% path definition of the kashida in the haa
path kashida;
z10 = endpoint ;
z9 = z10 + (1.74 ∗ n, .116n) + (.5tatwil , .025 ∗ tatwil) ∗ n;
kashida = (point 1.8 of head){dir 185} . . z9

. . tension 1.2 . . z10{dir −180};

Listing 6.1: METAFONT code showing how effect of the kashida on glyphs.

Fig. 6.3 shows another example of joining letters. The word yahia is writ-

ten using four different font technologies: TrueType Simplified and Traditional

Arabic1, OpenType Naskh2 and our own parameterized font. Notice how, the

TrueType fonts connect the ligatures with a straight line, and how the Open-

Type font improved on this by placing curved kashı̄das. However, these curved

kashı̄das are static and rarely join well, and if you look closely you will notice

the discontinuities in the curve. In the word produced by the parameterized font,

1Created by Monotype and available for use within Microsoft Office 2003.
2Created by Tradigital.

95

Figure 6.1: Placing a kashida between the letters haa’ and dal with different
lengths: 2, 3, 5 and 7 nuqtas.

Figure 6.2: Placing kashidas using TrueType fonts.

96

the letters join perfectly together, and there is also the possibility of freely ex-

tending the length between the
˙
hā’ and the yā’ by any value similar to what was

presented in Fig. 6.1.

6.2 Vertical Placement of Glyphs

In writing Arabic, the existence of some letter combinations may force the starting

letter of a word to be shifted upwards in order to accommodate for the ending

letters to lay on the base line of the writing. A very simple example of that

property is the name of the Prophet Muhammad (PBUH) when written with

ligatures, where the initial mı̄m is well above the baseline, as shown before in

Fig. 1.2.

In the word yahia in Fig. 6.3, the initial yā’ is raised above the
˙
hā’ . If

another
˙
hā’ is placed above the already existing

˙
hā’ this yā’ will be moved

further upwards. It is hence obvious that the starting letter’s vertical positioning

is dependent on the word as a whole. It might then be thought that it is easier

to draw the words from the left going right, starting from the left at the baseline,

and then move upwards while proceeding to the right. But this has two problems;

one is that the horizontal positioning of the last letter depends on the position of

the first letter on the right and on the length of the word. The second problem

is that a left to right drawing would be against the natural direction of writing,

which we were trying to preserve from the beginning.

The solution is then to walk through the word till its end and analyze each

letter to know where to position the beginning letter vertically, and then start

the actual writing at the right from that point going left. This process is what

a calligrapher actually does before starting to write a word. To illustrate this

better, see Fig 6.4. The ligature containing the letters sı̄n, ǧı̄m, and wāw is

traced from left-to-right as shown, going through points 1-2-3, the starting points

of each glyph, until the vertical position of point 1 is known. The next step is

97

Figure 6.3: The word yahia as it is written using four font technologies. From
top to bottom: TrueType Simplified Arabic (no ligatures), TrueType Traditional
Arabic, OpenType Tradigital Naskh, and our own parameterized font.

98

Figure 6.4: Tracing a word from left-to-right to know starting vertical position.

to start writing the word starting from point 1. Isolated letters like dāl, are not

taken into consideration, because they don’t affect the preceding letters vertically.

6.3 Word Lengths

In reality word lengths are not selected by the calligraphers per word, but instead,

it is a decision based on the justification requirements of a whole line. When a

word length is decided according to the line it exists in, this length is passed to

a main macro that calls glyph macros in order to form the word. This macro

decides the length of kashı̄das to be added depending on the minimum length

of each letter. For example, if the word under consideration is the same as that

in Fig. 6.1, and the required total length of the word is 10 nuq
˙
tās. In order to

calculate the extension or the tatwil parameter between the letters, it subtracts

all the minimum lengths of the individual letters. In our example, the head of

the
˙
hā’ is 4 nuq

˙
tās wide, and the base of the dāl is 3 nuq

˙
tās, hence the word can

have a minimum length of only 7 nuq
˙
tās. In order to stretch it to 10, the added

kashı̄da is 3 nuq
˙
tās wide.

99

6.4 A Final Example

This section describes a more illustrative example shown in Fig. 6.5. This exam-

ple, showing four instances of the word sujud, demonstrates the many properties

and benefits of our parameterized font. First, it shows flexibility in stretching and

compressing words for line justification purposes. This flexibility is due to two

capabilities of the font: dynamic length kashı̄das and glyph substitution. For

a very small line spacing, the sı̄n is written on top of the
˙
hā’ , and the kashı̄da

after the
˙
hā’ is almost zero.

When more space is available, the kashı̄da after the
˙
hā’ is stretched and

the senn connecting the sı̄n and the
˙
hā’ is also made slightly longer. Further

elongation, is made possible by breaking the ligature between sı̄n and
˙
hā’ . And

finally, the maximum length is obtained by elongating the kashı̄da between the

two letters. Theoretically speaking, we can get more stretching of this kashı̄da

and even adding another one after the
˙
hā’ , but calligraphic rules are the limits

in this case.

100

Figure 6.5: The word sujud written with different lengths ranging from 10.5 to
16.5 nuqtas.

101

6.5 Design of a Graphical User Interface

To test the ideas presented in this thesis, a Graphical User Interface (GUI) was

designed. This GUI is a simple interface between a user and the METAFONT

programs beneath. Fig. 6.6 shows the block diagram describing the operation of

the GUI and Fig. 6.7 shows the different window components of the GUI.

Figure 6.6: Block diagram describing the operations of the graphical user inter-
face.

First, the user types in a word (or a sequence of words) in the input word

textbox, then presses the parsing button. This parses the input word(s) into a

string of letter, removing the space characters. Each character can be selected

from a list and its shape determined from the letterform list at the bottom of the

screen. Also a length extension can be input in the length textbox which has the

default value of ‘0’. Extra letter length is only set to integer values.

When the output button is pressed, the letterforms selected and their extra

length are written in files, then METAFONT is called to execute the glyph pro-

grams. Finally, a DVI previewer is called to open the resulting output as seen in

Fig. 6.8. The GUI code is written using the Visual C++ language.

102

Figure 6.7: Screenshot of the designed GUI.

Figure 6.8: Screenshot of the DVI previewer displaying the output word.

103

104

Chapter 7

Results and Future Work

This chapter contains a discussion on a subjective test which was performed to

evaluate the output words created by the suggested system, followed by many

ideas for future work on the same subject.

7.1 A Subjective Test

A subjective test was carried out by surveying a sample of 29 people. The object of

the test was to know if reader will be comfortable with the way out parameterized

font looks as compared to other Naskh fonts. In this section, we explain the

testing methodology used, how the test was designed, and finally, test results and

comments.

7.1.1 Testing Methodology

The test methodology used is that of the Mean Opinion Score (MOS). This is a

subjective test which is very often used to evaluate the perceived quality of media

(like audio or video) after compression or transmission in the field of electrical

communications and digital signal processing. The MOS is expressed as a single

number in the range of 1 to 5, where 1 is lowest quality and 5 is highest quality.

105

7.1.2 Design of the Test

In our case, the MOS is a numerical indication of the perceived quality of a written

word. A survey was designed asking a reader to evaluate words in terms of their

written quality and he is asked to rate them in terms of how comfortable he is

with them. A rating of 1 is given to low quality and uncomfortable words, and a

rating of 5 is given to a word of high written quality and which is comfortable to

the reader.

The test was composed of 16 words, each written in four different Naskh fonts:

• Simplified Arabic

• Traditional Arabic

• DecoType Naskh

• The parameterized METAFONT generated font presented in this thesis

The 16 words were chosen to test for three main features:

• Connections between letters

• Extension/Tatwil of letters

• Kerning

For a more reliable and unbiased test, the order of fonts used was varied in

consecutive rows and all words are set to approximately the same sizes although

same point sizes of different fonts were not exactly equal. Finally, the MOS is

calculated as the arithmetic mean of all the individual scores. The designed test

was composed of three pages and is shown in the next three pages.

106

a

107

a

108

a

109

7.1.3 Test Results

The survey was conducted on a sample of 29 people (14 males and 15 females)

with ages ranging from 10 to 70 years. Table 7.1 shows the MOS scores for each

font and the total average and Table 7.2 shows the average scores for individual

words in the test.

Table 7.1: MOS results for each font.

110

Table 7.2: MOS results for individual words in the test.

111

7.1.4 Comments and Conclusion on Results

The results clearly show the superiority of the parameterized font with respect to

the other popularly used fonts. One feature clearly making the difference between

the different fonts is kerning. This is very evident in words 5, 9, 11, 13, and 14 as

can be seen in Table 7.2. Another feature which is adding kashidas for extension

also cause a large difference in scores as can be seen in word 12. We believe that

more work and collaboration with calligrapher can harness even better results.

7.2 Future Work

This thesis proposed a new font technology that will enable computers to pro-

duce Arabic texts of similar quality to the works of calligraphers. This proposed

parameterized font will also enable better typesetting, by enabling words to be

more flexible. The work covered in this thesis is just the beginning and a small

step towards the realization of such a system that produces output comparable

to writings of humans writing Arabic, and still a lot of work is needed.

The proposed idea of producing such an output using computers opens a

vast opportunity for further research in the topic. We classify this possible fu-

ture work into three categories, research within the font technology itself using

METAFONT, within the typesetting system, TEX, and within the output format,

whether PDF or other formats. We will mention open topics of research in each

of those categories.

7.2.1 Font Technology

Even with the work covered in this thesis on fonts, there is still much to be done:

• Finalizing meta-design of all possible letter forms. Some letters like sı̄n and

bā’ have a very large variety of forms. See Fig. 7.1

112

Figure 7.1: Different forms of the letters baa’ and seen [23]. Note the many forms
of the initial seen.

Figure 7.2: A verse from the Qur’an as written by Zayed [23] showing variable
diacritic lengths and their placement.

• Developing algorithms and methods for dots and diacritics placement. Keep-

ing in mind that their placement may, in some cases, force the calligrapher

to move letters or words to free space for them. Also it should be kept

in mind that this placement should not impede the legibility of the text,

especially since dots and diacritics are intended to improve legibility and

understanding in the first place. Some diacritics, especially short vowels

like fat
˙
ha and kasra change their lengths and inclination, and hence are

dynamic. Fig. 7.2 shows some variable length forms of the fat
˙
ha. Also note

how diacritic placement changes vertically.

• Decrease the computational complexity of the current pen modeling tech-

niques.

• Due to the difficulty of designing using METAFONT, it would be worthwhile

to research the possibility of developing a graphical user interface for META-

FONT.

• When a calligrapher writes on paper, the ink used to draw usually spreads

113

beyond the outline of the pen nib. This effect has to be modeled for more

accurate writing. A related topic is that calligraphers move the pen with

different speeds when drawing different segments of a glyph. This means

that the ink spread will not be constant in all the glyph, but will be more

in strokes with slower pen moving speed.

• Research the possibility of generating output from METAFONT other than

the resolution limited bit-mapped glyphs for high quality printing or screen

viewing. Another solution to research is to embed the METAFONT code in-

side PDF then let the PDF viewer run METAFONT to produce the adequate

font size for the current resolution.

• The generation of other writing styles than Naskh, with minimal changes

to the already meta-designed font.

7.2.2 Typesetting System

The work done in this thesis together with the future work in the font technology,

aims at the end to provide the typesetting system with more flexibility. Below

are some of the points that need work in this area:

• The selection of the most suitable glyph to be place in a word is a very

complicated task. This is because each letter may have more than 5 forms

in one location (see Fig. 7.2). This decision is based on many factors; most

importantly, justification, and dots and diacritics placement conflicting with

ligatures. The form of letter may be affected by not only its closest neigh-

bors, but in some cases a letter’s form may be changed depending on the

5th or 6th following letter. Fig. 7.3 shows how consecutive occurrences of

the letter bā’ together with sı̄n might result in the letters changing their

forms. The selection may be done using state machines or through trees.

114

Figure 7.3: Example on how a letter’s shape changes depending on following
letters.

• Automatic page layout is fully applied in TEX for English, it is time Arabic

layout rules are made available for typesetting Arabic, for example handling

footnotes, titles, and references.

• Line-breaking algorithms are a very rich topic. The flexibility in the Arabic

script, adds to the complexity of this task. Rules have to be added whether

a ligature is to be broken or where a kashida is to be added, and which

ligatures are more important to keep.

• TEX based systems have always had the drawback of lacking easy user

interfaces. The target system is to be used by all people not just for research

and technical writing, and hence a simple user interface has to be developed.

7.2.3 Output Format

The following points are research points targeting different output formats:

• Currently, most output from TEX systems is in the form of PDF. Work has

to be done to facilitate the selection and copying of Arabic text in PDF for

115

pasting elsewhere. This will most probably deal with encoding.

• Embedding the font glyphs created in this thesis in PDF will result in large

output files. Efficient font embedding mechanisms have to be developed.

• Screen versus paper output is also a hot research point even for viewing

Latin scripts, similar work is needed for Arabic. See section on Optical

Considerations on page 25.

• Another output format that needs research is producing output for the Web.

Finally, there is a strong need for non-engineering research on the readability

and legibility of the different kinds of Arabic fonts comparable to many studies

conducted on Latin letters. It is important to measure if calligraphers’ writings

are easier and feaster to read than regular computer typefaces used in long texts

or not.

116

References

[1] The Holy Qur’an. Madinah, KSA: King Fahd Complex for Printing the Holy

Qur’an, 1986.

[2] A. M. Sherif and H. A. H. Fahmy, “Parameterized Arabic font development

for AlQalam,” in EuroBachoTEX 2007: Proceedings of the 17th Annual Meet-

ing of the European TEX Users, Bachotek, Poland, Apr. 2007.

[3] M. J. E. Benatia, M. Elyaakoubi, and A. Lazrek, “Arabic text justification,”

in The Annual Meeting of the International TEX Users Group, Marrakesh,

Morocco, Nov. 2006.

[4] H. A. H. Fahmy, “AlQalam for typesetting traditional Arabic texts,” in The

Annual Meeting of the International TEX Users Group, Marrakesh, Morocco,

Nov. 2006.

[5] T. Milo, “Arabic script and typography: A brief historical overview,” in

Language Culture Type: International Type Design in the Age of Unicode

(J. D. Berry, ed.), pp. 112–127, Graphis, Nov. 2002.

[6] Y. Haralambous, “Simplification of the Arabic script: Three different ap-

proaches and their implementations,” in EP ’98/RIDT ’98: Proceedings of

the 7th International Conference on Electronic Publishing, Held Jointly with

the 4th International Conference on Raster Imaging and Digital Typography,

vol. 1375, (London, UK), pp. 138–156, Springer-Verlag, 1998.

117

[7] R. Rubinstein, Digital Typography: An Introduction to Type and Compo-

sition for Computer System Design. Reading, MA, USA: Addison-Wesley,

1988.

[8] D. E. Knuth, The TEXbook, vol. A. Reading, MA, USA: Addison-Wesley,

1986.

[9] Y. Haralambous and J. Plaice, “Multilingual typesetting with Ω, a case

study: Arabic,” in Proceedings of the International Symposium on Multilin-

gual Information Processing, Tsukuba, pp. 63–80, Mar. 1997.

[10] Y. Haralambous and G. Bella, “Omega becomes a sign processor,” in Eu-

roTEX 2005: Proceedings of the 15 th Annual Meeting of the European TEX

Users, Pont-à-Mousson, France, pp. 8–19, Mar. 2005.

[11] K. Lagally, “ArabTEX: A system for typesetting Arabic,” in Multi-

lingual computing: Arabic and Roman Script: 3rd International conference,

(Durham, UK), p. 9.4.1, Dec. 1992.

[12] K. Lagally, ArabTEX: Typesetting Arabic and Hebrew. User manual version

4.00, Stuttgart University, Mar. 2004.

[13] A. Lazrek, “RyDArab — Typesetting Arabic mathematical expressions,”

TUGboat, vol. 25, no. 2, pp. 141–149, 2004.

[14] H. T. Thành, Micro-typographic extensions to the TEX typesetting system.

Dissertation, Faculty of Informatics, Masaryk University Brno, Oct. 2000.

[15] D. E. Knuth, Digital Typography. CSLI Publications, Stanford, CA, USA,

1999.

[16] K. Larson, “The technology of text,” IEEE Spectrum, vol. 44, no. 5 (INT),

pp. 20–25, 2007.

118

[17] D. E. Knuth, The METAFONTbook, vol. C of Computers and Typesetting.

Reading, MA, USA: Addison-Wesley, 1986.

[18] The Unicode Consortium, The Unicode Standard, Version 5.0. Reading,

MA, USA: Addison-Wesley, 2006.

[19] D. E. Knuth, Computer Modern Typefaces, vol. E of Computers and Type-

setting. Reading, MA, USA: Addison-Wesley, 1986.

[20] J. D. Hobby, Digitized Brush Trajectories. Ph.D. dissertation, Department

of Computer Science, Stanford University, Stanford, CA, USA, June 1986.

Also published as report STAN-CS-1070 (1985).

[21] F. S. Afify, ta’leem al-khatt al-’arabi [Teaching Arabic calligraphy]. Tanta,

Egypt: Dar Ussama, 1998.

[22] M. E. Mahmoud, al-khatt al-’arabi, derasa tafseelyya mowassa’a [Arabic cal-

ligraphy, a broad detailed study]. Cairo, Egypt: Maktabat al-Qur’an, 1995.

[23] A. S. Zayed, ahdath al-toroq leta‘leem al-khotot al-‘arabiya [New methods for

learning Arabic calligraphy]. Cairo, Egypt: Maktabat ibn-Sina, 1990.

[24] P. J. M. Coueignoux, Generation of Roman Printed Fonts. Ph.D. disserta-

tion, MIT, June 1975.

[25] Y. Haralambous, “Typesetting the Holy Qur’an with TEX,” in Proceedings

of the 2 nd International Conference on Multilingual Computing (Latin and

Arabic script), Durham, p. 2.1.1, 1992.

[26] T. Milo, “ALI-BABA and the 4.0 Unicode characters,” TUGboat, vol. 24,

no. 3, pp. 502–511, 2003.

[27] T. Milo, “Authentic Arabic: A case study. Right-to-left font structure, font

design, and typography,” Manuscripta Orientalia, vol. 8, pp. 49–61, Mar.

2002.

119

[28] P. A. MacKay, “The internationalization of TEX with special reference to

Arabic,” Proceedings of the IEEE International Conference on Systems, Man

and Cybernetics, pp. 481–484, Nov. 1990. IEEE catalog number 90CH2930-6.

[29] D. E. Knuth and P. A. MacKay, “Mixing right-to-left texts with left-to-right

texts,” TUGboat, vol. 8, no. 1, pp. 14–25, 1987.

[30] K. Lagally, “ArabTEX-Typesetting Arabic with vowels and ligatures,” in

Zlatuška [31], pp. 153–172.

[31] J. Zlatuška, ed., EuroTEX 92: Proceedings of the 7th European TEX Confer-

ence, (Brno, Czechoslovakia), Masarykova Universita, Sept. 1992.

[32] D. Berry, “Stretching letter and slanted-baseline formatting for Arabic, He-

brew, and Persian with ditroff/ffortid and dynamic POSTSCRIPT fonts,”

Software—Practice and Experience, vol. 29, no. 15, pp. 1417–1457, 1999.

[33] M. F. Plass and D. E. Knuth, “Breaking paragraphs into lines,” in Digital

Typography (D. E. Knuth, ed.), pp. 67–155, CSLI Publications, Stanford,

California, 1981.

[34] Y. Haralambous, “The traditional Arabic typecase, Unicode, TEX and

METAFONT,” TUGboat, vol. 18, no. 1, pp. 17–29, 1997.

120

