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Abstract

Scaling down of CMOS transistors dimensions is the major factor responsible

for the great advancements in today’s electronics industry. Such scaling can not

continue forever. Today, we are very close to the physical limits of the dimensional

scaling. Thus, different materials and architectures were introduced to extend

CMOS era or even replace it. Among the very promising candidates we find

Carbon nanotubes. This work aims at evaluating CNTs as electronic devices and

suggests a novel method to use CNTs as interconnects.

Most of recent studies tend to evaluate individual CNT devices. In order to

evaluate CNT devices accurately, we should study their performance in electronic

circuits as well. To achieve this goal, we developed a circuit simulation environ-

ment using Matlab. We integrated an already developed SB CNTFET device

model in this environment and studied the characteristics of the inverter gate.

After adjusting the flat band voltage of the transistors, simulations showed that

this transistor is a good choice for high performance applications.

As interconnects, CNTs are also very promising. Most studies concentrate

on fabricating bundles of CNTs to replace copper interconnects. In this thesis,

we introduced another possible method to use single CNT as an interconnect.

Starting from the basic physics of CNTs, we stated that it is possible to multiplex

different signals simultaneously and transmit them along the tube. We tried two

different types of wave packets propagating along the tube: wrapped-around

packet and pulsed packet. The wrapped around packet can be constructed using

a single CNT energy mode. In order to send different packets with different modes
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simultaneously through the same tube, we will need to develop a receiver that

can differentiate between packets according to their energy modes. The other

packet type is a multimode packet, but it allows for multiplexing different signals

by dividing the circumference of the CNT into segments such that each segment

carry a packet. We expect that developing transmitters and receivers for such

packet would be simpler.

The thesis is organized as follows: In chapter 1 we introduce the difficulties

facing dimensional scaling down of CMOS, its physical limits and suggested solu-

tions to overcome this problem. A quick review for the basic properties of CNTs

and their structure is available in chapter 2. The circuit simulation procedure

we developed for SB CNTFET is described clearly in chapter 3. This chapter

contains also our simulation results for SB CNTFET inverter. In chapters 4 and

5 we describe in details our analysis to find out the possibility of transmitting

different wave packets simultaneously over the CNT. Chapter 6 summarizes our

conclusion and introduces some open points that still need further research.
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Chapter 1

Introduction

The major factor responsible for the great development in electronic applications

in the last few decades is the Integrated Circuits (IC). The first IC was introduced

to the scientific and industrial society at the beginning of the 1960s. Since then,

ICs experienced great advancements in their capabilities and performance. Such

improvements were achieved by integrating more transistors on the same chip and

scaling down the transistor dimensions. In 1965, Gordon Moore — co-founder

of Intel Corporation — predicted that the number of transistors on a chip will

double about every two years [1]. Later, this prediction was named as Moore’s

law. The validity of this law was kept successfully for decades. However, it is

expected that this exponential growth will continue for only one or two decades.

This pessimistic vision arises from the limitation of the CMOS technology which

is the heart of today’s ICs. An expected progress in CMOS technology is shown in

Fig.(1.1). As depicted in the figure, we are facing two different challenges. First,

we have to keep CMOS technology progress by pushing it toward its real physical

limits. Then, we have to find a new technology with completely different concepts

to start a new generation of development. In this chapter we will summarize

challenges facing CMOS scaling and its physical limits. Then, we will give a

quick overview for some of the proposed CMOS replacements. Finally, we will

identify thesis layout.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Expected road map for CMOS technology (Source:Mark Bohr, Intel).

1.1 Scaling CMOS challenges

The continuous scaling of the conventional transistor resulted in unwanted char-

acteristics and caused significant degradation in its performance. In the following

points, we review quickly the major scaling challenges.

• Scaling of gate oxide

According to International Technology Roadmap for Semiconductors (ITRS)

[2], scaling down the Effective Oxide Thickness (EOT) of the future devices

is the most difficult challenge to improve the performance. The importance

of the gate oxide thickness arises from the fact that the MOS transistor cur-

rent is directly proportional to the oxide capacitance and the gate voltage

(ID ∝ Cox, VG). Any scaling down in the dimensions should be accompa-

nied by scaling down the operating voltage. Thus, to improve the transistor

performance while scaling down the voltage, we have to increase the oxide

capacitance by reducing oxide thickness. Unfortunately, the gate tunnel-

ing current increases exponentially with the decrease in oxide thickness as

shown in Fig.(1.2) [3].
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Figure 1.2: Gate current density vs. gate voltage for various oxide thicknesses [3].

To reduce this unwanted tunneling current, high-k dielectric materials were

introduced to replace the conventional SiO2 gate insulator. A gate dielectric

with a dielectric constant (k) substantially higher than that of SiO2 (kox)

will achieve a smaller equivalent electrical thickness (teq) than the SiO2,

even with a physical thickness (tphys) larger than that of the SiO2 (tox) [4]:

teq = (
kox
k

)tphys

Choosing appropriate gate dielectric is not straight forward. Experiments

showed that dielectrics with higher dielectric constants have narrower band

gaps. This leads to higher tunneling currents. In addition, the interface

between suggested dielectric materials and Si is poor and causes significant

channel mobility degradation. To eliminate this side effect, an SiO2 interfa-

cial layer is grown between the channel and the high-k dielectric. However,

this technique limits the total EOT. Theoretical study conducted by Kauer-

auf et. al. [5] about the optimal gate stack showed that Hf based oxides

would provide the lowest leakage current even for sub 1 nm EOT.
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Figure 1.3: Potential distribution of long channel and short channel MOSFETs

showing the effect of DIBL [7].

Another problem in the gate stack is the use of poly-Si gate. Gate depletion

that occurs in the poly-Si contributes to the EOT by 0.3−0.4 nm [6] which

is relatively large for thicknesses less than 2nm. Researchers suggested that

the use of metal gates will eliminate this problem.

• Drain induced barrier lowering

As the transistor channel becomes shorter, the depletion region of both

source and drain become closer to each other and may merge. Hence, the

potential barrier at the source junction is reduced and electrons tunnel eas-

ily from source to drain. Consequently, off current increases and degrades

switching characteristics of the transistor. This effect can be reduced by fab-

ricating highly doped regions localized near the source/drain [7] to reduce

source/drain depletion widths. This is known as halo implant. Localized

doping is used because doping the whole channel results in channel mobility

degradation.

• Channel mobility degradation

Channel mobility is very important to obtain high performance transis-
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tor. Though Si is not the highest mobility semiconductor, the combina-

tion Si-SiO2 was the most successful combination used in fabricating MOS

structures due to the excellent interface between Si and SiO2. In practical

devices, the mobility of charge carriers in the channel is greatly affected by

the surface roughness and the quality of the interface between the semi-

conductor and the oxide. To continue the scaling down of the transistor,

we have to use high-k materials instead of SiO2 as we stated earlier. This

replacement is accompanied by considerable mobility degradation due to

the poor interface between the Si and the other high-k materials. So, dif-

ferent trials were done to improve the mobility of the channel. One of these

successful trials was strained Si in which strain to silicon lattice was intro-

duced to improve mobility. This method has already been used in 90 nm

technology processors produced by Intel. Fig(1.4) explains the fabrication

of such a strained Si layer and the resulting mobility enhancements. An-

other way is to change the surface orientation of the channel. The standard

orientation of Si wafers is (100) which achieves the highest mobility for

electrons. However, it was discovered that the orientation (110) improves

the hole mobility by a factor of 2.5 [6]. Thus it was suggested to use hy-

brid Si wafer with different crystal orientations to fabricate higher mobility

transistors. Using high mobility materials in the channel instead of Si is an-

other mobility enhancement technique. III-V compounds are among those

promising materials. They have 50-100x higher mobility than Si and can be

fabricated using conventional lithography and etching techniques. However,

they suffer from low hole mobility and difficulty in integration with Si [8].

1.2 End of CMOS scaling

Scaling CMOS transistors to the 16 nm node may be difficult but it is possible.

Sub 10 nm transistors were successfully fabricated and reported by Wakabayashi

et. al. [10] (Fig.(1.5)). Beyond this point, fundamental and unavoidable limits
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(a) (b)

Figure 1.4: (a)NMOS transistor with strained Si channel over relaxed SiGe layer

(b) Transistor mobility for different Ge concentrations [9].

Figure 1.5: Cross-sectional TEM view of a 5 nm gate length MOS transistor [10].

arise. According to ITRS [2], it is expected that the physical gate length of

the transistor will be around 5 nm by the year 2022 which is equivalent to 18

adjacent silicon atoms. Further scaling for the channel dimension will result in

devices with completely different characteristics as we are running out of atoms.

Dissipated power density is another limiting factor. As the number of transis-

tors per chip increases, the power dissipated per unit area increases significantly

because the supply voltage in not scaled down with the same rate. This increase

in power density will reach a critical limit very soon as we can see in Fig.(1.6).

Wafer patterning and fabrication is a fundamental physical and financial road-
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Figure 1.6: Power density extrapolation for Intel microprocessors.

Figure 1.7: Exponential increase in Lithography equipments cost (Source:Intel).

block that faces scaling. Lithography techniques that will be used in future

technology nodes is still not clearly defined. Besides, the cost of the equipment

required to fabricate such state of the art devices is very high. Fig.( 1.7) shows

the exponential increase in the cost of lithography equipment.

The yield of CMOS manufacturing process becomes a critical issue. Many

new materials are being used in fabrication such as high-k materials for gate

oxide and low-k materials for interconnects. This introduction of new materials

was accompanied by increasing number of manufacturing steps as well as more

difficulties in contamination control.
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To sum up, we have to find a new revolutionary technology that addresses the

problems we have discussed. Such technology should be able to produce higher

performance logic gates over smaller area with reduced complexity, higher yield

and lower cost.

1.3 Beyond CMOS: More Moore

Continuous geometrical scaling of CMOS transistor dimensions kept the validity

of Moore’s law for decades. From our previous discussion, this scaling approach

will end in the next few years. According to ITRS [2], we can keep the validity of

Moore’s law through two approaches: Effective scaling and Post CMOS devices.

The effective scaling approach aims at improving the performance and the ca-

pabilities of ICs by using innovative integration techniques such as 3D integration

and/or advanced architectures such as multicore architecture. ITRS [2] expects

that this approach will lead semiconductor industry in this and the next decade.

This approach is beyond the scope of this study.

A real breakthrough in electronics industry will depend on Post CMOS de-

vices. New devices will start a new era of superior ICs. Some of the suggested

promising devices can be classified as CMOS extension; they use the same concept

and almost the same structure of the conventional MOS transistor. The difference

lies in the novel materials used to fabricate them. This category includes Carbon

Nanotube (CNT) and Nanowire FETs. Integrating these new technologies to the

current CMOS platform is still difficult, but it is not impossible. This is the most

important issue for industry because it means that the current investments in

semiconductor facilities will gain revenues even with these emerging devices.

On the other hand, non-traditional devices such as Spin transistor, Molec-

ular transistors and many others are still far from real applications. Most of

them suffer from essential problems like low gain and weak fan out capabil-

ity. Thus, it is expected that we will make use of CMOS technology to de-

sign suitable interface between such futuristic devices and real world. CMOL



1.3. BEYOND CMOS: MORE MOORE 9

Figure 1.8: Suggested CMOL structure [11].

(CMOS/nanowire/MOLecular) system suggested by Likharev is an example for

a hybrid electronic system [11]. The basic advantage of this system is that it

will get the best from both CMOS and molecular devices. CMOS circuits are

responsible for functions that require high gain and high ON currents such as

I/O functions, while molecular devices take care of functions that require high

density integration and low power [12]. Fig(1.8) shows an example of the CMOL

structure.

Among the wide spectrum of proposed devices and materials of interest, Car-

bon Nanotubes (CNTs) possess a distinctive position. CNTs were first introduced

in 1991 by Sumino Iijima [13]. Since then, they have attracted a lot of researchers

in different fields due to their unique electrical and mechanical properties. Such

activity in the field of CNTs qualified them to be the fastest growing real nanoscale
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building block. Extensive studies of CNTs showed that they can be involved in

wide range of applications. This encouraged us to concentrate our research on

this promising material.

1.4 Thesis objectives

This thesis studies The main objective of this work is to examine the use of CNTs

as both parts of electronic devices and as interconnects. Those two elements are

the two basic milestones in ICs. Proper integration of both paves the way to

all-Carbon ICs.

In order to evaluate the CNT transistors in digital circuits, we will develop a

circuit simulation environment using Matlab. We will concentrate on coaxial SB

CNTFETs to study their performance in inverter circuit.

As interconnects, we are willing to use the CNTs in a new way such that we

can transmit different signals simultaneously over the same tube. First, we will

study the basic physics of CNTs to investigate the role of subbands in electronic

conduction. Then, we will make use of that unique band structure of CNTs

to transmit several signals simultaneously over individual CNTs. Successful im-

plementation of this technique opens the way to a new generation of electrical

interconnects with higher bandwidth.

1.5 Thesis layout

Our work consists of two main parts. In the first part, we investigated the per-

formance of CNTFETs in logic circuits. Most of recent publications regarding

CNTFETs concentrates on single device characteristics and performance. This is

because of the complexity of single device models and the difficulty of integrating

them into circuit simulation environments. In this work, we developed a circuit

simulation environment for SB CNTFET devices and used it to simulate the in-

verter circuit. This environment can be extended simply to other devices and for
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more complex circuits. The procedure we used and the results we obtained are

illustrated in chapter 3 after reviewing CNT properties in chapter 2.

In the second part of our work we tried to make use of the unique band

structure for CNTs. For the first time in literature, we proved the possibility

of multimode transport through CNTs. This means that individual CNTs can

carry multiple signals simultaneously like optical fiber. This concept will open

new opportunities and applications for CNTs. Our effort regarding this topic is

discussed in chapter 4 and chapter 5.

Finally, we have addressed some open questions that still need further studies

in chapter 6.



Chapter 2

CNTs Structure and Properties

Properties of carbonic materials are determined by the order of carbon atoms

within the crystal structure. For example, both diamond and graphite consist

of pure carbon atoms, however they have contradicting physical properties. Dia-

mond is transparent, hard and has low electrical conductivity, whereas, graphite

is opaque, soft and is considered a good conductor.

Carbon nanotubes are a recently discovered carbonic material with very in-

teresting properties. They consist of pure carbon atoms with very special ar-

rangement. Such arrangement is responsible for their unique properties. In this

chapter, we will review briefly the physics of CNTs, their properties and their

applications.

2.1 Hybridization of carbon atom orbitals

In general, hybridization of atomic orbitals is the process in which two or more

orbitals in an atom mix together and produce a new set of hybridized orbitals.

The electronic structure of carbon atoms allows for different configurations for

orbital hybridization. That is why we find various bonding configurations in

carbon compounds.

A carbon atom contains 6 electrons. Two of them are tightly bound and

12
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(a) (b)

Figure 2.1: (a)sp2 hybridization of a carbon atom (b) Hexagonal lattice of graphene

occupy 1s2 orbital. The remaining 4 atoms are weakly bound and occupy 2s2 and

2p2 orbitals. These electrons are called valence electrons and produce 4 orbitals

2s, 2px, 2py, 2pz in crystalline phase. There are three possible hybridizations for

carbon atoms: sp, sp2 and sp3. We are interested only in sp2 hybridization which

occurs in CNTs.

2.1.1 sp2 hybridization

In this hybridization type, 2s orbital mixes with two 2p orbitals producing three

hybridized orbitals in x–y plane (we assume hybridization between 2s, 2px, 2py)

separated by 120o angle. The remaining orbital (2pz orbital)will be perpendicu-

lar to x–y plane as shown in Fig.( 2.1) . Each atom will be connected to three

nearest neighbor atoms through strong σ bonds. This bonding configuration is

responsible for the hexagonal shape of graphene sheets (Fig.( 2.1)). This hexag-

onal structure is the core structure of graphite and CNTs. The three electrons

involved in the three σ bonds are tightly bounded and do not contribute in elec-

tronic conduction. In contrast, the remaining electron involved in π bond is

weakly coupled and is responsible for electrical properties of the material.
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Figure 2.2: Carbon Nanotubes classification: (a) zigzag, (b) armchair, and (c)

chiral nanotubes

2.2 Carbon Nanotube structure

Carbon nanotubes can be considered as a graphene sheet rolled to form a cylin-

drical shape. The diameter of a Single Wall Carbon Nanotube (SWCNT) varies

from fractions of nanometers to several nanometers. Theoretically, the smallest

possible diameter of a CNT is 0.3 nm [14]. CNTs with diameters ≈ 0.3 nm

were fabricated and reported by Zhao et.al. [15]. Though there are no physical

constraints on the CNT length, the longest nanotube that was ever reported was

4 cm in length [16]. The real parameter that limits the length of fabricated CNTs

today is the available fabrication facilities. SWCNTs are classified according to

the shape of their cross section into three families: (a) zigzag, (b) armchair, and

(c) chiral nanotubes as shown in Fig.(2.2).

The structure of CNTs is defined by two basic vectors: Chiral vector ~Ch and

Translational vector ~T . The values of these vectors determine the type of the

CNT and its geometrical properties.
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Figure 2.3: Unrolled graphene sheet. Nanotube is constructed when the points O

and A , and B and B′ are connected together. Vectors ~OA and ~OB define chirality

vector ~Ch and translational vector ~T respectively. The rectangle OAB′B defines the

nanotube unit cell [17].

2.2.1 Chiral vector ~Ch

Chiral vector defines the two points on a graphene sheet that coincide when that

sheet is rolled to form a CNT. This can be understood from Fig.(2.3), where

a CNT is constructed by rolling the sheet such that the two points O and A

coincide. The vector ~OA defines the chiral vector which can be expressed in

terms of the primitive vectors of the honeycomb lattice ~a1 and ~a2 as follows:

~Ch = n~a1 +m~a2 ≡ (n,m) (2.1)

The values of the integers n and m specify the type of a CNT. When ~Ch =

(n, n) that is n = m, it corresponds to an armchair nanotube and when ~Ch =

(n, 0), it corresponds to a zigzag nanotube. Other values for (n,m) correspond

to a chiral nanotube.

The circumference of a CNT (L) is the magnitude of the chiral vector ~Ch and

is given by:

L =
∣∣∣ ~Ch∣∣∣ = √

~Ch. ~Ch =
√

3ac−c
√
n2 +m2 + nm (2.2)
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and the diameter of the nanotube (d) will be:

d = L/π =

√
3ac−c
π

√
n2 +m2 + nm (2.3)

where ac−c is carbon–carbon bond length and equals 1.42 Ao.

2.2.2 Translational vector ~T

As depicted in Fig.(2.3), the intersection of the vector ~OB (normal to ~Ch) with

the first lattice point defines the translational vector ~T [18]. The two vectors ~Ch

and ~T define the rectangle OAB′B which specify the unit cell of the CNT with

chirality vector ~Ch. Note that CNT unit cell is different from the unit cell of the

graphene sheet defined by the primitive vectors ~a1 and ~a2. The primitive vectors

of the CNT unit cell are the vectors ~Ch and ~T .

To determine the number of hexagons in the unit cell of a CNT, we use the

following relation:

N =
Area of CNT unit cell

Area of theHexagonal lattice unit cell
=

∣∣∣ ~Ch × ~T
∣∣∣

|~a1 × ~a2|
(2.4)

2.3 Electronic properties of Carbon Nanotubes

2.3.1 Basic Concepts

• Tight Binding approximation

When isolated atoms are brought together in a crystal structure, the en-

ergy levels of these atoms split to form the energy bands observed in solids.

This splitting is a result of the interaction between wavefunctions of adja-

cent atoms. Outer electrons are the most affected electrons by this overlap

between the wavefunctions. In tight binding approximation, we assume that
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the electrons remain localized about the atomic core. Thus, there is slight

overlap between the wavefunctions of the nearest neighbor atoms only.

• Hamiltonian Matrix

To get the band structure for any particular crystal or molecule, we have

first to obtain the Hamiltonian matrix of that particular structure. The

eigenvalues of the Hamiltonian matrix represent the band structure of the

targeted material. A general procedure was developed by Datta [19] to ob-

tain such matrix for infinite periodic structures. The main advantage of

dealing with periodic structures is that we can start from any point and we

are sure that the conditions at this starting lattice point are the same as

those in other lattice points.

• Ballistic transport

According to Ohm’s law, the conductance of any conventional bulk con-

ductor increases as the length of the conductor decreases. Hence, the con-

ductance may approach infinity for nanoscale conductors. This is not true.

For nanoscale conductors, there is an upper limit for the conductance known

as the quantum conductance and given by:

G =
M

RQ

= M
e2

h
(2.5)

where RQ ≈ 26kΩ is the quantum resistance and M is the number of con-

ducting modes.

The resistance RQ is the minimum resistance of any ballistic conductor with

perfect contacts where electrons travel between the two contacts without

any scattering. This resistance arises at the interface between bulk contacts

and 1D conductors. In bulk contacts, electron transport occurs through in-

finite number of modes, while in 1D conductors there are finite number of
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(a) (b)

Figure 2.4: (a)Graphene sheet in real space. The unit cell contains only two atoms

A and B and is defined by the gray area (b) Reciprocal lattice of graphene sheet.

The first Brillioun zone is defined by the gray hexagon.

modes (subbands) that can be used in electron transport. This mismatch

between the two conductors explains the quantum resistance.

2.3.2 Dispersion relation of CNTs

As we have stated earlier, CNTs stem from 2D graphene sheets. Thus, the disper-

sion relation of CNTs is usually extracted from that of 2D graphene sheets [17,

19]. The unit cell of the hexagonal lattice of the graphene sheet consists of two

adjacent atoms as shown in Fig.(2.4). The primitive vectors ~a1 and ~a2 are given

by:

~a1 = a0(

√
3

2
x̂+

1

2
ŷ) (2.6)

~a2 = a0(

√
3

2
x̂− 1

2
ŷ) (2.7)

where a0 =
√

3ac−c is the length of the primitive vector.
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To deduce the reciprocal lattice primitive vectors ~b1 and ~b2, we make use of

their relation with primitive vectors of real space lattice: ~ai · ~bj = 2πδij which

gives the following result:

~b1 = b0(
1

2
x̂+

√
3

2
ŷ) (2.8)

~b2 = b0(
1

2
x̂−

√
3

2
ŷ) (2.9)

where b0 = 4π√
3a0

is the length of the basis vector in reciprocal space.

The next step is to obtain the dispersion relation of the specified unit cell using

tight binding model where nearest neighbor interaction will be considered only.

As we have discussed in Sec.(2.1.1), the hybridization of carbon atoms in graphene

is sp2, where we have three σ covalent bonds and only one π covalent bond formed

by 2pz orbital. It is sufficient to include 2pz orbital in calculations because π

energy bands are the most important in determining the electronic properties of

graphene. Following these facts, the wave vector dependent Hamiltonain of one

unit cell is given by [20]:

H(~k) = t

 0 1 + ei
~k· ~a1 + ei

~k· ~a2 + ei
~k· ~a3

1 + e−i
~k· ~a1 + e−i

~k· ~a2 + e−i
~k· ~a3 0

 (2.10)

where ~a3 = ~a1 − ~a2 and t ≈ −3eV is the 2pz orbital coupling parameter.

Solving for eigen values of the given Hamiltonian matrix, we obtain the dis-

persion relation of 2D graphene:

E(~k) = ± |t| ·
√

1 + 2cos(~k · ~a1) + 2cos(~k · ~a2) + 2cos(~k · ~a3) (2.11)

The positive sign in equation(2.11) refers to conduction band while the nega-

tive sign refers to the valence band. Thus graphene has a symmetric band struc-

ture for both electrons and holes. This dispersion relation is plotted in Fig.(2.5).



20 CHAPTER 2. CNTS STRUCTURE AND PROPERTIES

Figure 2.5: Band structure of graphene. Notice the vanishing of band gap at

the corners of hexagonal Brillouin zone. Cuts of the graphene bands indicated

by the orange lines are the allowed states in CNTs. If the cut passes through a

corner of Brillouin zone (Fermi point), the CNT is metallic; otherwise, the CNT

is semiconducting [21].

We notice that the band gap vanishes at the corners of the Brillouin zone which

are called Fermi points and have the wave vector ~kF :

~kF = (u± 1

3
)~b1 + (v ∓ 1

3
)~b2 (2.12)

where u and v are integers.

Now, to extract the dispersion relation of a CNT, we should make use of the

periodic boundary conditions of the transition along the chirality vector. It is well

known from Bloch theorem that any translational operation along the primitive

vectors of unit cells (say the chirality vector ~Ch in case of CNTs) must satisfy the

following condition:

R ~Ch
Ψ = ei

~k· ~ChΨ (2.13)
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where R ~Ch
is any translational operation in the circumferential direction.

But in CNTs, wavefunctions must be periodic along the circumference such that

ei
~k· ~ChΨ = Ψ. This periodicity restricts the values of the electrons’ momentum to

those values satisfying the following condition:

~k · ~Ch = 2πν (2.14)

where ν is an integer.

As a result, each band of graphene splits into a number of 1D subbands labeled

by ν. The allowed energy states of the tube are cuts of the graphene band struc-

ture. When these cuts pass through a Fermi point, the tube is metallic. In cases

where no cut passes through a Fermi point, the tubes are semiconducting [21].

Thus, CNT will have zero bandgap only when ~kF satisfies equation(2.14). Math-

ematically, this means that whenever n−m = 3q, where q is an integer, the CNT

will be metallic. However, it was shown theoretically [22] and experimentally [23]

that this is not completely correct. An (n,m) CNT is truly metallic only when

n = m (armchair CNT). While it has very small bandgap (quasimetallic) when

n−m = 3q and q 6= 0. In this case, the bandgap magnitude depends inversely on

the square of the CNT radius. CNT is truly semiconductor only when n−m 6= 3q.

This deviation is a result of the finite curvature of the graphene sheet forming

the CNT. Finally, the bandgap of the qth mode of a zigzag CNT was found to

be [24]:

Eg = 2 |t|
{
1 + cos(

πq

n
)
}

(2.15)

2.3.3 Charge carrier transport in Carbon Nanotubes

Several studies were conducted to understand the nature of electronic transport

through CNTs. In an ideal case, CNT is a ballistic conductor. In a metallic

CNT, four channels contribute to conduction due to subband degeneracy and
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Figure 2.6: I–V characteristics of 1µm metallic CNT with low resistance contact

measured at different temperatures as reported in [25]. The inset show the increase

in CNT resistance R = V/I with increasing biasing voltage.

spin degeneracy. Thus, the quantum conductance of a metallic nanotube is G =

4× e2/h which corresponds to quantum resistance RQ = 6.5 KΩ.

Zhen Yao and co-workers [25] measured the I–V characteristics of a 1 µm

metallic CNT (Fig.(2.6)). Results showed that current saturates at 25 µA which

corresponds to current density up to 109 A/cm2. The observed degradation in

conductivity with increasing biasing was explained by the increasing rate of opti-

cal phonon scattering. Later, Park et al. [26] estimated experimentally the mean

free paths of electrons in CNTs in both high biasing and low biasing regimes. At

low biasing (≤ 0.1 V ), scattering is dominated by acoustic phonons with mean

free path lac ≈ 1.6 µm, whereas, at high biasing, scattering is dominated by

optical phonons with mean free path lopt ≈ 10 nm. Similar study conducted by

Javey et al. [27] using CNTFET structure estimated mean free paths for acoustic

and optical phonons to be 300 nm and 15 nm respectively. It also showed that

very short CNTs (≈ 10 nm) work as ballistic conductor with significant high

current carrying capacity (up to 70 µA) (Fig.(2.7)). Recently, Sundqvist and

co-workers [28] studied the variation of CNT resistance with both biasing voltage

and length of CNT. The results of this study is summarized in Fig.(2.8)). As
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Figure 2.7: I–V characteristics at different lengths of CNTFET devices [27].

depicted in the figure, when nondefective CNTs operate in low biasing regime,

resistance shows linear dependence on the length and it is controlled by the mean

free path of acoustic phonons. At high biasing regime, short nanotubes resistance

shows also linear dependence on length and the resistance is mainly controlled

by optical phonons scattering mean free paths. We notice that the resistance of

CNT saturates at lengths about 1 µm and then degrades and merge with the

acoustic branch for very long nanotubes. The reason of this behavior is that in

long CNTs, electrons need to be accelerated by the electric field for longer dis-

tance to get enough energy to excite optical phonons. Then when this distance

becomes larger than lac, acoustic phonons scattering becomes the dominant scat-

tering mechanism.

2.3.4 Luttinger Liquid: Electrons in 1D

Systems of interacting electrons in 3D and 2D can be modeled using Fermi liquid

model. In Fermi liquid, interacting electrons are represented by a set of noninter-

acting quasiparticles eigenstates. In 1D systems, Fermi liquid fails in describing
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Figure 2.8: The differential resistance of CNT vs CNT length at different volt-

ages [28]

interacting electrons. This problem was first resolved in 1950 by Sin-itiro Tomon-

aga [29] in his pioneering work: “Remarks on Bloch’s Method of Sound Waves

applied to Many-Fermion Problems”. Tomonaga model was modified latter by

Luttinger [30] and it was known as Luttinger liquid (LL) model. The eigen-

states of a LL are defined by sound like charge density waves and spin density

waves. Both wave types propagate independently with different velocities. This

is known as spin-charge separation. Creation of an electron in a LL is equivalent

to exciting an infinite number of these density waves. Also, a LL is known to

have a tunneling density of states that is suppressed as a power-low function of

energy (ρ(E) ∝ |E|α). The exponent α is determined by the so-called Luttinger

parameter g which represent the amount of interaction in a LL such that: for

non-interacting electrons g = 1, while it is ≤ 1 for interacting electrons. More

details can be found in [31, 32].

Since CNTs are considered 1D conductors, they obey the LL model [18]. The

LL behavior of CNTs was verified experimentally by Bockrath and co-workers [33]

by observing the tunneling conductance of a junction between a CNT and a bulk

contact. As predicted from theory, the conductance showed power-law voltage
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dependence. The same behavior was also measured by Yao et al. [34] but through

a junction between two metallic nanotubes. The pentagon-heptagon defect be-

tween the two tubes acts as a tunnel barrier between two LLs.

2.4 Applications of CNTs

The extraordinary properties of CNTs qualified them to be the backbone of a wide

spectrum of applications. In this section we will scan some of CNTs applications.

• CNT based transistors

In CNTs, electrons are confined in the circumferential direction and are free

to move only in forward or backward directions. This nature greatly im-

proves the charge carrier mobility through CNTs over other materials such

as Si. Thus, CNTs are one of the most promising candidates to replace Si

channel in conventional MOS transistors. It was reported that the effective

mobility of CNTFETs is 20 times higher than that of planar Si MOSFETs

with 10 nm channel length [35]. Besides, the atomic structure of CNTs is

formed such that all chemical bonds are satisfied. So, high-k dielectrics can

be used with CNT based transistors without interface problems that causes

severe mobility degradation when used with Si MOSFET.

Also, the band structure of CNTs is identical to the two types of charge

carriers (electrons and holes). Hence, we can fabricate p-type and n-type

identical transistors with identical sizes. This was not possible in Si MOS-

FETs because of the significant difference between electrons mobility and

holes mobility. Designers tend to use larger p-type transistors to compen-

sate this mobility difference.

• CNT Field Effect Emission displays

The idea of using CNTs as nano electron guns was first demonstrated in

1995 by Rinzler and co-workers [36]. This study opened the way to use

nanotubes in Field Effect displays. A nanotube Field effect display uses
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Figure 2.9: A pixel of nanotube Field Effect display [37]

bundles of nanotubes as electron emitters. Electrons produced from nan-

otubes are swept to hit a phosphorus layer to emit visible light (Fig.(2.9)).

This is the same idea of normal CRTs, but with significant reduction in its

size and weight. Nanotube Field Effect displays will also have advantages

over LCD and Plasma displays as they will offer wider viewing angles and

less power consumption [37].

• CNT Interconnects

As we have discussed in a previous section, Carbon atoms are bound to-

gether through strong σ bonds to form CNTs. These strong bonds are re-

sponsible for the immunity of CNTs to electromigration observed in other

materials used in interconnects such as Cu. A study of multiwalled CNTs re-

liability [38] showed that they can conduct high current density (≥ 109A/cm2)

at temperatures up to 2500C and for time intervals up to two weeks without

any failure or change in its resistance. Actually, this is a very high current

carrying capacity compared to that of Cu which reaches 106A/cm2.

The major limiting factor in the performance of CNTs interconnects is the

contact resistance. In ideal cases, the contact resistance will be 6.5 KΩ.

To overcome this high resistance, dense bundles of CNTs are used as inter-
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Figure 2.10: Wireless communication between nanosystems and macroscopic

world [41]

connects. The dimensions of these bundles are similar to Cu interconnects

dimensions. Different groups tried to investigate the behavior of CNTs

interconnects and model them.

• Antennas

One of the greatest challenges facing emerging nanoscale systems is their

interface with larger surrounding systems. One of the suggested solutions

is to use nano antennas to connect different systems together (Fig.(2.10)).

The size and the characteristics of CNTs qualify them to be ideal choice for

such nano antennas. Radiation properties of these antennas were considered

in several studies, but they are still in the phase of theoretical study [39, 40].
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CNT Transistors and Circuits

Recently developed device models depend on iterative methods with extensive

calculations to solve complex quantum mechanical equations. Integration of such

models into circuit simulators like SPICE is not possible. Hence, the performance

of CNT devices in digital circuits is still unpredictable. In this study, we developed

a Matlab environment that is able to simulate CNTFET digital circuits.

This chapter starts with a quick review for different CNTFET structures. In

our study, we concentrated on Schottky Barrier CNTFET (SB CNTFET). We

first describe the model we used to simulate individual SB CNTFETs, then, we

discuss our circuit simulation strategy in details. Finally, we introduce the results

of the inverter circuit static and dynamic behavior [42].

3.1 CNTFET Structures and characteristics

The first fabricated CNTFET was reported in 1998 when Tans et al. [43] fabri-

cated the first operating FET using SWCNT. As shown in Fig.(3.1), the transistor

used a semiconducting Si wafer as a back gate covered with 300 nm SiO2 over

which a SWCNT was laid. The characteristics of this transistor showed that

it works like p-type transistor. Tans et al. related this behavior to the con-

tact between the CNT and the platinum (Pt) as we will illustrate later. This

28
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Figure 3.1: (a)AFM image of the first fabricated CNTFET. (b) Schematic cross

section of the device [43].

early prototype of CNTFET encountered a lot of modifications to improve its

characteristics to replace traditional Si CMOS transistors.

Proposed CNTFETs may have planar gate or coaxial gate. It was proved

that the optimum gate structure of Si MOSFET is wrap-around gate [44] where

the gate wraps around a beam of silicon. However, fabricating this structure in

Si MOSFETs is not a simple task. In contrast, the cylindrical shape of CNTs

makes the coaxial structure of CNTFETs the most convenient structure and

the most suitable one for future 3D integration. Guo et al. [45] studied the

electrostatics of Metal-Oxide-Semiconductor CNT structures and showed that

the planar geometry had comparable performance to Si MOS structure, while

the coaxial CNT structure promises significantly higher performance.

Away from the geometry of the CNTFET, CNTFETs can be classified into

three major types:1) Schottky Barrier(SB) CNTFET, 2)MOS CNTFET, and

3)Band-to-Band Tunneling (BTBT) CNTFET.

3.1.1 Schottky Barrier(SB) CNTFET

In this type of CNTFETs, a semiconducting CNT channel is connected directly

to metallic source and drain contacts. As in ordinary contacts between semicon-

ductors and metals, a Schottky barrier is formed at the interface. Charge carriers

transport from the contacts to the channel by quantum mechanical tunneling

through the barriers. The tunneling rate of charge carriers, hence the transis-

tor current, is controlled by the gate by changing the thickness of the SB. This

way of operation is different from the conventional transistors where the current
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Figure 3.2: The effect of oxide thickness and contact geometry on the SB CNTFET

characteristics. The best transistor performance obtained for coaxial gate with

needle contact [46].

switching is accomplished by modifying the channel conductance not the contact

resistance. Thus the operation of the transistor is basically controlled by the

electric field near the contact. Hence, transistor characteristics are affected by

both the oxide thickness and the geometry of the metallic contact as proved by

Heinze et al. [46]. The influence of the oxide thickness and contact geometry on

the transistor characteristics is shown in Fig.(3.2). As depicted in the figure, thin-

ner oxides enhance the switching of the transistor. The same study showed that

the ideal structure of this transistor type is the wraparound cylindrical gate with

needle like metallic contact. Such contact can be fabricated using a nanowire or a

metallic CNT. The later choice would be better as it allows us to have a complete

CNT electronics and pave the road toward 3D integration.

The height of the SB is also an important factor in controlling the transistor

performance. This barrier height is specified by the position of the Fermi level of

the metallic contact with respect to the valence band (in case of holes tunneling)

or the conduction band (in case of electrons tunneling). When the Fermi level of

the metallic contact is located along the center of the CNT band gap, identical
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Figure 3.3: Band diagram of the mid-gap SB CNTFET at VD = 0.8V and VG =

0.1V ,VG = 0.4V and VG = 0.7V [47].

barriers for both electrons and holes is formed and symmetric transistor charac-

teristics is obtained. The symmetric behavior of a mid-gap SB CNTFET with

planar structure was verified experimentally and theoretically [47]. The band

diagram of the transistor is shown in Fig.(3.3). This band diagram illustrates the

I–V characteristics shown in Fig.(3.4) at the three indicated points A, B and C.

At biasing point A, the barrier facing electrons injected from the source is very

thin, while a thick barrier faces holes injected from the drain. Thus the transistor

is ON and the current is dominated by the electrons. This picture is reversed

at biasing point C where the transistor is ON but the major contribution of the

current comes from the holes. Minimum current of this transistor type is reached

only when VG = VD/2 when a relatively thick barrier faces both electrons and

holes.

When the Fermi level of the metallic contact is shifted from the center of

the CNT band gap, asymmetric transistor characteristic is produced and its am-

bipolar behavior is reduced (Fig.(3.5)) [46]. The position of the Fermi level with
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Figure 3.4: I–V characteristics of the mid-gap SB CNTFET. The difference be-

tween a and b is the sign of the drain voltage [47].

Figure 3.5: conductance versus gate voltage at different heights of SB. The shown

heights refers to electron barrier. The same results will be obtained for holes but

the opposite sign of the gate voltage [46].
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respect to the channel band gap is essentially determined by the work function

of the metal S/D. This was verified experimentally by Chen et al. [48] where

three different metals (namely Al, Ti and Pd) were used as S/D with various

CNT diameters (Fig.(3.6)). Changing the nanotube diameter modifies its band

gap (Eg ∝ 1/d). Hence, the barrier height decreases as the nanotube diameter

increases (Fig.(3.6)).

3.1.2 Other CNTFET structures

MOS CNTFETs are much similar to conventional Si MOSFETS. The source and

drain of these devices are p-doped or n-doped CNT. Recently reported CNTFETs

used chemical doping using Potassium (K) atoms to produce n-doped S/D [49]

and electrostatic doping using backgate for p-doped S/D [50]. The band diagram

and corresponding I–V characteristics of electrostaically doped p-type transistor

is shown in Fig.(3.7). This figure illustrates the operation of the transistor at

three different voltage points: ION , Imin and In−channel. As depicted in the figure,

the top gate modifies the barrier height below the gate which is similar to the

ordinary MOSFETs.

Band-to-Band Tunneling (BTBT) CNTFETs is another transistor type that

uses different doping for Source and Drain for the same transistor. This structure

was first introduced by Appenzeller et al. [51]. The major contribution of this p-i-

n structure is that it had sub 60 mV/dec subthreshold swing. Unfortunately, the

ON current of this transistor is significantly small compared to other CNTFETs.

Thus these transistors are suitable for low power applications, but will not be

effecient for high performance applications.
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Figure 3.6: (a)Band diagram shows the effect of changing the CNT diameter on the

SB height. (b) Band diagram shows the barrier height for three different metallic

contacts (Al, Ti and Pd). (c) Change of the transistor ON current with the CNT

diameter for the three different metallic contacts [48].
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(a) (b)

Figure 3.7: (a)I–V characteristics of p-type MOS CNTFETS at three different

drain voltages (dashed curve, VDS = −0.1V ; dotted, VDS = −0.2V ; solid, VDS =

−0.3V ) (b) Corresponding band diagram of the transistor at three different points

(ION , Imin and In−channel) [50]

3.2 SB CNTFETs device and circuit models

3.2.1 Why SB CNTFET?

Digital circuit designers may not prefer SB CNTFET for their applications. It

suffers from relatively high OFF current and ambipolar characteristics. However,

from manufacturing point of view it would be the best choice. As we will de-

scribe later in this chapter, SB CNTFET can work as n-type or p-type transistor

by adjusting its biasing voltages. This means that we will not need separate

manufacturing steps for n and p transistors. Any reduction in the number of

fabrication steps enhances the yield of the whole process. This reduction is not

possible with other transistors as we will need to produce n-doped and p-doped

devices in separate steps.

Doping of CNTs is in itself another problem. Experiments showed that n-

doped CNTs lose their doping when exposed to ambient air. This is because of

the reactivity of K atoms used for doping [49]. On the other hand, fabricated
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Figure 3.8: (a)Cross sections of the device along the tube axis and perpendicular

to it. (b) Band diagram of the transistor gate stack in the radial direction with

E − k diagram of the CNT [53].

p-type MOS CNTFETs used a back gate to make electrostatic doping for the

transistor channel. This method is not suitable for coaxial transistors.

Finally, high OFF current of SB CNTFETs may make them inefficient for

low power applications, however, they will be useful for high performance digital

applications due to their high ON current. State of the art SB CNTFET reported

by Javey et al. [52] showed ON current as high as 25µA.

3.2.2 SB CNTFET device model

Though several models were developed to describe the behavior of the SB CNT-

FET, only few of them captured the real transistor characteristics. For example,

the model developed by Natori et al. [54] failed in describing obtained experi-

mental results. The inaccuracy of the model arises because the authors neglected

transistor nonidealities like the Schottky barriers at the CNT/metallic contact

interface and considered it as a ballistic device.

In our simulations, we have used Hazeghi model [53] which was an improve-
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ment of Natori model [54]. This model considered real device nonidealities and

showed a very good agreement with experimental results. In addition it studied

the coaxial structure with needle contacts (Fig.(3.8)) which is the optimal choice

for these transistor types as we stated earlier in this chapter.

The model begins with the assumption of ballistic transport between ideal

S/D reservoirs. When the gate voltage is adjusted to Vgs and drain voltage to

Vds, we get the band diagram shown in Fig.(3.8). In this case, +kl states of the

CNT are filled by charges injected from the source, while −kl states are filled by

the charges injected from the drain. For such a system, ballistic current Id can

be calculated using Landauer-Buttiker formula:

Id =
2q

h

∑
i

∫ Ei,max

Ei,min

(fs(E, µ)− fd(E, µ))dE (3.1)

where µ is the surface potential of the CNT with respect to the Fermi energy

of the source and Ei,min, Ei,max are the minimum and maximum energies of

the ith subband. Summation is done over all subbands contributing to current

conduction.

To calculate the current Id, we have to obtain the value of the chemical po-

tential µ. According to the biasing voltages applied, the following equation must

be satisfied:

Vgs = Vfb +
µ

q
+
QCNT

Cins
(3.2)

where Vfb is the flat band voltage, Cins is the oxide capacitance per unit length

and QCNT is the charge per unit length of the CNT which is calculated by:

QCNT = q
∑
i

∫ Ei,max

Ei,min

gi(E)

2
(fs(E, µ) + fd(E, µ))dE (3.3)

where gi(E) is the density of states of the ith subband.

By solving the two equations (3.2) and (3.3) together self consistently, the

surface potential µ is retrieved. Then, the current Id will be calculated knowing

that fs and fd are the S/D Fermi distributions given by:
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fs(E, µ) =
1

1 + e
E−µ
kBT

(3.4)

fd(E, µ) =
1

1 + e
E−µ+Vds

kBT

(3.5)

Now, we have to capture the effect of the Schottky barriers and include them

into the model. Hazeghi et. al. [53] considered the SBs at the source and drain

as two scatterers exist at the CNT/contact interface. To simplify our discussion,

assume that we have only one scatterer at the CNT/source interface (Fig.(3.9))

with transmission probability equals T (E). If Ns carriers are trying to jump

from the source to the CNT, only Ns ·T (E) will succeed and jump to the channel

to fill +kl states carrying the source distribution fs. Same concept should be

applied to the carriers injected from the drain Nd where only (1 − T (E)) · Nd

will fill +kl states carrying the drain distribution. The same actions happen

when the scatterer exist at the drain. We have to note that away from the

scatterer at lengths exceed energy relaxation length the reflected and transmitted

carriers settle down to lower energies to form their Fermi distribution. When we

consider the two scatterers at source and drain simultaneously, left movers and

right movers carriers will have the following Fermi distributions:

f+ =
Tsfs + Tdfd − TsTdfd
1− (Ts − 1) · (Td − 1)

(3.6)

f− =
Tdfd + Tsfs − TsTdfs
1− (Ts − 1) · (Td − 1)

(3.7)

The transmission coefficients Ts and Td are determined using WKB approxi-

mation. Finally, we have to modify the total charge equation (3.3) and the current

equation (3.1) by using the modified carrier distributions f+ and f− instead of

fs and fd.

At this point, we can model individual SB CNTFETs accurately, but we still

cannot make circuit simulations.
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Figure 3.9: The proposed mesoscopic scattering site at the source side. The drain

side is treated in the same way [53].

3.2.3 SB CNTFET circuit model

The major problem of emerging devices including CNTFETs is the increasing

complexity of their physics. Thus analytical models suitable for circuit simulators

take a long time and need extreme research efforts to be developed. However,

to correctly evaluate any proposed device we need to predict individual device

behavior, as well as its performance in larger systems. As a result of that we

have to provide a fast and accurate method to figure out the performance of the

circuits built with these devices.

As we discussed in Sec.(3.2.2), SB CNTFET model developed by Hazeghi et

al. [53] is a very good device model. Unfortunately, we cannot use it directly

for circuit simulations because the device equations are solved iteratively. To

overcome this problem, we used Look Up Table (LUT) modeling technique.

LUT Model structure

LUT modeling technique is the most suitable method for emerging devices with

no available circuit model. It consists of three major parts: (a) Data LUTs, (b)

search function, and (c) interpolation function.

The first step of this model is to collect the values of the device parameters

such as drain current. These parameters can be obtained using either the device

model or practical experiments. The collected data is then stored in indexed

tables ready for use in circuit simulation.
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In our model, we used SB CNTFET model described earlier to prepare a

LUT of the transistor electrical characteristics (Vgs, Vds and the corresponding

drain current Id). To improve the accuracy of our simulations, we have prepared

high density tables with small step (0.01V ) between different entries of Vgs and

Vds. When the given value of Vgs or Vds does not exist in the table, we use

2D interpolation to find out the drain current. Hence, we can obtain full I–V

characteristics of our device as if we have a closed form function for the current

Id = f(Vgs, Vds). However, this will not work properly for voltages outside the

range of the LUT.

The accuracy of this simulation technique can be controlled at three levels:

(a) The accuracy of the device model itself, (b) the density of used LUTs, and (c)

the interpolation method used. In our simulations, we used linear interpolation

method. The main advantage of this method is that it is not time consuming

and gives accurate results with high density tables as in our case. More accurate

interpolation methods will be necessary with low density LUTs.

Circuit simulation procedure

Now, we can simulate any SB CNTFET circuit using the aforementioned LUT

model in a simple way. We first extract the targeted circuit equations in terms

of transistor parameters: Vgs, Vds and Id. The resulting set of equations is then

solved using the LUT model. Fig.(3.10) summarizes the complete circuit simula-

tion procedure.

Advantages of this simulation procedure are summarized in the following

points:

• Easy to implement

• Extendable to other coaxial CNTFET devices.

• Isolate complexity of device model physics from circuit design.

• Controllable accuracy.



3.3. SB CNTFET INVERTER 41

Figure 3.10: SB CNTFET circuit simulation procedure.

• Real device nonidealities is included automatically.

3.3 SB CNTFET inverter

3.3.1 SB CNTFET device parameters

In this study, we chose the coaxial SB CNTFET structure with needle contact

which is the optimal device structure. A semiconducting CNT with chirality

vector: (19,0) and length of 100 nm was used. The metallic source and drain

contacts have a cylindrical shape with the same diameter of the tube. We expect

that the future devices will use metallic CNTs as the contacts. In this case, the

Fermi level of the metallic contact will be aligned to the middle of the channel

band gap (i.e. we have mid-gap Schottky Barrier). The gate oxide used is HfO2

with dielectric constant k ≈ 20. The thickness of the gate oxide is 4 nm (EOT

≈ 0.8 nm). The device structure parameters are summarized in the following
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Figure 3.11: I–V characteristics of our mid-gap SB CNTFET with Vfb = 0.

table:

Nanotube Chirality (19, 0)

Nanotube Diameter 1.5 nm

Nanotube Length 100 nm

Oxide Thickness 4 nm

Dielectric Constant 20

Barrier Height 0.5 of channel bandgap

The I–V characteristics of this transistor is shown in Fig.(3.11) for both p-type

and n-type transistors. We have to declare that the pFET and nFET transistors

characteristics shown are of the same device, but with only an inverted sign of Vgs

and Vds. The names nFET and pFET are an indicator to the charge carrier type

in the region of interest. In addition the names represent their role in the inverter

circuit as we will see. This is an advantage for the SB CNTFET as we do not need

doping to invert the transistor type. In addition, we have identical performance

for the two types. The characteristics shows also the ambipolar behavior of

the transistor. Besides, minimum current occurs only when Vgs = Vds/2, while
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at Vgs = 0 the transistor can be considered ON. This behavior is not suitable

for CMOS architecture circuits and will cause significant degradation in their

performance as we will present.

We performed all device simulations with “Schottky-Barrier CNFET” simu-

lator available online [55]. We tabulated the results of this device simulator and

imported it into Matlab to start circuit simulations.

3.3.2 Inverter DC analysis

Inverter is the stem of all logic gates. Its performance and characteristics can be

extended to more complex gates such as NAND and XOR [56]. Thus, we focused

our study on SB CNTFET inverter to investigate the capabilities of future SB

CNTFET technology. We applied the circuit simulation procedure discussed in

Sec.(3.2.3) to estimate the inverter performance. The inverter we designed uses

two identical SB CNTFETs one of them works as pFET and the other as nFET

(Fig.(3.12)). In this simple circuit we have two equations that govern the currents

and voltages of the transistors:

Idn = Idp (3.8)

Vgsn + Vsgp = VDD (3.9)

We included the two equations in the Matlab environment we prepared to

simulate the static behavior of the transistor.

The first point we want to investigate is the capability of the mid-gap SB

CNTFET to realize CMOS architecture. The main obstacle is the ambipolar

characteristics of the transistor with minimum current at Vgs = Vds/2. The Volt-

age Transfer Characteristics (VTC) of the inverter designed using these devices

is shown in Fig.(3.12).

The resulting characteristics is very good in terms of gain. As depicted in

Fig.(3.12), the gain of this inverter is similar to that of the traditional CMOS

inverter. Unfortunately, the voltage swing of the inverter is very poor. Thus we
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(a) (b)

Figure 3.12: (a)Schematic of inverter circuit (b) VTC of the two inverters: Vfb = 0

(blue curve) and Vfb = VDD/2 (red curve)

lose a major advantage in CMOS architecture where we have full voltage swing.

This problem arises from the current flows through either transistors at Vgs = 0 V .

In contrast, Si CMOS transistor has almost zero drain current at Vgs = 0 V .

To restore the performance of the inverter, we have to shift both of the transis-

tors characteristics such that the minimum current occurs when Vgs = 0 instead

of VDD/2. i.e. we have to shift the nFET characteristics to the left by VDD/2

and the pFET characteristics to the right by the same value. This can be eas-

ily done by adjusting the flat band voltage (Vfb) of the two transistors to the

value VDD/2. This modification greatly enhances the voltage swing as shown in

Fig(3.12). Unfortunately, this was accompanied by noticeable degradation in the

inverter gain. In Fig(3.13), we compare between the voltage swing of the two cir-

cuits (Vfb = 0 V and Vfb = VDD/2). We notice that the voltage swing degrades in

both cases as the supply voltage increases. This is a direct result for the increase

in the minimum transistor current at higher biases (refer to Fig.(3.11)).

Practically, Vfb can be adjusted by choosing appropriate gate material with
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Figure 3.13: The voltage swing of the two inverters normalized to supply voltage

suitable work function. This was experimentally verified by Chen et al. [57]. In

their study, they fabricated a ring oscillator on a single CNT. to get an adequately

operating circuit, they used two different gate materials; Al for the nFET and Pd

for the pFET. Fig.(3.14) shows the experimental results of the I–V characteristics

of the two transistors and the resulting inverter. As depicted in the figure, the

I–V characteristics of the nEFT was not precisely shifted by VDD/2 at the supply

voltage VDD = 0.5 V . This is directly reflected on the resulting non symmetric

inverter characteristics (Fig.(3.14)).

The difficulty of this method lies in the necessity of changing the used gate

material when the supply voltage (VDD) is scaled down. In addition, we are

limited to materials that can be integrated in the manufacturing process.

To estimate static power consumption of CNTFET future chips, we assumed

that we have 109 inverters/cm2 as expected by ITRS [2]. Fig.(3.15) shows the

static power density using the two transistor types (Vfb = 0 and Vfb = VDD/2).

Chips fabricated with Vfb = 0 transistors have unacceptable static power density.

For the other types of transistors, static power density is significantly less. At

supply voltage VDD = 0.5 V the static power density is less than 200 W/cm2
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(a) (b)

Figure 3.14: Experimental results of (a) nFET and pFET I–V characteristics and

(b) VTC of the inverter [57].

which is the upper limit of the low power digital applications specified by ITRS.

3.3.3 Inverter transient analysis

To complete the picture, we have to investigate the transient behavior of the

SB CNTFET inverter. To obtain an adequate result that reflects the real per-

formance in large integrated circuit, we used a multi-stage fan-out of 4 (FO4)

inverter chain.

To start our analysis, we assume that each transistor drives a pure capacitive

load CL representing the load inverter. This is possible as long as we are neglecting

the gate tunneling currents which is an acceptable assumption. Study conducted

by Lu et al. [58] showed that the gate tunneling current of CNTFETs is in the

order of pA for ultra thin (3 nm) high-k dielectric transistors.

The total capacitance of each transistor is given by [59]:

C−1
g = C−1

es + 4C−1
Q (3.10)

where CQ is the quantum capacitance and Ces the total electrostatic capacitance.

The quantum capacitance arises in low dimensional systems such as CNTs

due to the quantization effects in these low dimensional systems. In CNTs, the
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Figure 3.15: Static power density of the two inverter types

quantum capacitance is given by [59]:

CQ =
q2

h̄πvF
(3.11)

where vF is the CNT Fermi velocity.

We note that CQ in equation(3.10) is multiplied by 4. This is because of the

bandstructure of the CNT. In CNTs each subband is equivalent to 4 conducting

channels: 2 channels due to degeneracy and 2 channels due to spin up and spin

down electrons [60]. For CNTs, CQ ≈ 100 aF/µm, thus for our device it is

4× 10 aF .

We calculated the total electrostatic capacitance Ces using FASTCAP [61].

The input file to the FASTCAP specifies the discretization of the conductor

surfaces into panels. We used Matlab to generate the cylindrical conductors

grids that describe our transistor geometry.

The electrostatic capacitance includes the parasitic capacitance arising from

fringing fields from gate to the metal contacts at both sides. This is the only

source of parasitics according to our supposed structure. This parasitic capaci-

tance depends on the thickness of the gate electrode which is determined by the
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Figure 3.16: Inverter circuit used for transient analysis

fabrication technology. Assuming thin gate electrode with respect to other di-

mensions, the total electrostatic capacitance is about 66 aF . This value is much

less than that reported for planar transistors whose parasitic capacitance in the

range of fF [62].

We neglected the metal contacts resistance since the minimum channel resis-

tance is at best 6.5 KΩ and only contacts with resistance 10 KΩ or higher affect

the performance [62].

Fig.(3.16) shows the loaded inverter circuit. In this case the equations govern

the circuit are:

Idp + IC = Idn (3.12)

CL

(
−dVout

dt

)
= IC (3.13)

The input and output signals of FO4 inverter chains with Vfb = 0 inverter and

Vfb = VDD/2 inverter are shown in Fig.(3.17) and Fig.(3.18) respectively. The

inverters operate at VDD = 0.5 V and the input frequency is 10 GHz. As we can
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Figure 3.17: The input (red lines) and output (blue lines) voltages of the inverter

chains with Vfb = 0

see in the figures, logic is completely destroyed after the 4th stage for the case of

Vfb = 0.

To estimate the propagation delay of the inverter in practical applications,

we calculated the propagation delay at stage 3 of the inverter chain. At stage 3,

the input signal has more realistic shape than the ideal square wave. Results are

shown in Fig.(3.19). It is clear that Vfb = VDD/2 is much better especially at low

supply voltages.

3.4 Conclusion

To correctly evaluate CNTFETs, we should not depend on their individual char-

acteristics, but we should also investigate their performance in electronic circuits.

The major advantage of this work is that we could obtain such complete pic-
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Figure 3.18: The input (red lines) and output (blue lines) voltages of the inverter

chains with Vfb = VDD/2

Figure 3.19: Propagation delay vs supply voltage at stage 3 of the FO4 inverter

chain
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ture by providing our circuit simulation environment. Our results regarding SB

CNTFETs is a clear evidence for this idea. The performance of individual SB

CNTFET as individual device is independent of the flat band voltage. However,

our circuit simulations showed that the midgap SB CNTFET with Vfb = 0 does

not satisfy any of the requirements for future digital applications. On the other

hand, the DC and transient performance of Vfb = VDD/2 transistors are better

but the fabrication may be more difficult to adjust the correct flat band voltage.

For the power consumption, mid-gap SB CNTFET with Vfb = VDD/2 satisfies

the requirements for low power applications at supply voltage VDD = 0.5 V

expected in the year 2020, taking into consideration the good heat conduction

ability of CNTs.

Thus we can say that CNTFETs do not employ the great characteristics of

CNTs efficiently. So we are still looking for better device structures to use CNTs

efficiently and find a replacement to CMOS.



Chapter 4

Multi mode transport in CNTs

CNT is a very promising material with unique physical properties. In this chap-

ter we try to dive deeper in CNTs physics to get better understanding to the

electronic transport through them. Actually, we are interested in the role of

subbands in conduction. For the first time in literature, we tried to investigate

the possibility of multimode propagation in CNTs. By understanding the nature

of subbands and how subbands electrons interact we can find certain excitation

modes that improves electron flow in CNTs. To the best of our knowledge, no

detailed study has been done to address the interaction between electrons prop-

agating in different subbands. This complicated our study because there is no

systematic method to follow. This chapter pave the way to other researchers to

make more extensive studies in that direction.

4.1 CNT subbands observation

One of the clear experimental observation of CNT subbands was reported by

Appenzeller et al. [63]. Appenzeller and coworkers measured the current of a SB

CNTFET with heavily doped n-type CNT. As depicted in Fig.(4.1), current expe-

rience step increase at certain biasing voltages. This behavior can be understood

from the CNT band diagram shown in Fig.(4.2). The figure shows the position

52
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Figure 4.1: Experimental I–V characteristics of heavily doped channel SB CNT-

FET. Small arrows indicate the step increase in current due to new contributing

subbands [63].

of the 1st and 2nd subbands at different biasing voltages. When the 2nd subband

enters the conducting region between source and drain, additional conducting

channel contribute to the conduction and the current will increase in stepwise

manner. Thus, current carrying capacity of CNTs can be improved by allocating

more subbands to current conduction.

Burke [60] reported another attractive point regarding subbads. Burke mod-

eled carrier transport through crossing subbands of a metallic CNT using trans-

mission line model. He used four independent transmission lines: 2 of them arises

from the degeneracy of CNT subbands and the other 2 lines to represent spin up

and spin down electrons in each channel. Due to the interaction between electrons

in these four channels, transmission lines are not totally independent, but they

are coupled together through the electrostatic capacitance (Fig.(4.3)). This work

did not consider the role of higher subbands in carrier transport. Thus, we still

need to discover how can we model them. We need also to find out whether they
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Figure 4.2: Band diagram of the proposed SB CNTFET indicating the position of

the 1st and 2nd subbands at different gate voltages:i) Vgs = 0.4V ii) Vgs = 0.6V iii)

Vgs = 1.2V [63].

are really independent like transmission lines or not. We then have to answer the

following question: “Can we send different information over different subbands?”.

4.2 Hamiltonian and velocity matrices of CNTs

We will start our trials by following Supriyo Datta in his analysis of quantum

wires [19]. For any quantum wire including CNTs we can define matrix [h(k)]

(we will refer to it as k-dependent Hamiltonian matrix) and the velocity matrix

[v(k)]. They are related together through the relation:

[v(k)] =
1

h̄

d

dk
[h(k)] (4.1)

If [h(k)] and [v(k)] can be simultaneously diagonalized, then the quantum

wire will be represented in terms of independent subbands that can conduct

in parallel [19]. In this case the diagonal elements of the velocity matrix will
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Figure 4.3: Transmission line model of interacting electrons in CNT [60].

represent the velocity of each propagating mode. Hence, equ.(4.1) reduces to the

usual definition of the Bloch velocity:

vn(k) =
1

h̄

dEn(k)

dk
(4.2)

where vn is the group velocity of subband n and En(k) is the dispersion relation

of subband n.

We will apply this concept to zigzag CNTs to check its subband independence.

First, we will deduce [h(k)] and [v(k)] for a zigzag CNT. Then, we will check

their commutator to find out the ability of simultaneous diagonalization of both

of them.

4.2.1 Origin of [h(k)] and [v(k)]

The general Hamiltonian of a 1D quantum wire as that shown in Fig.(4.4) is

given by:
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Figure 4.4: 1D chain of unit cells represents a quantum wire.

[H] =



· · · · · · · · · · · · · · · · · · · · ·

· · · α β 0 0 0 · · ·

· · · β† α β 0 0 · · ·

· · · 0 β† α β 0 · · ·

· · · · · · · · · · · · · · · · · · · · ·


(4.3)

[α] and [β] are block submatrices represent the coupling within the same unit

cell and the coupling between adjacent unit cells respectively. Also, β† is the

complex conjugate of β. The dimensions of them is determined according to the

number of basis functions of each unit cell.

The time independent Schrodinger equation of the wire is:

αψn + βψn+1 + β†ψn−1 = Eψn (4.4)

Due to the periodicity of this structure, the wavefunctions must satisfy Bloch

theorem:

ψn±1 = ψne
±ika (4.5)

where a is the separation between adjacent unit cells.

Hence, Schrodinger equation can be written in the form:

(α+ βeika + β†e−ika)ψn = [h(k)]ψn

= E(k)ψn (4.6)
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where [h(k)] is the aforementioned reduced Hamiltonian matrix and is given

by [19]:

[h(k)] = α+ βe(ika) + β†e(−ika) (4.7)

It is clear from equ.(4.6) that the eigenvalues of [h(k)] gives the energy dis-

persion relation E(k) of the wire. Eigenvectors of these eigenvalues represent the

modes or subbands state vectors of the wire.

For our 1D chain, the current can be defined as:

Jn+ 1
2

= q
a

ih̄
(ψ†n+1β

†ψn − ψ†nβ
ψ
n+1)

= qψ†n
a

ih̄
(β†e−ika − βeika)ψn (4.8)

By comparing equ.(4.8) with the general expression of the current density

J = qnv, we can define the velocity matrix as [19]:

[v(k)] =
a

ih̄
(β†e(−ika) − βe(ika)) (4.9)

4.2.2 [h(k)] and [v(k)] of zigzag CNTs

To obtain α and β of a CNT, we have to choose a suitable unit cell so that the

CNT can be represented as a 1D chain of unit cells. Fig(4.5) shows a graphene

sheet that will form a zigzag (n, 0) CNT when rolled parallel to x-axis. This

figure illustrates our choice for the CNT unit cell. Each unit cell contains four

rings of atoms: two rings of type A and two rings of type B. The number of atoms

in each ring is n. Thus, the total number of atoms in each unit cell is 4n. As we

stated earlier in Sec.(2.3.2), it is sufficient to consider pz orbital of each carbon

atom in electronic conduction. Hence, the total number of basis functions in each

unit cell is 4n and the dimensions of α and β submatrices are 4n× 4n.
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(a)

(b)

Figure 4.5: (a) Graphene sheet that forms a zigzag CNT when rolled. The solid

rectangle indicates the chosen CNT unit cell. (b) Representation of the CNT as a

1D wire.
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The general Hamiltonain of the shown graphene sheet is given by [20]:

[HCNT ] =



· · · · · · · · · · · · · · · · · · · · · · · ·

· · · β†1 α
′

β†2 0 0 0 · · ·

· · · 0 β2 α
′

β1 0 0 · · ·

· · · 0 0 β†1 α
′

β2 0 · · ·

· · · 0 0 0 β†2 α
′

β1 · · ·

· · · · · · · · · · · · · · · · · · · · · · · ·


(4.10)

where submatrix [α
′
]n×n describes coupling within an A-type or B-type carbon

ring and submatrices [β1]n×n and [β2]n×n describe the coupling between adjacent

rings.

When we apply tight binding approximation to each individual carbon rings

of either type (A or B), we find that carbon atoms in the same ring are not

coupled together. Thus, the coupling matrix [α
′
] is given by [20]:

[α
′
]n×n = U [I]n×n (4.11)

where [I]n×n is the identity matrix and U is the potential of the carbon ring. In

our analysis, we assume that the potential U is constant along the CNT. This

assumption is valid as long as we are assuming ballistic transport through the

CNT [64]. For a ballistic CNT, voltage is divided equally over the two contacts

and remains constant along the tube.

Submatrix [β1] describes the coupling between any two adjacent A-type rings

or B-type rings and it is given by:

[β1]n×n = [β1]
†
n×n = t[I]n×n (4.12)

where t is the tight binding parameter of CNTs and approximately equals 3 eV [17].

Submatrix [β2] describes the coupling between adjacent A-type and B-type

rings and it is given by:
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[β2]n×n = t



1 0 0 · · · 1

1 1 0 · · · 0

0 1 1 · · · 0

· · · · · · · · · · · · · · ·

0 0 · · · 1 1


n×n

(4.13)

Submatrix [β2] is not diagonal like other coupling matrices. As depicted in

Fig.(4.5), each atom in an A-type ring is coupled with two atoms from the ad-

jacent B-type ring and vice versa. In addition, the effect of rolling the graphene

sheet appears only in the first row of [β2]. It shows that first atom in B-type ring

is coupled to the first and last atoms of adjacent A-type ring due to the rolling

of the graphene sheet.

Comparing Hamiltonian matrix of CNT (equ.(4.10)) with Hamiltonian matrix

of general quantum wire (equ.(4.3)), we can deduce the values of α and β for the

CNT:

[α] =



α
′
β†2 0 0

β2 α
′
β1 0

0 β†1 α
′
β2

0 0 β†2 α
′


4n×4n

(4.14)

[β] =



0 0 0 0

0 0 0 0

0 0 0 0

β1 0 0 0


4n×4n

(4.15)

Finally, we use equ.(4.7) and equ.(4.9), to get the k-dependent Hamiltonian

and velocity matrix of zigzag CNT:
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[h(k)] =



α
′

β†2 0 β†1e
−ika

β2 α
′
β1 0

0 β†1 α
′

β2

β1e
ika 0 β†2 α

′


4n×4n

(4.16)

[v(k)] =
a

ih̄
×



0 0 0 β†1e
−ika

0 0 0 0

0 0 0 0

−β1e
ika 0 0 0


4n×4n

(4.17)

When we calculated commutator of [h(k)] and [v(k)], we found that they do

not commute. However, we cannot depend on this result to state whether the

CNT subbands are independent or not. The current form of velocity matrix leads

to this deceiving results as we will illustrate in Sec.(4.2.3).

4.2.3 Validation of [h(k)] and [v(k)] matrices

Validation of [h(k)] matrix

The eigenvalues of the k-dependet Hamiltonian matrix [h(k)] at different values

of k represents the dispersion relation of the zigzag CNT (n,0). In order to

check the validity of this method we plot the dispersion relation of CNTs: (9,0)

and (7,0) and compare the results with those obtained from online simulator

CNTbands2.0 [65, 66]. As shown in Fig.(4.6) and Fig.(4.7) the two dispersion

relations are identical for the two CNTs. We verified the validity of our dispersion

relation calculations to other sizes of zigzag CNTs. Our method can be extended

to chiral and armchair CNTs by defining a correct unitcell for both types as we

did for zigzag CNT.

We also note that the dispersion relation we have for zigzag CNT are in-

convenient at the surface of Brillouin zone. The group velocity at the Brillouin

zone face (k = ±π/a) must be zero. This condition is not satisfied by the cur-
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rent dispersion relation. This means that we are not using the correct Brillouin

zone boundaries. The boundaries we used are extracted from the 1D CNT lattice.

Though we have chosen the smallest possible unit cell for CNT, we must take into

consideration the symmetry of the original unrolled graphene sheet. The band

structure of CNT is a quantized version of the graphene band structure. Thus,

we should use the boundaries of the original graphene Brillouin zone. Fig.(4.8)

shows the Brillouin zone of the unrolled graphene sheet and the quantization in

ky direction for zigzag CNT. We note that the correct Brillouin zone boundary

will be: ky = ±2π/a. The final CNT band diagram of (9,0) CNT is shown in

Fig.(4.9).

Validation of [v(k)] matrix

The eigenvalues of the velocity matrix should give the group velocities of different

subbands. However, when we calculated the Eigenvalues of v(k) at different values

of k, we found that we have only three possible eigenvalues: 1.8 × 106 , 0 and

−1.8×106 m/s. These eigenvalues are independent of k. From the band diagram

of the CNT, this can not be true. In addition, at small values of k (continuum

limit), velocity should follow the well defined relation:

v =
h̄k

m∗ (4.18)

Hence, we can not interpret the eigenvalues of the velocity matrix as the group

velocities of the system.

To explain this point, we produce the dispersion relation and the velocity

matrix for simple 1D atomic chain (Fig.(4.10)). We first perform our calculations

using a unit cell that contains a single atom. The general Hamiltonian of this

simple atomic chain is given by [19]:
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(a)

(b)

Figure 4.6: Dispersion relation of (9,0) CNT:(a)Eigenvalues of our matrix

(b)CNTbands2.0
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(a)

(b)

Figure 4.7: Dispersion relation of (7,0) CNT:(a)Eigenvalues of our matrix

(b)CNTbands2.0
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Figure 4.8: Brillouin zone of graphene sheet and the accompanied quantization of

CNT ky.

Figure 4.9: Corrected band diagram of (9,0) CNT.
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Figure 4.10: Simple 1D atomic chain with two different choices for its unitcell.

[H] =



· · · · · · · · · · · · · · · · · · · · ·

· · · 2t0 −t0 0 0 0 · · ·

· · · −t0 2t0 −t0 0 0 · · ·

· · · 0 −t0 2t0 −t0 0 · · ·

· · · · · · · · · · · · · · · · · · · · ·


(4.19)

where t0 = h̄2/2ma2.

In this case, the coupling matrices are given as: α = 2t0 and β = −t0 and the

reduced Hamiltonian is:

h(k) = 2t0 − t0(e
ika + e−ika)

= 2t0(1− cos(ka))

= E(k) (4.20)

The dispersion relation of this simple wire is shown in Fig.(4.11a). The velocity

matrix of the wire is:

v(k) = − a

ih̄
t0(e

−ika − e−ika)

=
2at0
h̄

sin(ka) (4.21)

This velocity correctly satisfies the continuum limit and is identical to Bloch

velocity (equ.(4.2)).



4.2. HAMILTONIAN AND VELOCITY MATRICES OF CNTS 67

Now, we will solve the same problem but with a different choice for the unit

cells; we will use unit cells that contain two atoms. In this case, the coupling

matrices [α] and [β] are 2× 2 matrices and are given by:

[α] =

 2t0 −t0
−t0 2t0

 (4.22)

[β] =

 0 0

−t0 0

 (4.23)

The reduced Hamiltonian matrix is then given by:

[h(k)] =

 2t0 −t0(1 + e−ika)

−t0(1 + eika) 2t0

 (4.24)

The eigenvalues of the [h(k)] matrix and hence the dispersion relation is:

E(k) = 2t0(1± cos(ka/2)) (4.25)

The dispersion relation is shown in Fig.(4.11b). This dispersion relation seems

different from that we obtained using the single atom unitcell. Actually, they are

the same. We just have to shift upper branch to the left and to the right by a

distance equal to the Brillouin zone length to obtain the original band diagram for

this problem. This is similar to what we have done with the CNT band structure.

The velocity matrix in this case is given by:

[v(k)] =

 0 −t0e−ika

−t0eika 0

 (4.26)

We have two eigenvalues for this matrix: ±t0. It is clear that they are in-

dependent of k and do not agree with continuum limit velocity. Also, the two

matrices [h(k)] and [v(k)] do not commute. This means that the problem we

described in CNTs is repeated here again.
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(a) (b)

Figure 4.11: Band diagram of simple atomic chain with different choices for unit

cells (a)Containing single atom (b)Containing two atom unit cells (Solid line). The

origianl band diagram (dashed line) is obtained by folding the upper two branches

(solid line) to the left and to the right by

In principle, changing the unitcell of the wire must not lead to different results.

Thus, we can state that the velocity matrix [v(k)] can be considered as a velocity

operator that can be used to calculate the current or the expectation values of

mode velocities. However, we can not always interpret the eigenvalues of this

matrix as the mode velocities of 1D wire. In addition, we cannot depend on

the commutator [h(k), v(k)] to check the coupling between different modes of a

quantum wire. This concept introduced by Datta [19] can not be generalized for

any system as it depends on the unitcell of the system. Generalization of this

concept may lead to fake conclusions as happened with CNTs. Thus, we still

need to find a method to measure the coupling between CNT modes.

4.3 Crossing current between modes

In this section we follow another track to find out the leakage current between

different subbands. The current flow through the CNT at the point between
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unitcells n and n+ 1 is [19]:

Jn+ 1
2

= ψ†n[v(k)]ψn (4.27)

In general, the wavefunction ψ can be represented in terms of CNT modes

eigenvectors un such that: ψ =
∑
n anun. Hence, we can express the current as:

J =
∑
n,n‘

a∗nan‘ 〈un‘|v(k)|un〉

=
∑
n

|an|2 〈un|v(k)|un〉+
∑
n6=n‘

a∗nan‘ 〈un‘|v(k)|un〉 (4.28)

Thus the total current flow through the CNT consists of two components:

individual mode currents Jn = |an|2 〈un|v(k)|un〉 and crossing current between

the modes Jn,n‘ = a∗nan‘ 〈un‘|v(k)|un〉. So, by calculating the ratio between these

two components we can determine the contribution of the crossing current term

to the total current. Assuming that an are the same for all the modes, the ratio

can be expressed as follows:

Current ratio =

∑
n6=n‘ | 〈un‘|v(k)|un〉 |
〈un|v(k)|un〉

(4.29)

We have calculated this ratio for different modes of different CNTs and found

that it is always in the order of 10−27 which means that the leakage currents

between different subbands is negligible.



Chapter 5

Wave packet propagation in CNT

In this chapter, we prove the possibility of sending independent identities simul-

taneously over the CNT making use of its separate energy subbands. To the best

of our knowledge, there are no previous studies regarding this topic. To simplify

our analysis, we neglected electron-phonon interaction and electron-electron in-

teraction. We also, assume that we are dealing with a defect free infinite tube in

order to avoid the effect of contacts and defects.

5.1 CNT eigenvectors

The energy eigenvectors of a system like CNTs can be considered as the basic

(x, y, z) axes in the real 3D space. So, we can represent any state vector ψ in

terms of these orthogonal axes. This orthonormal set is obtained simply from the

k-dependent Hamiltonian matrix [h(k)]. In the previous chapter we wrote the

Hamiltonian matrix [h(k)] of zigzag CNT and solved the eigenvalue equation:

[h(k)]φl(k) = El(k)φl(k) (5.1)

where l is the subband or mode number.

Each energy eigenvalue El(k) has a corresponding eigenvector φl(k). The

dimensions of each eigenvector are 4n× 1. Each element in the vector represents

70



5.2. SINGLE MODE WAVE PACKET SYNTHESIS 71

the value of the wavefunction at the corresponding atom in the unit cell. These

eigenvectors represent the orthonormal basis set. So, we can write any arbitrary

state vector ψ in terms of these eigenvectors using the relation:

ψ(x, t) =
∑
l

∫
k
bl(k)φl(k, x)e

−iEl(k)t

h̄ dk (5.2)

where bl(k) are the expansion coefficients. Note that the summation is done over

the 4n modes.

If ψ is a single mode state vector, then equation(5.2) reduces to:

ψ(x, t) =
∫
k
bl(k)φl(k, x)e

−iEl(k)t

h̄ dk (5.3)

The expansion coefficient bl(k) for any energy mode is calculated using the

relation:

bl(k) =
∫
ψ(x, 0)φ∗l (x, k)dx (5.4)

According to our definition for CNT unit cell, we can consider it as a 1D

discrete periodic lattice. Hence, the eigenvectors at any arbitrary lattice point sa

must satisfy the relation:

φl(sa, k) = φl(0, k)e
iksa (5.5)

where s is an integer and a is the distance between the CNT unit cells. Thus,

equation(5.4) is modified to:

bl(k) =
∑
s

ψ(sa, 0)φ∗l (0, k)e
iksa (5.6)

Using equation(5.2) and equation(5.6) we can synthesize any arbitrary state

vector ψ from the basis CNT eigenvectors.

5.2 Single mode wave packet synthesis

The question we want to answer in this section is:“Can we construct a Gaussian

wave packet using a single CNT energy mode?”. Actually, there is no direct
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method to check the feasibility of this. We will start our trials by assuming

coefficients bl(k) for different modes and synthesizing the corresponding packet

in real space.

To choose appropriate expansion coefficients, we refer to the simple case of a

1D Gaussian wave packet propagating in free space with initial momentum k0.

In free space, the basis functions are plane waves (eikxx) with continuous values

of momentum kx. In this case, the expansion coefficient is given by [67]:

b(kx) =

√
2σ√
2π
e−σ

2(k0−kx)2 (5.7)

which is a Gaussian packet in kx-space.

We assume that the expansion coefficients bl(kx) of different modes have the

same Gaussian form we obtained in free space. Using equation(5.3), we can

synthesize single mode state vectors over the CNT unit cell for different modes.

Samples of the resulting wavefunction distributions are shown in Fig.(5.1-5.2)

for a (9,0) CNT. As depicted in the figures, the resulting distributions are not

smooth over the unit cell and are far from the Gaussian distribution we target.

This problem arises from the current eigenvectors. As we declared in sec.(4.2.3),

subbands arises from the quantization in the wave vector ky. The matrix [h(k)] is

function only in the longitudinal wave vector kx. Hence, the vectors arises from

the Matlab calculations are not function of ky. Thus, they do not represent the

CNT subbands. So, we have to find a set of vectors that are function of both kx

and ky. Each vector in the current set will be represented in terms of these new

vectors. This illustrates the inadequate result we obtained because the vectors

used are mixture from the original modes defined by ky.

5.2.1 Alternative set of CNT eigenvectors

To form a new set of CNT eigenvectors, we use graphene eigenvectors as the

seeds for CNT eigenvectors. Fig.(5.3) shows the graphene sheet with its two

atoms unit cells. To find the eigenvectors of the graphene, we use [h(k)] matrix
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(a)

(b)

Figure 5.1: Wavefuntion of (9,0) CNT at:(a)mode = 1 (b)mode = 9
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(a)

(b)

Figure 5.2: Wavefuntion of (9,0) CNT at:(a)mode = 14 (b)mode = 17
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Figure 5.3: Graphene sheet unit cells and eigenvectors

of the graphene mentioned in chapter 2 (equation(2.10)):

[h(k)] =

 0 h0

h∗0 0

 (5.8)

where h0 = −t(1 + e−i
~k· ~a1 + e−i

~k· ~a2 + e−i
~k· ~a3) and the vectors ~a1 and ~a2 are the

graphene primitive vectors defined in equations(2.6,2.7).

This matrix has two eigenvalues: λ = ±‖h0‖2 with two corresponding eigen-

vectors:

φ0 =
1√
2

 1

±1

 (5.9)

From Bloch theory, we can get the vectors of any other unit cell at any arbi-

trary position u~a1 + v ~a2 by the relation:

φn = φ0e
iu~k· ~a1+iv~k· ~a2 (5.10)

where ~k · ~a1 = 3
2
kxac−c +

√
3

2
kyac−c and ~k · ~a2 = 3

2
kxac−c −

√
3

2
kyac−c.



76 CHAPTER 5. WAVE PACKET PROPAGATION IN CNT

The final form of the eigenvector of a zigzag CNT unit cell is:

φ0CNT
= ω



±e−iac−c(
3
2
kx+

√
3

2
ky)

±e−iac−c(
3
2
kx+3

√
3

2
ky)

±e−iac−c(
3
2
kx+5

√
3

2
ky)

...

1

eiac−c(−
√

3ky)

eiac−c(−2
√

3ky)

...

±1

±eiac−c(−
√

3ky)

±eiac−c(−2
√

3ky)

...

eiac−c(
3
2
kx−

√
3

2
ky)

eiac−c(
3
2
kx−3

√
3

2
ky)

eiac−c(
3
2
kx−5

√
3

2
ky)

...


4n×1

(5.11)

where ω is a normalization constant.

The previous vector has four groups of elements. The first group (the first n

elements) represents the first carbon atoms ring in the unit cell and the second

group (the next n elements) represents the second carbon atoms ring ... etc. The

wavevector kx can take any value. Typically, we take it in the range −2π
a

to 2π
a

which are the boundaries of the graphene Brillouin zone. This is not the case for

ky. Due to the rolling of graphene sheet in y direction, the wavevector ky must

satisfy the following condition:

n
√

3ac−cky = 2νπ

ky =
2νπ√
3ac−cn

(5.12)

where n is the CNT chirality and ν is an integer.



5.2. SINGLE MODE WAVE PACKET SYNTHESIS 77

Figure 5.4: (9,0) CNT conduction band diagram

This quantization in ky values is the responsible for the rising of CNT sub-

bands. To avoid the repetition in the energy subbands, we take only the values of

ν in the range: −(n− 1) to n. Thus the total number of eigenvectors is 2× 2n as

we have two possibilities for the vector: the plus sign or the negative sign in ad-

dition to the 2n possible values for ky. Vectors with positive sign corresponds to

conduction band modes, while vectors with negative sign corresponds to valence

band modes.

This group of vectors are also eigenvectors for the Hamiltonian [h(k)] of the

CNT. So, to check the validity of this set of eigenvectors, we will extract the

dispersion relation of the CNT using the eigenvalue equation as follows:

El(k) =
|[h(k)]φl(k)|

|φ(k)|
(5.13)

The conduction band of a (9,0) CNT produced by this calculation is shown

in Fig.(5.4). The results are identical to those we obtained earlier in the thesis.

This new set of eigenvectors is much better than those we obtained numerically
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using Matlab. The current vectors are expressed analytically. Besides, they

consists only of exponential terms. This simplifies the process of synthesizing

and analyzing state vectors in terms of these vectors as the process will be like

simple Fourier transform.

5.2.2 Single mode Gaussian packet

Now, we will use the new set of eigenvectors we developed to construct a single

mode Gaussian packet. The Gaussian expansion coefficient bl(k) are those of

equation(5.7). To synthesize the packet in the real space we use the equation:

ψ(sa, t) =
∫
bl(kx)φl(kx)e

ikxsae−i
El(kx)t

h̄ dkx (5.14)

This equation constructs the state vector ψ using only the mode number l.

The distribution of the resulting wavefunction over the unrolled surface of a

(9,0) CNT is shown in Fig.(5.5). The figure shows a perfect bell shaped packet

uniformly distributed around the CNT circumference. This result is common for

any mode number. Hence, we finally could construct a single mode wave packet.

5.2.3 Wave packet engineering

There is an inverse proportionality between the width of the packet ψ in free space

and the width of its expansion coefficient bl(k) in k-space. Increasing the width

of bl(k) in k-space reduces the width of the resulting packet in real space and vice

versa. Fig.(5.6-5.7) show two cases of Gaussian packets with standard deviation

equals to 100ac−c and 20ac−c respectively. Both packets has initial momentum

k0 = π
2a

.

The current wave packet is equally distributed over the CNT circumference

and we will refer to it as a wrapped around packet. To localize it at certain

location on the circumference, we consider it as a multiplication of two wave
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Figure 5.5: Bill shaped wave packet over the CNT surface

packets in x and y direction:

ψ(x, y) = ψx(x)ψy(y) (5.15)

In the present case, the packet has two expansion coefficients: b(kx) and b(ky).

the coefficient b(kx) remains the same Gaussian one we stated before. To find a

suitable expression for b(ky) we assume that we have a Gaussian function in the

y direction (CNT circumference direction):

ψ(y) =
1

σ1/2(2π)1/4
e−(y−y0)2/4σ2

(5.16)

where y0 determines the position of the packet center over the tube circumference.

The corresponding coefficient takes the same form in equation(5.7):

b(ky) =

√
2σ√
2π
e−σ

2k2
y (5.17)

This is different for b(kx) in that it does not have initial momentum and

that the wavevector ky is quantized and can take only the values stated in equa-

tion(5.12).
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(a)

(b)

Figure 5.6: (a)Gaussian packet in real space (σ = 100ac−c)(b)Corresponding expan-

sion coefficient |b(kx)|2 in kx space
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(a)

(b)

Figure 5.7: (a)Gaussian packet in real space (σ = 20ac−c) (b)Corresponding expan-

sion coefficient |b(kx)|2 in kx space
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The process of synthesizing the final wave packet is similar to inverse 2D

Fourier transform. The final packet is obtained using the relation:

ψ(sa, y, t) =
∫ ∑

ky

b(kx)b(ky)φl(kx, ky)e
ikxsae−i

Eν (kx)t
h̄ dkx

=
∫ ∑

ν

b(kx)b(ν)φl(kx, ν)e
ikxsae−i

Eν (kx)t
h̄ dkx (5.18)

where ky = 2νπ√
3a0n

.

An example of the resulting packet is shown in Fig.(5.8) for a (19,0) CNT.

The figure also shows the expansion coefficient versus the integer ν that represents

the mode number. We note that this packet is no more a single mode one as it

contains different components of ky.

5.2.4 Multiple signals multiplexing

In order to transmit multiple signals simultaneously over the same CNT, we

suggest two possible techniques:

Energy Multiplexing

As we showed, we can construct single mode wave packets that can propagate

in a certain subband. Thus, we can transmit various signals simultaneously over

different subbands without interference between these signals. In this case, we

will need to develop receivers that can differentiate between signals according to

there energy mode.

Space Multiplexing

We suggest that we can divide the CNT surface into communication channels.

We can divide the CNT circumference into equal portions and send signals over

each portion independently using the pulsed packet. Hence, dividing the CNT

surface into 4 portions means that we can transmit 4 bits simultaneously over
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(a)

(b)

Figure 5.8: (a)Modified Gaussian packet in real space (b)Corresponding expansion

coefficient |b(ky)|2 vs ν.
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(a) (b)

Figure 5.9: (a)CNT surface divided into 4 portions with 4 pulsed packets repre-

senting 4 bits: (a)1111 (b)1011.

the CNT. Fig.(5.9) shows an example for this possible communication technique.

Increasing the number of bits transmitted is possible by generating narrower

pulses. Narrower pulses will suffer from greater dispersion as it will contains

larger number of propagating modes. Studies should be conducted to find the

optimal diameter and bit number combination.

5.2.5 Wave packet propagation

To transmit information along the CNT, we need to know the distance over

which information can move before lost. In the system of CNT, we do not have

a standard measurement to specify when the information is lost. The threshold

point after which we lose transmission depends on the system noise arising from

system nonidealities such as electron-phonon interaction. Such nonidealities are

beyond the scope of this study. Here we just shed light on the packet behavior

as it propagates along the tube.

The wrapped around packet propagates with small spreading in the direction

of motion. Fig.(5.10) shows the packet at different time instants. This packet can

travel for relatively long distances. However, we can not make spatial multiplexing
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Figure 5.10: Wrapped around packet at t = 0fs, t = 100fs and t = 200fs.

with other packets that may carry other information.

The behavior of the pulsed shape packet is different from the wrapped around

packet. This packet is not a single mode packet as it contains different components

of ky. This results in a significant spreading to the packet in the y direction (CNT

circumference). The velocity of the packet in the x direction is determined by the

the initial momentum k0. As there is no initial momentum in the y direction, the

packet splits and moves to the left and to the right as depicted in Fig.(5.11-5.14).

However, due to the circular cross section of the tube, the packet is collected

again after certain period of time determined by the mode velocities and tube

diameter. In our simulations of for (19,0) CNT this period is 65fs.

5.3 Conclusion

In this chapter, we could successfully construct a single mode bell shaped wrapped

around packet propagating along the CNT. This packet is a single mode one. This

makes it suitable for long distance transmission. However, we can not send dif-
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Figure 5.11: Pulsed packet at t = 20fs

Figure 5.12: Pulsed packet at t = 30fs
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Figure 5.13: Pulsed packet at t = 40fs

Figure 5.14: Pulsed packet at t = 65fs
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ferent packets simultaneously as we will not be able to extract them. This will be

possible if we find a method that can differentiate between the packets according

to their modes. We can send simultaneous packets using spatial multiplexing.

In this case, we should use pulsed shape packet. Unfortunately, this packet type

suffers from strong spreading because it is not a single mode one.



Chapter 6

Conclusion and future work

This work investigates the possible contributions of CNTs to the future electronics

in short and long terms. In the short term, CNTs will enhance the performance

of traditional CMOS transistors. We investigated the performance of Carbon

Nanotube Field Effect Transistors in digital circuits. We chose SB CNTFET

because it is the most robust type of CNTFET as it was fabricated and verified

by many research groups. This transistor showed acceptable performance in

digital circuits and satisfied high performance applications requirements specified

by ITRS. The performance we get for SB CNTFET is not as good as we expect

compared to the extraordinary properties of CNTs.

This conclusion is based on the results we obtained for the inverter circuit.

To get more verified results, this study should be extended to cover more com-

plex logic gates. In addition, other types of the CNTFET family should be also

evaluated in the same way.

Then we changed our study scope to investigate the possibility of making novel

CNT wires that can carry multiple signals like optical fiber. Our study showed

that we can construct a single mode propagating packet over the CNT surface.

We argue the possibility of making spatial multiplexing over the nanotube surface

to transmit multiple packets simultaneously.

More studies should be conducted to suggest possible multiplexing schemes

89
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and obtain the most efficient one. Besides, this study should be extended to

other types of CNTs as we were concentrating on zigzag CNTs. Transmitters

and receivers of mentioned wave packets need extensive studies.

Actually, the basic contribution of this study is that it shed light on the

hidden capabilities of the CNTs. It also directs the researchers to think about

nontraditional applications of CNTs.
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