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ABSTRACT 

 

Convolutional Turbo Codes (CTC) are widely used in many high speed 

wireless communication systems standards due to their high performance that 

approaches that of the Shannon limit. The tremendous demands for high 

throughput and low power in the current wireless communication applications 

drive the search for efficient implementation techniques to satisfy these 

requirements. Although many algorithms have been proposed for decoding Turbo 

codes, their hardware implementation is still a challenging topic. For 802.16e 

OFDMA based WiMAX, a reliable data transmission is greatly needed, especially 

in Non-line of sight (NLOS) communication.  

 

In this thesis we study the optional, double-binary, turbo coding used in 

802.16e standard. We developed a complete Matlab model for a Turbo encoder 

and decoder compatible with this standard. We focus on the hardware 

implementation of the Turbo encoder and decoder. In our implementation, a new 

efficient metric normalization scheme is proposed. This scheme reduces the 

storage requirements of the state metric unit by 12.5% over conventional schemes, 

and reduces the area requirements of the branch metric unit by approximately 

34%. Additionally, we introduce a novel implementation of normalized state 

metrics using a redundant number system. This novel implementation reduces the 

worst case delay of state metric unit over conventional implementations. 

 

The second part of this thesis is concerned with the implementation of a 

tracking system for the sampling clock and the residual carrier frequency offset of 

802.16e standard. Compared to single carrier schemes, OFDM systems are 

sensitive to synchronization errors. Thus, an efficient implementation of 

synchronization in OFDM is the backbone of the system performance. Sampling 

clock frequency offset is due to the difference between the sampling clock of the 



 xi

DAC at the transmitter and that of the ADC at the receiver.  Timing and frequency 

synchronization comprises different stages. In this thesis, we are concerned with 

the timing and frequency tracking stage. We carried out a study and hardware 

implementation of a joint algorithm that estimates and corrects both the sampling 

clock offset and the residual carrier offset. Our hardware implementation features 

reduced hardware area and preserves a good system performance. An FPGA 

platform is used to implement these modules. 

 

This thesis is a part of a collaborative work that targets to implement the 

complete mobile WiMAX system. Other master theses study and implement the 

other blocks.  
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Chapter 1 

1 Introduction to WiMAX 
 

1.1 What is WiMAX 

 

The IEEE802.16 standard defines a Medium Access Control (MAC) and 

Air Interface protocol for broadband Wireless Metropolitan area Network (W-

MAN). The term broadband refers to high speed data transmission. It can be used 

as an alternative to the current cabled access networks such as optical fibers and 

Digital Subscriber lines (DSL). It provides broadband services to people who 

could not afford wired broadband services before. This standard is referred to as 

WiMAX; it stands for Worldwide Interoperability for Microwave Access. It meets 

different types of access  [1], such as fixed, portable and mobile access. To satisfy 

different requirements, two versions are defined. The first is IEEE802.16d-2004, 

optimized for fixed access and based on Orthogonal Frequency division 

multiplexing (OFDM). The second is IEEE802.16e-2005, optimized for mobile 

access in addition to supporting fixed access, and based on Scalable Orthogonal 

Frequency Division Multiple Accesses (SOFDMA).  

 

WiMAX radio might be able to support data rates up to 70 Mbps and 

operating channel bandwidth from 1.25 MHZ up to 20 MHZ. WiMAX should 

support access of a distance up to 50 km between user and base station. This 

means that it supports Non Line of Sight (NLOS) communication. The various 

channel bandwidth ranges is supported by scalable OFDMA. For example, a 

WiMAX system may use 128, 512, 1024 or 2048 bit FFT size corresponding to 

channel bandwidth 1.25MHz, 5MHz, 10MHZ or 20MHz, respectively. A detailed 

description of OFDM is included in the next section. 
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1.2 OFDM and OFDMA 
 

1.2.1 Multicarrier Modulation and OFDM 

 

OFDM is a passband Multi-Carrier Modulation (MCM) scheme  [2]. MCM 

is used to overcome problems of Intersymbol interference (ISI) caused by the 

channel and achieves a high data rate at the same time. The main problem of ISI is 

caused when the delay spread of the channel is higher than the symbol time. The 

delay spread causes the current symbol to affect several successive symbols. This 

effect increases with the increase of data rate. MCM resolves this simply by 

dividing the data stream among parallel streams or paths, each path is multiplied 

by a separate carrier as shown in Figure  1.1, each path has a low symbol rate, but 

the overall rate of parallel streams achieves a high data rate. In order for these 

streams not to interfere with each other, carriers should be orthogonal.   

 

Figure  1.1 Multicarrier Modulation Architecture 

 

Implementation of MCM is achieved via Fast Fourier Transform (FFT). 

This simplifies hardware implementation where it is almost impossible to achieve 

perfect orthogonality among all carrier oscillators. However, this is achieved 

through FFT processing as shown in Figure  1.2. 

Pulse Shaping 

g (t) 

g (t) 

 

g (t) 

 

.

.

. 

 

 

 

 

 

+ h (t) 

 .

.

. 

g* (-t) 

g* (-t) 

g* (-t) 

Matched 
Filter e

jw0t 

e
jw1t 

e
jwn-1t 

e
-jw0t 

e
-jw1t 

e
-jwn-1t 



 3 

 

Figure  1.2 OFDM via FFT 

 

However, in case of fading channels, we still have the problem of ISI. In 

order to eliminate its effect, a guard interval is inserted between consecutive 

OFDM symbols as shown in Figure  1.3. It should be selected larger than 

maximum delay spread.  

 

Figure  1.3 OFDM with Guard Interval 

 

Intercarrier Interference (ICI) is another effect from which OFDM symbols 

suffer. The main reason of ICI problem is mis-synchronization that results from 

multipath, it will cause subcarriers not to have integer multiple of cycles during 

the OFDM window. This is considered a loss of orthogonality. To solve this 

problem, a cyclic prefix (CP) is added before each OFDM window. This is done 

by simply copying a part of the end of OFDM window to the beginning as shown 

in Figure  1.4. This ensures that each subcarrier has an integer multiple of cycles in 

time domain and orthogonality is preserved.    
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Figure  1.4 OFDM Window with CP 

 

1.2.2 OFDMA 

 
OFDMA employs multiple closely spaced sub-carriers, such as the case of 

OFDM. However, the sub-carriers are divided into different groups. Each group is 

defined as a sub-channel. This scheme allows multiple access where each user can 

be allocated one or more subchannels as shown in Figure  1.5. The sub-carriers that 

form a sub-channel can be either adjacent or not. In the downlink, a sub-channel 

may be intended for different receivers. In the uplink, a transmitter may be 

assigned one or more sub-channels. 

Figure  1.5 OFDMA Multiple access 
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1.2.3 Scalable OFDMA (SOFDMA) 

 
OFDMA PHY is supposed to have Scalable OFDMA (SOFDMA). This is 

due to the fact that it allows bandwidth scalability with different FFT sizes. The 

change of the FFT size means a change in the number of subcarriers. The 

supported FFT sizes are 128, 512, 1024 and 2048. Only 512, 1024 are mandatory 

for mobile WiMAX profiles  [3]. In case of 802.16e, subcarrier spacing is fixed at 

10.94 KHZ. This means that the change in the number of subcarriers indicates a 

change in bandwidth. Different specified bandwidths are 1.25, 5, 10 and 20 MHZ 

corresponding to FFT sizes 128, 512, 1024 and 2048 respectively. Adaptive 

occupied bandwidth provides adaptive data rate. 

 

1.3 OFDMA Symbol Structure 

 

Subcarriers of every OFDMA symbols, like OFDM, are divided into three 

sets, Data subcarriers, Pilot subcarriers and Null subcarriers as shown in Figure 

 1.6. 

 

1. Data subcarriers are occupied with user data symbols. 

2. Pilot subcarriers are used for carrying pilot symbols. The pilot symbols are 

known symbols that can be used for synchronization and channel estimation 

purposes. 

3. Null subcarriers have no power allocated to them, including the DC subcarrier 

and the guard subcarriers. The DC subcarrier is not modulated, to avoid 

saturation effects or excess power draw at the amplifier. No power is allocated 

to the guard subcarrier in order to avoid interference effects with adjacent 

bands. 
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Figure  1.6 OFDMA Symbol Structure 

 

1.4 OFDMA Frame Structure 

 
The OFDMA frame is composed of two subframes, a downlink subframe 

and uplink subframe operating in a Time division Duplex (TDD) mode; this 

allows a sharing of bandwidth between uplink and downlink. The downlink 

subframe contains a downlink preamble, a Frame Control Header (FCH), DL-

MAP, UL-MAP and DL-bursts. The preamble is used for time and frequency 

synchronization and initial channel estimation. FCH provides the frame 

configuration information, such as coding rate and modulation scheme used. DL-

MAP and UL-MAP specify which data regions are allocated for each user. DL-

Bursts carry data of several users in case of downlink. For Uplink subframe, it 

contains UL-bursts which carry data of several users in case of uplink and a 

ranging subchannel. It is used for ranging purposes. Ranging is a procedure that 

maintains the quality and reliability of the radio-link communication between the 

Base Station (BS) and the Mobile Station (MS). When the BS receives the ranging 

transmission from a certain MS, the BS can estimate various radio-link 

parameters, such as channel impulse response, Signal to Interference and Noise 

Guard DC 
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Ratio (SINR), and time of arrival. The BS is able to adjust the transmit power 

level, and so on. 

1.5 Subcarrier Permutation schemes 

 
Subcarrier permutation is simply considered as combining different 

subcarriers into a subchannel. The set of subcarriers that construct a certain 

subchannel depends on subcarrier permutation schemes. Subcarriers that form a 

subchannel can be either adjacent or distributed. In IEEE802.16e, different 

permutation schemes are defined such as Downlink Full Usage of subcarriers (DL-

FUSC), Downlink Partial Usage of subcarriers (DL-PUSC), Uplink Partial Usage 

of subcarriers (UL-PUSC), Tile Usage of Subcarriers and Band Adaptive 

Modulation and Coding  [4]. They are discussed in some details in next sections.  

 

1.5.1 Downlink Full Usage of Subcarriers 

 

In this permutation scheme, each subchannel is constructed from 48 data 

subcarriers from the same OFDM symbol. These subcarriers are evenly distributed 

in the OFDM symbol. Number of subchannels in one OFDM symbol differs 

depending on number of data subcarriers that varies according to FFT size. Figure 

 1.7 illustrates this permutation scheme.  

 

1.5.2 Downlink Partial Usage of Subcarriers 

 

In case of DL-PUSC, subcarriers are divided into clusters; each cluster 

consists of 14 adjacent subcarriers over two OFDM symbols. The clusters are then 

divided into six groups and a subchannel is constructed from two clusters of the 

same group as indicated in Figure  1.8. 
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Figure  1.7 Downlink FUSC permutation scheme 

 

Figure  1.8 Downlink PUSC permutation scheme 
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1.5.3 Uplink Partial Usage of Subcarriers 

 

In this case, subcarriers are divided into tiles; each tile consists of 12 

subcarriers over 3 OFDM symbols, i.e. 4 subcarriers per symbol. The subcarriers 

of each tile are divided into 8 data subcarriers and 4 pilot subcarriers. Tiles are 

renumbered pseudo-randomly and divided into 6 groups. Subchannel is 

constructed from 6 uplink tiles from the same group. 

 

Figure  1.9 Uplink PUSC permutation scheme 

 

1.5.4 Tile Usage of Subcarriers 

 

The Tile Usage of subcarriers (TUSC) is a permutation scheme used in 
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1.5.5 Band Adaptive Modulation and Coding 

 

In the band Adaptive Modulation and Coding (AMC) permutation scheme, 

subcarriers that construct one subchannel are adjacent. In order to form a 

subchannel, subcarriers are divided into bins, each bin consists of nine consecutive 

subcarriers as shown in  

Figure  1.10, these nine subcarriers are divided into 8 data subcarriers and 

one pilot subcarrier. The AMC subchannel can have various shapes; it can be one 

bin over six consecutive OFDM symbols, two bins over three consecutive OFDM 

symbols or six consecutive bins over one OFDM symbol. 

 

(a) 

 

(b) 

 

Figure  1.10 (a) AMC Permutation mode; (b) different AMC subchannels 
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1.6 WiMAX Features 

 

WiMAX is a broadband wireless technology that is rich in features such as 

Flexibility, Scalability, Quality of Service (QoS), Security, Mobility…etc. 

  

1.6.1 Scalability 

 

Scalable OFDMA on which IEEE802.16e is based provides a scalable 

bandwidth. This scalable bandwidth allows dynamic support of user roaming 

across different networks. These networks may have different bandwidth 

allocations. 

1.6.2 QoS 

 

The MAC layer of WiMAX should support a variety of applications with 

different QoS requirements such as best effort based applications, real time and 

non-real time applications, constant bit rate (CBR) and variable bit rate (VBR) 

based applications. 

1.6.3 Mobility 

 

WiMAX can support many users in a coverage area up to 50 Km. In order 

to support mobile applications, the MS and the BS need to introduce several 

mobility-supporting functions to the existing WiMAX system.  Power saving 

mechanisms should be used. In addition, more frequent channel estimation and 

power control is specified for the purposes of mobility. 

1.6.4 Security 

 

WiMAX supports advanced strong security techniques, such as Advanced 

Encryption Standard (AES). It also specifies security procedures used to 
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authenticate and maintain private encryption keys. These private encryption keys 

are used to encrypt traffic to first-hop neighbors or to the base station. More about 

security features can be found in  [5]. 

 

This thesis is focused mainly on the study and implementation of some 

blocks of the PHY layer of IEEE802.16e standard. This standard defines some 

mandatory features and other optional features. We present the simulation and 

implementation of some blocks of the physical layer. In chapter  2, a review of the 

IEEE802.16e PHY model is illustrated, defining the main mandatory and optional 

features. The next chapters concentrate on the implemented blocks with 

performance simulation and hardware implementation. 
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Chapter 2 

2 802.16e PHY Model 
 

2.1 Introduction 

The IEEE802.16 defines four Physical (PHY) layers, they can be 

summarized as: 

1. Wireless-MAN SC: It is based on single carrier modulation, and is designed 

for frequency ranges higher than 11 GHZ for a LOS operation. 

2. Wireless-MAN SCa: It is based on single carrier modulation, and is designed 

to operate at frequency ranges between 2- 11 GHZ for NLOS purposes. 

3. Wireless-MAN OFDM: A PHY layer using a 256 point FFT based OFDM. It 

is designed for point to multi-point (PTMP) operation in a NLOS conditions. It 

operates at frequency ranges between 2-11 GHZ. It is also referred to as Fixed 

WiMAX. Multiple access of different subscriber stations (SSs) is time-division 

multiple access (TDMA)-based. 

4. Wireless-MAN OFDMA: A PHY layer using a 2048 point FFT based 

OFDMA. It operates in frequency ranges between 2-11 GHZ and supports 

NLOS communication. It is also referred to as Mobile WiMAX. 

 

2.2 Channel Coding in 802.16e PHY Transmission 

 The IEEE 802.16e PHY model specifies some mandatory and optional 

features. The PHY mandatory chain is illustrated in Figure  2.1. It consists of a 

Randomizer, Forward Error Correction (FEC) block, which specifies 

convolutional coding as a mandatory FEC block. It is followed by Interleaving 

block, then QAM mapping before IFFT block  [6], [7]. The FEC block size equals 

an integer number of subchannels and the channel coding is performed on each 

FEC block. Some parameters in PHY layers are flexible and controlled by higher 

layers such as FEC block size, coding rate, Modulation type, CP length, and so on.   



 14 

 

Figure  2.1 Mandatory Channel Coding at transmission 

 

2.2.1 Randomizer 

 The purpose of the randomization block is to prevent a long sequence of 

consecutive ones or zeros. This helps in purposes of synchronization at the 

receiver. Randomization is done on each FEC block separately. It is simply 

performed with a Mod-2 addition operation between FEC data bits and other 

generated Pseudo random sequence of bits. This sequence is generated by a Linear 

Feedback Shift Register (LFSR) as shown in Figure  2.2. It is initialized with a 

certain known sequence given as (LSB) [0 1 1 0 1 1 1 0 0 0 1 0 1 0 1] (MSB). 
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2.2.2 Forward Error correction 

 

The purpose of channel coding is to help the receiver to be able to recover 

channel errors. This is carried out through transmitting redundant bits beside the 

original information bits. These redundant bits can be constructed as a function of 

the original information bits. They help to recover channel errors. Many coding 

schemes were defined in communication systems to be used for these purposes 

 [8]. In the IEEE802.16e standard, some coding schemes are defined as mandatory 

coding schemes; others are defined to be optional. The Convolutional Coding 

(CC) is defined as a mandatory channel coding scheme. The standard also defines 

other optional coding schemes such as Block Turbo Codes (BTC), Convolutional 

Turbo Codes (CTC), and Low Density Parity Check Codes (LDPC). In this section 

we take a look on the mandatory Convolutional Coding used, and in chapter 3, we 

handle the Convolutional Turbo Codes on which this thesis deals. 

 

Convolutional coding specified in the IEEE802.16e standard is a binary 

non-recursive convolutional coding. It is considered binary as it deals with one 

input at a time and is considered non-recursive as it has no feedback. The 

mandatory CC has a rate ½ and constraint length of 7; this means that it has two 

outputs for each input, and it has 6 delay elements as shown in Figure  2.3.    

The generator polynomials can be specified by placing 1’s in case of a feedback 

connection and 0’s elsewhere. We get the following generator polynomials for the 

two outputs 

G1=[1 1 1 1 0 0 1] 

G2=[1 0 1 1 0 1 1] 

In general, the generator polynomials of the two outputs are specified in octal 

format as: 

G1= 171OCT  

G2= 133OCT              (2.1) 
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The remaining part of the convolutional encoder is the puncturing block which 

aims to reduce the number of transmitted bits depending on the channel 

conditions. This is carried out by controlling the code rate. Possible code rates are 

1/2, 2/3, and 3/4. The FEC block size is determined by modulation type and code 

rate.  

 

 

 

Figure  2.3 Convolutional encoder structure 

 

2.2.3 Interleaving 

 

The next block in channel coding is the interleaving block. The main 

function of this block is to redistribute the order of transmitted bit such that 
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errors. In case of frequency selective channels, which have a variant frequency 

response over the user bandwidth, adjacent subcarriers are exposed to similar 

channel conditions. Burst errors are not desirable as it has a severe effect on 
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D D D D D D

 

Y1 

 

 

 

 

 

 

 

Y2 



 17 

two-step permutation. The first ensures that adjacent coded bits are mapped onto 

nonadjacent subcarriers. The interleaver block size is the number of coded bits per 

encoded block size Ncbps. The first permutation step depends on Ncbps, as indicated 

in (2.2) 

. mod
cbps

k d

N k
m k

d d

 = +   
            (2.2)       

Where k =0,1,2,…………., Ncbps-1 and d =16 

The second permutation step ensures that adjacent coded bits are mapped 

alternately onto less or more significant bits of the constellation. This avoids long 

runs of lowly reliable bits. The second permutation is defined by the formula given 

in (2.3) as follows 
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Where k =0, 1, 2… Ncbps-1 and d =16. 

 

Where s is a parameter depending on the modulation scheme as indicated in (2.4). 

2

cpcN
s =              (2.4)  

and Ncpc is the number of coded bits per subcarrier, which equals 2 in case of 

QPSK, 4 in case of 16-QAM , and 6 in case of 64-QAM. 

  

2.2.4 Repetition 

 

After FEC and interleaving, a repetition block may be used only in case of 

QPSK modulation. The repetition is performed on the unit of slots. First, data bits 

are segmented into slot. Each group of bits form a slot that should be repeated R 

times in order to form R contiguous slots. The repetition factor R can be 2, 4, or 6. 

The repetition coding is used to further increase signal margin over the modulation 

and FEC mechanisms. 
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2.2.5 Modulation 

 

In this stage, data and pilot subcarriers should be modulated prior to 

forwarding to the IFFT block. This is done in two steps: subcarrier randomization 

and modulation. 

 

2.2.5.1 Subcarrier Randomization 

 

 In this case, a PRBS is used to generate a sequence Wk. This sequence is 

used in data and pilot modulation as indicated in the next two sections. The PRBS 

used to generate Wk is shown in Figure  2.4. Initialization of PRBS depends on 

either uplink or downlink, cell identification number (IDcell), and segment 

number. 

 

 

Figure  2.4 PRBS generator for data and pilot modulation 
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Initialization of PRBS is determined as follows: 

 

• b0-b4: Five least significant bits of IDcell as indicated by the frame 

preamble. 

• b5-b6: In case of Downlink, It represents the segment number + 1 as 

indicated by the frame preamble where b5 is the MSB and b6 is the LSB. In case of 

uplink, it is set to all ones.  

• b7-b10: In case of downlink, it is set to all ones and in case of uplink, it is set 

by the four least significant bits of the frame number, where b7 is the MSB and b10 

is the LSB. 

 

2.2.5.2 Data Modulation 

 

The IEEE802.16e defines both QPSK and 16-QAM as mandatory 

modulation schemes and 64-QAM as an optional one. Figure  2.5 illustrate the 

constellation diagrams of these modulation techniques. In order to achieve equal 

average power, the mapped constellation should be multiplied by a factor c which 

depends on the applied modulation type as follows: 

 

• 
2

1=c  in case of QPSK 

• 
10

1=c  in case of 16-QAM 

• 
42

1=c in case of 64-QAM 
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 (a)                                                   (b)  

 

 

(c)  

Figure  2.5 (a) QPSK Constellation diagram          (b) 16-QAM Constellation diagram 

(c) 64-QAM Constellation diagram 
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The next step is to multiply each subcarrier by a factor of 






 − kW
2

1
2 where k is the 

subcarrier index. 

 

2.2.5.3 Pilot Modulation 

 

 As mentioned in section  1.3, some subcarriers are filled with pilots in order 

to help for channel estimation and synchronization purposes at the receiver. Pilots 

are modulated as indicated in the formula specified by (2.5) in case of uplink and 

(2.6) in case of downlink.  

 

In case of uplink, the modulated pilot ck is given by: 

 { } 






 −= kk Wc
2

1
2Re                        

 { } 0I =kcm               (2.5) 

In case of downlink, the modulated pilot ck is given by: 

 { } 






 −= kk Wc
2

1

3

8
Re  

 { } 0I =kcm                     (2.6) 

  

2.2.6 Subcarrier Allocation 

 
In this step, the output transmitted symbols after modulation should be 

mapped to certain subcarriers.  The procedure that determines which data symbols 

will be allocated to which subcarriers and how to allocate pilots to subcarriers 

depends on subcarrier permutation scheme specified in section  1.5. It simply maps 

the logical numbering, which is the order of data symbols to be transmitted, to a 

physical numbering which is the order of subcarriers before entering the IFFT 

block. Pilot insertion is performed in parallel to subcarrier allocation, the number 
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and location of pilots in a certain OFDM symbol is determined according to the 

applied permutation scheme and adjusted FFT size.  

 

2.2.7 IFFT 

 

The IFFT block is the main block that performs the multicarrier 

modulation. It is applied to each OFDMA symbol separately. Prior to IFFT, we 

consider the symbols in the frequency domain. After the IFFT, we consider 

symbols in the time domain in order to be transmitted over the channel. 

 

As mentioned before, the IEEE802.16e supports FFT sizes of 128, 512, 

1024 and 2048 respectively.  The IFFT modulation is performed to symbols with 

complex values after QAM mapping. After construction of OFDM symbol 

window in time domain, CP is inserted in order to maintain orthogonality of 

different tones. In IEEE802.16e, CP can be either 1/4, 1/8, 1/16, and 1/32. 

 

2.2.8 RF Section 

 

 The last block in the transmitter is a passband modulation. It is carried out 

by converting the digital baseband signal to analog signal via Digital to Analog 

Converter (DAC) then multiplying the output baseband stream by RF carrier prior 

to transmission over the wireless channel. 

   

2.3 Receiver block diagram 

 
During transmission over the channel, transmitted symbols suffer from 

channel conditions which have severe impact on these symbols such as noise, 

multipath fading, and interference from other users in the same band and out of 

band. The output of the channel is transferred as input to the receiver. The function 
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of the receiver is not only to reverse the operations of the blocks at the transmitter, 

but also it should recover the channel effects. In this case, we have additional 

blocks at the receiver to compensate for channel effects. The main supplementary 

blocks used in the receiver are Timing and Frequency synchronization blocks in 

addition to channel estimation block. Figure  2.6 illustrates the most common 

blocks of the receiver.  

 

Figure  2.6 Receiver block diagram 
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2.3.1 Timing Synchronization 

 
 Synchronization in Communication systems is a crucial issue. The main 

purpose of synchronization is to allow the receiver to recognize the start and end 

of OFDM symbols in order to begin processing of data. If the OFDM window is 

placed in a wrong position, this is considered a timing offset. This has a severe 

effect on performance degradation. 

  

 Timing synchronization in OFDM systems comprises three stages: Packet 

detection, Symbol timing and sampling clock tracking. Packet detection enables 

the receiver to detect that a new frame is being received. Symbol timing enables 

the receiver to determine the start and end of OFDM symbol. Sampling clock 

tracking compensates for the clock frequency offset between DAC at transmitter 

and ADC at receiver. More details about synchronization will be discussed in 

chapter  6. 

 

2.3.2 Frequency Synchronization 

 

In addition to the Timing offset problem, Frequency offset has its severe 

impact on system performance. The main reason of frequency offset is the 

difference between local oscillators at both transmitter and receiver. The main task 

of the frequency synchronization is to correct the errors produced from the 

frequency offset. Frequency synchronization is carried out in three steps; coarse 

frequency offset, fine frequency offset and frequency offset tracking. Chapter  6 

presents a detailed description of these steps.  

 

2.3.3 FFT 

 

 The main task of the FFT block is to reverse the task of the IFFT at the 

transmitter. The output of this block is the OFDM symbols in the frequency 
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domain. After FFT operation, data and pilot subcarriers are extracted from the 

OFDM symbol and null subcarriers are removed. Prior to the FFT operation, 

Guard time and CP are removed from the OFDM window, and then the OFDM 

window with a certain number of samples is prepared for FFT operation to 

construct OFDM symbol in the frequency domain. After FFT operation, physical 

mapping for subcarriers should be converted back to its original logical mapping.    

 

2.3.4 Cell Search 

 
Cell search block is used to identify the cell and segment to which the 

mobile station belongs. This is done with the aid of a preamble. In case of 

802.16e, 114 different preambles are used. The preamble detection helps to 

recognize IDcell and segment number.  

 

2.3.5 Channel estimation 

 

 The channel estimation block is used to determine the channel impulse 

response (CIR). Channel has its effect on both magnitude and phase of subcarriers. 

This has the effect on rotation of subcarriers in the frequency domain, in addition 

to attenuation of magnitude. The receiver has to compensate for this error and 

correct it. Many algorithms have been proposed for channel estimation. These can 

be found in [9 - 11]. 

 

2.3.6 Demapper 

 
The demapper block performs the reverse operation of QAM mapper at the 

transmitter; it constructs back the original stream of bits from the received QAM 

symbols. However, it should produce a soft estimate of these bits in order to be 

used by the decoder. 
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2.3.7 Decoding 

 

Depending on the coding scheme used at the transmitter, decoding is done 

at the receiver. In case of mandatory convolutional coding, Viterbi decoding is 

used at the receiver. Viterbi decoding simply uses the principle of Maximum 

Likelihood (ML) decoding at the receiver  [8]. The operation of the convolutional 

encoder can be specified as a state machine. The data bits stored in the delay 

elements represents the current state of the encoder. The inputs and current state 

determine the output and next state. An extension to the state diagram in time is 

the trellis diagram  [8]. It simply represents transition from one state to another 

state each time slot depending on the input. For a certain codeword, there is a 

certain set of transitions that construct a certain path in the trellis diagram.  The 

function of the viterbi decoder is to determine the nearest path to the received 

codeword and hence, determine the original information bits. More explanation of 

viterbi decoding can be found in  [8], [12]. 

 

2.3.8 Derandomizer 

 

Derandomizer retrieves the original data stream that was randomized at the 

transmitter. The structure of derandomizer is the same as randomizer. A PRBS is 

used to generate random bits; these bits are modulo-2 added to the output of the 

decoder to generate final estimated data bits. 

 

2.4 WiMAX PHY Implementation 

 

Implementation of current wireless communication standards is still a 

challenging topic. The tremendous demands of high throughput and low power 

consumption needed in current wireless communication applications drives the 

design of efficient implementation techniques to satisfy these requirements. For 
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802.16e OFDMA based WiMAX, there is  a great challenge to satisfy system 

requirements to be able to operate over NLOS conditions, over a distance up to 50 

miles. This means that reliable transmission and signal processing at receiver 

should be maintained. In addition, 802.16e supports mobility, so, lower power 

consumption is a crucial issue in implementation.  

 

Many implementations of several blocks in transmission and reception have 

been proposed. Implementation of most mandatory blocks can be found in  [13], 

 [14]. In this thesis, we study the optional Convolutional Turbo coding used in 

802.16e with its hardware implementation. We study also the Sampling clock 

tracking and frequency offset tracking with a review of some previous work and 

proposed hardware implementation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 28 

Chapter 3 

3 Turbo Coding 

 

3.1 Introduction 

            

                In the IEEE802.16e standard, Turbo Coding is defined as an optional block 

used in channel coding. The standard defines two types of turbo codes: Block 

Turbo Coding (BTC) and Convolutional Turbo Coding (CTC). In this thesis, only 

Convolutional Turbo Coding is implemented. It has an improvement in system 

performance over mandatory convolutional codes. CTC has been widely used in 

many high speed wireless communication systems standards due to its high 

performance that approaches that of Shannon limit. It is introduced in 3GPP, 

DVB-RCS and WiMAX. Turbo Coding was introduced in 1993 by Berrou, 

Glavieux, and Thitimajshima  [15], [16]. It consists of a set of serial or parallel 

concatenated constituent encoders. Each one encodes an interleaved version of the 

original data. 

 

In this thesis, we handle Turbo Coding used in 802.16e standard. This 

chapter includes a detailed description of CTC encoding represented in the 

standard, and then several decoding techniques are explained in details. 

Algorithms that use approximations to simplify hardware implementation are also 

described. Then we apply these concepts to the specific turbo codes used in this 

standard. We state the previous work and some proposed improvements. 
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3.2 Turbo Encoding 

 

3.2.1 Block Description 

 

           Convolutional Turbo encoder specified in IEEE802.16e standard is 

composed of two constituent encoders in addition to an interleaver. The output of 

CTC encoder consists of systematic bits, and parity bits. Systematic output bits are 

identical to input bits, and parity bits are outputs of constituent encoders. Each 

constituent encoder is considered a double binary recursive systematic 

convolutional encoder. It is called double binary as it has two inputs at the same 

time. It is considered recursive due to the feedback connection in the 

convolutional encoder. This feedback leads to that this encoder has an infinite 

impulse response. Each output depends not only on the current input, but also on 

all previous input bits. 

 

Double binary Turbo coding has some benefits over ordinary binary Turbo codes, 

as explained in  [17]. These benefits can be summarized as: 

1- The substitution of binary codes by double-binary codes has a direct 

incidence on the erroneous paths in the trellis, which leads to a lowered 

path error density and reduces correlation effects in the decoding process. 

This leads to better performance. 

2- From hardware implementation point of view, the bit rate at the decoder 

output is twice that of a binary decoder as the processing is performed on 

two bits at the same time. So, higher throughput can be achieved with an 

equivalent complexity per decoded bit. 

3- For a certain block size, the latency of the decoder is divided by 2. 
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In Figure  3.1, it is shown the block diagram of the convolutional Turbo encoder. 

The figure describes the constituent encoder which has a constraint length of 4, 

two inputs and two outputs. 

Polynomials that define outputs are: 

- For Feedback branch: 1+D+D
3
 

- For Y parity: 1+D
2
+D

3
 

- For W parity: 1+D
3
 

 

 

Figure  3.1 CTC encoder structure 

 

3.2.2 CTC Interleaver 

 

The CTC interleaver specified in IEEE802.16e consists of two permutation 

steps, one is a permutation on the level of each symbol individually, and the 
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second is on the level of the sequence of all symbols. The following sub-sections 

illustrate the interleaving operations. 

3.2.2.1 Switch alternate couples 

 

In this step, inputs A, B are sent in their order one time, swapped for the 

next time. This operation is repeated for the whole block.  

Let the input sequence be U0 =[(A0, B0), (A1, B1), (A2, B2), …..(AN-1, BN-1)]. The 

output of this step is U1 =[(A0, B0), (B1, A1), (A2, B2), ….(BN-1, AN-1)], Where N is 

the block size of input to interleaver. 

The above operation is described as follows: 

 for i=0 to N-1 

                    If(i mod 2 ==1) 

   (Ai, Bi)            (Bi, Ai)               List 3.1 

3.2.2.2 Calculate interleaved order of sequence U1 

 

The sequence U1 obtained in the previous step should be mapped to a new 

sequence U2. Mapping is carried out by the function P(j) defined such that: 

U2( j ) = U1( P(j) ). 

The operation is described as follows: 

for j = 0…N – 1         

switch j mod 4: 

Case 0: 

     P(j) = (P0.j+1)modN 

Case 1: 

     P(j) = (P0.j+1+N/2+P1)modN 

Case 2: 

     P(j) = (P0.j+1+P2)modN 

Case 3: 

     P(j) = (P0.j+1+N/2+P3)modN                         List 3.2 
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The output sequence of the interleaver is given as U2 = [U1(P(0)), 

U1(P(1)),………U1(P(N-1))]. This will be the input to the second constituent 

encoder. The mentioned parameters P0, P1, P2 and P3 are specified in the standard. 

They depend on block size N.  

 

The above procedure calculates the sequence of interleaved bits P(j) from 

the original sequence j. In case of 802.16e, the input stream of bits should be read 

by the interleaver with the interleaved sequence P(j). Then the new sequence is 

outputted linearly. A detailed hardware description will be given in chapter  5. 

 

3.2.3 Determination of Circulation states 

 

In case of ordinary convolutional encoders, tail bits are included at the end 

of each block to force trellis diagram to reach zero state. In case of turbo codes, 

such a tail biting scheme can not be used due to the recursive nature of constituent 

encoders used in turbo encoders, Padding with zeros will not ensure reaching to 

zero state. On the other hand, if we can perform this to one constituent encoder, 

we can not perform it to the two constituent encoders simultaneously.  A tail biting 

scheme used in turbo codes is called circular coding. It ensures that for a certain 

input sequence with a certain block size, there exists a certain state which is called 

circulation state (Sc) such that if we begin encoding with initial state Sc, we will 

ensure that final state at the end of the block is also Sc.  

The circulation state Sc is specified from a look up table provided by the standard. 

In our case, we have 8 states (0 ≤ S ≤ 7). As we have two constituent encoders, we 

calculate two circulation states Sc1, Sc2. 

The circulation states Sc1, Sc2 are determined by the following operations: 

1) Initialize the encoder with state 0. Encode the sequence in the natural   order 

for the determination of Sc1 or in the interleaved order for determination of 

Sc2. In both cases the final state of the encoder is S0N–1 
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2) According to the length N of the sequence, determine Sc1 or Sc2 as given in 

Table  3-1.  

 

Table  3-1 Circulation state (Sc) look up table 

S0N–1 
Nmod7 

0 1 2 3 4 5 6 7 

1 0 6 4 2 7 1 3 5 

2 0 3 7 4 5 6 2 1 

3 0 5 3 6 2 7 1 4 

4 0 4 1 5 6 2 7 3 

5 0 2 5 7 1 3 4 6 

6 0 7 6 1 3 4 5 2 

 

 

3.2.4 Subpacket generation 

 

The next step after encoding is to generate subpackets with various coding 

rates depending on channel conditions; the 1/3 CTC encoded codeword goes 

through interleaving block then puncturing is performed to generate subpackets. 

 

3.2.4.1 Symbol separation 

 

All of the output symbols of the encoder are demultiplexed into six 

subblocks denoted A, B, Y1, Y2, W1 and W2 with the first N encoder output 

symbols going to the A subblock, the second N encoder output going to the B 

subblock, the third to the Y1 subblock, the fourth to the Y2 subblock, the fifth to 

the W1 subblock, the sixth to the W2 subblock. 
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3.2.4.2 Subblock interleaving 

 

Puncturing specified by the standard depends on selection of consecutive 

symbols out of the whole 6N symbols of one subpacket. In order to perform 

puncturing to non-consecutive symbols, another permutation is carried out via 

subblock interleaving block. The purpose of this step is to interleave each of the 

six subblocks separately. The sequence of the interleaver output symbols is 

generated by a procedure specified by the standard. It resembles any ordinary 

interleaver where input symbols are written into an array with a certain order and 

then are read from that array with a different order. In this case, symbols are 

written in an order from 0 to N-1, then read out from an order with the i
th
 symbol 

is read from address ADi (i=0…N-1). 

The procedure is constructed as follows: 

  

1- Determine the subblock interleaver parameters, m and J that depend on the 

block size. They are given in Table  3-2 

 

2- Initialize i and k to 0.  

 

3- Form a tentative output address Tk according to the formula 

        

2 ( mod )m

k m

k
T k J BRO

J

  = +     
                     (3.1) 

    where BROm(y) indicates the reversed m-bit value of y, (i.e BROm(6)=3). 

 

4- If Tk is less than N then ADi = Tk and increment i and k by 1. Otherwise, discard 

Tk and increment k only. 

 

5- Repeat steps 3 and 4 until all N interleaver output addresses are obtained. 
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Table  3-2 Parameters for the subblock interleavers 

 

Subblock interleaver parameters Block size (bits) 

NEP 
N 

m J 

28 24 3 3 

72 36 4 3 

96 48 4 3 

144 72 5 3 

192 96 5 3 

216 108 5 4 

240 120 6 2 

288 144 6 3 

360 180 6 3 

384 192 6 3 

432 216 6 4 

480 240 7 2 

 

3.2.4.3 Symbol grouping 

 

The output of subblock interleaver shall consist of A subblock, B subblock, a 

symbol by symbol multiplexed block of Y1 and Y2 and finally a symbol by symbol 

block of W1 and W2. This output sequence should be punctured in the following 

step, symbol selection (puncturing). Figure  3.2 illustrates the process of sub-block 

interleaving, symbol grouping and symbol selection. 
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Figure  3.2 Block diagram of the interleaving and symbol grouping 

 

3.2.4.4 Symbol selection (Puncturing) 

 

The last step in Turbo encoding is symbol selection. Its output is a 

punctured subpacket with various possible coding rates. This rate depends on 

different parameters and it should be configured according to channel conditions. 

The selected symbols indices depend on: 

NEP: Number of bits in the encoder packet (before encoding).  

NSCHk: Number of concatenated slots of K
th
 subpacket. 

mk: the modulation order for the K
th
 subpacket ( mk = 2 for QPSK, 4 for 16-QAM, 

and 6 for 64-QAM). 

 

SPIDk: Subpacket ID for the K
th
 subpacket, (for the first subpacket, SPIDk=0 = 0). 

 

The index of the i-th symbol for the K
th
 subpacket shall be 

 

( ) ).3( mod , EPKiK NiFS +=                     (3.2) 

…………. ………….   

Y1 

Subblock 
Y2 

Subblock 

Subblock 

interleaver 
Subblock 

interleaver 
Subblock 

interleaver 

W2 

Subblock 

Subblock 

interleaver 

W1 

Subblock 

Subblock 

interleaver 

A 

Subblock 

Subblock 

interleaver 

B 

Subblock 
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Where 

 10,1, 2..... Ki L −=  

          kSCHkk mNL ..48=   

( ) ( )EPkkk .NLSPIDF 3 mod .=                     (3.3) 

In case of HARQ support, K represents sub-packet ID. It is considered 0 in case of 

non HARQ support. In this case, Equation (3.3) is reduced to this formula  

 ).3( mod, EPiK NiS =                                                 (3.4) 

At the end of this step, the punctured sub-packet is available and we have the final 

output of Turbo encoder. 

  

The above form of equation can be simplified as follows 

( )

2
0,1, 2...... 1

_

2
. mod 6

_
k k

N
i

code rate

N
F SPID N

code rate

= −

 
=  
 

 

( ) ( ), mod 6k i kS F i N= +                 (3.5) 

The term Fk represents an offset from the beginning of the subpacket, and the 

selected symbols have indices begins with (Fk) mod6N to 







−+ 1

_

2
  

ratecode

N
FK

 mod6N. 

This process is illustrated in Figure  3.3. 

 

Figure  3.3 CTC Puncturing process 

 

0 6N-1 

(Fk) mod6N   
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ratecode
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 
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


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3.3 Turbo decoding 
 

3.3.1 Introduction 

 

Most proposed turbo decoding schemes are based on iterative decoding. 

The turbo decoder consists of two component decoders as indicated in Figure  3.4. 

The key idea on which iterative decoding is based on is that each decoder 

produces a soft estimate of the original information bits, this estimation is used by 

the other decoder, to produce a better estimation. The new estimation is used again 

by the first decoder to enhance its estimation and so on. The estimation is better 

with the increase of the number of iterations. 

 

Each component decoder is based on soft input soft output decoding. The 

soft representation of the information bits is carried out in a form of a Log 

Likelihood Ratio (LLR). The soft output of each decoder provides a-priori 

probability of the information bits to be used by the other decoder. The a-priori 

information is also called extrinsic information. 

 

Each component decoder operation is based on the received systematic, and 

parity bits from the channel, in addition to the extrinsic information from the other 

decoder. At the beginning of the first iteration, the decoder has no a-priori 

information about information bits. It has only channel information on systematic 

and parity bits. Thus, the input a-priori information is set initially to zero. The 

extrinsic information generated by each decoder is the key difference among 

successive iterations. 

 

Many algorithms were proposed for turbo coding such as Max A-posteriori 

(MAP)  [18] and Soft output Viterbi algorithm (SOVA). Each is based on iterative 

decoding where performance increases with the increase of number of iterations. 
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Increasing number of iterations introduces a complexity in implementation of 

decoder. A compromise should be held between Hardware implementation 

complexity and required performance. 

 

   

Figure  3.4 Generic Architecture of Turbo decoder 

 

3.3.2 Log Likelihood Ratio (LLR) 

 
The soft output of each decoder is based on LLR. In case of ordinary binary 

turbo codes, and for a certain data bit uk, the LLR L(uk) is defined as the logarithm 

of the ratio of probability that  uk=+1 to the probability that uk =-1. This means the 

ratio between a-priori probabilities. 










−=
+=

=
)1(

)1(
ln)(

k

k
k

uP

uP
uL                  (3.6) 

 

Unlike LLR, the conditional LLR )|( yuL k  is commonly used in decoding 

techniques. It is based on the ratio of a-posteriori probabilities. Its equation is 

given as follows 










−=
+=

=
)|1(

)|1(
ln)|(

yuP

yuP
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k

k
k                                 (3.7) 
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where y is the received codeword. This ratio of the a-posteriori probabilities will 

be used by the decoder to provide soft representation of the decoded bits.  

 

However, we deal with the case of double binary Turbo decoding. In this 

case, we are in need to define a symbol based LLR. In this case, three LLRs are 

defined as follows 

((   ,   ) | )
( ( , ) | ) ln

(( 1, 1) | )

k
k

k

P u a b y
L u a b y

P u y

 =
=  = − − 

                  (3.8) 

This equation defines three LLRs corresponding to the set of input ( )bauk ,=   

corresponding to ( ) 1) 1,(or   1),- 1,(  , )1,1(, ++++−=ba  respectively. They are 

normalized with respect to ( ) ( )( )1, 1 |kP u y= − − . These LLRs are used in double 

binary turbo codes as an alternative to the LLR defined in (3.8) used in ordinary 

binary turbo codes. As a consequence, three extrinsic likelihood ratios are 

produced by each component decoder to be used by the other decoder. 

 

3.3.3 Maximum A-posteriori probability (MAP) algorithm 

 

The MAP algorithm was first proposed by Bahl, Cocke, Jelinek, and Raviv 

in 1974. It is also named as BCJR algorithm due to the names of its inventors. This 

algorithm aims at maximizing the a-posteriori probability at each time slot  [18]. 

This differs from the case of Viterbi algorithm that is used with ordinary 

convolutional codes, which minimizes the probability of error for the whole path 

in the trellis. In the next section, the decoding process of ordinary binary turbo 

decoding is described, and then we will apply it to our case of double binary turbo 

decoding. 
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MAP algorithm is a Soft Input Soft Output (SISO) algorithm. It not only 

provides a decision for the decoded bit, but it can also provide a soft estimation of 

it, which is used by the other component decoder. 

 The decoding process is based on LLR as follows, Equation (3.8)can be written as 

)
)...|0(

)...|1(
ln()|(

110

110

−

−

=
=

=
Nk

Nk
k

yyyuP

yyyuP
yuL                         (3.9) 

where N represents the block size of the received codeword. The probability of the 

original bit to be either zero or one depends on the whole codeword. It can be seen 

from a different point of view if the codeword is divided into three parts. The 

received codeword before the time slot k, yj<k , the received codeword at time slot 

k, yk and the received codeword after the time slot k, yj>k. 

Each time slot is represented by a set of transitions among states as shown in 

Figure  3.5. These are specified by the trellis diagram which depends on the 

structure of the encoder. 

Consider at time slot k, the transition from state s’ to state s, some transitions 

corresponds to uk=+1 and the others corresponds to uk=-1. 

According to  [19], We can rewrite equation 3-8 as follows 

1

' 1

1

' 1

( ' )

( | ) ln( )
( ' )

k

k

k k

s s u

k

k k

s s u

P S s S s y

L u y
P S s S s y

−
→ ⇒ =+

−
→ ⇒ =−

= ∧ = ∧

=
= ∧ = ∧

∑

∑                          (3.10) 

where the notation Λ means intersection. Equation (3.9) illustrates that the a-

posteriori probability at a given time slot can be expressed by the sum of 

probabilities of transitions from state s’ to state s corresponding to the information 

bit uk.  

We can expand the probability term )   ' ( 1 ysSsSP kk ∧=∧=− as mentioned into 

equation 5.19 of  [19]. We conclude that 

1 ( '   )  ( |  ).  ( [ ] | ' ).  ( '̂  )k k j k k j kP S s S s y P y s P y s s P s y− < >= ∧ = ∧ = ∧    (3.11)                

1 1 1
( ' ) ( '). ( ' ). ( )

k k k k k k
P S s S s y s s s sα γ β− − −→= ∧ = ∧ = →                                                     (3.12) 
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• The term 1( ')k sα − is called the Forward estimation of state probability of 

state s’ at time slot k-1. 

• The term )'(1 sskk →→−γ  is called Branch metric probability or the transition 

probability from state s’ to state s between time slots k-1 and k. 

• The term ( )
k

sβ is called Backward estimation of state probability of state s 

at time slot k. 

So, in order to calculate LLR, we need to calculate the previous three probabilities 

for each transition, and then LLR is calculated as mentioned in equation (3.10). 

The next section presents a detailed explanation of calculation of each of the three 

probabilities in MAP algorithm. 

 

3.3.3.1 Branch Metric Calculation 

 

 The branch metric )'(1 sskk →→−γ  indicates the probability of transition on 

each branch for all branches of the corresponding trellis at a certain time slot.  

As indicated from(3.11), (3.12) 

)'|]([)'(1 ssyPss kkk ∧=→→−γ                                        (3.13) 

This probability can be represented as a product of two probabilities, as mentioned 

in 5.32 of  [19]. These probabilities are the channel probability and the A-priori 

probability. 

)().|()'(1 kkkkk uPxyPss =→→−γ                                                       (3.14)              

Where yk represents the received codeword at time instant k. It consists of the 

received systematic and parity bits, xk represents the original transmitted 

systematic and parity bits corresponding to each branch in the trellis. The term uk 

represents original information bit at time slot k. It is illustrated from (3.14) that 

branch metric probability is determined by the probability of transition on this 

branch, which is determined by the channel probability in addition to the 



 43 

probability of original information bit corresponding to this branch at this time 

slot, which is the a-priori probability.   

The channel probability is based on the information from received systematic and 

parity bits. It can be shown in a Gaussian channel with variance σ
2
 and fading 

amplitude a that 

 
1

( | ) exp( )
2

n

C

k k km km

m

al L
P y x y xα

=

∑                                  (3.15) 

where the term Lc is called channel reliability which depends on both SNR and 

fading amplitude as given in  [19] as follows                         

 

                                                                 (3.16) 

Where Eb is the transmitted energy per bit and a is the fading amplitude. 

 

Finally, we can represent the branch metric as the path metric used in conventional 

viterbi decoder in addition to the a-priori probability as shown below: 

( )1

1

( ' ) exp .
2

n

C

k k km km k

m

al L
s s y x P uγ α− →

=

→
 
 
 
∑                                    (3.17) 

  

3.3.3.2 Forward estimation state probabilities 

 

In addition to branch metric probability mentioned in the previous section, 

MAP algorithm takes into consideration state probabilities. Forward estimation of 

state probabilities indicates probability of each state in case of moving in the 

forward direction in the trellis diagram, i.e at each time slot forward state 

probability of each state means the probability that transition in this time slot 

begins from this state given the received codeword prior to this time slot. 

This is given as mentioned in (3.11), (3.12) as 

2
2 b

c

E
L a

σ
=
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)|()(1 syPs kjk <− =α  

Calculation of a state probability αk at a certain time slot k depends on state 

probabilities αk-1(S’) of previous time slot and the transition probabilities, which 

are the branch metrics. 

 

Calculation of this probability, as indicated in  [19], is given by the recursive 

formula:  

∑ →= →−− )'().'()( 11 ssss kkkk γαα                                                         (3.18) 

In Figure  3.5, it is shown the trellis diagram of Turbo encoder used in 

IEEE802.16e WiMAX. As this standard uses double binary turbo codes, each state 

has four output branches. 

In order to calculate forward state probability of state 0 at time slot k, we get it as 

1 1 1 1

1 1 1 1

(0) (0). (0 0) (1). (1 0)

         (6 ). (6 0) (7 ). (7 0)

k k k k k k k

k k k k k k

α α γ α γ

α γ α γ
− − → − − →

− − → − − →

= → + →

+ → + →
                   (3.19)

Figure  3.5 Trellis diagram of Double binaryTurbo encoder used in IEEE802.16e WiMAX 
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Initially, at the first decoding iteration, no a-priori information is given about state 

probabilities. In this case, we consider them equiprobable. 

This means that  

s
n

s ∀=
1

)(0α                                    (3.20) 

where n is the number of states, which equals 8 states in our case. 

As circular coding is used as mentioned in  3.2.3, the initial state Sc is well known. 

State probabilities should be initialized as follows 

0)(

1)(

0

0

=≠

=

ScS

Sc

α

α
                                                                                    (3.21) 

3.3.3.3 Backward estimation state probabilities 

 
Backward state probability of a certain state at a certain time slot indicates 

probability of transition to this state given a certain received codeword after this 

time slot. The calculation of the backward state probabilities is similar to that of 

forward state probabilities; it depends of state probabilities at the next time slot 

and branch metrics. 

It is calculated by the recursive formula given below: 

∑ →= +→+ )'().'()( 11 ssss kkkk γββ                                                      (3.22) 

Initializing backward state probabilities is similar to the case of forward state 

probabilities. This is given as described below: 

0)(

1)(

=≠

=

ScS

Sc

N

N

β

β
                                          (3.23) 

3.3.3.4 LLR Computation 

 

The final step after calculation of the branch metrics and state probabilities 

at each time slot of the codeword is to calculate the LLRs. These LLRs represent 

the decoder soft output. We can re-write equation (3.10) as follows 
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The output decoded bits can be calculated from LLRs by applying a hard decision 

to these soft values.  

As turbo decoders are based on iterative decoding, the extrinsic likelihood 

probabilities are calculated from LLRs. Extrinsic likelihood represents how much 

information the decoder adds about the decoded bits. It is obtained by subtracting 

the input values to the decoder from its output LLRs as follows 

( ) ( )kksCke uLyLLLRuL −−= .                  (3.25) 

The above equation indicates the calculation of extrinsic LLR. 

Where LLR is the soft output Log Likelihood Ratio from the decoder  

 Lc channel reliability 

 yks is the received systematic bit 

 L (uk) is the input A-priori probability 

 The extrinsic LLR should be bypassed to the other component decoder as an A-

priori probability used in next iteration. A schematic description of calculation of 

extrinsic LLR is shown in Figure  3.6. 

 

Figure  3.6 Extrinsic Likelihood calculation 
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3.3.3.5 Estimation of Circulation state 

 

One important step is to estimate the circulation state (Sc) for each 

codeword. Several techniques were proposed to estimate Sc, Some techniques 

proposed to use a prologue decoder for estimation and another decoder to decode 

again after the identification of Sc. This solution adds more complexity for 

implementation, as it will increase latency, power consumption, area and 

resources. 

Other proposed techniques depend on the iterative nature of the decoder. 

This means that Sc is estimated inherently from one iteration to the next one. At 

the first iteration, the decoder has no information about Sc. It begins decoding 

assuming equiprobable forward and backward initial states. At the end of the first 

iteration, the decoder obtains a reasonable estimation of Sc; it begins decoding in 

second iteration assuming the Sc estimated from first one. At the end of the second 

iteration, the decoder obtains better estimation of Sc, and so on. The decoder 

begins next iteration assuming Sc estimated from previous iteration.       

This is a reasonable method of estimation as it adds no more complexity in 

hardware implementation. The estimation is based on maximizing the sum of 

forward state probability at the last time slot and backward state probability at first 

time slot as follows 

 ))}()(max({ 0 SSSSc N βα +⇔=                           (3.26) 

 

3.3.4 Max Log MAP Approximation 

 
It is shown that MAP algorithm includes enormous calculations of state and 

branch metric probabilities, including large number of multiplications, 

exponentials and Logarithm calculations which complicates the hardware 
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implementation. Simplification to MAP algorithm is necessary to simplify its 

implementation. 

One possible approximation is to use state and branch metric probabilities 

in Log domain, this means using Log Number systems (LNS) as an alternative 

way to represent these probabilities. Using LNS converts all multiplications to 

additions and removes exponentials. This approximation is called Log-MAP 

approximation  [20]. 

 

The state and Branch Metric probabilities are defined in LNS as follows: 
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( ) ( )( )1 1' ln 'k k k ks s s sγ− → − →Γ → = →        (3.27) 

 

Using LNS is called Log MAP approximation; an extended simplification can be 

done by using MAX Log MAP approximation  [20], [21] that depends on Jacobi 

logarithm approximation as indicated below: 

}max{)ln( i

x
xe i ≈∑                                     (3.28) 

 

3.3.4.1 Calculation of branch metric probabilities 

 
The branch metric probability in log domain Гk(S) is calculated as follows 
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The constant term can be omitted in the calculation of LLR, so no need to consider 

it. 
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If we define )
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Finally, we can represent the branch metric by the form given in   (3.32) 
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3.3.4.2 Calculation of forward state metric probabilities 

 

The recursive form of equation (3.18) can be rewritten in the log domain as 

)}'()'( max{)( 11 SSSS kkkk →Γ+Α=Α →−−                                           (3.33) 

This means that in case of the Turbo code standard for which this thesis is 

concerned, the calculation of the state metric probability in LNS implies four 

additions to previous state metrics by corresponding branch metrics. The resultant 

state metric probability is the maximum of the four results. This has its significant 

effect on simplifying implementation of this algorithm with a little degradation in 

the system performance. 

 

3.3.4.3 Calculation of backward state metric probabilities 

 
In a similar manner to the calculation of forward state metrics, backward 

state metrics are computed. The recursive formula will be 

{ })'()'( max)( 11 SSSS kkkk →Γ+Β=Β →−−                                             (3.34)        
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Again, in this standard, calculation of backward state metrics implies four 

additions and comparison operation. 

 

3.3.4.4 LLR Computation 

 

In case of Max Log MAP, LLR given in (3.24) is computed by applying MAX 

Log MAP approximation taking into consideration that 
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In this case, we obtain  
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The computed LLR represents the soft output of the decoder. In order to calculate 

extrinsic LLR; equation (3.25) is used without any modifications. 

 

Another factor is that the Max Log MAP algorithm removes the decoder 

dependency on SNR. This can be observed from (3.32), the SNR becomes a 

scaling factor multiplied by another term representing the cross correlation 

between received data and original data corresponding to each branch. Initially, 

the decoder has no a-priori information about the original information bit; thus 

L(uk)=0. 

Calculation of Ak(S) and Bk(S) indicates that they will also be scaled with the 

same scaling factor. This scaling factor will be scaled with all quantities used in 
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decoding. A scaling factor will not affect the decision performed in LLR. The term 

SNR can be omitted when calculating branch metric probabilities. The assumption 

for which this is based on is that SNR is constant over the same codeword. 

   

Estimation of circulation states is the same as mentioned in section  3.3.3.5, except 

that initializing state metrics here is different. In this case  
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Another version of Log MAP algorithm is called MAX* Log MAP (MAX-

STAR Log MAP) algorithm which add a correction term to the max 

approximation as follows 

1 2

1 2 1 2ln( ) max( , ) ( , )
x x

ce e x x f x x+ = +                                              (3.38) 

where ),( 21 xxf c is the correction term added and equals to )1ln(
|| 21 xx

e
−−+  

When applying max* algorithm, the SNR term affects branch and state metrics 

calculation and it shouldn’t be neglected. 

 

3.3.5 Sliding Window Max Log MAP Approximation 

 

In addition to MAX Log MAP approximation, further approximations were 

proposed to compensate for latency and large storage requirements for MAX Log 

MAP, especially for large block sizes. One proposed algorithm as mentioned in 

 [22] is called Sliding Window (SW) MAX Log MAP algorithm. 

The key idea behind sliding window approximation is to divide the 

received codeword into smaller windows or sub-blocks. No need to wait for the 
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whole codeword, but the backward recursion begins when first sub-block only is 

completely received. This plays a key role in reducing the storage requirements, 

no need to store branch metrics and state metrics for the whole codeword, but only 

for one sub-block. After the completion of reception of the first sub-block, it is 

ready to calculate the backward state probabilities and LLRs of symbols of the 

first sub-block. The forward probabilities of second sub-block are calculated 

simultaneously. 

A timing sequence description of SW MAX Log MAP algorithm is provided in 

Figure  3.7. It shows the operation of how states are computed for different sub-

blocks with time. 

  

Figure  3.7 Timing Sequence of Sliding Window Max Log MAP 

 

At the end of each sub-block, backward states are being calculated. A 

problem raises that no pre-estimation of values of state probabilities at the end of 

the window to initialize backward states. A possible solution is to assume 

equiprobable states at this time slot. This has its impact on degrading the system 
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performance. More about simulation results of these approximations are provided 

in chapter  4.  

 

In order to overcome the effect of performance degradation, some proposed 

techniques use a guard window to have a rough estimation of initial value of 

backward state metrics. The guard window begins tracing back not from the end of 

the current window, but from a further time slot in the next window, this depends 

on the guard window size. As window size and guard window size increases, we 

have a better performance. 

There are various techniques specified for sliding Window Max Log MAP 

algorithm, some techniques begin by computation of backward recursion of each 

sub-block, then compute forward recursion. Other techniques begin with forward 

recursion then calculate backward recursion at traceback. In this thesis the second 

type is considered in simulations and implementation. The steps of the considered 

sliding window Max Log MAP algorithm can be summarized as follows: 

 

1- Begin calculation of Forward state probabilities by initializing 

−∞=≠

=

)(

0)(

0

0

ScSA

ScA
 

2- At the end of first sub-block, begin the backward recursion where backward 

states should be initialized as: 

SSgw ∀=Β + 0)(  

Where w is the window size and g is the guard window size. We begin backward 

recursion at end of each sub-block assuming equiprobable states.  

 

3- Once backward recursion is calculated, LLRs can be calculated and then 

extrinsic LLRs can also be calculated. The resulting bits after decision should 

be stacked in order to obtain decoded bits in order. 
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4- The operation should be repeated for the next window, but initialization of 

forward state metrics is calculated in the same way of ordinary MAX Log 

MAP. The process of SW MAX Log MAP is shown in Figure  3.8. 

  

Figure  3.8 Sliding Window operation 

 

3.3.6 Double binary Turbo decoding  

    

 Up to now, we consider the case of Binary Turbo Codes; in case of IEEE 

802.16e WIMAX standard, it uses double binary Turbo codes. This section 

illustrates how the ordinary turbo decoding algorithms are modified to handle the 

case of double binary turbo codes. In case of binary turbo codes, each bit is 

represented by a single LLR, but in case of double binary turbo codes, we define 

three LLRs  [23] as mentioned in (3.8). Each component decoder has input 

systematic and parity bits and three extrinsic LLRs. By applying this definition of 

LLRs, the decoder can perform decoding on a symbol wise operation without 

separating the couples of the symbol. A description of the decoder block is shown 

in Figure  3.9. 
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Figure  3.9 Structure of Double Binary Turbo decoder 

 

Calculation of branch and state metrics is straight forward. Assume the 

received systematic bits are RA and RB and the received parity bits are RY1, RY2, 

RW1 and RW2. The first component decoder has inputs RA, RB, RY1, RW1, Le (0,1), 

Le (1,0) and Le (1,1). 

To calculate branch metric at any time slot, a cross correlation is carried out 

between received data and original data corresponding to each branch. 

( ) ( )BALeWRYRBRARBA WYBAkk ,1*1***, 111 ++++=→−γ                         (3.39) 

{ },  ,  1,  1 1, 1A B Y W ∈ −  

where A, B, Y1 and W1 are the original systematic and parity bits corresponding 

to each branch in the trellis. 

 

Calculation of forward and backward metrics is straightforward as in the 

case of binary turbo codes. After the calculation of branch metrics, forward and 

backward metrics, the decoder should calculate LLRs by calculating the likelihood 

of each branch. 
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where ),( baT k  represents Likelihood of the branch that corresponds to transition 

from state s’ to state s for original input sequence (a,b). 

Finally, three LLRs are calculated as 

( ) ( )( , ) , 0,0
k k k

a bL T a b T= −                                    (3.41)  

and we get that Lk(0,0) always equals to zero. 

 

After calculation of LLRs, three extrinsic LLRs , , ,(1,1),  (1,0),  (0,1)
o o o
e k e k e kL L L  

should be calculated to be bypassed to the other component decoder. The term 

, ( , )
o

e k a bL  indicates output extrinsic likelihood of symbol ( ),ku a b=  at time slot k. 

The final decision of decoded bits is performed according to output LLRs obtained 

from (3.41) 

( ) ( )( ) max   (1,0), (1,1) max   (0,1) (0,0)
k k k k k

L A T T T T= − −  

( ) ( )( ) max   (0,1), (1,1) max   (1,0) (0,0)
k k k k k

L B T T T T= − −                                    (3.42) 

 

After Calculation of both ( )kL A , ( )kL B , we are able to estimate both original 

information bits A, B
∧ ∧

. This should be done at the last decoding iteration. 
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Chapter 4 

4 Simulation results of WiMAX CTC 

 

4.1 Introduction 

 

This chapter contains several simulations and performance analysis of 

WiMAX CTC. These simulations compare between various Turbo decoding 

schemes and show the effect of decoding approximations on the system 

performance. In addition, they illustrate the effect of different channel conditions 

on the WiMAX CTC performance. Finally, we achieve the fixed point model 

which represents the system performance after Hardware implementation. 

   

4.2 Turbo codes performance in AWGN channels 

 

4.2.1  Effect of Number of iterations 

 

As illustrated in chapter 3, Turbo decoding algorithms are based on 

iterative decoding. In this case, increasing the number of iterations provides an 

improvement in the original data estimation. Figure  4.1 illustrates the performance 

analysis of MAX Log MAP algorithm for a rate 1/3 turbo decoder with interleaver 

size of 240 couples over AWGN channel. It is simulated for a number of turbo 

iterations up to 8 iterations.  

 

It is indicated from the simulation results that the increase in the number of 

iterations enhances the BER performance. It is obvious that the rate of BER 

enhancement decreases with the increase in the number of iterations. The BER 

curve begins to saturate with a large number of decoding.  
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Figure  4.1 Effect of number of iterations in MAX Log MAP 

 

We conclude that the increase in the number of iterations too much may be 

inefficient as the gain in performance will be insignificant with respect to the 

additional hardware complexity and decoding latency. 

 

4.2.2 Improvement over mandatory Convolutional Coding 

 

This section demonstrates the difference in performance between 

Convolutional Turbo codes and the ordinary Convolutional Codes used in mobile 

WiMAX. Simulation is performed in AWGN environment. It is shown that 

Convolutional Coding outperforms CTC for only the first CTC decoding iteration, 

while CTC outperforms Convolutional Coding beyond the first iteration. Figure 

 4.2 illustrates that 2 CTC decoding iterations achieves an enhancement of about 1 

dB over Convolutional Coding and 8 CTC decoding iterations achieves an 

improvement of about 2 dB. 
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Figure  4.2 Convolutional vs CTC performance 

  

These simulation results in Figure  4.2 derive an important conclusion. It is 

not efficient to use CTC decoder for a single decoding iteration. This leads to a 

lower performance and higher complexity. At least CTC should be designed for 

two iterations. Four decoding iterations can be considered a reasonable 

compromise between performance, complexity and latency. 

 

4.2.3 Effect of Turbo interleaver block size 

 

Simulation results indicate that Turbo codes performance varies according 

to the interleaver block size. It is shown that the increase of CTC interleaver size 

enhances the BER performance for the same SNR. Figure  4.3 illustrates the 

performance of MAX Log MAP algorithm for interleaver block sizes of 24, 96, 

192 and 240 respectively. Simulation is performed for 4 turbo decoder iterations 

and coding rate of 1/3 in AWGN channel environment. 
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Figure  4.3 Interleaver block size effect 

 

 It is shown that in case of interleaver size of 240 couples, the performance 

outperforms that of lower sizes. Depending on the channel conditions and 

estimated SNR, the block size N is adjusted by the MAC layer in order to achieve 

the desired BER. The cost of BER enhancement is the decoding latency for larger 

block sizes. 

 

4.2.4 MAX vs MAX* Log MAP 

 

This section illustrates the effect of neglecting the correction term in MAX 

Log MAP algorithm. This correction term was previously mentioned in Figure  4.4. 

We present a comparison between MAX Log MAP algorithm with the MAX* Log 

MAP algorithm which considers the correction term. Simulation is performed for a 

block size N of 240, code rate of 1/3 and 4 decoding iterations in AWGN channel 

environment. 
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Figure  4.4 Comparison between Max and Max* performance 

 

From the simulation results, we find that the MAX Log MAP 

approximation results in a loss of about 0.25 dB of the BER performance 

compared to MAX* algorithm.  

 

4.2.5 Effect of Symbol selection (Puncturing) 

 

Symbol selection is performed to reduce number of coded bits per 

information symbol. Simulation results indicate that puncturing affects the BER 

performance of Turbo codes. In 802.16e CTC encoder, variable code rates of 1/2, 

3/4, and 5/6 are defined. It is shown that the increase in the code rate results in a 

degradation of Turbo codes performance. The process of puncturing should be 

adaptive according to the channel conditions. Figure  4.5 illustrates the effect of 

symbol selection in case of Rate ½ and Rate ¾ coding respectively. 
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(a) 

 

 

(b) 
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(c)  

Figure  4.5  (a) Rate ½ performance  

(b) Rate ¾  performance 

(c) Comparison among various Coding rates 

 

4.2.6 Sliding Window MAX Log Map approximations     

 

In this section, effect of Sliding window MAX Log MAP approximation is 

illustrated. The BER performance is tested for different window sizes (Ws) and 

guard window sizes (Wg). The simulation results are shown in Figure  4.6 a, b and 

c. 
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 (a)  

 

 

(b) 
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Figure  4.6 (a) BER for SW MAX Log MAP (Ws=64, Wg =8)   

  (b) BER for SW MAX Log MAP (Ws=32, Wg =4) 

(c) BER for SW MAX Log MAP (Ws=32, Wg =0) 

 

 

It is obvious that the system performance is exposed to some degradation 

with the change of the guard window size (Wg). In Figure  4.7, the effect of 

removing guard window degrades the system performance. The simulation is held 

for case of block size N=240, Window size Ws=32, and AWGN channel. The 

simulation results indicate that the case of Wg=0 increases the BER. This is due to 

total removal of the information of the backward metrics from some time slots.  
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Figure  4.7 Guard Window effect 

 

4.3 Simulations of Turbo codes in fading channels 

 

As practical channels are not simply considered as AWGN channels, 

several channel models have been standardized to simulate the effects of practical 

channels on transmitted signals. It is important to study effect of Turbo codes in 

fading channels. This section provides several simulation outputs of Turbo codes 

in fading channels for different coding rates. Simulations is performed for both 

QPSK rate ½ and rate ¾ with OFDM, block size N=240 and MAX Log MAP 

decoding technique. The fading channel model used is that proposed for 

IEEE802.16m standard for urban macrocell. It models a NLOS propagation and 

high mobility (up to 350 Km/h)  [24]. In this model, channel is modeled with 20 

taps; each tap consists of a set of rays with fixed offset angles. The delay and 

power of each tap is also specified. Table  4-1 indicates these parameters. There are 
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other propagation models specified for IEEE 802.16m standard. For more details, 

please refer to  [24]. 

 

Table  4-1 Proposed Channel characteristics for urban macrocell for IEEE 802.16m 

Tap # Delay(ns) Power(dB) 

Angle of 

departure 

(AoD) 

Angle of arrival 

(AoA) 

1 0 -6.4 61 -19.5 

2 60 -3.4 44 -16.4 

3 75 -2.0 -34 -15.0 

4 145 -3.0 0 -13.0 

5 150 -1.9 33 -14.9 

6 190 -3.4 -44 -16.4 

7 220 -3.4 -67 -13.4 

8 335 -4.6 52 -17.7 

9 370 -7.8 -67 -20.8 

10  430 -7.8 -67 -20.8 

11 510 -9.3 -73 -22.3 

12 685 -12.0 -83 -25 

13 725 -8.5 -70 -21.5 

14 735 -13.2 -87 -26.2 

15 800 -11.2 80 -24.2 

16 960 -20.8 109 -33.8 

17 1020 -14.5 91 -27.5 

18 1100 -11.7 -82 -24.7 

19 1210 -17.2 99 -30.2 

20 1845 -16.7 98 -29.7 
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In Figure  4.8, simulation is performed to QPSK modulation technique in 

case of rate ½ and rate ¾ coding rates in a fading environment. It is simulated for 

8 decoding iterations. From the simulation output, it is shown that CTC 

outperforms Convolutional Coding with the same coding rate at higher SNR, 

while ordinary Convolutional Codes have better performance at lower SNR. 

 

Figure  4.8 QPSK rate ½ and rate 3/4 a fading environment 

 

4.4 Analysis using fixed point arithmetic  

 

Fixed point analysis is a mandatory step before hardware implementation. 

It is important for purposes of seeking for an effective quantization with optimal 

number of bits of both received signals and internal signals without affecting 

coding performance. Received signals are represented by output systematic and 

parity signals from the channel. Internal signals are the branch and state metrics 
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and likelihoods. Many papers addressed the problem of Turbo decoder 

quantization and fixed point analysis [25 – 28].  

 

In this section, fixed point simulation results is presented showing the 

optimal number of quantization bits for both input signals and internal signals.  

4.4.1 Quantization of received signals 

 

In Figure  4.9, quantization of input signals is indicated, it is shown that 4 

bits for input data has a good performance, it approaches the performance of the 

floating point model but 3 bits results in a loss that exceeds 0.5 dB. This BER 

curve is for 4 iterations of turbo decoding. 

 

 

Figure  4.9 Fixed point vs Floating point model for received signals  
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4.4.2 Quantization of internal signals 

 

It is shown the effect of quantization of extrinsic likelihood on system 

performance. Choosing the number of bits is affected by saturation limits of 

extrinsic likelihood, and affects values of other internal signals. Simulation 

parameters are fixed for number of bits of received data = 4 bits, rate 1/3, AWGN 

channel, Block size N=240, Window size (Ws)=32 and guard window (Wg)=4. 

This curve is plotted for 6 iterations of turbo decoding. 

 

 

Figure  4.10 Effect of saturation of extrinsic likelihoods  

 

 

Table  4-2 summarizes the number of quantization bits used for received and 

internal signals of turbo decoder  
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Table  4-2 Number of quantization bits for signals used in turbo decoder 

Signal  Number of quantization bits 

Received signals 4 bits 

Branch metrics 4 to 7 bits 

State metrics 8 bits 

Extrinsic Likelihood 6 bits 

 

The branch metrics are represented in a number of bits that ranges from 4 to 

7 bits. This means that not all the branch metrics are represented in the same 

number of bits. We find that 4 bits are sufficient to represent some metrics, and the 

maximum is represented in no more than 7 bits. This is due to the proposed branch 

metric normalization method which is described in details in  5.3.2.1.  
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Chapter 5 

5 Hardware Implementation of Turbo coding 
 

5.1 Introduction 

 
This chapter presents a hardware implementation of various blocks used in 

802.16e Turbo encoder and Turbo decoder. It also discusses various aspects of 

optimization techniques used to guarantee good performance suitable for high data 

rate requirements by current wireless communication standards. Although many 

researchers addressed the turbo decoding implementation, some problems still 

represent a crucial issue such as metric representation in optimum number of bits, 

the minimum number of bits used to represent both input words and internal 

words. Another issue is the metric normalization, which will be discussed in 

section  5.3.3, to solve the problem of arithmetic overflow, arises from recursive 

computation. In this thesis, we present the previous work in this issue, and 

introduce a novel effective normalization technique suitable for the reduction of 

number of bits, memory requirements and avoiding arithmetic overflow without 

affecting the BER performance. An efficient implementation of this normalization 

scheme is also described using a redundant number system representation.  

The platform of hardware prototyping and testing is Field Programmable 

Gate Array (FPGA). The target FPGA is STRATIX II. At last synthesis output of 

each block is presented. 

 

5.2 Hardware Implementation of Turbo Encoder 

 
As described in chapter  3, Turbo encoder consists of two constituent 

encoders and an interleaver. It uses double binary recursive systematic constituent 

encoders. It is considered as a rate 1/3 encoder as it has 2 input streams and six 

output streams. 
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The I/O block description of Turbo encoder is illustrated in Figure  5.1. 

The input signals to this encoder are A, B, Block_ID. The first two inputs represent 

input information bits to be encoded, while Block_ID input determines some 

information about block such as Block size N. Other inputs are used for control 

such as CLK, RST. This encoder has six output signals which consist of two 

systematic and four parity coded bits. A valid_out signal is used to indicate that 

output is ready. 

 

 

Figure  5.1 Turbo Encoder Block diagram 

 

5.2.1 Constituent encoders 

 
Each constituent encoder consists of three Flip flops and four mod-2 adders 

as indicated in Figure  5.2. The implementation of this block is very simple. Each 

constituent encoder has 2 inputs and 2 outputs. Other I/O signals are used such as 

CLK, asynchronous RST, INIT_STAT, INIT and Valid_out signals. The INIT_STAT 

signal loads the encoder with the initial state which is used in circular encoding as 

discussed in section  3.2.3. The loading process is controlled by the INIT input 

signal. 
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(a) 

 

 (b)  

Figure  5.2  (a) Block diagram of Constituent encoder    

(b) Structure of Constituent encoder 

 

5.2.2 CTC Interleaver design 

 

The function of the interleaver is to change the order of the incoming 

symbols; it consists of two steps as described in section  3.2.2. The first step is to 

exchange the order of bits of the input symbol alternatively. For even symbols, 
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swap A, B and for odd symbols keep their original order. The swapping criterion 

is simply implemented using two multiplexers. The Selection line of the MUXs 

changes with the symbol rate; this means that it equals half the input clock rate. 

Figure  5.3 illustrates the block diagram of the first stage of the interleaver with 

two input bits A, B and two swapped output bits A1, B1. 

 

Figure  5.3 Interleaver first stage 

 

The next step is to change the order of input symbols for the complete 

block of size N. This is implemented with a RAM module where input symbols 

are written with a certain sequence of addresses and read with a different 

sequence. The sequence of addresses is specified in the standard. In fact one RAM 

module is not sufficient as it will result in an overrun error. One possible solution 

is to use two RAM modules where writing and reading are performed in both 

modules alternatively. 

The conventional architecture of this block consists of address generator 

and two RAM modules as indicated in Figure  5.4. The address generator has two 

outputs, one represents the linear address used in reading and the other represents 

the interleaved address used in writing. 
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Figure  5.4 Interleaver structure 

 

The address generator has two outputs, one represents the linear address, 

and the other represents the interleaved address. The sequence of generating linear 

address is simply carried out using a Mod-N counter. The sequence of generating 

the interleaved address is performed by the procedure specified in the standard 

(List 3.1). In conventional architectures, interleaver address generator can be 

implemented via a Look Up Table (LUT). However, in our case, LUT 

implementation consumes large storage capacity that reaches up to 12 Kbits 

approximately. The alternative solution is to implement the logic function of the 

address generator. Section  5.2.2.1illustrates the address generator architecture 

using LUT implementation, and in section  5.2.2.2, the proposed implementation is 

presented. 

5.2.2.1 LUT Implementation 

 

 The LUT implementation of the address generator has the benefit of a 
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 5.5, where memory organization is divided into several banks, a bank 

corresponding to each block size N. Only one bank is enabled at a time, this plays 

a role in reducing power consumption relative to the case of implementing the 

LUT as one memory bank. Another issue is that accessing one bank with smaller 

memory depth decreases the memory access time. 

  

Figure  5.5 Address generator using LUT 

 

5.2.2.2 Proposed Address generator Implementation 

 

The proposed structure of the address generator is shown in Figure  5.6. To 

generate the interleaved address, an efficient implementation is carried out by 

replacing the multiplication with a simple accumulator. This has its significant 

reduction in hardware resources, area and power consumption beside enhancement 

of speed. 
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Figure  5.6 Proposed address Generator structure 

 

The key idea behind this implementation is re-writing of the equations mentioned 

in List 3.1 to a new set of equations as shown below. This new form has the same 

function and simplifies the hardware implementation at the same time. 

P(0) = 1 
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P(2) =  (2P0+1+P2) modN 

P(3) = (3P0+1+N/2+P3) modN 

for j = 4 to N-1 

 P( j) = (P( j-4 ) + 4P0) modN               List 5.1 
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These initial values represented by P(0), P(1), P(2) and P(3) are stored in a specific 

ROM module, then the remaining addresses are calculated recursively. The 

contents of the ROM module are specified in Table  5-1.  

 

Table  5-1 Interleaver parameters stored in ROM 

N (P0+1+N/2+P1) modN (2P0+1+P2) modN (3P0+1+N/2+P3) modN 

24 18 11 4 

36 12 23 34 

48 14 27 40 

72 54 23 4 

96 8 39 46 

108 12 79 90 

120 14 27 40 

144 20 107 126 

180 12 23 34 

192 12 71 82 

216 14 27 40 

240 14 87 100 

 

A further optimization can be added to address generator indicated in 

Figure  5.7. By taking into consideration that not all adders are used 

simultaneously, a resource optimization is available through using only one adder 

and multiplexing its four inputs. This can also be applied to the MOD-N block. In 

the new structure the critical path may be slightly increased due to additional 

multiplexers and demultiplexers, but it is much smaller compared to significant 

decrease in resources and area. 

 

In addition, the implementation of MOD-N is not simply carried out by 

considering the least significant k-bits of the input to this block, instead a divider 

is needed. However, to avoid division, this implementation can be carried out 

through successive subtractions as given in equation (5.1). The problem that arises 



 80 

from successive subtraction is the variable latency which is not desired in 

hardware implementation. 

  

Figure  5.7 Optimized address generator structure 
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implementation scheme works properly. The output of this block is connected 

back to the accumulator before calculation of the subsequent interleaved address. 

 

The interleaver introduces a certain delay that depends on the block length. 

In order to guarantee that both constituent encoders generate their output 

simultaneously, a queue is used to introduce an equivalent delay before the first 

constituent encoder. The block diagram of the encoder becomes as indicated in 

Figure  5.8 

 

Figure  5.8 Block diagram of CTC encoder 
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After determination of the circulation state, re-encoding of block takes 

place after initializing each of the constituent encoders with the correct circulation 

state. This means that incoming data should be buffered again while being 

encoded for the first time, this is performed using two queues, one to buffer the 

original stream and the other to buffer the interleaved stream. Two other 

constituent encoders are used to encode the original stream after being initialized 

by circulation state. 

The construction of Sc ROM module is simple that its address consists of 

two parts, the final Sc of first encoding concatenated with the value of Nmod7. 

Each of them consists of 3 bits. The overall ROM address consists of 6 bits; each 

location inside ROM consists of 3 bits that determines the corresponding Sc. ROM 

contents are initialized with respect to Sc Table  3-1. The ROM output is connected 

to the init_stat input signal of constituent encoder and this signal is triggered by 

the control input INIT signal which is activated at the end of each block. The 

resulting block diagram of Turbo encoder is shown in Figure  5.9. 

 

Figure  5.9 Circular Rate 1/3 Turbo Encoder 
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5.2.4.1 Implementation of sub-block interleaver 

 

 The sub-block interleaver has the same structure as the CTC interleaver 

discussed in  5.2.2. It consists of two RAM modules in addition to the interleaver 

address generator. In this case, one address generator is sufficient to generate 

linear and interleaved address for all six sub-blocks simultaneously. In order to 

generate interleaved address, we need to implement the procedure discussed in 

 3.2.4.2. The flow chart in Figure  5.10 illustrates the operation of interleaved 

address generation. 

 

 

Figure  5.10 Sub-block interleaver address generation flow chart 
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In this thesis, we propose an efficient implementation for the sub-block 

interleaver address generator. In order to calculate Tk, we notice that addition 

operation is simply carried out using concatenation of two values. Moreover, these 

two values can be simply generated using two counters as follows: 

1- 2-bit counter is used to calculate the value of Jk   mod . This counter is 

triggered each clock cycle.  

2- m-bit counter is used to calculate the value of 













  

J

k
BROm . The order of 

the output of this counter is reversed. 

The tentative computed address KT  is then compared to the value of sub-block size 

N. The problem arising from this comparison is the added latency and recursive 

calculation of KT . However, it is found that we need at most one recursive 

calculation at a time. In order to remove latency, we propose an efficient 

implementation to perform comparison of the next address in parallel to current 

tentative address computation. If the comparator output indicates that Tk>N, we 

should reset the 2-bit counter and increment the m-bit counter. The block diagram 

of the proposed address generator is given in Figure  5.11 

 

 

 Figure  5.11 Sub-block interleaver address generator 
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5.3 Hardware Implementation of Turbo decoder 
 

5.3.1 General Architecture 

As explained in chapter  3, Turbo decoder consists of two component 

decoders, each one corresponding to one constituent encoder. The decoder should 

be implemented as Soft Input Soft Output (SISO) decoder using any decoding 

techniques specified in chapter  3. In this thesis, Sliding Window Max Log MAP 

algorithm is used for SISO decoder implementation. This algorithm is widely used 

in implementation of turbo decoders. Many proposed implementation techniques 

were addressed in order to reduce the area, delay, and power consumption and 

enhance performance. 

Each SISO decoder, as indicated in Figure  5.12, has two received 

systematic symbols, two received parity symbols and three extrinsic likelihoods 

needed in double binary as explained before. Other control inputs are CLK and 

RST signals. It has two outputs A_out, B_out that corresponds to decoded bits. 

Other outputs are Le_01, Le_10, Le_11 which represent extrinsic likelihoods. A 

valid_out signal is used for indication of ready output. Sc_in and Sc_out indicate 

input and output circulation states simultaneously. Block_start signal is an input 

signal which is activated at the start of a block for each iteration it is decoded. 

Figure  5.12  SISO decoder Block description 
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The implementation of each SISO decoder implies the calculation of 

forward state metric (ALPHA), Backward state metric (BETA) and Branch metric 

(GAMMA) at each time slot. In case of SW-Log MAP, each block is divided into 

windows while backward estimation is calculated for each window separately. The 

window size specifies the memory storage requirements of both branch and 

forward state metrics. The proposed architecture of the decoder is given in Figure 

 5.13. 

 

Figure  5.13 SISO Architecture 
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Table  5-2 Turbo decoder state transition table 

 
I/P 00 

OP/next state 

I/P 01 

OP/next state 

I/P 10 

OP/next state 

I/P 11 

OP/next state 

S0 00 / 0 11 / 7 11 / 1 00 / 6 

S1 11 / 3 00 / 4 00 / 2 11 / 5 

S2 10 / 4 01 / 3 01 / 5 10 / 2 

S3 01 / 7 10 / 0 10 / 6 01 / 1 

S4 00 / 1 11 / 6 11 / 0 00 / 7 

S5 11 / 2 00 / 5 00 / 3 11 / 4 

S6 10 / 5 01 / 2 01 / 4 10 / 3 

S7 01 / 6 10 / 1 10 / 7 01 / 0 

 

The Calculation of each branch metric is calculated as given in equation (3.39), 

where the values A, B, Y1, Y2 Є {-1, 1} So, the implementation of each metric is 

simply carried out with a multi-operand adder, as shown in Figure  5.14.a. Each 

multi-operand adder is constructed from a set of Carry Save adders (CSA) and the 

last stage is the Carry Propagation adder (CPA).  

 

After the calculation of the branch metrics, they should be stored in RAM modules 

to be used later in calculation of LLRs. This is implemented through parallel RAM 

modules, as indicated in Figure  5.14.b one module for each metric calculated. The 

depth of each RAM module depends on the window size.  
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(a)  

 

 

(b)  

 

Figure  5.14 (a) Branch metric Multi-operand Adder   (b) Branch metric Memory organization 
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1 ( 00 ) ( )* ( )*k k Y WAB R k Y R k W− →Γ ⇔ = +  

1 ( 01) ( ) ( )* ( )* (0,1)k k B Y W kAB R k R k Y R k W Le− →Γ ⇔ = + + +  

1 ( 10) ( ) ( )* ( )* (1,0)k k A Y W kAB R k R k Y R k W Le− →Γ ⇔ = + + +  

1 ( 11) ( ) ( ) ( )* ( )* (1,1)k k A B Y W kAB R k R k R k Y R k W Le− →Γ ⇔ = + + + +      (5.2) 

Where Y1, W1 Є {0, 1}         

The reduction obtained is the decrease in the number of the required additions than 

the case of the conventional calculation schemes. This has its effect on speed 

enhancement by reducing the critical path delay. In this case a specific hardware is 

designed to each metric separately. In addition to hardware reduction, it reduces 

the number of bits required to represent some branch metrics. In other words, each 

metric can be represented in a lower number of bits optimized for this metric.  

 

In this normalization scheme, only 15 branch metrics are needed to be 

calculated, no need for storage of 16 metrics as the previous schemes. This results 

also in reduction in memory modules needed. Another benefit of this scheme is the 

reduction of the critical path in some branch metric units, due to a lower number 

of CSAs. This also means smaller power consumption. 

Table  5-3 Resource reduction of proposed normalization 

 Without Normalization Proposed Normalization 

Number of 

CSAs for each 

unit 

4 units with 1 CPA 

 

8 units with 

2 CSAs +1 CPA 

 

4 units with 

3 CSAs + 1 CPA 

3 units have only 1 CPA 

 

5 units with 1 CSA+1 CPA 

 

4 units with 2 CSAs+1 CPA 

 

1unit with  3 CSAs +1 CPA 

Total  area 

Estimation in 

terms in 

number of 

CSAs and 

CPAs 

28 CSAs + 16 CPAs 16 CSAs  + 13 CPAs 



 90 

From the results obtained in Table  5-3, we get a reduction of the area by 

approximately 34% over the conventional scheme without normalization. 

Moreover, as we have lower number of bits for some branch metrics, we obtain a 

reduction in the memory requirements over the conventional implementation. The 

results obtained in Table  5-4 indicate that for our case of SW-MAX Log MAP, of 

window size Ws=32, we need 6656 bits to store all branches of a certain window 

and 6208 memory bits in case of proposed normalization. This means a reduction 

of about 6.7% of the memory requirements. 

Table  5-4 Reduction in storage due to proposed normalization 

 
Without 

Normalization 

Proposed 

Normalization 

Branch metric 

memory bits 
6656 bits 6208 bits 

 

 

 A further simplification can be applied to the special case of non HARQ 

support. In this case, we find that for all coding rates, we obtain punctured parity 

outputs W1, W2. If we consider this at the receiver, RW1 and RW2 signals are 

always considered zeros. Taking this into consideration, we need only to calculate 

8 branch metrics and we obtain the new set of branch metric equations as follows 

1 ( 00 ) ( )*k k YAB R k Y− →Γ ⇔ =  

1 ( 01) ( ) ( )* (0,1)k k B Y kAB R k R k Y Le− →Γ ⇔ = + +  

1 ( 10) ( ) ( )* (1,0)k k A Y kAB R k R k Y Le− →Γ ⇔ = + +  

1 ( 11) ( ) ( ) ( )* (1,1)k k A B Y kAB R k R k R k Y Le− →Γ ⇔ = + + +                  (5.3) 

 

The branch metric unit consists in this case of 7 Multi-operand adders, they are 

classified as follows: 

• 2 units with 1 CPA 
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• 3 units with 1 CSA + 1 CPA 

• 1 unit with 2 CSAs + 1 CPA 

 

The total number is 5 CSAs and 6 CPAs. This means an approximate additional 

decrease in the branch metric unit area by about 75% of the original scheme, and 

62% of our proposed scheme with normalization. Moreover, the required number 

of memory bits will be reduced to 2944 bits. This means a reduction of the storage 

requirements by 55.77% of the original scheme and by 52.58% of the proposed 

technique.  

 

5.3.3 Forward State Metric Block (ALPHA) 

 

The purpose of the forward state metric unit is to calculate forward state 

metrics of the eight states and store them in memory for the computation of LLRs. 

The block diagram of the forward metric unit is shown in Figure  5.15. The input 

states are either the states of the previous iteration or the circulation states in the 

first iteration. 

Figure  5.15 Forward State metric Unit 
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5.3.3.1 State Metric Unit Implementation 

 

The state metric unit, consists mainly of an Add/Compare and Select (ACS) 

unit as shown in Figure  5.16. The main drawback in implementing state metrics is 

the recursive computation. This may lead to an arithmetic overflow. To avoid 

overflow, a large number of bits is needed for representation of state metrics. This 

means more area, hardware resources, higher storage requirements, and increased 

delay.  

 

Many papers addressed the problem of the state metric arithmetic overflow. 

To overcome this problem, state metric normalization is carried out. Two 

normalization techniques were proposed by researchers; Rescaling and Modulo- 

Normalization. These two techniques maintain the dynamic range of the state 

metrics. The key idea is that the main concern is not in the value of the state metric 

itself, but in the value of the difference between the state metrics. Taking this into 

consideration, we can have a more efficient representation of state metrics. 

 

5.3.3.2 Normalization by rescaling 

 

Normalization by rescaling is carried out via subtraction of the maximum 

or minimum state metric from each state metric  [29], [30]. This preserves the 

dynamic range and required number of bits to represent state metrics. Some other 

techniques proposed to normalize branch metric instead of the state metrics  [31]. 

The main drawback of state metric normalization is the increase in the critical path 

of the state metric unit. It is considered the bottleneck of the SISO decoder that 

limits the maximum frequency of operation. The critical path implies Addition, 

comparison, MUX, and normalization which includes both comparison and 

subtraction. 
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Figure  5.16 State metric unit 

 

5.3.3.3 Modulo-Normalization 

 

In case of modulo-normalization, instead of subtraction of the maximum or 

minimum metric, the state metrics are represented in a 
2

mod b based operation  [32]. 

The calculation of LLR is invariant with respect to the 
2

mod b  as the difference 

between the original state metrics does not change in case of modulo-

representation. This idea was proposed first time by Hekstra  [33], who applied it 

to viterbi decoding.  To illustrate the idea, assume that we have a bound on the 

value of branch metrics such that 

( ) max1  ' Bsskk ≤→→−γ            (5.4)  

where maxB represents the upper bound on the value of any branch metric. It can be 

proved that the upper bound on the difference of state metrics is 
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where m is the memory order of the convolutional code used in CTC encoder. This 

proof can be found in  [33]. 

We define ( ) ( )
2

~

mod bk k
s sα α=  

( ) ( ) ( ) ( )1 2 1 22

~ ~

mod bk ks s s sα α α α− = − 
 
 

        (5.6) 

 

In order for (5.6) to be satisfied, the number of bits b should be chosen such that   

( )2 maxlog 1b  = ∆ +              (5.7) 

Moreover, the number of bits b’ used to represent the LLRs must guarantee 

invariance in calculation of LLR after performing 
2

mod b  operation. As a result, as 

mentioned in (17) of  [32], the number of bits b’ is set to  

( )2 max max' log 2 B 1b  = ∆ + +             (5.8) 

This normalization scheme has its benefits in speeding up the operation, as no 

extra hardware is needed for the normalization unit. However, this scheme has its 

disadvantage in the larger number of bits needed to represent the state metrics 

compared to the case of normalization by subtraction. In this case, we find that at 

least 10-bit representation is required for state metrics. This means an increase in 

memory storage requirements. 

 

 In this thesis, we propose an implementation of normalization scheme that 

is based on rescaling, so it preserves the number of bits, and at the same time it 

removes the normalization unit from the critical path. This is carried out through 

redundant representation of normalized state metrics. In the next section, we 

present an introduction to the redundant number representation, and then in the 

succeeding one, we introduce how the redundant representation is applied to the 

state metric normalization. 
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5.3.3.4 Redundant Number Representation 

 

Redundant number representation is defined in arithmetic operations as a 

way to increase the speed of the addition operation  [34]. Carry propagation is 

considered the bottleneck that limits the speed of any addition operation. The 

delay of carry propagation varies according to the addition technique which can be 

ripple carry adders, Carry look-ahead, Conditional sum adder ...etc. 

In redundant number system, carry-free addition is achieved. The key idea 

is the extension of number representation of a radix β system such that it is not 

limited to [0... β-1]. For example, in the decimal radix 10 system, we represent any 

number with the set of digits [0, 1…9]. In case of redundant representation, we 

allow a representation with further digits such as 10, 11… 18 so any number can 

be represented with a set of digits [0…18]. This representation eliminates carry 

propagation in addition as shown in the following example: 

Assume we need to add two numbers 362910 and 278635. The ordinary addition 

which is held via carry propagation will be 

          5  4  5  1  4  6    

____________

  5  3  6  8  7  2

0  1  9  2  6   3   

   1   1   1   

+       

And with redundant representation 

          5    4    15  10  13   5    

_________________

  5    3    6    8    7    2

0    1    9    2    6     3   

  

+  

 

The previous example illustrates the redundant number system in addition in case 

of inputs are in the non-redundant format. Moreover, we can consider an example 

if the input operands are in the redundant format. One can think that if the inputs 
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occupy the digit range [0, 18], the output is extended to the range [0, 36]. 

However, any digit in the range [0, 36] can be decomposed into an interim sum in 

the range [0, 16] and a transfer digit (carry) in the range [0, 2].i.e. it is represented 

as [0, 1, 2… 36]=10 x [0, 1, 2] + [0, 1, 2….16] ,  Then, one additional concurrent 

addition stage is necessary to recover the output in the range [0, 18]. To illustrate 

this idea, consider the following example 

  

   11     9   17    10    12    18

 6     12    9     10     8     18 

________________________

    17   21   26    20    20    36 

                     

     7    11   16     0      0      16

1   

+

↓ ↓ ↓ ↓ ↓ ↓

 1     1     2      2     2

___________________________

1     8    12    18    2     2      16 

 

 

We find that we have two concurrent addition levels. Another representation for 

the same example can be as follows 

  

   11     9    17    10    12    18

 6     12    9     10     8     18 

________________________

    17   21   26    20    20    36 

                     

      7     1    6     10     10    16

1  

+

↓ ↓ ↓ ↓ ↓ ↓

  2     2     1     1        2

___________________________

1     9    3     7    11     12    16 

 

We find two different representations for the same result; this is why it is a 

redundant number system representation. If we convert it back to the non-

redundant format, we have the same result for the two different representations. It 

is 1 9 3 8 2 3 6 . 
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In case of a redundant representation, addition in all digit positions is 

performed concurrently; this is called carry save additions. A possible redundant 

form on which we can represent the binary systems is the set of digits






 −

1, 0, 1 . In 

this case, each of the 3 digits is represented using two bits. Assume we need to 

subtract 10011 from 01010, the result in redundant format will be 
−−

1 0 0 1 1 . This 

idea can be applied to the case of metric normalization with subtraction. Instead of 

performing subtraction of ( ) ( ) ( )1 1 0

n

k k ks s sΑ = Α −Α , the direct combination of 

( ) ( )1 0,  k ks sΑ Α  is considered a redundant representation of ( )1n

k sΑ . 

 

5.3.3.5 Proposed Normalization using redundant representation 

 

In this thesis, we propose to normalize the state metrics with respect to 

state-0 instead of maximum or minimum state. In this scheme, the normalization 

block comprises subtraction only instead of comparison and subtraction. This 

means a decrease in the critical path delay. Moreover, this scheme removes the 

memory bank used to store state 0 metric. Table 5.3 illustrates the memory 

reduction due to this normalization scheme. It is shown that the proposed 

normalization scheme reduced the required storage by 6.7% of the branch metric 

memory and 12.5% of state metric memory. 

 

Table  5-5 Comparison between number of storage bits of conventional and proposed schemes 

 Conventional Normalization Proposed Normalization 

State metric 

memory bits 
4096 bits 3584 bits 

 

Additionally, we introduce a novel implementation for the proposed 

normalization. This is carried out via redundant representation of normalized state 
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metrics. In this scheme, instead of performing normalization after Add/Compare 

and Select operation, the un-normalized state metrics are forwarded to the next 

recursion. This form of un-normalized metrics is a redundant representation of the 

normalized metric. The normalization step is combined with the addition of the 

next recursion in one step. The key idea behind improvement of this 

implementation is that the CPA delay is converted to a CSA delay which is 

significantly lower than CPA delay. 

In this case,  

1 1 1( ) max{ ( ) ( ) (0)}k j k i k k i j ks s s s− − → −Α = Α +Γ → −Α         (5.9) 

1 1 1( ) max{ ( ) ( ) (0)}k j k i k k i j ks s s s− − → −Β = Β +Γ → −Β       (5.10) 

The critical path of the proposed implementation implies 1 CSA, 1 CPA, 

Comparison and MUX as shown in Figure  5.17. The double line arrow represents 

an operand in redundant format. 

 

Figure  5.17 Reduced State metric unit 

 

A further reduction in worst case delay is achieved by taking advantage of 

full redundancy. This is carried out by removal of the CPA. In this case, we deal 

with the computed values in redundant format as a separate sum and carry vectors. 

Compare 

MUX 

α1n   γ1   α2n    γ2       α3n   γ3     α4n   γ4 

+ + + + 
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Comparison stage has its inputs and outputs in redundant format and the output of 

this unit is also in redundant format. 

The worst case delay in this case comprises 3 CSAs, redundant comparison and 

MUX stage as shown in Figure  5.18. 

 

Figure  5.18 full redundant reduced State metric unit 

 

The redundant comparator is implemented such that it has two stages; each 

stage has a delay which is considered O(log(n)). To illustrate the operation of the 

comparator that deals with redundant operands, we present the ordinary 

comparator with delay O(log(n)) and then show how we extend it to handle 

redundant operands. The key idea of the O(log(n)) comparator that compares 

between X, Y is to generate two signals L (stands for Larger than), E (stands for 

Equal to) at each bit position such that : 

 

 

 

Redundant 

Comparator 

MUX 

α1  γ1  -α0    α2 γ2  -α0      α3 γ3 -α0     α4 γ4 -α0     

+ + + + 
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 if( X(i)> Y(i)) 

  L(i) = 1 

 else 

  L(i) = 0 

 if( X(i)= Y(i)) 

  E(i) = 1 

 else 

  E(i) = 0                List 5.2 

 

The next step is to combine two neighboring bit positions to generate a second 

level L1, E1 signals such that: 

L1(j) = L(2j+1) + (L(2j). E(2j))  

E1(j) = E(2j+1). E(2j)  

At each step, the number of L, E signals is halved until we reach to the final 

decision. This takes a delay of log(n). Implementation of the above procedure is 

carried out via simple logic gates. 

The ordinary comparison is based on that ( ) ( ) { }, 0,1X i Y i = . In case of operand in 

redundant format, we have ( ) ( ) { }, 0,1, 2X i Y i = . The operation of generating L, E 

signals is illustrated in Table  5-6. 

Table  5-6 Comparison between ordinary and redundant comparator 

 Ordinary Comparator Redundant Comparator 

L(i)=1 X(i)=1 and Y(i)=0 X(i)=2 and Y(i)=0 

X(i)=2 and Y(i)=1 

X(i)=1 and Y(i)=0 

E(i)=1 X(i)=1 and Y(i)=1 

X(i)=0 and Y(i)=0 

 

X(i)=2 and Y(i)=2 

X(i)=1 and Y(i)=1 

X(i)=0 and Y(i)=0 
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It is shown that the difference between the ordinary and redundant comparator 

occurs only in first step, the remaining steps are similar. 

  

 A further optimization of the critical path delay is suitable by taking into 

consideration that the comparison does not depend on the operand –α0. We can 

combine addition of –α0 with comparison. This results in a removal of 2 CSA 

levels from the critical path. The final architecture of the SMU will be as shown in 

Figure  5.19. 

 

Figure  5.19 Enhanced full redundant State metric unit 

 

The drawback of our proposed normalization technique is the increase in 

the area due to the increase in the number of CSAs and comparators that deal with 

redundant operands. Another drawback is the increase in memory as we need to 

store state metric of state 0. However, in order to preserve memory storage, we 

propose to normalize states by subtraction before storing into memory. This is 

performed via a 2-stage pipelined architecture as shown in Figure  5.20 

-α0 -α0 -α0 -α0 

Redundant 

Comparator 

MUX 

 α1    γ1        α2    γ2          α3   γ3         α4     γ4      

+ + + + 

+ + + + 
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Figure  5.20 Proposed State Metric RAM interface  

 

These different implementation techniques are tested using Mentor Graphics 

Precision RTL synthesis tool. The design platform is Altera-STRATIX II FPGA, 

EP2S15F484C family. The synthesis results are performed before place and route. 

Table  5-7 represents area and delay report of the four different architectures; 

Normalizing with respect to maximum or minimum, normalization with respect to 

state 0, redundant representation of normalized state metrics, and full redundant 

architecture. 

 

Table  5-7 Area-Delay report for different state metric architectures 

 Normalize to 

minimum or 

maximum 

Normalize to 

state 0 

Redundant 

Normalized 

state metrics 

Full redundant 

architecture 

Area (Number 

of LUTs) 
812 644 928 1424 

Critical path 

delay 
17.88 ns 11.477 ns 11.279 ns 8.26 ns 

Maximum 

Frequency 
55.928 MHZ 87.13 MHZ 88.66 MHZ 121.065 MHZ 

 

State 

Metric 

Unit 

 

Reg 

State 

Metric 

RAM 

Norm 

By 

subtraction 
Redundant 



 103 

The results in Table  5-7 indicate that the second architecture is the best 

area-saving architecture and the fourth one is the best delay-saving one. The full 

redundant architecture increases the maximum frequency with 113.7% over the 

first architecture and 37.65% over the second one. However, it increases the area 

by 75.49% over the first architecture and 123% over the second one. We conclude 

that the redundant representation speeded up the operation at the cost of increasing 

the hardware area.  

5.3.4 Backward Metric Unit 

 

The backward state metric unit implementation is similar to that of forward 

state metric unit, except that no need to use extra memory to store backward state 

metrics. Some implementations consider one unit to be used for both forward and 

backward state computation, however, we need to take advantage of full speed 

SISO architecture, so separate unit are assumed in our implementation. Moreover, 

in our proposed implementation, LLRs are computed as soon as Backward metrics 

are ready. At the beginning of the traceback for each sliding window, all backward 

metrics are assumed to be equiprobable, at the last window, we initialize metrics 

such that circulation state Sc has the largest metrics. 

 

5.3.5 LLR Computation Unit 

 

The purpose of this unit is to calculate the soft output LLRs. In order to calculate 

the three LLRs as explained in section  3.3.6, we need to calculate four soft outputs 

as given by equation (3.40).   

1 1( , ) max{ ( ) ( ) ( )}k k i k k i j k jT a b s s s s− − →= Α +Γ → +Β  

For each value of ( , )ku a b= , we have 8 corresponding branches on which we add 

corresponding forward, branch and backward metrics for each, then select the 

maximum value. This is carried out via ACS unit as shown in Figure  5.21. 
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Figure  5.21 LLR Computation unit 

 

In our case, we need to calculate four values; one corresponding to each 

symbol ( , )ku a b= . After this step, normalization of ( , )kT a b with respect 

to (0,0)kT takes place in order to calculate the three LLRs. After calculation of 

LLRs, extrinsic LLRs should be calculated and final estimated bits are also 

calculated. However, our proposed implementation combines normalization of 

LLRs with the calculation of extrinsic LLRs in one step. 

 

5.3.6 Extrinsic LLR Computation Unit 

 

Extrinsic LLRs represent the a-priori information that is bypassed from one 

component decoder to the other component decoder. The calculation of the 

extrinsic LLR is carried out through subtraction of input systematic and extrinsic 

LLR from the corresponding output obtained LLR as follows 

 

+ + + + + + + + 

Comparator 

MUX 

A1 B1 Γ1         A2 B2 Γ1           A3 B3 Γ2     A4 B4 Γ2        A5 B5 Γ3    A6 B6 Γ3     A7 B7 Γ4     A8 B8 Γ4 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, ,

, ,

, ,

0,1 0,1 0,0 0,1

1,0 1,0 0,0 1,0

1,1 1,1 0,0 1,1

o
Be k k k e k

o
Ae k k k e k

o
BAe k k k e k

L T T R L

L T T R L

L T T R R L

= − − −

= − − −

= − − − −

                    (5.11) 

  

The normalization of the LLRs is combined in the calculation of extrinsic LLRs. 

This has the benefit of converting CPA needed for normalization into a CSA, 

which should have much smaller delay. 

 The problem of the calculation of extrinsic LLRs is the increase of the 

dynamic range with the increase in the number of iterations. Consequently, this 

increases the number of bits of extrinsic LLRs, branch metrics and state metrics. 

In order to resolve this problem, saturation of extrinsic likelihoods is carried out. 

This is implemented through a saturating adder/subtractor. Its main function is to 

saturate at the maximum or minimum values in case of overflow, so that it 

guarantees that the output is in the range 
2 2

, 1
2 2

n n 
− − 
 

 for n-bit precision. The 

main issue is to select the minimum suitable number of bits to represent extrinsic 

likelihoods, and preserve good performance at the same time. Fixed point analysis 

indicates that a 6-bit representation is considered the optimum number of bits for 

extrinsic likelihoods. 

 

As shown in Figure  5.22, each of the three extrinsic likelihoods is 

calculated via multi-operand addition followed by a MUX for saturation purposes. 

For ( ), 0,1o

e kL and ( ), 1,0o

e kL , the multi-operand adder consists of 2 CSA levels 

followed by 1 CPA level. The multi-operand adder of ( ), 1,1o

e kL  consists of 3 CSA 

levels followed by 1 CPA level. 
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Figure  5.22  Extrinsic LLR computation unit 

 

 Extrinsic likelihoods are used by the next component decoder as a-priori 

information in improving the decoding estimation. In SW-Log MAP with our 

proposed architecture, the obtained likelihoods are in the reverse order as they are 

generated in the backward recursion phase. Some implementations proposed to 

use a Last Input First Output (LIFO) for likelihoods after they are generated  [31]. 

However, this has its drawback in increased latency. In this thesis, we propose a 

lower latency implementation. It depends on passing the extrinsic likelihoods 

through an interleaver / deinterleaver before the second component decoder. In 

order to remove latency from LIFO block, we propose that generated likelihoods 

are passed directly through the interleaver / deinterleaver. On one hand, this 

permits the removal of the LIFO latency. On the other hand, we can not use the 

address generator in section  5.2.2.2. This forces us to use the LUT implementation 

of the address generator specified in  5.2.2.1 which consumes a larger memory 

area.   

2 2
 1

2 2

n n

− −  
2 2

 1
2 2

n n

− −  

          Tk (0,1) -Tk (0,0)   RB  Le,k (0,1)   Tk (1,0)  -Tk (0,0)   RA  Le,k (1,0)        Tk (1,0)  -Tk (0,0)   RA  RB Le,k (1,0) 

+ 

MUX 

+ + 

MUX MUX 

2 2
 1

2 2

n n

− −  
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5.4 Synthesis Results 
 

In order to test our implementation for satisfying performance requirements, 

all the implemented blocks are synthesized on Altera FPGA. The target device is 

Altera StratixII EP2S15F484C3 using Quartus II software tools, targeting 

optimization for speed. We obtain the following results as indicated in Table  5-8  

 

Table  5-8 Synthesis results for CTC encoder 

Block 
Number of 

LUTs 

Number of 

Registers 

Number of 

Memory bits 

Maximum 

Frequency of 

operation 

Constituent 

encoder 
5 5 __ 

Maximum 

achieved (500 

MHZ) 

CTC 

interleaver 
139 83 1024 194 MHZ 

Sc ROM __ __ 192 __ 

Subblock 

interleaver 
73 32 3072 177 MHZ 

CTC encoder 232 200 6480 164 MHZ 

 

 

 From the results given in Table  5-8, we conclude that our implementation 

for turbo encoder blocks has around 2% Logic utilization, with an operating 

frequency much higher than that required by WiMAX. 
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Table  5-9 Synthesis results for Turbo decoder components 

Block 
Number of 

LUTs 

Number of 

Registers 

Number of 

Memory bits 

Maximum 

Frequency of 

operation 

Branch metric 

Unit 
244 149 6208 384.32 MHZ 

State Metric 

Unit 
699 120 

3584 (For 

Forward state 

unit only) 

154 MHZ 

2-stage 

pipelined LLR 

Computation 

Unit 

610 237 __ 204.58 MHZ 

Extrinsic LLR 

Computation 

unit 

118 84 __ 304 MHZ 

SISO + 

Interleaver / 

Deinterleaver 

2926 1112 36704 150.15 MHZ 

 

From the above results, we conclude that our SISO component can be used 

four times and satisfies the timing requirements of the IEEE 802.16e standard. 

This means that we can use one SISO block to achieve two successive decoding 

iterations. In order to have four decoding iterations, two SISO blocks are required. 

There are other proposed architectures in the literature. The WiMAX CTC decoder 

architecture proposed in  [35] targets Xilinx XC4VLX80-11FF1148 chip and 

operates at 125MHZ. However, the CTC decoder proposed in  [35] supports H-

ARQ, but our decoder does not support it. The main difference between HARQ 

support and non HARQ support is that the HARQ supports interleaver block sizes 

up to 2400 couples, but in our case, the maximum CTC block size is 240 couples 

(480 bits). This has the impact on the interleaver memory size. The WiMAX CTC 

decoder proposed in  [36] operates at maximum frequency of 200 MHZ, but it 

targets 0.18 µm 4-Metal CMOS standard cell.   
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Chapter 6 

6 Sampling clock and Frequency Tracking 
 

6.1 Introduction 
 

Synchronization in OFDM systems has been a crucial issue. OFDM systems 

are much more sensitive to offset in carrier frequency than single carrier schemes 

with the same bit rate. Mis-synchronization leads to a loss of orthogonality among 

different subcarriers, and hence we have the problem of ICI. 

Good synchronization techniques play a key role in system performance, and 

they drive the need of efficient implementation techniques. Many techniques have 

been proposed in order to handle OFDM synchronization. OFDM synchronization 

can be basically divided into Symbol (Timing) synchronization and Carrier 

frequency synchronization. 

Timing Synchronization in OFDM systems is used in order to achieve 

synchronization and alignment to the received OFDM symbol windows. The mis-

synchronization can lead to a severe effect in decoding. The OFDM Timing 

Synchronization comprises three steps; Frame detection, Fine symbol timing and 

Sampling clock frequency tracking. The first step, Frame detection, is responsible 

for detecting an incoming frame at the receiver terminal. This is performed by 

continuously sensing the energy at the receiver input and comparing it to a 

threshold. The second step is fine symbol timing, which is responsible for 

detection of the beginning and end of the OFDM symbol. It represents a fine 

estimation over the first step. More information about symbol timing techniques 

can be found in  [11],  [37]. The third step, in contrast, is responsible for tracking 

the sampling clock frequency error that occurs between sampling clock at Digital 

to Analog Converter (DAC) at transmitter and sampling clock at Analog to Digital 

Converter (ADC) at receiver. In this thesis, we consider only the sampling clock 

frequency tracking step. We represent the effect of the sampling error on the 
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received subcarriers and show an algorithm used to correct this sampling error. 

Finally, the hardware implementation of this algorithm is represented. The 

Hardware implementation of the Frame detection and Symbol Timing blocks is 

described in  [13]. 

 

Similar to the Timing synchronization, the Frequency synchronization is used 

to compensate for the effect of frequency error between local oscillator at 

transmitter and local oscillator at receiver. It also comprises three steps; Coarse 

Frequency offset estimation, Fine Frequency offset estimation and Residual 

Carrier Frequency offset tracking. The frequency offset can be divided into an 

integer part and a fractional part. Fine frequency offset is responsible for 

estimation of the fractional part and coarse frequency offset is used in estimation 

of the integer part  [38]. The frequency offset tracking is used to further 

compensate for mis-estimation that may occur from the two previous steps, or the 

continuous variation of oscillator frequency that may depend with environmental 

conditions. In this thesis, we concern with the frequency tracking step.   

 

6.2 Effect of sampling clock frequency offset 

  
Sampling Clock Frequency Offset (SCFO) occurs as a result of difference of 

oscillator frequencies at transmitter DAC and receiver ADC. This offset has its 

effect in both time and frequency domains. Figure  6.1 illustrates the sampling 

error phenomena with solid lines indicating exact sampling time slots, and dashed 

lines indicating sampling time slot drift due to sampling error. In IEEE 802.16e, it 

is specified that at the station set, the sampling clock frequency shall be 

synchronized and locked to the base station (BS) with a tolerance of maximum 5 

parts per million (ppm) as specified by IEEE 802.16e standard  [7]. The SCFO has 

its impact in both time domain and frequency domain. In the time domain, it 

causes a drift in the OFDM symbol window. In the frequency domain, SCFO 
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causes a change in subcarrier phases. The two effects should be handled. In order 

to handle the effect of SCFO, many techniques were proposed, some depend on 

using closed loop techniques based on Delay Locked Loop (DLL)  [39]. Other 

techniques based on open loop synchronization  [40],  [41]. 

Open loop techniques that depend on pilot subcarriers or preambles are suitable 

for digital implementation platforms. The next section describes in details the 

effect of SCFO in both time domain and frequency domain then the tracking 

algorithm is described. 

 

Figure  6.1 Sampling error phenomena 

 

6.2.1 Effect of sampling error in time domain 

 

 In the time domain, the effect of SCFO appears as a drift in the OFDM 

symbol window; this drift accumulates each OFDM symbol. After a while, this 

drift will cause irreducible error that can not be recovered in the frequency 

domain. The operation of OFDM symbol window drift can be described as 

follows: 

For an OFDM symbol with Ns samples, if the OFDM symbol index is l, then the 

expected interval is [(l-1)Ns , lNs ], but due to the drift, it will be [(l-1)(1+∆)Ns ,       

l (1+∆) Ns ] as shown in Figure  6.2. It is obvious that the total drift in time domain 

is a factor of the symbol index l. In fact the problem will occur if the total drift 

exceeds half the sample time. In this case, one sample should be added if the 

sampled version is faster than the original or dropped if the sampled version is 

slower. This operation is defined as ROB/STUFF or ADD/DROP mechanism.  
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Figure  6.2 OFDM Symbol window drift 

 

6.2.2 Effect of sampling error in frequency domain 
 

SCFO represents a time error between sampling time Ts at transmitter and 

sampling time Tr at receiver. This offset in time will be converted to a phase shift 

in subcarrier phases in the frequency domain after the FFT block at receiver. The 

effect of phase rotation in the frequency domain can be expressed in a 

mathematical form as follows: 

Let Nu be the useful number of samples in one OFDM symbol window, it should 

be equal to FFT size. 

 n is the sample index in a certain OFDM symbol, 1
22
−≤≤− uu N

n
N

 

Ns=Nu+Ng is the total number of samples of OFDM symbol window in time 

domain including useful samples Nu and guard interval samples Ng. 

m is the sample index in the time domain, which can be expressed as 

          =1,2,3,....
2

u
s

N
m lN n l= + −          (6.1) 

Then, for a certain OFDM symbol with index l, a subcarrier with index K is 

expressed as 

1 2   
2

   
2

( ) ( ). 

u

u

u

N
K n

j
N

N
n

X K x m e

π−
−

= −

= ∑  

Original Window 

2∆ ∆ 

……………..

. 

……………..

. 

Received Window 
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After applying the effect of SCFO, we have the new time index is ( )1m + ∆  

instead of m. In this case, a subcarrier with index K is expressed as 

( )2    1 .
21

2

   
2

'( ) '( ). 

u
su

u

u

K

j

N
n l NN

N

N
n

X K x m e

π
  
  
   −

+∆ + − ∆
−

= −

= ∑       (6.2) 

 where ∆ is the relative sampling error and it is equal to 

s

sr

T

TT −
=∆              (6.3) 

( )
( )( )2 11

2 0.5 2

   
2

' .'( )

u
s

uu

u

N K nN jj K l
NN

N
n

x m eX K e

π
π

+∆−  −− ∆ 
 

= −

= ∑  

By neglecting the value of the relative sampling error ∆ with respect to 1 in the 

exponent, we get 

2 0.5

'( ) ( )

s

u

N
j K l

N
X K e X K

π
 
  
 

− ∆

≈           (6.4) 

 

We conclude that the effect of sampling error represented by a delay in the time 

domain is converted to a linear phase shift in the frequency domain. A similar 

results can be obtained from  [41].  

It can be proven from equation (6.4) that the phase error line is approximately 

equal to

∆− )5.0(2
u

s

N

N
lkj

e
π

; this means that the first OFDM symbol has a phase error 

with slope 2 0.5s

u

N

N
π
 

− 
 

, the second OFDM symbol has a phase error with 

slope 2 2 0.5s

u

N

N
π
 

− 
 

, and so on. Figure  6.4 plots the phase error with the 

subcarriers for successive OFDM symbols. 



 114 

 This phase shift is represented by a rotation to the constellation diagram as 

indicated in Figure  6.3.a,b,c. Figure  6.3.a shows the ideal QPSK constellation 

where Figure  6.3.b and Figure  6.3.c show the effect of SCFO on rotating the 

constellation for QPSK and 16-QAM respectively. 

 

 

(a) Ideal QPSK constellation   (b) Rotated QPSK constellation 

 

(c) Rotated 16-QAM constellation  

 

Figure  6.3  (a) Ideal QPSK constellation (b) Rotated QPSK constellation 
    (c) Rotated 16-QAM constellation 
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Figure  6.4 Phase error line for successive OFDM symbols 

 

6.2.3 SCFO Synchronization algorithm 

 

SCFO synchronization implies two steps: Correcting phase error in frequency 

domain, and correcting drift in time domain. This synchronization technique is 

carried out with the aid of pilot subcarriers and was proposed in  [41]. 

 

The key idea behind this algorithm is to use the pilot subcarriers to estimate 

the phase rotation of the data subcarriers. After this estimation, a derotation of data 

subcarriers is carried out to compensate for the effect of SCFO error. At the same 

time, the add/drop mechanism is done via controlling the length of the removed 

CP at the receiver before the FFT operation. The number of removed samples of 

the CP can be either increased or decreased according to the drift of the OFDM 

symbol window.   

Many techniques have been proposed to estimate the phase rotation of the 

pilot subcarriers. Some of these techniques, as mentioned in  [11], depend on cross 

correlation between pilots of a certain OFDM symbol with pilots of the previous 

OFDM symbol. However, in case of 802.16e, we find that in some permutation 
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schemes, pilot locations can differ among successive symbols. It can be defined in 

a certain set for odd OFDM symbols and another set in even symbols. The case 

studied in this thesis is the most commonly used FUSC permutation with FFT size 

1024. 

 

The used technique depends on estimating the pilot phases for each OFDM 

symbol separately. This is carried out through cross correlation of the received 

pilot subcarriers with the pre-known transmitted pilot subcarriers. This can be 

described as follows:      

Let Pk,l be the modulated pilot subcarrier with index k for OFDM symbol with 

index l , the received pilot subcarrier is indicated as Rp k,l such that 

φj
lklk ePRp .,, =                       (6.5) 

We obtain the angle rotation  

( ))( conj . ,,, lklklk RpP∠=φ            (6.6) 

The value of lk ,φ  is calculated for all pilots. The next step is to estimate the 

equation of phase error line in order to estimate phase rotation of other data 

subcarriers. The most accurate used algorithm is to fit the obtained pilot phases to 

the nearest line. This is done via Least Square (LS) Linear Curve Fitting 

algorithm. 

 

6.2.3.1  Phase tracking via LS linear curve Fitting 

 
The Least Square (LS) algorithm is used to obtain the best curve f(x) that fits 

to a set of points (xi, yi). The linear curve fitting is used to obtain the best straight 

line that fits to some set of points. The key idea behind this is that it minimizes the 

error between line and data points as follows: 

For a set of points (xi, yi), and the line equation ( ) baxxf ii += , we can define 

the sum of squared errors as: 
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Figure  6.5 LS linear curve Fitting 

( )( )2∑ −= ii xfyerr  

( )2∑ −−= iii baxyerr            (6.7) 

The mission of LS algorithm is to calculate a, b coefficients such that the error is 

minimized. 

( ) 02 =−−−=
∂
∂

∑ iiii baxyx
a

err
          (6.8) 

( ) 02 =−−−=
∂
∂

∑ iii baxy
b

err
          (6.9) 

Solving equations(6.8), (6.9) we can re-write them as follows 

∑ ∑ ∑=+ iiii yxxbxa .2  

∑ ∑=∗+ ii ynbxa  

 

Then, the obtained set of equations can be written in a matrix form as 
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2        (6.10) 

where n is the number of points. 

In our case, yi represents estimated phase of pilot with index xi. 

Phase estimation of the remaining data tones is carried out through the phase line 

equation 

(x4, y4) 

(x3,y3) 

(x2, y2) 

(x1, y1) 
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bkae

lk +=  . ,φ           (6.11) 

where e

lk ,φ indicates the estimated phase error of subcarrier with index k for OFDM 

symbol l. a is the slope and b is the bias or intercept. 

The last step is to correct the phase error through subcarrier derotation  

( ), ,  . exp  -j 
e e
k l k l k,lZ Z φ=          (6.12) 

 

6.2.3.2 Symbol Re-timing with ROB/STUFF 

 

The next step with phase tracking is called symbol re-timing. It plays a key 

role in synchronization process as it compensates for the drift caused to OFDM 

symbol window. Symbol re-timing is performed through controlling the length of 

the removed CP before the FFT operation. This also is called ADD/DROP 

mechanism. The process of removing one extra symbol to the CP or dropping one 

symbol is needed when the drift in the OFDM symbol window exceeds sT
2

1
. It can 

be proven that a drift in the OFDM symbol window will exceed sT
2

1
 when the 

difference in phase error between the first and last subcarriers in the same symbol 

exceeds a value of π. This procedure is described as follows: 

 

For each OFDM symbol of index l 

If ( π≥−−− ),
2

_
(),1

2

_
( l

SIZEFFT
φl

SIZEFFT
φ ee ) then 

  Remove CP-1 

If ( π−≤−−− ),
2

_
(),1

2

_
( l

SIZEFFT
φl

SIZEFFT
φ ee ) then 

  Remove CP+1 
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LS linear curve fitting is the best algorithm to estimate phase error line, as it is less 

sensitive to AWGN channel effects. 

Figure  6.6 illustrates the resultant constellations before and after the phase 

recovery in constellation for QPSK and 16-QAM respectively. 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

 

 

 

 

 

 

 

 

 

 

(c)                                                                            (d) 

 

Figure  6.6 (a) QPSK before de-rotation   (b) QPSK after de-rotation 

        (c) 16-QAM before de-rotation        (d) 16-QAM after de-rotation 
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In Figure  6.7, phase error tracking is indicated in case of symbol re-timing and 

without symbol re-timing. It is shown that without symbol re-timing, the phase 

error accumulates, until no further tracking can correct it.  

 

(a) 

 

(b) 

Figure  6.7 (a) Phase tracking without Add/drop mechanism 

 (b) Phase tracking with Add/drop mechanism 
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6.3 Effect of Residual Carrier Frequency offset 

 

In addition to the timing offset discussed before, OFDM is more sensitive to 

frequency offset than single carrier schemes. The main reason of the frequency 

offset is the mismatch between the local oscillator at the transmitter and the 

receiver. Other factors such as Doppler shift in high speed mobile systems, may 

participate in the increase of the frequency offset.   

 

Frequency offset results in a loss of orthogonality among subcarriers, which 

results in the ICI. Many papers addressed the problem of frequency offset in 

OFDM systems. Some proposed techniques use the pilot subcarriers to estimate 

the frequency offset  [42]. Others are proposed to use time domain techniques, such 

as redundancy in CP to estimate frequency offset  [43]. Some approaches depend 

on Phase locked loop to correct the frequency offset  [44].  

 

The Residual Carrier Frequency offset (RCFO) is a result from a non-perfect 

estimation from the Coarse and fine frequency offset stages. The local oscillator 

carrier frequency may also change slightly due to environmental conditions. The 

function of the frequency offset tracking stage is to track RCFO and correct its 

effect. In this thesis, we focus on the frequency offset tracking stage, illustrating 

its effect and tracking algorithm.  

  

The RCFO results in a phase offset in each subcarrier of every OFDM 

symbol. It can be seen as a rotation of the constellation axis in frequency domain. 

This is in contrast to the effect of SCFO, which has a linear phase error that varies 

with subcarrier index and OFDM symbol number. Figure  6.8 illustrates the effect 

of phase rotation due to RCFO in a certain OFDM symbol in case of 16-QAM 

modulation. 
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Figure  6.8  Constellation rotation due to RCFO 

This effect can be derived as follows: 
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It is shown that RCFO results in a phase offset that is proportional to OFDM 

symbol index. The added term ∆f.Ts.Nu is very small and can be neglected. Its 

effect begins to occur with higher values of ∆f as an increase in ICI. In general, it 

should have a small value after coarse and fine frequency offset stages. The value 

of phase offset differs among successive OFDM symbols as shown in Figure  6.9. 

 

Figure  6.9 Effect of RCFO on phase error 
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We conclude that combining the effect of both RCFO and SCFO, the RCFO 

results in a bias in the phase error of each OFDM symbol, and SCFO determines 

the slope of phase error line for each OFDM symbol. The used technique for 

estimation and correction of SCFO can be used as a joint estimation of both SCFO 

and RCFO. The LS algorithm determines the bias and the slope of phase error in 

each OFDM symbol. The bias is caused mainly by RCFO and the slope is affected 

by SCFO. Figure  6.10 represents the phase error due to the combined effect of 

both RCFO and SCFO. The estimated phase of any tone will be the combined 

effect due to both RCFO and SCFO. Derotation of data subcarriers is a correction 

to both SCFO and RCFO effects. 

 

 

 

Figure  6.10 Phase error for combined SCFO and RCFO 
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6.4 Simulation results 
 

6.4.1 LS algorithm performance 

 
This section illustrates the performance of the LS estimation algorithm in case of 

RCFO and SCFO. Simulation parameters assumes the case of FUSC permutation 

scheme and FFT size =1024 

 

Number of used subcarriers Nused = 851 

Number of pilot subcarriers = 82 

Number of left guard subcarriers = 87 

Number of right guard subcarriers = 86 

Subcarrier spacing = 10.94 kHZ. 

Useful OFDM symbol time (Tu) = 91.4 µs 

Total OFDM symbol time (Ts) = 102.9 µs 

Cyclic Prefix (CP) = 1/8 

 

It is shown the BER for different values of Eb/No for AWGN channel in Figure 

 6.11. Different values of SCFO and RCFO used in simulation are large enough 

compared to practical values. The LS algorithm is still efficient in more severe 

conditions. 
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Figure  6.11 BER vs Eb/No for different RCFO values 

 

6.5 Hardware Implementation: 
 

In this section, we discuss the FPGA implementation of sampling clock and 

frequency tracking block.  

 

6.5.1 Block diagram 

 

The function of this block is to estimate the phase rotation of subcarriers and 

perform a derotation. This is performed by an estimation of pilot phases, followed 

by an estimation of the phases of other subcarriers. The required steps are 

1- Estimation of Pilot Phases 

2- Estimation of phase line coefficients 

3- Estimation of data subcarriers phases 

4- Subcarrier derotation 
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Figure  6.12 Sampling clock and frequency tracking block diagram 

 

6.5.2 Pilot Phase estimation Block 

 

This block is responsible for the estimation of received pilot phases, 

depending on the information of the transmitted pilots. Estimation of pilot phases 

can be implemented with the aid of CORDIC rotation. It is a simple algorithm that 

is used to rotate a vector with a certain phase through successive Add and Shift 

operations. 

 

Inputs to this block are Rx_re, Rx_im that represent real and imaginary parts 

of received subcarrier, pilot_flag signal is activated to indicate that the received 

subcarrier is a pilot subcarrier. The output of this block is Rot_rx_re, Rot_rx_im 

that represent real and imaginary part of rotated subcarrier respectively. Est_angle 

is the estimated angle of pilot subcarrier, which will be used by next block to 

estimate data subcarriers. Valid_out signal is activated once the output is valid. 

 

Estimate 

Pilot  

Phases 

Estimate 

Phase line 

coefficients 

Estimate 

data 

subcarrier 

phases 

Subcarrier 

derotation 

Rob / Stuff 



 128 

 

Figure  6.13 Phase estimation block diagram 

 

6.5.2.1 CORDIC algorithm: 

 

CORDIC stands for COordinate Rotation DIgital Computer. It is used as an 

alternative to complex multiplication to rotate vectors  [34].The key idea behind 

CORDIC operation can be described as follows 

 

Figure  6.14 Basic CORDIC rotation 

 

If the initial value of a certain vector is given as x1 = (1,0), and it is rotated by 

an angle z, the new value will be x2 = (cos z, sin z). The value of cos z or sin z can 

is the real or imaginary value of x2 after rotation. The CORDIC algorithm is based 

 Clk    RST 
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on rotating a vector with a single angle through successive rotations of constant 

pre-calculated angles. As the number of iterations increases, we obtain a better 

accuracy. Figure  6.14 illustrates a sample CORDIC iteration. 

 

Assume that a vector with coordinates (xi, yi) is to be rotated by an angle αi to 

the new coordinates (xi+1, yi+1). The values of the new coordinates are 

1 cos sini i i i ix x yα α+ = −  
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1

2

tan

1 tan

i i i
i

i

x y
x

α

α
+

−
=

+
 

1 cos sini i i i iy y xα α+ = +  

( )
1

2

tan

1 tan

i i i
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i

y x
y

α

α
+

+
=

+
 

iii zz α−=+1           (6.14) 

After m iterations, we obtain ∑−= im zz α0  

In order to simplify these calculations, the values of iα are chosen to be ( )1tan 2 i− −  

such that multiplications are converted to simple add and shift operations. The 

term ( )21 tan iα+ in the denominator can be omitted such that rotations are 

converted to pseudo-rotations, which are a scaled version from the conventional 

rotations as shown in Figure  6.14. After pseudo-rotations, we obtain the new 

coordinates as ( )1 1

' ',i ix y+ + . The general form of CORDIC rotation is obtained as 

follows 

 1

'' ' . .2
ii i

i
ix x y d

+

−= −  

 1

'' ' . .2
ii i

i
iy y x d

+

−= +  

1
1 . tan 2 i

i i iz z d − −
+ = −                  (6.15) 

where { }1 , 1−∈id  
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The values of angles tan
-1
2
-i
 are pre-calculated and stored in a LUT. The structure 

of the basic CORDIC hardware consists of two adders and a LUT as shown in 

Figure  6.15. 

 

Figure  6.15 Basic CORDIC Hardware 

 

The approximate values of angles tan
-1
2
-i 
which should be stored in a LUT are 

given in Table  6-1 as shown 

 

Table  6-1 Approximate values of tan-12-i 

i 1 2 3 4 5 6 7 8 9 10 

tan
-12-i 

(degrees) 

45
0

 26.6
0

 14
0

 7.1
0

 3.6
0

 1.8
0

 0.9
0

 0.4
0

 0.2
0

 0.1
0

 

tan
-12-i 

(radian) 

0.785    0.464    0.245    0.124    0.062    0.031    0.016 0.008     0.004    0.002 

 

To perform a set of rotation, the values of di are selected for each rotation such 

that the final angle equals ∑ iα . 

A multiplication by the constant 

+/- +/- 
 

xi yi 

xi+1 yi+1 

LUT +/- 
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Reg Reg Reg 

ASR ASR 
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∏ ∏ −+
=

+
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i

K
22 21

1

tan1

1

α
 

216467602581.1=K  normalizes the final values and converts the rotations into 

conventional rotations. 

 

This constant is used in calculation of final value of xm, ym such that: 

'1
m mx x

K
=   

'1
m my y

K
=  

 

The CORDIC algorithm operates in two modes; Rotation and Vectoring. 

They are both based on the aforementioned procedure, except that they differ in 

the mechanism of rotation. In case of rotation mode, the vector is rotated 

according to a target rotation angle so that the factor di is determined according to 

the sign of the angle zi at iteration i. It is suitable when we need to rotate a vector 

with a certain angle. It is suitable for final subcarrier derotation. 

 

In case of vectoring mode, the target is to rotate the vector with a certain 

angle α such that its imaginary part approaches zero. The decision of rotation is 

based on the sign of real and imaginary part of rotated vector after each iteration. 

It is suitable for pilot phase estimation. 

 

The entity block of CORDIC unit is shown in Figure  6.16. This version of 

CORDIC algorithm is a digit recurrence technique; this means that it calculates 

one correct bit per iteration. It is also defined as Radix-2 CORDIC. Its advantage 

is the design simplicity, but latency increase with the increase of number of 

iterations. In order to preserve higher throughput, pipelined architectures can be 

used, or either high radix CORDIC such as Radix-4 CORDIC may be used. The 
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Radix-4 CORDIC is a faster version of conventional Radix-2 CORDIC algorithm. 

It combines two iterations of conventional CORDIC into one iteration, so it 

generates two correct bits per iteration. The total number of iterations is halved. 

The cost of improving the speed is the larger hardware complexity. In Radix-4 

CORDIC, there are 4 sets of rotation angles for each iteration. Moreover, the 

constant K is not simply determined as in the case of Radix-2 CORDIC. 

 

In our implementation, the conventional Radix-2 CORDIC is more 

convenient to be used. The input received signals are quantized in 8-bit precision. 

Hence, 8 rotations are required for Radix-2 CORDIC. The synthesis results 

discussed in section  6.6 indicate that the mobile WiMAX timing requirements are 

still satisfied with the usage of one CORDIC unit for complete 8 iterations. 

  

 

Figure  6.16 CORDIC Unit entity 

 

As shown in Figure  6.16, the CORDIC unit has the quantized real and 

imaginary part of input vector that are represented in real_in and imag_in. Each is 

represented in an 8-bit precision. The mode input controls the mode of operation to 

be in rotation or vectoring mode. The iter_no input controls the shift operation 

inside the CORDIC unit. The Zin input represents the desired rotation angle in 
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rotation mode. The rotated vector is represented in real_out and imag_out. The 

valid_out signal is activated as soon as output is ready. 

 

6.5.2.2 Pilot rotation using CORDIC 

 
In this section we apply the CORDIC algorithm in estimation of pilot 

rotation. The original transmitted pilot subcarriers are known to have no imaginary 

part. In order to estimate the phase rotation of a rotated pilot subcarrier, successive 

CORDIC rotations are carried. The vectoring mode is used such that each rotation 

targets to moves the imaginary part towards zero as shown in Figure  6.17. In this 

case, the value of di is determined such that yi+1 approaches zero value. Table  6-2 

illustrates determination of rotation factor di for each iteration. 

 

Table  6-2 Determination of CORDIC rotation factor di 

xi yi di 

Positive Positive -1 

Positive Negative +1 

Negative Positive +1 

Negative Negative -1 

 

The rotation factor di is calculated by a simple XOR logic function between 

the sign bits of real part xi and imaginary part yi. After the last iteration, the 

sequence of di’s can be used as an address to memory which stores the 

corresponding phase or it can be determined through recursive additions. 

 

In our implementations, eight iterations are used for CORDIC with a 

pipelined architecture to achieve higher throughput. Received data subcarriers 

should be stored in a FIFO block until they are used by the subsequent block after 
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estimation of data subcarrier phases. Moreover, pilot estimated phases should be 

stored in a RAM module until they are used in phase line coefficients estimation. 

 

 

Figure  6.17 Convergence of imaginary part in vectoring mode 

 

6.5.3 Phase Coefficient Computation block 

 

The main purpose of this block is to calculate the slope and bias of the 

phase line equation, based on estimated pilot subcarriers phases. Figure  6.18 

illustrates the entity of this block. It has inputs pilot_angle that represents the 

estimated angle of pilot subcarrier, and outputs a_coef, b_coef that represent phase 

error line slope and bias respectively. 

 

 

 

 

 

 

Figure  6.18 Phase Coefficients entity 
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In the proposed implementation, LS algorithm is used to estimate phase 

coefficients. In this thesis, we study the case of FFT size =1024, and FUSC 

permutation scheme. In this case 82 pilot subcarriers are defined. The locations of 

pilot subcarriers are divided into constant sets and variable sets. Constant sets are 

fixed locations for all OFDM symbols, while variable sets vary depending on 

whether it is an even or odd OFDM symbol. There are two constant sets and two 

variable sets, defined as indicated in Table  6-3 with respect to subcarrier index 

 

Table  6-3 Pilot locations for FUSC permutation with 1024 FFT size 

 Pilot locations 

Constant set 0 [-415  -271   -127     17    161    305] 

Constant set 1 [-343  -199   -55    89    233] 

Variable set 0 [-424  -400  -376  -352  -328  -304  -280  -256  -232  -208  -

184  -160  -136  -112   -88   -64   -40   -16     8    32    56    80 

  104   128   152   176 200   224   248   272   296   320   344  

 368   392   416] 

Variable set 1 [-388  -316  -244  -172  -100   -28    44   116   188   260   332 

  404  -412 -340  -268  -196  -124   -52    20    92   164   236  

 308   380  -364  -292   -220  -148   -76    -4    68   140   212  

 284   356] 

 

  For even OFDM symbol, pilot locations consist of constant sets and 

variable sets. However, for odd OFDM symbols, they consist of constant sets, and 

variable sets + 6. 

In this case, we construct the LS matrix as follows: 
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







−

−
=







=

∑∑
∑

4898731889

88982
2

ii

i

xx

xn
A       (6.16) 

 



 136 

For odd symbols 
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where n represents the number of pilot subcarriers 

 xi represents the set of locations of the pilot subcarriers 

 

The phase line coefficients can be estimated as follows 

 symbols, oddfor  
100428.2101.1534

101.15340122.0
      

 symbols,even for  
100454.2102175.2

102175.20122.0
       

.

76

6

76

6

1


















××

×
=


















××

×
=









=








∑
∑
∑
∑

∑
∑

−−

−

−−

−

−

ii

i

ii

i

ii

i

yx

y

yx

y

yx

y
A

a

b

 

 

Implementation of this block implies two main units, Accumulator (ACC) to 

calculate ∑ iy  and Multiply/Add and Accumulate (MAC) unit as shown in Figure 

 6.19. 

 

Figure  6.19 ACC and MAC units 

 

xi                           yi 
 

+ + 

yi 

MAC ACC 



 137 

The next step is to calculate a, b coefficients through matrix multiplications. 

Having a constant matrix simplifies multiplication operations. However, in this 

thesis, we propose a further approximation that simplifies the implementation of 

this unit. This approximation removes the matrix multiplication and has an 

insignificant loss in estimation performance. This approximation simply implies 

the calculation of a, b coefficients as follows 

∑≈ ii yxa
222

1
 

7 8

1 1 1 1

82 2 2
i i i ib y y y y

n
≈ = ≈ +∑ ∑ ∑ ∑        (6.18) 

 

The key idea of this approximation is that the coefficient multiplied by 

i ix y∑  in calculation of b coefficient has a very small weight. On the other hand, 

in the calculation of a coefficient, although the weights of the two factors are 

close, the aggregate weight of 61.1534 10 iy−× ∑  is much smaller than 

72.0428 10 i ix y−× ∑ , and the coefficient of i ix y∑  can be approximated to 
22

1

2
. 

 

This approximation removes the excess hardware needed for a, b 

calculation. Calculation of the slope a is carried out via a simple shift operation, 

and the calculation of the bias b is carried out via constant multiplication which 

can be performed with only one addition operation. This approximation has a 

small effect on degradation of the system performance. The comparison between 

BER performance in case of matrix multiplication and approximation is illustrated 

in Figure  6.20.  
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Figure  6.20 Comparison of the perfect and approximated phase coefficients 

 

The above approximation indicates that the output of the MAC unit should 

be shifted to the right. A large number of least significant bits should be truncated. 

In this thesis, a proposed implementation of the MAC unit is carried out which 

leads to a significant reduction in the area of the MAC unit. The proposed 

implementation of the MAC unit is not constructed from a multiplier followed by 

an adder, but a common used implementation is to perform the multiplication and 

addition together as one operation in one Partial Product Array (PPA)  [45]. This is 

carried out by inserting the last operand to be added as an extra partial product 

inside the PPA. When we insert the additional operand inside the PPA, we obtain 

it as shown in Figure  6.22. The next operation is to reduce the whole PPA using 

any Partial Products reduction techniques.  In this implementation, we use the PPA 

proposed in  [46] for signed multiplication. In our case, we need 10 x 10 signed 

multiplier. This PPA is illustrated in Figure  6.21. If we have X=X9….. X1X0, 

Y=Y9…..Y1Y0, then Pij=XiYj 
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         1 P09 P08 P07 P06 P05 P04 P03 P02 P01 P00 

         P19 P18 P17 P16 P15 P14 P13 P12 P11 P10  

        P29 P28 P27 P26 P25 P24 P23 P22 P21 P20   

       P39 P38 P37 P36 P35 P34 P33 P32 P31 P30    

      P49 P48 P47 P46 P45 P44 P43 P42 P41 P40     

     P59 P58 P57 P56 P55 P54 P53 P52 P51 P50      

    P69 P68 P67 P66 P65 P64 P63 P62 P61 P60       

   P79 P78 P77 P76 P75 P74 P73 P72 P71 P70        

  P89 P88 P87 P86 P85 P84 P83 P82 P81 P80         

 

 

1 P99 P98 P97 P96 P95 P94  P93 P92 P91 P90          

Figure  6.21 PPA for 10 x 10 signed multiplier 

 

 

 

         1 P09 P08 P07 P06 P05 P04 P03 P02 P01 P00 

         P19 P18 P17 P16 P15 P14 P13 P12 P11 P10 Z0 

        P29 P28 P27 P26 P25 P24 P23 P22 P21 P20 Z1  

       P39 P38 P37 P36 P35 P34 P33 P32 P31 P30 Z2   

      P49 P48 P47 P46 P45 P44 P43 P42 P41 P40 Z3    

     P59 P58 P57 P56 P55 P54 P53 P52 P51 P50 Z4     

    P69 P68 P67 P66 P65 P64 P63 P62 P61 P60 Z5      

   P79 P78 P77 P76 P75 P74 P73 P72 P71 P70 Z6       

  P89 P88 P87 P86 P85 P84 P83 P82 P81 P80 Z7        

 

1 P99 P98 P97 P96 P95 P94  P93 P92 P91 P90 Z8         

 Z19 Z18 Z17 Z16 Z15 Z14 Z13 Z12 Z11 Z10 Z9          

Figure  6.22 MAC operation in one PPA 
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Additionally, we propose another improvement that reduces area and delay 

in a significant way. This is achieved through applying a truncation to a part of the 

PPA instead of constructing the entire PPA. As we need to consider only a few of 

most significant bits of the result. The fixed point analysis indicates that we need 

only to consider the 5 most significant bits of the result. In our analysis, we can 

determine the number of least significant bit positions to truncate as follows 

( )
2

21

1 1

2 82 2
N j

N iN

j i

−

= =

> ∑∑  

Where N1 represents the bit position from which we consider the final output, N2 

represents the most significant bit position of the truncated part of the PPA. The 

number of bits that are truncated should have insignificant effect on the final 

result. This means that their effect is considered as one carry input to the least 

significant bit of the considered part of the final result. We have 82 accumulations. 

In order to determine the number of truncated bits N2, consider one multiplication 

operation. We find that the largest value of the truncated part of the PPA is 

2 2 2 2 22 2 2 2 2
...... 1

2 2 4 2 4

N N N N N   
+ + + + + +   
   

, we need this to be smaller than 12N . This 

summation is multiplied by 82 as we have 82 accumulations corresponding to the 

number of pilots. Our analysis shows that for N1=20, we get N2=10. This leads to a 

truncation of about half of the entire PPA, which in sequence leads to a saving of 

approximately half of the original area. The resulting truncated PPA is shown in 

Figure  6.23. 
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Figure  6.23 Proposed truncated MAC PPA 

 

 

6.5.4 Data subcarriers Phase estimation block 

 

The next step after calculation of phase line coefficients is to calculate the 

phase of data subcarriers. This is carried out by a simple MAC unit. Subcarrier 

index is generated via a 10 bit subcarrier index counter. The output of this counter 

is multiplied by the coefficient a then added to the estimated bias b. This operation 

is demonstrated in Figure  6.24. 
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Figure  6.24 Phase estimation hardware 

 

6.5.5 Subcarrier de-rotation via CORDIC 

 

The last step after estimating the phase of each subcarrier is to perform de-

rotation in order to correct the effect of both RCFO and SCFO. The de-rotation 

operation is simply implemented via CORDIC algorithm. The CORDIC unit used 

for subcarrier de-rotation is similar to the one used in pilot phase estimation, but it 

operates in rotation mode instead. In case of pilot phase estimation, the rotation 

phase is not known and di is selected such that the imaginary part approaches zero 

value. However in the de-rotation case, we need to satisfy that phase reaches zero 

value after m iterations such that: 

 ∑ −−−= i

im dzz 2tan. 1

0         (6.19) 

The value of zm represents the difference between desired angle and rotated angle. 

The decision on value of di is performed such that the angle zi+1 approaches zero. 

Estimated data 

subcarrier angle 

Subcarrier index 

counter 

CLK 

 

RST a 

b 
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6.6 Synthesis Results 
 

The implemented blocks of sampling clock and frequency tracking unit are 

synthesized on Altera StratixII FPGA platform using Altera Quartus tools, 

targeting optimization for speed. The target device is EP2S15F484C3. We obtain 

the following synthesis results 

 

Table  6-4 Synthesis results for Sampling clock and Frequency tracking 

Component 
Number of 

LUTs 

Number of 

Registers 

Number of 

memory bits 

Maximum frequency 

of operation 

Pilot Phase 

detection 
101 106 ___ 152 MHZ 

Phase 

Coefficients 

estimation 

block 

178 142 ___ 327.23 MHZ 

Data 

subcarriers 

phase 

estimation 

11 + 2 DSP 

block 9-bit 

elements 

19 ___ 250.44 MHZ 

Subcarrier 

derotation 

block 

101 106 ___ 152 MHZ 

The complete 

Timing / 

Frequency 

tracking block 

347 + 2 

DSP block 

9-bit 

elements 

300 17560 145.31 MHZ 
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From the synthesis results obtained in Table  6-4, we conclude that one 

Radix-2 CORDIC unit is suitable to be used in Pilot phase detection and pilot 

phase estimation. It can be used for successive 8 CORDIC iterations and satisfy 

the symbol timing requirements of IEEE 802.16e standard.   
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Chapter 7 

Conclusion and Future work 

 

In this thesis, we present the simulation model of optional CTC used in 

IEEE802.16e mobile WiMAX. It is found that it has a better performance over the 

mandatory convolutional coding schemes for higher number of iterations. We also 

present the hardware implementation of CTC encoder and decoder with efficient 

implementation techniques that target area reduction or speed enhancement over 

the existing conventional techniques. Our implementation targets the FPGA design 

platform. The implementation was held to satisfy the system requirements and 

throughput. We introduced a novel implementation of state metric unit 

normalization using the redundant number system. However, the new 

implementation is more suitable in custom design platforms rather than FPGA. 

The improvement in speed can be rather insignificant in FPGA compared to the 

increase in the area. This is due to that some other components affect the delay in 

FPGA such as routing delay and interconnect. However, this improvement is 

significant in case of custom design. 

 

We also presented an efficient quantization of turbo decoder with the 

optimum number of bits compared to that in the literature. Moreover, we achieved 

high speed SISO architecture for the FPGA platform. Our SISO decoder operates 

at 150 MHZ. It is faster than other architectures that targets the FPGA platform 

and mentioned in the literature. 

 

We also present the Timing and Frequency tracking simulations and 

hardware implementation using least square error linear curve fitting. It is found 

that LS algorithm is the best that minimizes the effect of the channel noise in 

correction of the sampling error and residual carrier frequency offset effect. 
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Additionally, it is simple in hardware implementation. We presented an optimized 

implementation for a common used special case of FUSC with FFT size 1024. Our 

implementation is suitable for the other permutation schemes. We can think about 

extending our implementation to be generic and handle different permutation 

schemes and FFT sizes.  

 

The work is still open for future improvements. Our implementation of Turbo 

codes and sampling clock/Frequency tracking is suitable for hardware 

implementation on other platforms using standard cells and ASIC. The FPGA is 

used only for proto-typing. But in order to achieve a turbo decoder chip, our 

implementation should target the ASIC design.  Other optional coding schemes 

may be studied and implemented such that LDPC codes. They also have a good 

performance that competes with that of CTC. Another issue is the study of channel 

estimation with timing and frequency tracking. We implement a simple algorithm 

that assumes perfect channel estimation, but for case of non-channel estimation, 

this algorithm fails to achieve its performance. We can search for a joint algorithm 

for channel estimation and clock / Frequency tracking. 
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