
 i

Implementation of Convolutional Turbo Codes and

Timing / Frequency Tracking for Mobile WiMAX

By

Eng. Amr Mohamed Ahmed Mohamed Hussien

Electronics and Communications Department

Faculty of Engineering, Cairo University

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirement for the Degree of

MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

September 2008

 ii

Implementation of Convolutional Turbo Codes and

Timing / Frequency Tracking for Mobile WiMAX

By

Eng. Amr Mohamed Ahmed Mohamed Hussien

Electronics and Communications Department

Faculty of Engineering, Cairo University

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirement for the Degree of

MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS ENGINEERING

Under the Supervision of

Prof. Dr. Serag E.D. Habib

Associate Prof. Mohamed M. Khairy

Assistant Prof. Hossam A. Fahmy

Electronics and Communications Dept.

Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

September 2008

 iii

Implementation of Convolutional Turbo Codes and

Timing / Frequency Tracking for Mobile WiMAX

By

Eng. Amr Mohamed Ahmed Mohamed Hussien

Electronics and Communications Department

Faculty of Engineering, Cairo University

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirement for the Degree of

MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS ENGINEERING

Approved by the

Examining Committee

__

Prof. Dr. Hani Fikry Ragai, Member

__

Prof. Dr. Magdy M. S. El-Soudani., Member

__

Prof. Dr. Serag. E.D. Habib , Thesis Main Advisor

__

Associate Prof. Mohamed M. Khairy, Thesis Advisor

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

September 2008

 iv

TABLE OF CONTENTS

Acknowledgement………………………………………………………….ix

Abstract……………………………………………………………………..x

List of Figures……………………………………………………………...xii

List of Tables………………………………………………………………xv

List of Symbols……………………………………………………………xvi

List of Abbreviations…………………………………………………….xviii

Chapter 1 Introduction to WiMAX... 1

1.1 What is WiMAX... 1

1.2 OFDM and OFDMA... 2

1.2.1 Multicarrier Modulation and OFDM .. 2

1.2.2 OFDMA .. 4

1.2.3 Scalable OFDMA (SOFDMA) ... 5

1.3 OFDMA Symbol Structure ... 5

1.4 OFDMA Frame Structure ... 6

1.5 Subcarrier Permutation schemes... 7

1.5.1 Downlink Full Usage of Subcarriers... 7

1.5.2 Downlink Partial Usage of Subcarriers... 7

1.5.3 Uplink Partial Usage of Subcarriers ... 9

1.5.4 Tile Usage of Subcarriers.. 9

1.5.5 Band Adaptive Modulation and Coding ... 10

1.6 WiMAX Features.. 11

1.6.1 Scalability ... 11

1.6.2 QoS ... 11

1.6.3 Mobility... 11

1.6.4 Security ... 11

Chapter 2 802.16e PHY Model .. 13

2.1 Introduction... 13

 v

2.2 Channel Coding in 802.16e PHY Transmission ... 13

2.2.1 Randomizer ... 14

2.2.2 Forward Error correction .. 15

2.2.3 Interleaving ... 16

2.2.4 Repetition.. 17

2.2.5 Modulation.. 18

2.2.5.1 Subcarrier Randomization .. 18

2.2.5.2 Data Modulation ... 19

2.2.5.3 Pilot Modulation ... 21

2.2.6 Subcarrier Allocation .. 21

2.2.7 IFFT .. 22

2.2.8 RF Section... 22

2.3 Receiver block diagram .. 22

2.3.1 Timing Synchronization.. 24

2.3.2 Frequency Synchronization .. 24

2.3.3 FFT.. 24

2.3.4 Cell Search .. 25

2.3.5 Channel estimation.. 25

2.3.6 Demapper.. 25

2.3.7 Decoding ... 26

2.3.8 Derandomizer.. 26

2.4 WiMAX PHY Implementation ... 26

Chapter 3 Turbo Coding.. 28

3.1 Introduction... 28

3.2 Turbo Encoding .. 29

3.2.1 Block Description ... 29

3.2.2 CTC Interleaver .. 30

3.2.2.1 Switch alternate couples ... 31

3.2.2.2 Calculate interleaved order of sequence U1 .. 31

3.2.3 Determination of Circulation states .. 32

3.2.4 Subpacket generation .. 33

 vi

3.2.4.1 Symbol separation... 33

3.2.4.2 Subblock interleaving ... 34

3.2.4.3 Symbol grouping... 35

3.2.4.4 Symbol selection (Puncturing).. 36

3.3 Turbo decoding ... 38

3.3.1 Introduction... 38

3.3.2 Log Likelihood Ratio (LLR)... 39

3.3.3 Maximum A-posteriori probability (MAP) algorithm.............................. 40

3.3.3.1 Branch Metric Calculation.. 42

3.3.3.2 Forward estimation state probabilities .. 43

3.3.3.3 Backward estimation state probabilities ... 45

3.3.3.4 LLR Computation ... 45

3.3.3.5 Estimation of Circulation state.. 47

3.3.4 Max Log MAP Approximation... 47

3.3.4.1 Calculation of branch metric probabilities.. 48

3.3.4.2 Calculation of forward state metric probabilities.................................. 49

3.3.4.3 Calculation of backward state metric probabilities............................... 49

3.3.4.4 LLR Computation ... 50

3.3.5 Sliding Window Max Log MAP Approximation 51

3.3.6 Double binary Turbo decoding ... 54

Chapter 4 Simulation results of WiMAX CTC... 57

4.1 Introduction... 57

4.2 Turbo codes performance in AWGN channels ... 57

4.2.1 Effect of Number of iterations .. 57

4.2.2 Improvement over mandatory Convolutional Coding 58

4.2.3 Effect of Turbo interleaver block size .. 59

4.2.4 MAX vs MAX* Log MAP ... 60

4.2.5 Effect of Symbol selection (Puncturing)... 61

4.2.6 Sliding Window MAX Log Map approximations 63

4.3 Simulations of Turbo codes in fading channels.. 66

4.4 Analysis using fixed point arithmetic ... 68

 vii

4.4.1 Quantization of received signals... 69

4.4.2 Quantization of internal signals .. 70

Chapter 5 Hardware Implementation of Turbo coding 72

5.1 Introduction... 72

5.2 Hardware Implementation of Turbo Encoder ... 72

5.2.1 Constituent encoders... 73

5.2.2 CTC Interleaver design ... 74

5.2.2.1 LUT Implementation .. 76

5.2.2.2 Proposed Address generator Implementation 77

5.2.3 Circulation state look up table .. 81

5.2.4 Sub-packet generation... 82

5.2.4.1 Implementation of sub-block interleaver .. 83

5.3 Hardware Implementation of Turbo decoder.. 85

5.3.1 General Architecture... 85

5.3.2 Branch Metric Block (GAMMA) ... 86

5.3.2.1 Proposed Branch metric Normalization scheme................................... 88

5.3.3 Forward State Metric Block (ALPHA)... 91

5.3.3.1 State Metric Unit Implementation .. 92

5.3.3.2 Normalization by rescaling ... 92

5.3.3.3 Modulo-Normalization ... 93

5.3.3.4 Redundant Number Representation .. 95

5.3.3.5 Proposed Normalization using redundant representation 97

5.3.4 Backward Metric Unit... 103

5.3.5 LLR Computation Unit ... 103

5.3.6 Extrinsic LLR Computation Unit.. 104

5.4 Synthesis Results .. 107

Chapter 6 Sampling clock and Frequency Tracking 109

6.1 Introduction... 109

6.2 Effect of sampling clock frequency offset .. 110

6.2.1 Effect of sampling error in time domain... 111

6.2.2 Effect of sampling error in frequency domain.. 112

 viii

6.2.3 SCFO Synchronization algorithm... 115

6.2.3.1 Phase tracking via LS linear curve Fitting.. 116

6.2.3.2 Symbol Re-timing with ROB/STUFF .. 118

6.3 Effect of Residual Carrier Frequency offset ... 121

6.4 Simulation results.. 125

6.4.1 LS algorithm performance .. 125

6.5 Hardware Implementation: ... 126

6.5.1 Block diagram... 126

6.5.2 Pilot Phase estimation Block .. 127

6.5.2.1 CORDIC algorithm:.. 128

6.5.2.2 Pilot rotation using CORDIC.. 133

6.5.3 Phase Coefficient Computation block .. 134

6.5.4 Data subcarriers Phase estimation block... 141

6.5.5 Subcarrier de-rotation via CORDIC ... 142

6.6 Synthesis Results .. 143

Chapter 7 Conclusion and Future work ... 145

 ix

ACKNOWLEDGEMENTS

I would like to thank my supervisors, Prof. Serag E. Habib, Dr. Mohamed M.

Khairy and Dr. Hossam A. Fahmy as they provided me with advice, knowledge,

guidance and support throughout the thesis.

I would like also to thank Eng Abd El-Mohsen Khater, Eng Mohamed Ismail, Eng

Mohamed Sayed Khairy and Eng Khalid El-Wazeer who participate in the

implementation of WiMAX system, through other master theses in a great

collaborative work in order to realize the complete system.

Actually, I also appreciate the help offered by the Electronics and

Communications department staff, Faculty of engineering, Cairo University. As

they give the means and the spirit to realize a good work.

Many thanks go to my parents and my brothers for their continuous support and

encouragement during all working days and nights.

 x

ABSTRACT

Convolutional Turbo Codes (CTC) are widely used in many high speed

wireless communication systems standards due to their high performance that

approaches that of the Shannon limit. The tremendous demands for high

throughput and low power in the current wireless communication applications

drive the search for efficient implementation techniques to satisfy these

requirements. Although many algorithms have been proposed for decoding Turbo

codes, their hardware implementation is still a challenging topic. For 802.16e

OFDMA based WiMAX, a reliable data transmission is greatly needed, especially

in Non-line of sight (NLOS) communication.

In this thesis we study the optional, double-binary, turbo coding used in

802.16e standard. We developed a complete Matlab model for a Turbo encoder

and decoder compatible with this standard. We focus on the hardware

implementation of the Turbo encoder and decoder. In our implementation, a new

efficient metric normalization scheme is proposed. This scheme reduces the

storage requirements of the state metric unit by 12.5% over conventional schemes,

and reduces the area requirements of the branch metric unit by approximately

34%. Additionally, we introduce a novel implementation of normalized state

metrics using a redundant number system. This novel implementation reduces the

worst case delay of state metric unit over conventional implementations.

The second part of this thesis is concerned with the implementation of a

tracking system for the sampling clock and the residual carrier frequency offset of

802.16e standard. Compared to single carrier schemes, OFDM systems are

sensitive to synchronization errors. Thus, an efficient implementation of

synchronization in OFDM is the backbone of the system performance. Sampling

clock frequency offset is due to the difference between the sampling clock of the

 xi

DAC at the transmitter and that of the ADC at the receiver. Timing and frequency

synchronization comprises different stages. In this thesis, we are concerned with

the timing and frequency tracking stage. We carried out a study and hardware

implementation of a joint algorithm that estimates and corrects both the sampling

clock offset and the residual carrier offset. Our hardware implementation features

reduced hardware area and preserves a good system performance. An FPGA

platform is used to implement these modules.

This thesis is a part of a collaborative work that targets to implement the

complete mobile WiMAX system. Other master theses study and implement the

other blocks.

 xii

LIST OF FIGURES

Figure 1.1 Multicarrier Modulation Architecture ... 2

Figure 1.2 OFDM via FFT.. 3

Figure 1.3 OFDM with Guard Interval ... 3

Figure 1.4 OFDM Window with CP... 4

Figure 1.5 OFDMA Multiple access... 4

Figure 1.6 OFDMA Symbol Structure.. 6

Figure 1.7 Downlink FUSC permutation scheme... 8

Figure 1.8 Downlink PUSC permutation scheme... 8

Figure 1.9 Uplink PUSC permutation scheme.. 9

Figure 1.10 (a) AMC Permutation mode; (b) different AMC subchannels 10

Figure 2.1Mandatory Channel Coding at transmission .. 14

Figure 2.2 Randomizer PRBS... 14

Figure 2.3 Convolutional encoder structure.. 16

Figure 2.4 PRBS generator for data and pilot modulation.. 18

Figure 2.5 (a) QPSK Constellation diagram (b) 16-QAM Constellation diagram .. 20

Figure 2.6 Receiver block diagram... 23

Figure 3.1 CTC encoder structure... 30

Figure 3.2 Block diagram of the interleaving and symbol grouping 36

Figure 3.3 CTC Puncturing process.. 37

Figure 3.4 Generic Architecture of Turbo decoder... 39

Figure 3.5 Trellis diagram of Double binaryTurbo encoder used in IEEE802.16e WiMAX

... 44

Figure 3.6 Extrinsic Likelihood calculation.. 46

Figure 3.7 Timing Sequence of Sliding Window Max Log MAP.................................... 52

Figure 3.8 Sliding Window operation... 54

Figure 3.9 Structure of Double Binary Turbo decoder ... 55

Figure 4.1 Effect of number of iterations in MAX Log MAP .. 58

Figure 4.2 Convolutional vs CTC performance.. 59

Figure 4.3 Interleaver block size effect... 60

 xiii

Figure 4.4 Comparison between Max and Max* performance... 61

Figure 4.5 (a) Rate ½ performance .. 63

Figure 4.6 (a) BER for SW MAX Log MAP (Ws=64, Wg =8) 65

Figure 4.7 Guard Window effect .. 66

Figure 4.8 QPSK rate ½ and rate 3/4 a fading environment... 68

Figure 4.9 Fixed point vs Floating point model for received signals 69

Figure 4.10 Effect of saturation of extrinsic likelihoods .. 70

Figure 5.1 Turbo Encoder Block diagram .. 73

Figure 5.2 (a) Block diagram of Constituent encoder.. 74

Figure 5.3 Interleaver first stage ... 75

Figure 5.4 Interleaver structure... 76

Figure 5.5 Address generator using LUT ... 77

Figure 5.6 Proposed address Generator structure ... 78

Figure 5.7 Optimized address generator structure .. 80

Figure 5.8 Block diagram of CTC encoder... 81

Figure 5.9 Circular Rate 1/3 Turbo Encoder .. 82

Figure 5.10 Sub-block interleaver address generation flow chart 83

Figure 5.11 Sub-block interleaver address generator ... 84

Figure 5.12 SISO decoder Block description .. 85

Figure 5.13 SISO Architecture ... 86

Figure 5.14 (a) Branch metric Multi-operand Adder (b) Branch metric Memory

organization... 88

Figure 5.15 Forward State metric Unit ... 91

Figure 5.16 State metric unit... 93

Figure 5.17 Reduced State metric unit.. 98

Figure 5.18 full redundant reduced State metric unit ... 99

Figure 5.19 Enhanced full redundant State metric unit .. 101

Figure 5.20 Proposed State Metric RAM interface .. 102

Figure 5.21 LLR Computation unit .. 104

Figure 5.22 Extrinsic LLR computation unit... 106

Figure 6.1 Sampling error phenomena.. 111

 xiv

Figure 6.2 OFDM Symbol window drift .. 112

Figure 6.3 (a) Ideal QPSK constellation (b) Rotated QPSK constellation 114

Figure 6.4 Phase error line for successive OFDM symbols.. 115

Figure 6.5 LS linear curve Fitting... 117

Figure 6.6 (a) QPSK before de-rotation (b) QPSK after de-rotation......................... 119

Figure 6.7 (a) Phase tracking without Add/drop mechanism ... 120

Figure 6.8 Constellation rotation due to RCFO... 122

Figure 6.9 Effect of RCFO on phase error.. 123

Figure 6.10 Phase error for combined SCFO and RCFO ... 124

Figure 6.11 BER vs Eb/No for different RCFO values .. 126

Figure 6.12 Sampling clock and frequency tracking block diagram 127

Figure 6.13 Phase estimation block diagram .. 128

Figure 6.14 Basic CORDIC rotation... 128

Figure 6.15 Basic CORDIC Hardware ... 130

Figure 6.16 CORDIC Unit entity.. 132

Figure 6.17 Convergence of imaginary part in vectoring mode 134

Figure 6.18 Phase Coefficients entity ... 134

Figure 6.19 ACC and MAC units ... 136

Figure 6.20 Comparison of the perfect and approximated phase coefficients................ 138

Figure 6.21 PPA for 10 x 10 signed multiplier... 139

Figure 6.22 MAC operation in one PPA... 139

Figure 6.23 Proposed truncated MAC PPA.. 141

Figure 6.24 Phase estimation hardware .. 142

 xv

LIST OF TABLES

Table 3-1 Circulation state (Sc) look up table .. 33

Table 3-2 Parameters for the subblock interleavers.. 35

Table 4-1 Proposed Channel characteristics for urban macrocell for IEEE 802.16m...... 67

Table 4-2 Number of quantization bits for signals used in turbo decoder........................ 71

Table 5-1 Interleaver parameters stored in ROM ... 79

Table 5-2 Turbo decoder state transition table ... 87

Table 5-3 Resource reduction of proposed normalization.. 89

Table 5-4 Reduction in storage due to proposed normalization 90

Table 5-5 Comparison between number of storage bits of conventional and proposed

schemes ... 97

Table 5-6 Comparison between ordinary and redundant comparator............................. 100

Table 5-7 Area-Delay report for different state metric architectures 102

Table 5-8 Synthesis results for CTC encoder ... 107

Table 5-9 Synthesis results for Turbo decoder components... 108

Table 6-1 Approximate values of tan
-1
2
-i
.. 130

Table 6-2 Determination of CORDIC rotation factor di ... 133

Table 6-3 Pilot locations for FUSC permutation with 1024 FFT size............................ 135

Table 6-4 Synthesis results for Sampling clock and Frequency tracking....................... 143

 xvi

 LIST OF SYMBOLS

N : CTC block interleaver size

Ncbps : Number of coded bits per encoded block size

Sc : Circulation state

A : First systematic output sub-block of the CTC interleaver

B : Second systematic output sub-block of the CTC interleaver

Y1 : First Parity output sub-block of the CTC interleaver

W1 : Second Parity output sub-block of the CTC interleaver

Y2 : Third Parity output sub-block of the CTC interleaver

W2 : Fourth Parity output sub-block of the CTC interleaver

uk : Original transmitted bit / symbol a time instant k

L(uk) : Log Likelihood Ratio of symbol uk at time instant k

L(uk|y) : Conditional Log Likelihood Ratio of symbol uk at time instant k based on

the received codeword y

αk(s) : Forward state Probability of state s at time instant k

βk(s) : Backward state Probability of state s at time instant k

1
(')

k k
s sγ →

−→

:

Branch metric (Transition) probability from state s’ to state s between time

slots k-1 and k

Lc : Channel Reliability

Le(uk) : Extrinsic Likelihood of transmitted bit / symbol at time instant k

Аk(s) : Forward state Probability in Log domain of state s at time instant k

Вk(s) : Backward state Probability in Log domain of state s at time instant k

1
(')

k k
s s→

−→
Γ :

Branch metric (Transition) probability in Log domain from state s’ to state

s between time slots k-1 and k

 xvii

Ns : Total number of samples in one OFDM symbol window

Nu : Number of useful samples of one OFDM symbol window

Ng : Number of samples in the guard interval

 xviii

LIST OF ABBREVIATIONS

ACC : Accumulator

ACS : Add / Compare and Select

ADC : Analog to Digital Converter

AES : Adaptive Encryption standard

AMC : Adaptive Modulation and Coding

AWGN : Additive white Gaussian Noise

BER : Bit error rate

BS : Base Station

BTC : Block Turbo codes

CBR : Constant Bit rate

CC : Convolutional Coding

CIR : Channel Impulse Response

CORDIC : Coordinate Rotation Digital Computer

CP : Cyclic Prefix

CPA : Carry Propagation Adder

CSA : Carry Save Adder

CTC : Convolutional Turbo codes

DAC : Digital to Analog Converter

DLL : Delay locked loop

DSL : Digital Subscriber lines

FCH : Frame Control Header

FEC : Forward error correction

FFT : Fast Fourier Transform

FIFO : First Input First Output

FPGA : Field Programmable Gate Array

FUSC : Full Usage of subcarriers

 xix

ICI : Intercarrier Interference

IDcell : Cell Identification Number

IFFT : Inverse Fast Fourier Transform

ISI : Intersymbol Interference

LDPC : Low Density Parity check

LFSR : Linear Feedback shift register

LIFO : Last Input First Output

LLR : Log Likelihood Ratio

LS : Least Square

LUT : Look up Table

MAC : Multiply / Add and Accumulate

MAP : Maximum A-posteriori

MCM : Multicarrier Modulation

ML : Maximum Likelihood

MS : Mobile Station

NLOS : Non-Line of sight

OFDM : Orthogonal Frequency division Multiplexing

OFDMA : Orthogonal Frequency division Multiple Access

PPA : Partial Product Array

ppm : parts per million

PTMP : Point to multi-point

PUSC : Partial Usage of subcarriers

QAM : Quadrature Amplitude Modulation

QPSK : Quadrature Phase shift keying

QoS : Quality of service

RCFO : Residual Carrier Frequency Offset

SCFO : Sampling Clock Frequency Offset

SINR : Signal to Interference Noise Ratio

 xx

SISO : Soft Input Soft Output

SMU : State Metric Unit

SOFDMA : Scalable Orthogonal Frequency division Multiple Access

SOVA : Soft Output Viterbi Algorithm

SPID : Subpacket Identification Number

SS : Subscriber station

TDD : Time division duplex

TDMA : Time division Multiple access

TUSC : Tile Usage of subcarriers

VBR : Variable bit rate

WiMAX : Worldwide Interoperability for Microwave access

 1

Chapter 1

1 Introduction to WiMAX

1.1 What is WiMAX

The IEEE802.16 standard defines a Medium Access Control (MAC) and

Air Interface protocol for broadband Wireless Metropolitan area Network (W-

MAN). The term broadband refers to high speed data transmission. It can be used

as an alternative to the current cabled access networks such as optical fibers and

Digital Subscriber lines (DSL). It provides broadband services to people who

could not afford wired broadband services before. This standard is referred to as

WiMAX; it stands for Worldwide Interoperability for Microwave Access. It meets

different types of access [1], such as fixed, portable and mobile access. To satisfy

different requirements, two versions are defined. The first is IEEE802.16d-2004,

optimized for fixed access and based on Orthogonal Frequency division

multiplexing (OFDM). The second is IEEE802.16e-2005, optimized for mobile

access in addition to supporting fixed access, and based on Scalable Orthogonal

Frequency Division Multiple Accesses (SOFDMA).

WiMAX radio might be able to support data rates up to 70 Mbps and

operating channel bandwidth from 1.25 MHZ up to 20 MHZ. WiMAX should

support access of a distance up to 50 km between user and base station. This

means that it supports Non Line of Sight (NLOS) communication. The various

channel bandwidth ranges is supported by scalable OFDMA. For example, a

WiMAX system may use 128, 512, 1024 or 2048 bit FFT size corresponding to

channel bandwidth 1.25MHz, 5MHz, 10MHZ or 20MHz, respectively. A detailed

description of OFDM is included in the next section.

 2

1.2 OFDM and OFDMA

1.2.1 Multicarrier Modulation and OFDM

OFDM is a passband Multi-Carrier Modulation (MCM) scheme [2]. MCM

is used to overcome problems of Intersymbol interference (ISI) caused by the

channel and achieves a high data rate at the same time. The main problem of ISI is

caused when the delay spread of the channel is higher than the symbol time. The

delay spread causes the current symbol to affect several successive symbols. This

effect increases with the increase of data rate. MCM resolves this simply by

dividing the data stream among parallel streams or paths, each path is multiplied

by a separate carrier as shown in Figure 1.1, each path has a low symbol rate, but

the overall rate of parallel streams achieves a high data rate. In order for these

streams not to interfere with each other, carriers should be orthogonal.

Figure 1.1 Multicarrier Modulation Architecture

Implementation of MCM is achieved via Fast Fourier Transform (FFT).

This simplifies hardware implementation where it is almost impossible to achieve

perfect orthogonality among all carrier oscillators. However, this is achieved

through FFT processing as shown in Figure 1.2.

Pulse Shaping

g (t)

g (t)

g (t)

.

.

.

+ h (t)

 .

.

.

g* (-t)

g* (-t)

g* (-t)

Matched
Filter e

jw0t

e
jw1t

e
jwn-1t

e
-jw0t

e
-jw1t

e
-jwn-1t

 3

Figure 1.2 OFDM via FFT

However, in case of fading channels, we still have the problem of ISI. In

order to eliminate its effect, a guard interval is inserted between consecutive

OFDM symbols as shown in Figure 1.3. It should be selected larger than

maximum delay spread.

Figure 1.3 OFDM with Guard Interval

Intercarrier Interference (ICI) is another effect from which OFDM symbols

suffer. The main reason of ICI problem is mis-synchronization that results from

multipath, it will cause subcarriers not to have integer multiple of cycles during

the OFDM window. This is considered a loss of orthogonality. To solve this

problem, a cyclic prefix (CP) is added before each OFDM window. This is done

by simply copying a part of the end of OFDM window to the beginning as shown

in Figure 1.4. This ensures that each subcarrier has an integer multiple of cycles in

time domain and orthogonality is preserved.

IFFT P/S DAC

Channel

ADC S/P FFT

OFDM OFDM OFDM

Symbol Symbol Symbol

Guard

Interval

 4

Figure 1.4 OFDM Window with CP

1.2.2 OFDMA

OFDMA employs multiple closely spaced sub-carriers, such as the case of

OFDM. However, the sub-carriers are divided into different groups. Each group is

defined as a sub-channel. This scheme allows multiple access where each user can

be allocated one or more subchannels as shown in Figure 1.5. The sub-carriers that

form a sub-channel can be either adjacent or not. In the downlink, a sub-channel

may be intended for different receivers. In the uplink, a transmitter may be

assigned one or more sub-channels.

Figure 1.5 OFDMA Multiple access

OFDM Symbol Window

CP

Time
OFDM Symbol OFDM Symbol OFDM Symbol OFDM Symbol

 n-1 n n+1 n+2

 User1 User2 User3 User4 User5

Frequency

 5

1.2.3 Scalable OFDMA (SOFDMA)

OFDMA PHY is supposed to have Scalable OFDMA (SOFDMA). This is

due to the fact that it allows bandwidth scalability with different FFT sizes. The

change of the FFT size means a change in the number of subcarriers. The

supported FFT sizes are 128, 512, 1024 and 2048. Only 512, 1024 are mandatory

for mobile WiMAX profiles [3]. In case of 802.16e, subcarrier spacing is fixed at

10.94 KHZ. This means that the change in the number of subcarriers indicates a

change in bandwidth. Different specified bandwidths are 1.25, 5, 10 and 20 MHZ

corresponding to FFT sizes 128, 512, 1024 and 2048 respectively. Adaptive

occupied bandwidth provides adaptive data rate.

1.3 OFDMA Symbol Structure

Subcarriers of every OFDMA symbols, like OFDM, are divided into three

sets, Data subcarriers, Pilot subcarriers and Null subcarriers as shown in Figure

 1.6.

1. Data subcarriers are occupied with user data symbols.

2. Pilot subcarriers are used for carrying pilot symbols. The pilot symbols are

known symbols that can be used for synchronization and channel estimation

purposes.

3. Null subcarriers have no power allocated to them, including the DC subcarrier

and the guard subcarriers. The DC subcarrier is not modulated, to avoid

saturation effects or excess power draw at the amplifier. No power is allocated

to the guard subcarrier in order to avoid interference effects with adjacent

bands.

 6

Figure 1.6 OFDMA Symbol Structure

1.4 OFDMA Frame Structure

The OFDMA frame is composed of two subframes, a downlink subframe

and uplink subframe operating in a Time division Duplex (TDD) mode; this

allows a sharing of bandwidth between uplink and downlink. The downlink

subframe contains a downlink preamble, a Frame Control Header (FCH), DL-

MAP, UL-MAP and DL-bursts. The preamble is used for time and frequency

synchronization and initial channel estimation. FCH provides the frame

configuration information, such as coding rate and modulation scheme used. DL-

MAP and UL-MAP specify which data regions are allocated for each user. DL-

Bursts carry data of several users in case of downlink. For Uplink subframe, it

contains UL-bursts which carry data of several users in case of uplink and a

ranging subchannel. It is used for ranging purposes. Ranging is a procedure that

maintains the quality and reliability of the radio-link communication between the

Base Station (BS) and the Mobile Station (MS). When the BS receives the ranging

transmission from a certain MS, the BS can estimate various radio-link

parameters, such as channel impulse response, Signal to Interference and Noise

Guard DC

Data Pilots

 7

Ratio (SINR), and time of arrival. The BS is able to adjust the transmit power

level, and so on.

1.5 Subcarrier Permutation schemes

Subcarrier permutation is simply considered as combining different

subcarriers into a subchannel. The set of subcarriers that construct a certain

subchannel depends on subcarrier permutation schemes. Subcarriers that form a

subchannel can be either adjacent or distributed. In IEEE802.16e, different

permutation schemes are defined such as Downlink Full Usage of subcarriers (DL-

FUSC), Downlink Partial Usage of subcarriers (DL-PUSC), Uplink Partial Usage

of subcarriers (UL-PUSC), Tile Usage of Subcarriers and Band Adaptive

Modulation and Coding [4]. They are discussed in some details in next sections.

1.5.1 Downlink Full Usage of Subcarriers

In this permutation scheme, each subchannel is constructed from 48 data

subcarriers from the same OFDM symbol. These subcarriers are evenly distributed

in the OFDM symbol. Number of subchannels in one OFDM symbol differs

depending on number of data subcarriers that varies according to FFT size. Figure

 1.7 illustrates this permutation scheme.

1.5.2 Downlink Partial Usage of Subcarriers

In case of DL-PUSC, subcarriers are divided into clusters; each cluster

consists of 14 adjacent subcarriers over two OFDM symbols. The clusters are then

divided into six groups and a subchannel is constructed from two clusters of the

same group as indicated in Figure 1.8.

 8

Figure 1.7 Downlink FUSC permutation scheme

Figure 1.8 Downlink PUSC permutation scheme

Time

Frequency

Symbol i

Symbol i+1

Data subcarriers

Subchannel 2 Subchannel 1

Pilot subcarriers

Frequency

Time

6 Clusters

 ……

6 Clusters

……

…………………..……

……..

……..

.

Cluster Cluster

Group1 Group n

Subchannel

(2 clusters from a

group)

……..

……..

……..

……..

.
OFDM Symbol n

OFDM Symbol n+1

 9

1.5.3 Uplink Partial Usage of Subcarriers

In this case, subcarriers are divided into tiles; each tile consists of 12

subcarriers over 3 OFDM symbols, i.e. 4 subcarriers per symbol. The subcarriers

of each tile are divided into 8 data subcarriers and 4 pilot subcarriers. Tiles are

renumbered pseudo-randomly and divided into 6 groups. Subchannel is

constructed from 6 uplink tiles from the same group.

Figure 1.9 Uplink PUSC permutation scheme

1.5.4 Tile Usage of Subcarriers

The Tile Usage of subcarriers (TUSC) is a permutation scheme used in

downlink. It is identical to the Uplink PUSC. This has the advantage of downlink

and uplink allocation symmetry.

Frequency

Time

…………………

……..

……..

.

..........

Tile1 Tile n

Group 1 Group 6 ………………

Subchannel

(6 tiles of the

same group)

 10

1.5.5 Band Adaptive Modulation and Coding

In the band Adaptive Modulation and Coding (AMC) permutation scheme,

subcarriers that construct one subchannel are adjacent. In order to form a

subchannel, subcarriers are divided into bins, each bin consists of nine consecutive

subcarriers as shown in

Figure 1.10, these nine subcarriers are divided into 8 data subcarriers and

one pilot subcarrier. The AMC subchannel can have various shapes; it can be one

bin over six consecutive OFDM symbols, two bins over three consecutive OFDM

symbols or six consecutive bins over one OFDM symbol.

(a)

(b)

Figure 1.10 (a) AMC Permutation mode; (b) different AMC subchannels

Bin

………..

Frequency

Time
Bin Bin …………...

1 x 6 AMC

Bin

Bin

Bin

Bin

Bin

Bin

2 x 3 AMC

6 x 1 AMC

Bin

Bin

Bin

Bin

Bin

Bin

Bin Bin Bin Bin Bin Bin

 11

1.6 WiMAX Features

WiMAX is a broadband wireless technology that is rich in features such as

Flexibility, Scalability, Quality of Service (QoS), Security, Mobility…etc.

1.6.1 Scalability

Scalable OFDMA on which IEEE802.16e is based provides a scalable

bandwidth. This scalable bandwidth allows dynamic support of user roaming

across different networks. These networks may have different bandwidth

allocations.

1.6.2 QoS

The MAC layer of WiMAX should support a variety of applications with

different QoS requirements such as best effort based applications, real time and

non-real time applications, constant bit rate (CBR) and variable bit rate (VBR)

based applications.

1.6.3 Mobility

WiMAX can support many users in a coverage area up to 50 Km. In order

to support mobile applications, the MS and the BS need to introduce several

mobility-supporting functions to the existing WiMAX system. Power saving

mechanisms should be used. In addition, more frequent channel estimation and

power control is specified for the purposes of mobility.

1.6.4 Security

WiMAX supports advanced strong security techniques, such as Advanced

Encryption Standard (AES). It also specifies security procedures used to

 12

authenticate and maintain private encryption keys. These private encryption keys

are used to encrypt traffic to first-hop neighbors or to the base station. More about

security features can be found in [5].

This thesis is focused mainly on the study and implementation of some

blocks of the PHY layer of IEEE802.16e standard. This standard defines some

mandatory features and other optional features. We present the simulation and

implementation of some blocks of the physical layer. In chapter 2, a review of the

IEEE802.16e PHY model is illustrated, defining the main mandatory and optional

features. The next chapters concentrate on the implemented blocks with

performance simulation and hardware implementation.

 13

Chapter 2

2 802.16e PHY Model

2.1 Introduction

The IEEE802.16 defines four Physical (PHY) layers, they can be

summarized as:

1. Wireless-MAN SC: It is based on single carrier modulation, and is designed

for frequency ranges higher than 11 GHZ for a LOS operation.

2. Wireless-MAN SCa: It is based on single carrier modulation, and is designed

to operate at frequency ranges between 2- 11 GHZ for NLOS purposes.

3. Wireless-MAN OFDM: A PHY layer using a 256 point FFT based OFDM. It

is designed for point to multi-point (PTMP) operation in a NLOS conditions. It

operates at frequency ranges between 2-11 GHZ. It is also referred to as Fixed

WiMAX. Multiple access of different subscriber stations (SSs) is time-division

multiple access (TDMA)-based.

4. Wireless-MAN OFDMA: A PHY layer using a 2048 point FFT based

OFDMA. It operates in frequency ranges between 2-11 GHZ and supports

NLOS communication. It is also referred to as Mobile WiMAX.

2.2 Channel Coding in 802.16e PHY Transmission

 The IEEE 802.16e PHY model specifies some mandatory and optional

features. The PHY mandatory chain is illustrated in Figure 2.1. It consists of a

Randomizer, Forward Error Correction (FEC) block, which specifies

convolutional coding as a mandatory FEC block. It is followed by Interleaving

block, then QAM mapping before IFFT block [6], [7]. The FEC block size equals

an integer number of subchannels and the channel coding is performed on each

FEC block. Some parameters in PHY layers are flexible and controlled by higher

layers such as FEC block size, coding rate, Modulation type, CP length, and so on.

 14

Figure 2.1 Mandatory Channel Coding at transmission

2.2.1 Randomizer

 The purpose of the randomization block is to prevent a long sequence of

consecutive ones or zeros. This helps in purposes of synchronization at the

receiver. Randomization is done on each FEC block separately. It is simply

performed with a Mod-2 addition operation between FEC data bits and other

generated Pseudo random sequence of bits. This sequence is generated by a Linear

Feedback Shift Register (LFSR) as shown in Figure 2.2. It is initialized with a

certain known sequence given as (LSB) [0 1 1 0 1 1 1 0 0 0 1 0 1 0 1] (MSB).

Figure 2.2 Randomizer PRBS

To RF and channel

MAC/

PHY

Interface

Randomizer FEC Interleaving Repetition

QAM

mapping

IFFT Subcarrier

Allocation

Pilot

Insertion

Add CP &

Guard
Interval

DAC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Data IN

Data OUT

 15

2.2.2 Forward Error correction

The purpose of channel coding is to help the receiver to be able to recover

channel errors. This is carried out through transmitting redundant bits beside the

original information bits. These redundant bits can be constructed as a function of

the original information bits. They help to recover channel errors. Many coding

schemes were defined in communication systems to be used for these purposes

 [8]. In the IEEE802.16e standard, some coding schemes are defined as mandatory

coding schemes; others are defined to be optional. The Convolutional Coding

(CC) is defined as a mandatory channel coding scheme. The standard also defines

other optional coding schemes such as Block Turbo Codes (BTC), Convolutional

Turbo Codes (CTC), and Low Density Parity Check Codes (LDPC). In this section

we take a look on the mandatory Convolutional Coding used, and in chapter 3, we

handle the Convolutional Turbo Codes on which this thesis deals.

Convolutional coding specified in the IEEE802.16e standard is a binary

non-recursive convolutional coding. It is considered binary as it deals with one

input at a time and is considered non-recursive as it has no feedback. The

mandatory CC has a rate ½ and constraint length of 7; this means that it has two

outputs for each input, and it has 6 delay elements as shown in Figure 2.3.

The generator polynomials can be specified by placing 1’s in case of a feedback

connection and 0’s elsewhere. We get the following generator polynomials for the

two outputs

G1=[1 1 1 1 0 0 1]

G2=[1 0 1 1 0 1 1]

In general, the generator polynomials of the two outputs are specified in octal

format as:

G1= 171OCT

G2= 133OCT (2.1)

 16

The remaining part of the convolutional encoder is the puncturing block which

aims to reduce the number of transmitted bits depending on the channel

conditions. This is carried out by controlling the code rate. Possible code rates are

1/2, 2/3, and 3/4. The FEC block size is determined by modulation type and code

rate.

Figure 2.3 Convolutional encoder structure

2.2.3 Interleaving

The next block in channel coding is the interleaving block. The main

function of this block is to redistribute the order of transmitted bit such that

consecutive bits are allocated to non-adjacent subcarriers in order to avoid burst

errors. In case of frequency selective channels, which have a variant frequency

response over the user bandwidth, adjacent subcarriers are exposed to similar

channel conditions. Burst errors are not desirable as it has a severe effect on

decoding. Interleaving is important as it reduces the effect of successive errors by

converting burst errors to single separated errors. The interleaver is defined by a

D D D D D D

Y1

Y2

 17

two-step permutation. The first ensures that adjacent coded bits are mapped onto

nonadjacent subcarriers. The interleaver block size is the number of coded bits per

encoded block size Ncbps. The first permutation step depends on Ncbps, as indicated

in (2.2)

. mod
cbps

k d

N k
m k

d d

 = +   
 (2.2)

Where k =0,1,2,…………., Ncbps-1 and d =16

The second permutation step ensures that adjacent coded bits are mapped

alternately onto less or more significant bits of the constellation. This avoids long

runs of lowly reliable bits. The second permutation is defined by the formula given

in (2.3) as follows

s

cbps

k
cbpsk

k
k

N

md
Nm

s

m
sj mod.

.
(.


























−++





= (2.3)

Where k =0, 1, 2… Ncbps-1 and d =16.

Where s is a parameter depending on the modulation scheme as indicated in (2.4).

2

cpcN
s = (2.4)

and Ncpc is the number of coded bits per subcarrier, which equals 2 in case of

QPSK, 4 in case of 16-QAM , and 6 in case of 64-QAM.

2.2.4 Repetition

After FEC and interleaving, a repetition block may be used only in case of

QPSK modulation. The repetition is performed on the unit of slots. First, data bits

are segmented into slot. Each group of bits form a slot that should be repeated R

times in order to form R contiguous slots. The repetition factor R can be 2, 4, or 6.

The repetition coding is used to further increase signal margin over the modulation

and FEC mechanisms.

 18

2.2.5 Modulation

In this stage, data and pilot subcarriers should be modulated prior to

forwarding to the IFFT block. This is done in two steps: subcarrier randomization

and modulation.

2.2.5.1 Subcarrier Randomization

 In this case, a PRBS is used to generate a sequence Wk. This sequence is

used in data and pilot modulation as indicated in the next two sections. The PRBS

used to generate Wk is shown in Figure 2.4. Initialization of PRBS depends on

either uplink or downlink, cell identification number (IDcell), and segment

number.

Figure 2.4 PRBS generator for data and pilot modulation

 19

Initialization of PRBS is determined as follows:

• b0-b4: Five least significant bits of IDcell as indicated by the frame

preamble.

• b5-b6: In case of Downlink, It represents the segment number + 1 as

indicated by the frame preamble where b5 is the MSB and b6 is the LSB. In case of

uplink, it is set to all ones.

• b7-b10: In case of downlink, it is set to all ones and in case of uplink, it is set

by the four least significant bits of the frame number, where b7 is the MSB and b10

is the LSB.

2.2.5.2 Data Modulation

The IEEE802.16e defines both QPSK and 16-QAM as mandatory

modulation schemes and 64-QAM as an optional one. Figure 2.5 illustrate the

constellation diagrams of these modulation techniques. In order to achieve equal

average power, the mapped constellation should be multiplied by a factor c which

depends on the applied modulation type as follows:

•
2

1=c in case of QPSK

•
10

1=c in case of 16-QAM

•
42

1=c in case of 64-QAM

 20

 (a) (b)

(c)

Figure 2.5 (a) QPSK Constellation diagram (b) 16-QAM Constellation diagram

(c) 64-QAM Constellation diagram

 21

The next step is to multiply each subcarrier by a factor of 






 − kW
2

1
2 where k is the

subcarrier index.

2.2.5.3 Pilot Modulation

 As mentioned in section 1.3, some subcarriers are filled with pilots in order

to help for channel estimation and synchronization purposes at the receiver. Pilots

are modulated as indicated in the formula specified by (2.5) in case of uplink and

(2.6) in case of downlink.

In case of uplink, the modulated pilot ck is given by:

 { } 






 −= kk Wc
2

1
2Re

 { } 0I =kcm (2.5)

In case of downlink, the modulated pilot ck is given by:

 { } 






 −= kk Wc
2

1

3

8
Re

 { } 0I =kcm (2.6)

2.2.6 Subcarrier Allocation

In this step, the output transmitted symbols after modulation should be

mapped to certain subcarriers. The procedure that determines which data symbols

will be allocated to which subcarriers and how to allocate pilots to subcarriers

depends on subcarrier permutation scheme specified in section 1.5. It simply maps

the logical numbering, which is the order of data symbols to be transmitted, to a

physical numbering which is the order of subcarriers before entering the IFFT

block. Pilot insertion is performed in parallel to subcarrier allocation, the number

 22

and location of pilots in a certain OFDM symbol is determined according to the

applied permutation scheme and adjusted FFT size.

2.2.7 IFFT

The IFFT block is the main block that performs the multicarrier

modulation. It is applied to each OFDMA symbol separately. Prior to IFFT, we

consider the symbols in the frequency domain. After the IFFT, we consider

symbols in the time domain in order to be transmitted over the channel.

As mentioned before, the IEEE802.16e supports FFT sizes of 128, 512,

1024 and 2048 respectively. The IFFT modulation is performed to symbols with

complex values after QAM mapping. After construction of OFDM symbol

window in time domain, CP is inserted in order to maintain orthogonality of

different tones. In IEEE802.16e, CP can be either 1/4, 1/8, 1/16, and 1/32.

2.2.8 RF Section

 The last block in the transmitter is a passband modulation. It is carried out

by converting the digital baseband signal to analog signal via Digital to Analog

Converter (DAC) then multiplying the output baseband stream by RF carrier prior

to transmission over the wireless channel.

2.3 Receiver block diagram

During transmission over the channel, transmitted symbols suffer from

channel conditions which have severe impact on these symbols such as noise,

multipath fading, and interference from other users in the same band and out of

band. The output of the channel is transferred as input to the receiver. The function

 23

of the receiver is not only to reverse the operations of the blocks at the transmitter,

but also it should recover the channel effects. In this case, we have additional

blocks at the receiver to compensate for channel effects. The main supplementary

blocks used in the receiver are Timing and Frequency synchronization blocks in

addition to channel estimation block. Figure 2.6 illustrates the most common

blocks of the receiver.

Figure 2.6 Receiver block diagram

Received

data from

channel

Output estimated bits

Packet

detection

Timing

Synchronization

Frequency

Synchronization

Remove

CP

FFT

Pilot and Data

Extraction

Cell

Search

ADC

QAM

demapping

Timing and

Frequency

Tracking

Channel

Estimation

Deinterleaving Decoding

Derandomizer

 24

2.3.1 Timing Synchronization

 Synchronization in Communication systems is a crucial issue. The main

purpose of synchronization is to allow the receiver to recognize the start and end

of OFDM symbols in order to begin processing of data. If the OFDM window is

placed in a wrong position, this is considered a timing offset. This has a severe

effect on performance degradation.

 Timing synchronization in OFDM systems comprises three stages: Packet

detection, Symbol timing and sampling clock tracking. Packet detection enables

the receiver to detect that a new frame is being received. Symbol timing enables

the receiver to determine the start and end of OFDM symbol. Sampling clock

tracking compensates for the clock frequency offset between DAC at transmitter

and ADC at receiver. More details about synchronization will be discussed in

chapter 6.

2.3.2 Frequency Synchronization

In addition to the Timing offset problem, Frequency offset has its severe

impact on system performance. The main reason of frequency offset is the

difference between local oscillators at both transmitter and receiver. The main task

of the frequency synchronization is to correct the errors produced from the

frequency offset. Frequency synchronization is carried out in three steps; coarse

frequency offset, fine frequency offset and frequency offset tracking. Chapter 6

presents a detailed description of these steps.

2.3.3 FFT

 The main task of the FFT block is to reverse the task of the IFFT at the

transmitter. The output of this block is the OFDM symbols in the frequency

 25

domain. After FFT operation, data and pilot subcarriers are extracted from the

OFDM symbol and null subcarriers are removed. Prior to the FFT operation,

Guard time and CP are removed from the OFDM window, and then the OFDM

window with a certain number of samples is prepared for FFT operation to

construct OFDM symbol in the frequency domain. After FFT operation, physical

mapping for subcarriers should be converted back to its original logical mapping.

2.3.4 Cell Search

Cell search block is used to identify the cell and segment to which the

mobile station belongs. This is done with the aid of a preamble. In case of

802.16e, 114 different preambles are used. The preamble detection helps to

recognize IDcell and segment number.

2.3.5 Channel estimation

 The channel estimation block is used to determine the channel impulse

response (CIR). Channel has its effect on both magnitude and phase of subcarriers.

This has the effect on rotation of subcarriers in the frequency domain, in addition

to attenuation of magnitude. The receiver has to compensate for this error and

correct it. Many algorithms have been proposed for channel estimation. These can

be found in [9 - 11].

2.3.6 Demapper

The demapper block performs the reverse operation of QAM mapper at the

transmitter; it constructs back the original stream of bits from the received QAM

symbols. However, it should produce a soft estimate of these bits in order to be

used by the decoder.

 26

2.3.7 Decoding

Depending on the coding scheme used at the transmitter, decoding is done

at the receiver. In case of mandatory convolutional coding, Viterbi decoding is

used at the receiver. Viterbi decoding simply uses the principle of Maximum

Likelihood (ML) decoding at the receiver [8]. The operation of the convolutional

encoder can be specified as a state machine. The data bits stored in the delay

elements represents the current state of the encoder. The inputs and current state

determine the output and next state. An extension to the state diagram in time is

the trellis diagram [8]. It simply represents transition from one state to another

state each time slot depending on the input. For a certain codeword, there is a

certain set of transitions that construct a certain path in the trellis diagram. The

function of the viterbi decoder is to determine the nearest path to the received

codeword and hence, determine the original information bits. More explanation of

viterbi decoding can be found in [8], [12].

2.3.8 Derandomizer

Derandomizer retrieves the original data stream that was randomized at the

transmitter. The structure of derandomizer is the same as randomizer. A PRBS is

used to generate random bits; these bits are modulo-2 added to the output of the

decoder to generate final estimated data bits.

2.4 WiMAX PHY Implementation

Implementation of current wireless communication standards is still a

challenging topic. The tremendous demands of high throughput and low power

consumption needed in current wireless communication applications drives the

design of efficient implementation techniques to satisfy these requirements. For

 27

802.16e OFDMA based WiMAX, there is a great challenge to satisfy system

requirements to be able to operate over NLOS conditions, over a distance up to 50

miles. This means that reliable transmission and signal processing at receiver

should be maintained. In addition, 802.16e supports mobility, so, lower power

consumption is a crucial issue in implementation.

Many implementations of several blocks in transmission and reception have

been proposed. Implementation of most mandatory blocks can be found in [13],

 [14]. In this thesis, we study the optional Convolutional Turbo coding used in

802.16e with its hardware implementation. We study also the Sampling clock

tracking and frequency offset tracking with a review of some previous work and

proposed hardware implementation.

 28

Chapter 3

3 Turbo Coding

3.1 Introduction

 In the IEEE802.16e standard, Turbo Coding is defined as an optional block

used in channel coding. The standard defines two types of turbo codes: Block

Turbo Coding (BTC) and Convolutional Turbo Coding (CTC). In this thesis, only

Convolutional Turbo Coding is implemented. It has an improvement in system

performance over mandatory convolutional codes. CTC has been widely used in

many high speed wireless communication systems standards due to its high

performance that approaches that of Shannon limit. It is introduced in 3GPP,

DVB-RCS and WiMAX. Turbo Coding was introduced in 1993 by Berrou,

Glavieux, and Thitimajshima [15], [16]. It consists of a set of serial or parallel

concatenated constituent encoders. Each one encodes an interleaved version of the

original data.

In this thesis, we handle Turbo Coding used in 802.16e standard. This

chapter includes a detailed description of CTC encoding represented in the

standard, and then several decoding techniques are explained in details.

Algorithms that use approximations to simplify hardware implementation are also

described. Then we apply these concepts to the specific turbo codes used in this

standard. We state the previous work and some proposed improvements.

 29

3.2 Turbo Encoding

3.2.1 Block Description

 Convolutional Turbo encoder specified in IEEE802.16e standard is

composed of two constituent encoders in addition to an interleaver. The output of

CTC encoder consists of systematic bits, and parity bits. Systematic output bits are

identical to input bits, and parity bits are outputs of constituent encoders. Each

constituent encoder is considered a double binary recursive systematic

convolutional encoder. It is called double binary as it has two inputs at the same

time. It is considered recursive due to the feedback connection in the

convolutional encoder. This feedback leads to that this encoder has an infinite

impulse response. Each output depends not only on the current input, but also on

all previous input bits.

Double binary Turbo coding has some benefits over ordinary binary Turbo codes,

as explained in [17]. These benefits can be summarized as:

1- The substitution of binary codes by double-binary codes has a direct

incidence on the erroneous paths in the trellis, which leads to a lowered

path error density and reduces correlation effects in the decoding process.

This leads to better performance.

2- From hardware implementation point of view, the bit rate at the decoder

output is twice that of a binary decoder as the processing is performed on

two bits at the same time. So, higher throughput can be achieved with an

equivalent complexity per decoded bit.

3- For a certain block size, the latency of the decoder is divided by 2.

 30

In Figure 3.1, it is shown the block diagram of the convolutional Turbo encoder.

The figure describes the constituent encoder which has a constraint length of 4,

two inputs and two outputs.

Polynomials that define outputs are:

- For Feedback branch: 1+D+D
3

- For Y parity: 1+D
2
+D

3

- For W parity: 1+D
3

Figure 3.1 CTC encoder structure

3.2.2 CTC Interleaver

The CTC interleaver specified in IEEE802.16e consists of two permutation

steps, one is a permutation on the level of each symbol individually, and the

 31

second is on the level of the sequence of all symbols. The following sub-sections

illustrate the interleaving operations.

3.2.2.1 Switch alternate couples

In this step, inputs A, B are sent in their order one time, swapped for the

next time. This operation is repeated for the whole block.

Let the input sequence be U0 =[(A0, B0), (A1, B1), (A2, B2), …..(AN-1, BN-1)]. The

output of this step is U1 =[(A0, B0), (B1, A1), (A2, B2), ….(BN-1, AN-1)], Where N is

the block size of input to interleaver.

The above operation is described as follows:

 for i=0 to N-1

 If(i mod 2 ==1)

 (Ai, Bi) (Bi, Ai) List 3.1

3.2.2.2 Calculate interleaved order of sequence U1

The sequence U1 obtained in the previous step should be mapped to a new

sequence U2. Mapping is carried out by the function P(j) defined such that:

U2(j) = U1(P(j)).

The operation is described as follows:

for j = 0…N – 1

switch j mod 4:

Case 0:

 P(j) = (P0.j+1)modN

Case 1:

 P(j) = (P0.j+1+N/2+P1)modN

Case 2:

 P(j) = (P0.j+1+P2)modN

Case 3:

 P(j) = (P0.j+1+N/2+P3)modN List 3.2

 32

The output sequence of the interleaver is given as U2 = [U1(P(0)),

U1(P(1)),………U1(P(N-1))]. This will be the input to the second constituent

encoder. The mentioned parameters P0, P1, P2 and P3 are specified in the standard.

They depend on block size N.

The above procedure calculates the sequence of interleaved bits P(j) from

the original sequence j. In case of 802.16e, the input stream of bits should be read

by the interleaver with the interleaved sequence P(j). Then the new sequence is

outputted linearly. A detailed hardware description will be given in chapter 5.

3.2.3 Determination of Circulation states

In case of ordinary convolutional encoders, tail bits are included at the end

of each block to force trellis diagram to reach zero state. In case of turbo codes,

such a tail biting scheme can not be used due to the recursive nature of constituent

encoders used in turbo encoders, Padding with zeros will not ensure reaching to

zero state. On the other hand, if we can perform this to one constituent encoder,

we can not perform it to the two constituent encoders simultaneously. A tail biting

scheme used in turbo codes is called circular coding. It ensures that for a certain

input sequence with a certain block size, there exists a certain state which is called

circulation state (Sc) such that if we begin encoding with initial state Sc, we will

ensure that final state at the end of the block is also Sc.

The circulation state Sc is specified from a look up table provided by the standard.

In our case, we have 8 states (0 ≤ S ≤ 7). As we have two constituent encoders, we

calculate two circulation states Sc1, Sc2.

The circulation states Sc1, Sc2 are determined by the following operations:

1) Initialize the encoder with state 0. Encode the sequence in the natural order

for the determination of Sc1 or in the interleaved order for determination of

Sc2. In both cases the final state of the encoder is S0N–1

 33

2) According to the length N of the sequence, determine Sc1 or Sc2 as given in

Table 3-1.

Table 3-1 Circulation state (Sc) look up table

S0N–1
Nmod7

0 1 2 3 4 5 6 7

1 0 6 4 2 7 1 3 5

2 0 3 7 4 5 6 2 1

3 0 5 3 6 2 7 1 4

4 0 4 1 5 6 2 7 3

5 0 2 5 7 1 3 4 6

6 0 7 6 1 3 4 5 2

3.2.4 Subpacket generation

The next step after encoding is to generate subpackets with various coding

rates depending on channel conditions; the 1/3 CTC encoded codeword goes

through interleaving block then puncturing is performed to generate subpackets.

3.2.4.1 Symbol separation

All of the output symbols of the encoder are demultiplexed into six

subblocks denoted A, B, Y1, Y2, W1 and W2 with the first N encoder output

symbols going to the A subblock, the second N encoder output going to the B

subblock, the third to the Y1 subblock, the fourth to the Y2 subblock, the fifth to

the W1 subblock, the sixth to the W2 subblock.

 34

3.2.4.2 Subblock interleaving

Puncturing specified by the standard depends on selection of consecutive

symbols out of the whole 6N symbols of one subpacket. In order to perform

puncturing to non-consecutive symbols, another permutation is carried out via

subblock interleaving block. The purpose of this step is to interleave each of the

six subblocks separately. The sequence of the interleaver output symbols is

generated by a procedure specified by the standard. It resembles any ordinary

interleaver where input symbols are written into an array with a certain order and

then are read from that array with a different order. In this case, symbols are

written in an order from 0 to N-1, then read out from an order with the i
th
 symbol

is read from address ADi (i=0…N-1).

The procedure is constructed as follows:

1- Determine the subblock interleaver parameters, m and J that depend on the

block size. They are given in Table 3-2

2- Initialize i and k to 0.

3- Form a tentative output address Tk according to the formula

2 (mod)m

k m

k
T k J BRO

J

  = +     
 (3.1)

 where BROm(y) indicates the reversed m-bit value of y, (i.e BROm(6)=3).

4- If Tk is less than N then ADi = Tk and increment i and k by 1. Otherwise, discard

Tk and increment k only.

5- Repeat steps 3 and 4 until all N interleaver output addresses are obtained.

 35

Table 3-2 Parameters for the subblock interleavers

Subblock interleaver parameters Block size (bits)

NEP
N

m J

28 24 3 3

72 36 4 3

96 48 4 3

144 72 5 3

192 96 5 3

216 108 5 4

240 120 6 2

288 144 6 3

360 180 6 3

384 192 6 3

432 216 6 4

480 240 7 2

3.2.4.3 Symbol grouping

The output of subblock interleaver shall consist of A subblock, B subblock, a

symbol by symbol multiplexed block of Y1 and Y2 and finally a symbol by symbol

block of W1 and W2. This output sequence should be punctured in the following

step, symbol selection (puncturing). Figure 3.2 illustrates the process of sub-block

interleaving, symbol grouping and symbol selection.

 36

Figure 3.2 Block diagram of the interleaving and symbol grouping

3.2.4.4 Symbol selection (Puncturing)

The last step in Turbo encoding is symbol selection. Its output is a

punctured subpacket with various possible coding rates. This rate depends on

different parameters and it should be configured according to channel conditions.

The selected symbols indices depend on:

NEP: Number of bits in the encoder packet (before encoding).

NSCHk: Number of concatenated slots of K
th
 subpacket.

mk: the modulation order for the K
th
 subpacket (mk = 2 for QPSK, 4 for 16-QAM,

and 6 for 64-QAM).

SPIDk: Subpacket ID for the K
th
 subpacket, (for the first subpacket, SPIDk=0 = 0).

The index of the i-th symbol for the K
th
 subpacket shall be

()).3(mod , EPKiK NiFS += (3.2)

…………. ………….

Y1

Subblock
Y2

Subblock

Subblock

interleaver
Subblock

interleaver
Subblock

interleaver

W2

Subblock

Subblock

interleaver

W1

Subblock

Subblock

interleaver

A

Subblock

Subblock

interleaver

B

Subblock

 37

Where

 10,1, 2..... Ki L −=

 kSCHkk mNL ..48=

() ()EPkkk .NLSPIDF 3 mod .= (3.3)

In case of HARQ support, K represents sub-packet ID. It is considered 0 in case of

non HARQ support. In this case, Equation (3.3) is reduced to this formula

).3(mod, EPiK NiS = (3.4)

At the end of this step, the punctured sub-packet is available and we have the final

output of Turbo encoder.

The above form of equation can be simplified as follows

()

2
0,1, 2...... 1

_

2
. mod 6

_
k k

N
i

code rate

N
F SPID N

code rate

= −

 
=  
 

() (), mod 6k i kS F i N= + (3.5)

The term Fk represents an offset from the beginning of the subpacket, and the

selected symbols have indices begins with (Fk) mod6N to 







−+ 1

_

2

ratecode

N
FK

 mod6N.

This process is illustrated in Figure 3.3.

Figure 3.3 CTC Puncturing process

0 6N-1

(Fk) mod6N
NK

ratecode

N
F 6 mod1

_

2
 








−+

 38

3.3 Turbo decoding

3.3.1 Introduction

Most proposed turbo decoding schemes are based on iterative decoding.

The turbo decoder consists of two component decoders as indicated in Figure 3.4.

The key idea on which iterative decoding is based on is that each decoder

produces a soft estimate of the original information bits, this estimation is used by

the other decoder, to produce a better estimation. The new estimation is used again

by the first decoder to enhance its estimation and so on. The estimation is better

with the increase of the number of iterations.

Each component decoder is based on soft input soft output decoding. The

soft representation of the information bits is carried out in a form of a Log

Likelihood Ratio (LLR). The soft output of each decoder provides a-priori

probability of the information bits to be used by the other decoder. The a-priori

information is also called extrinsic information.

Each component decoder operation is based on the received systematic, and

parity bits from the channel, in addition to the extrinsic information from the other

decoder. At the beginning of the first iteration, the decoder has no a-priori

information about information bits. It has only channel information on systematic

and parity bits. Thus, the input a-priori information is set initially to zero. The

extrinsic information generated by each decoder is the key difference among

successive iterations.

Many algorithms were proposed for turbo coding such as Max A-posteriori

(MAP) [18] and Soft output Viterbi algorithm (SOVA). Each is based on iterative

decoding where performance increases with the increase of number of iterations.

 39

Increasing number of iterations introduces a complexity in implementation of

decoder. A compromise should be held between Hardware implementation

complexity and required performance.

Figure 3.4 Generic Architecture of Turbo decoder

3.3.2 Log Likelihood Ratio (LLR)

The soft output of each decoder is based on LLR. In case of ordinary binary

turbo codes, and for a certain data bit uk, the LLR L(uk) is defined as the logarithm

of the ratio of probability that uk=+1 to the probability that uk =-1. This means the

ratio between a-priori probabilities.










−=
+=

=
)1(

)1(
ln)(

k

k
k

uP

uP
uL (3.6)

Unlike LLR, the conditional LLR)|(yuL k is commonly used in decoding

techniques. It is based on the ratio of a-posteriori probabilities. Its equation is

given as follows










−=
+=

=
)|1(

)|1(
ln)|(

yuP

yuP
yuL

k

k
k (3.7)

RX systematic

RX Parity 2

RX Parity 1

SISO1

SISO2

Deinterleaver

Interleaver

Interleaver

 40

where y is the received codeword. This ratio of the a-posteriori probabilities will

be used by the decoder to provide soft representation of the decoded bits.

However, we deal with the case of double binary Turbo decoding. In this

case, we are in need to define a symbol based LLR. In this case, three LLRs are

defined as follows

((,) |)
((,) |) ln

((1, 1) |)

k
k

k

P u a b y
L u a b y

P u y

 =
=  = − − 

 (3.8)

This equation defines three LLRs corresponding to the set of input ()bauk ,=

corresponding to () 1) 1,(or 1),- 1,(,)1,1(, ++++−=ba respectively. They are

normalized with respect to () ()()1, 1 |kP u y= − − . These LLRs are used in double

binary turbo codes as an alternative to the LLR defined in (3.8) used in ordinary

binary turbo codes. As a consequence, three extrinsic likelihood ratios are

produced by each component decoder to be used by the other decoder.

3.3.3 Maximum A-posteriori probability (MAP) algorithm

The MAP algorithm was first proposed by Bahl, Cocke, Jelinek, and Raviv

in 1974. It is also named as BCJR algorithm due to the names of its inventors. This

algorithm aims at maximizing the a-posteriori probability at each time slot [18].

This differs from the case of Viterbi algorithm that is used with ordinary

convolutional codes, which minimizes the probability of error for the whole path

in the trellis. In the next section, the decoding process of ordinary binary turbo

decoding is described, and then we will apply it to our case of double binary turbo

decoding.

 41

MAP algorithm is a Soft Input Soft Output (SISO) algorithm. It not only

provides a decision for the decoded bit, but it can also provide a soft estimation of

it, which is used by the other component decoder.

 The decoding process is based on LLR as follows, Equation (3.8)can be written as

)
)...|0(

)...|1(
ln()|(

110

110

−

−

=
=

=
Nk

Nk
k

yyyuP

yyyuP
yuL (3.9)

where N represents the block size of the received codeword. The probability of the

original bit to be either zero or one depends on the whole codeword. It can be seen

from a different point of view if the codeword is divided into three parts. The

received codeword before the time slot k, yj<k , the received codeword at time slot

k, yk and the received codeword after the time slot k, yj>k.

Each time slot is represented by a set of transitions among states as shown in

Figure 3.5. These are specified by the trellis diagram which depends on the

structure of the encoder.

Consider at time slot k, the transition from state s’ to state s, some transitions

corresponds to uk=+1 and the others corresponds to uk=-1.

According to [19], We can rewrite equation 3-8 as follows

1

' 1

1

' 1

(')

(|) ln()
(')

k

k

k k

s s u

k

k k

s s u

P S s S s y

L u y
P S s S s y

−
→ ⇒ =+

−
→ ⇒ =−

= ∧ = ∧

=
= ∧ = ∧

∑

∑ (3.10)

where the notation Λ means intersection. Equation (3.9) illustrates that the a-

posteriori probability at a given time slot can be expressed by the sum of

probabilities of transitions from state s’ to state s corresponding to the information

bit uk.

We can expand the probability term) ' (1 ysSsSP kk ∧=∧=− as mentioned into

equation 5.19 of [19]. We conclude that

1 (') (|). ([] | '). ('̂)k k j k k j kP S s S s y P y s P y s s P s y− < >= ∧ = ∧ = ∧ (3.11)

1 1 1
(') ('). ('). ()

k k k k k k
P S s S s y s s s sα γ β− − −→= ∧ = ∧ = → (3.12)

 42

• The term 1(')k sα − is called the Forward estimation of state probability of

state s’ at time slot k-1.

• The term)'(1 sskk →→−γ is called Branch metric probability or the transition

probability from state s’ to state s between time slots k-1 and k.

• The term ()
k

sβ is called Backward estimation of state probability of state s

at time slot k.

So, in order to calculate LLR, we need to calculate the previous three probabilities

for each transition, and then LLR is calculated as mentioned in equation (3.10).

The next section presents a detailed explanation of calculation of each of the three

probabilities in MAP algorithm.

3.3.3.1 Branch Metric Calculation

 The branch metric)'(1 sskk →→−γ indicates the probability of transition on

each branch for all branches of the corresponding trellis at a certain time slot.

As indicated from(3.11), (3.12)

)'|]([)'(1 ssyPss kkk ∧=→→−γ (3.13)

This probability can be represented as a product of two probabilities, as mentioned

in 5.32 of [19]. These probabilities are the channel probability and the A-priori

probability.

)().|()'(1 kkkkk uPxyPss =→→−γ (3.14)

Where yk represents the received codeword at time instant k. It consists of the

received systematic and parity bits, xk represents the original transmitted

systematic and parity bits corresponding to each branch in the trellis. The term uk

represents original information bit at time slot k. It is illustrated from (3.14) that

branch metric probability is determined by the probability of transition on this

branch, which is determined by the channel probability in addition to the

 43

probability of original information bit corresponding to this branch at this time

slot, which is the a-priori probability.

The channel probability is based on the information from received systematic and

parity bits. It can be shown in a Gaussian channel with variance σ
2
 and fading

amplitude a that

1

(|) exp()
2

n

C

k k km km

m

al L
P y x y xα

=

∑ (3.15)

where the term Lc is called channel reliability which depends on both SNR and

fading amplitude as given in [19] as follows

 (3.16)

Where Eb is the transmitted energy per bit and a is the fading amplitude.

Finally, we can represent the branch metric as the path metric used in conventional

viterbi decoder in addition to the a-priori probability as shown below:

()1

1

(') exp .
2

n

C

k k km km k

m

al L
s s y x P uγ α− →

=

→
 
 
 
∑ (3.17)

3.3.3.2 Forward estimation state probabilities

In addition to branch metric probability mentioned in the previous section,

MAP algorithm takes into consideration state probabilities. Forward estimation of

state probabilities indicates probability of each state in case of moving in the

forward direction in the trellis diagram, i.e at each time slot forward state

probability of each state means the probability that transition in this time slot

begins from this state given the received codeword prior to this time slot.

This is given as mentioned in (3.11), (3.12) as

2
2 b

c

E
L a

σ
=

 44

)|()(1 syPs kjk <− =α

Calculation of a state probability αk at a certain time slot k depends on state

probabilities αk-1(S’) of previous time slot and the transition probabilities, which

are the branch metrics.

Calculation of this probability, as indicated in [19], is given by the recursive

formula:

∑ →= →−−)'().'()(11 ssss kkkk γαα (3.18)

In Figure 3.5, it is shown the trellis diagram of Turbo encoder used in

IEEE802.16e WiMAX. As this standard uses double binary turbo codes, each state

has four output branches.

In order to calculate forward state probability of state 0 at time slot k, we get it as

1 1 1 1

1 1 1 1

(0) (0). (0 0) (1). (1 0)

 (6). (6 0) (7). (7 0)

k k k k k k k

k k k k k k

α α γ α γ

α γ α γ
− − → − − →

− − → − − →

= → + →

+ → + →
 (3.19)

Figure 3.5 Trellis diagram of Double binaryTurbo encoder used in IEEE802.16e WiMAX

111

110

101

100

011

010

001

000

I/P 00

I/P 01

I/P 10

I/P 11

111

110

101

100

011

010

001

000

 45

Initially, at the first decoding iteration, no a-priori information is given about state

probabilities. In this case, we consider them equiprobable.

This means that

s
n

s ∀=
1

)(0α (3.20)

where n is the number of states, which equals 8 states in our case.

As circular coding is used as mentioned in 3.2.3, the initial state Sc is well known.

State probabilities should be initialized as follows

0)(

1)(

0

0

=≠

=

ScS

Sc

α

α
 (3.21)

3.3.3.3 Backward estimation state probabilities

Backward state probability of a certain state at a certain time slot indicates

probability of transition to this state given a certain received codeword after this

time slot. The calculation of the backward state probabilities is similar to that of

forward state probabilities; it depends of state probabilities at the next time slot

and branch metrics.

It is calculated by the recursive formula given below:

∑ →= +→+)'().'()(11 ssss kkkk γββ (3.22)

Initializing backward state probabilities is similar to the case of forward state

probabilities. This is given as described below:

0)(

1)(

=≠

=

ScS

Sc

N

N

β

β
 (3.23)

3.3.3.4 LLR Computation

The final step after calculation of the branch metrics and state probabilities

at each time slot of the codeword is to calculate the LLRs. These LLRs represent

the decoder soft output. We can re-write equation (3.10) as follows

 46

1 1

' 1

1 1

' 1

('). ('). ()

ln
('). ('). ()

k k k k

s s uk

k k k k

s s uk

s s s s

LLR
s s s s

α γ β

α γ β

− − →
→ ⇒ =+

− − →
→ ⇒ =−

 →
 =  → 
 

∑
∑ (3.24)

The output decoded bits can be calculated from LLRs by applying a hard decision

to these soft values.

As turbo decoders are based on iterative decoding, the extrinsic likelihood

probabilities are calculated from LLRs. Extrinsic likelihood represents how much

information the decoder adds about the decoded bits. It is obtained by subtracting

the input values to the decoder from its output LLRs as follows

() ()kksCke uLyLLLRuL −−= . (3.25)

The above equation indicates the calculation of extrinsic LLR.

Where LLR is the soft output Log Likelihood Ratio from the decoder

 Lc channel reliability

 yks is the received systematic bit

 L (uk) is the input A-priori probability

 The extrinsic LLR should be bypassed to the other component decoder as an A-

priori probability used in next iteration. A schematic description of calculation of

extrinsic LLR is shown in Figure 3.6.

Figure 3.6 Extrinsic Likelihood calculation

Apriori

Parity

Systematic

Component

decoder

Output

Extrinsic

 47

3.3.3.5 Estimation of Circulation state

One important step is to estimate the circulation state (Sc) for each

codeword. Several techniques were proposed to estimate Sc, Some techniques

proposed to use a prologue decoder for estimation and another decoder to decode

again after the identification of Sc. This solution adds more complexity for

implementation, as it will increase latency, power consumption, area and

resources.

Other proposed techniques depend on the iterative nature of the decoder.

This means that Sc is estimated inherently from one iteration to the next one. At

the first iteration, the decoder has no information about Sc. It begins decoding

assuming equiprobable forward and backward initial states. At the end of the first

iteration, the decoder obtains a reasonable estimation of Sc; it begins decoding in

second iteration assuming the Sc estimated from first one. At the end of the second

iteration, the decoder obtains better estimation of Sc, and so on. The decoder

begins next iteration assuming Sc estimated from previous iteration.

This is a reasonable method of estimation as it adds no more complexity in

hardware implementation. The estimation is based on maximizing the sum of

forward state probability at the last time slot and backward state probability at first

time slot as follows

))}()(max({ 0 SSSSc N βα +⇔= (3.26)

3.3.4 Max Log MAP Approximation

It is shown that MAP algorithm includes enormous calculations of state and

branch metric probabilities, including large number of multiplications,

exponentials and Logarithm calculations which complicates the hardware

 48

implementation. Simplification to MAP algorithm is necessary to simplify its

implementation.

One possible approximation is to use state and branch metric probabilities

in Log domain, this means using Log Number systems (LNS) as an alternative

way to represent these probabilities. Using LNS converts all multiplications to

additions and removes exponentials. This approximation is called Log-MAP

approximation [20].

The state and Branch Metric probabilities are defined in LNS as follows:

() ()()
() ()()

ln

ln

k k

k k

s s

s s

α

β

Α =

Β =

() ()()1 1' ln 'k k k ks s s sγ− → − →Γ → = → (3.27)

Using LNS is called Log MAP approximation; an extended simplification can be

done by using MAX Log MAP approximation [20], [21] that depends on Jacobi

logarithm approximation as indicated below:

}max{)ln(i

x
xe i ≈∑ (3.28)

3.3.4.1 Calculation of branch metric probabilities

The branch metric probability in log domain Гk(S) is calculated as follows

()()

k

1

() ln

 con s t. ln (P (u))
2

k k

n
C

km km

m

S S

L
y x

γ

=

Γ =

= + + ∑
 (3.29)

The constant term can be omitted in the calculation of LLR, so no need to consider

it.

 49

If we define)
)1(

)1(
ln()(

−=

+=
=

k

k

k
uP

uP
uL , the LLR of the a-priori probability, we

obtain

)
)1(1

)1(
ln()(

+=−
+=

=
k

k
k

uP

uP
uL (3.30)

)(

)(

2/)(

).
1
()1(kk

k

k

uLu

uL

uL

k e
e

e
uP

−

−

+
=±= (3.31)

Finally, we can represent the branch metric by the form given in (3.32)

∑
=

++=Γ
n

m

kmkm
C

kkk xy
L

uLucS
12

)(
2

1
onst.)((3.32)

3.3.4.2 Calculation of forward state metric probabilities

The recursive form of equation (3.18) can be rewritten in the log domain as

)}'()'(max{)(11 SSSS kkkk →Γ+Α=Α →−− (3.33)

This means that in case of the Turbo code standard for which this thesis is

concerned, the calculation of the state metric probability in LNS implies four

additions to previous state metrics by corresponding branch metrics. The resultant

state metric probability is the maximum of the four results. This has its significant

effect on simplifying implementation of this algorithm with a little degradation in

the system performance.

3.3.4.3 Calculation of backward state metric probabilities

In a similar manner to the calculation of forward state metrics, backward

state metrics are computed. The recursive formula will be

{ })'()'(max)(11 SSSS kkkk →Γ+Β=Β →−− (3.34)

 50

Again, in this standard, calculation of backward state metrics implies four

additions and comparison operation.

3.3.4.4 LLR Computation

In case of Max Log MAP, LLR given in (3.24) is computed by applying MAX

Log MAP approximation taking into consideration that

)'(

1

)(

)(

1)'(

)(

)(

SS

kk

S

k

S

k

kk

k

k

eSS

eS

eS

→Γ
→−

Β

Α

→−=→

=

=

γ

β

α

In this case, we obtain

1 1 1

' 1 ' 1

ln ('). ('). () ln ('). ('). ()k k k k k k k k

s s uk s s uk

LLR s s s s s s s sα γ β α γ β− → − − →
→ ⇒ =+ → ⇒ =−

   
= → − →   
   
∑ ∑

{ } { }1 1 1 1
' 1
max (') (') () (') (') ()k k k k k k k k

s s uk
LLR s s s s s s s s− −→ − −→

→ ⇒ =+
= Α +Γ → +Β − Α +Γ → +Β (3.35)

The computed LLR represents the soft output of the decoder. In order to calculate

extrinsic LLR; equation (3.25) is used without any modifications.

Another factor is that the Max Log MAP algorithm removes the decoder

dependency on SNR. This can be observed from (3.32), the SNR becomes a

scaling factor multiplied by another term representing the cross correlation

between received data and original data corresponding to each branch. Initially,

the decoder has no a-priori information about the original information bit; thus

L(uk)=0.

Calculation of Ak(S) and Bk(S) indicates that they will also be scaled with the

same scaling factor. This scaling factor will be scaled with all quantities used in

 51

decoding. A scaling factor will not affect the decision performed in LLR. The term

SNR can be omitted when calculating branch metric probabilities. The assumption

for which this is based on is that SNR is constant over the same codeword.

Estimation of circulation states is the same as mentioned in section 3.3.3.5, except

that initializing state metrics here is different. In this case

−∞=≠

=

)(

0)(

0

0

ScSA

ScA
 (3.36)

And

−∞=≠Β

=Β

)(

0)(

ScS

Sc

N

N
 (3.37)

Another version of Log MAP algorithm is called MAX* Log MAP (MAX-

STAR Log MAP) algorithm which add a correction term to the max

approximation as follows

1 2

1 2 1 2ln() max(,) (,)
x x

ce e x x f x x+ = + (3.38)

where),(21 xxf c is the correction term added and equals to)1ln(
|| 21 xx

e
−−+

When applying max* algorithm, the SNR term affects branch and state metrics

calculation and it shouldn’t be neglected.

3.3.5 Sliding Window Max Log MAP Approximation

In addition to MAX Log MAP approximation, further approximations were

proposed to compensate for latency and large storage requirements for MAX Log

MAP, especially for large block sizes. One proposed algorithm as mentioned in

 [22] is called Sliding Window (SW) MAX Log MAP algorithm.

The key idea behind sliding window approximation is to divide the

received codeword into smaller windows or sub-blocks. No need to wait for the

 52

whole codeword, but the backward recursion begins when first sub-block only is

completely received. This plays a key role in reducing the storage requirements,

no need to store branch metrics and state metrics for the whole codeword, but only

for one sub-block. After the completion of reception of the first sub-block, it is

ready to calculate the backward state probabilities and LLRs of symbols of the

first sub-block. The forward probabilities of second sub-block are calculated

simultaneously.

A timing sequence description of SW MAX Log MAP algorithm is provided in

Figure 3.7. It shows the operation of how states are computed for different sub-

blocks with time.

Figure 3.7 Timing Sequence of Sliding Window Max Log MAP

At the end of each sub-block, backward states are being calculated. A

problem raises that no pre-estimation of values of state probabilities at the end of

the window to initialize backward states. A possible solution is to assume

equiprobable states at this time slot. This has its impact on degrading the system

Time

1st sub-block

2nd sub-block

3rd sub-block

4th sub-block

α1

α2

α3

α4

β1, L1

β2, L2

β3, L3

β4, L4

 53

performance. More about simulation results of these approximations are provided

in chapter 4.

In order to overcome the effect of performance degradation, some proposed

techniques use a guard window to have a rough estimation of initial value of

backward state metrics. The guard window begins tracing back not from the end of

the current window, but from a further time slot in the next window, this depends

on the guard window size. As window size and guard window size increases, we

have a better performance.

There are various techniques specified for sliding Window Max Log MAP

algorithm, some techniques begin by computation of backward recursion of each

sub-block, then compute forward recursion. Other techniques begin with forward

recursion then calculate backward recursion at traceback. In this thesis the second

type is considered in simulations and implementation. The steps of the considered

sliding window Max Log MAP algorithm can be summarized as follows:

1- Begin calculation of Forward state probabilities by initializing

−∞=≠

=

)(

0)(

0

0

ScSA

ScA

2- At the end of first sub-block, begin the backward recursion where backward

states should be initialized as:

SSgw ∀=Β + 0)(

Where w is the window size and g is the guard window size. We begin backward

recursion at end of each sub-block assuming equiprobable states.

3- Once backward recursion is calculated, LLRs can be calculated and then

extrinsic LLRs can also be calculated. The resulting bits after decision should

be stacked in order to obtain decoded bits in order.

 54

4- The operation should be repeated for the next window, but initialization of

forward state metrics is calculated in the same way of ordinary MAX Log

MAP. The process of SW MAX Log MAP is shown in Figure 3.8.

Figure 3.8 Sliding Window operation

3.3.6 Double binary Turbo decoding

 Up to now, we consider the case of Binary Turbo Codes; in case of IEEE

802.16e WIMAX standard, it uses double binary Turbo codes. This section

illustrates how the ordinary turbo decoding algorithms are modified to handle the

case of double binary turbo codes. In case of binary turbo codes, each bit is

represented by a single LLR, but in case of double binary turbo codes, we define

three LLRs [23] as mentioned in (3.8). Each component decoder has input

systematic and parity bits and three extrinsic LLRs. By applying this definition of

LLRs, the decoder can perform decoding on a symbol wise operation without

separating the couples of the symbol. A description of the decoder block is shown

in Figure 3.9.

0 w w+g 2w 2w+g 3w 3w+g

3-Backward

5-Backward

4-Backward

2-Backward

1-Backward

5-Forward

4-Forward

3-Forward

2-Forward

1-Forward

 55

Figure 3.9 Structure of Double Binary Turbo decoder

Calculation of branch and state metrics is straight forward. Assume the

received systematic bits are RA and RB and the received parity bits are RY1, RY2,

RW1 and RW2. The first component decoder has inputs RA, RB, RY1, RW1, Le (0,1),

Le (1,0) and Le (1,1).

To calculate branch metric at any time slot, a cross correlation is carried out

between received data and original data corresponding to each branch.

() ()BALeWRYRBRARBA WYBAkk ,1*1***, 111 ++++=→−γ (3.39)

{ }, , 1, 1 1, 1A B Y W ∈ −

where A, B, Y1 and W1 are the original systematic and parity bits corresponding

to each branch in the trellis.

Calculation of forward and backward metrics is straightforward as in the

case of binary turbo codes. After the calculation of branch metrics, forward and

backward metrics, the decoder should calculate LLRs by calculating the likelihood

of each branch.

{ }
1 1

' :(,)

(,) max (') (') ()
k k k k k

S S a b

T a b S S S S
→ + +

→

= Α +Γ → +Β (3.40)

Le1(A,B)

L(A,B)

L(A,B)

RY2,RW2

RY1,RW1
Double

Bin. SISO

Double

Bin. SISO2

INT

INT

RA, RB
-

-

-

-

DeINT

Le2(A,B)

 56

where),(baT k represents Likelihood of the branch that corresponds to transition

from state s’ to state s for original input sequence (a,b).

Finally, three LLRs are calculated as

() ()(,) , 0,0
k k k

a bL T a b T= − (3.41)

and we get that Lk(0,0) always equals to zero.

After calculation of LLRs, three extrinsic LLRs , , ,(1,1), (1,0), (0,1)
o o o
e k e k e kL L L

should be calculated to be bypassed to the other component decoder. The term

, (,)
o

e k a bL indicates output extrinsic likelihood of symbol (),ku a b= at time slot k.

The final decision of decoded bits is performed according to output LLRs obtained

from (3.41)

() ()() max (1,0), (1,1) max (0,1) (0,0)
k k k k k

L A T T T T= − −

() ()() max (0,1), (1,1) max (1,0) (0,0)
k k k k k

L B T T T T= − − (3.42)

After Calculation of both ()kL A , ()kL B , we are able to estimate both original

information bits A, B
∧ ∧

. This should be done at the last decoding iteration.

 57

Chapter 4

4 Simulation results of WiMAX CTC

4.1 Introduction

This chapter contains several simulations and performance analysis of

WiMAX CTC. These simulations compare between various Turbo decoding

schemes and show the effect of decoding approximations on the system

performance. In addition, they illustrate the effect of different channel conditions

on the WiMAX CTC performance. Finally, we achieve the fixed point model

which represents the system performance after Hardware implementation.

4.2 Turbo codes performance in AWGN channels

4.2.1 Effect of Number of iterations

As illustrated in chapter 3, Turbo decoding algorithms are based on

iterative decoding. In this case, increasing the number of iterations provides an

improvement in the original data estimation. Figure 4.1 illustrates the performance

analysis of MAX Log MAP algorithm for a rate 1/3 turbo decoder with interleaver

size of 240 couples over AWGN channel. It is simulated for a number of turbo

iterations up to 8 iterations.

It is indicated from the simulation results that the increase in the number of

iterations enhances the BER performance. It is obvious that the rate of BER

enhancement decreases with the increase in the number of iterations. The BER

curve begins to saturate with a large number of decoding.

 58

Figure 4.1 Effect of number of iterations in MAX Log MAP

We conclude that the increase in the number of iterations too much may be

inefficient as the gain in performance will be insignificant with respect to the

additional hardware complexity and decoding latency.

4.2.2 Improvement over mandatory Convolutional Coding

This section demonstrates the difference in performance between

Convolutional Turbo codes and the ordinary Convolutional Codes used in mobile

WiMAX. Simulation is performed in AWGN environment. It is shown that

Convolutional Coding outperforms CTC for only the first CTC decoding iteration,

while CTC outperforms Convolutional Coding beyond the first iteration. Figure

 4.2 illustrates that 2 CTC decoding iterations achieves an enhancement of about 1

dB over Convolutional Coding and 8 CTC decoding iterations achieves an

improvement of about 2 dB.

 59

Figure 4.2 Convolutional vs CTC performance

These simulation results in Figure 4.2 derive an important conclusion. It is

not efficient to use CTC decoder for a single decoding iteration. This leads to a

lower performance and higher complexity. At least CTC should be designed for

two iterations. Four decoding iterations can be considered a reasonable

compromise between performance, complexity and latency.

4.2.3 Effect of Turbo interleaver block size

Simulation results indicate that Turbo codes performance varies according

to the interleaver block size. It is shown that the increase of CTC interleaver size

enhances the BER performance for the same SNR. Figure 4.3 illustrates the

performance of MAX Log MAP algorithm for interleaver block sizes of 24, 96,

192 and 240 respectively. Simulation is performed for 4 turbo decoder iterations

and coding rate of 1/3 in AWGN channel environment.

 60

Figure 4.3 Interleaver block size effect

 It is shown that in case of interleaver size of 240 couples, the performance

outperforms that of lower sizes. Depending on the channel conditions and

estimated SNR, the block size N is adjusted by the MAC layer in order to achieve

the desired BER. The cost of BER enhancement is the decoding latency for larger

block sizes.

4.2.4 MAX vs MAX* Log MAP

This section illustrates the effect of neglecting the correction term in MAX

Log MAP algorithm. This correction term was previously mentioned in Figure 4.4.

We present a comparison between MAX Log MAP algorithm with the MAX* Log

MAP algorithm which considers the correction term. Simulation is performed for a

block size N of 240, code rate of 1/3 and 4 decoding iterations in AWGN channel

environment.

 61

Figure 4.4 Comparison between Max and Max* performance

From the simulation results, we find that the MAX Log MAP

approximation results in a loss of about 0.25 dB of the BER performance

compared to MAX* algorithm.

4.2.5 Effect of Symbol selection (Puncturing)

Symbol selection is performed to reduce number of coded bits per

information symbol. Simulation results indicate that puncturing affects the BER

performance of Turbo codes. In 802.16e CTC encoder, variable code rates of 1/2,

3/4, and 5/6 are defined. It is shown that the increase in the code rate results in a

degradation of Turbo codes performance. The process of puncturing should be

adaptive according to the channel conditions. Figure 4.5 illustrates the effect of

symbol selection in case of Rate ½ and Rate ¾ coding respectively.

 62

(a)

(b)

 63

(c)

Figure 4.5 (a) Rate ½ performance

(b) Rate ¾ performance

(c) Comparison among various Coding rates

4.2.6 Sliding Window MAX Log Map approximations

In this section, effect of Sliding window MAX Log MAP approximation is

illustrated. The BER performance is tested for different window sizes (Ws) and

guard window sizes (Wg). The simulation results are shown in Figure 4.6 a, b and

c.

 64

 (a)

(b)

 65

0 0.5 1 1.5 2 2.5 3
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No (dB)

B
E

R

SW-MAXLog MAP, N=240,Rate 1/3, Ws=32, Wg=0, AWGN

1 iteration

2 iterations

4 iterations

6 iterations

8 iterations

(c)

Figure 4.6 (a) BER for SW MAX Log MAP (Ws=64, Wg =8)

 (b) BER for SW MAX Log MAP (Ws=32, Wg =4)

(c) BER for SW MAX Log MAP (Ws=32, Wg =0)

It is obvious that the system performance is exposed to some degradation

with the change of the guard window size (Wg). In Figure 4.7, the effect of

removing guard window degrades the system performance. The simulation is held

for case of block size N=240, Window size Ws=32, and AWGN channel. The

simulation results indicate that the case of Wg=0 increases the BER. This is due to

total removal of the information of the backward metrics from some time slots.

 66

Figure 4.7 Guard Window effect

4.3 Simulations of Turbo codes in fading channels

As practical channels are not simply considered as AWGN channels,

several channel models have been standardized to simulate the effects of practical

channels on transmitted signals. It is important to study effect of Turbo codes in

fading channels. This section provides several simulation outputs of Turbo codes

in fading channels for different coding rates. Simulations is performed for both

QPSK rate ½ and rate ¾ with OFDM, block size N=240 and MAX Log MAP

decoding technique. The fading channel model used is that proposed for

IEEE802.16m standard for urban macrocell. It models a NLOS propagation and

high mobility (up to 350 Km/h) [24]. In this model, channel is modeled with 20

taps; each tap consists of a set of rays with fixed offset angles. The delay and

power of each tap is also specified. Table 4-1 indicates these parameters. There are

 67

other propagation models specified for IEEE 802.16m standard. For more details,

please refer to [24].

Table 4-1 Proposed Channel characteristics for urban macrocell for IEEE 802.16m

Tap # Delay(ns) Power(dB)

Angle of

departure

(AoD)

Angle of arrival

(AoA)

1 0 -6.4 61 -19.5

2 60 -3.4 44 -16.4

3 75 -2.0 -34 -15.0

4 145 -3.0 0 -13.0

5 150 -1.9 33 -14.9

6 190 -3.4 -44 -16.4

7 220 -3.4 -67 -13.4

8 335 -4.6 52 -17.7

9 370 -7.8 -67 -20.8

10 430 -7.8 -67 -20.8

11 510 -9.3 -73 -22.3

12 685 -12.0 -83 -25

13 725 -8.5 -70 -21.5

14 735 -13.2 -87 -26.2

15 800 -11.2 80 -24.2

16 960 -20.8 109 -33.8

17 1020 -14.5 91 -27.5

18 1100 -11.7 -82 -24.7

19 1210 -17.2 99 -30.2

20 1845 -16.7 98 -29.7

 68

In Figure 4.8, simulation is performed to QPSK modulation technique in

case of rate ½ and rate ¾ coding rates in a fading environment. It is simulated for

8 decoding iterations. From the simulation output, it is shown that CTC

outperforms Convolutional Coding with the same coding rate at higher SNR,

while ordinary Convolutional Codes have better performance at lower SNR.

Figure 4.8 QPSK rate ½ and rate 3/4 a fading environment

4.4 Analysis using fixed point arithmetic

Fixed point analysis is a mandatory step before hardware implementation.

It is important for purposes of seeking for an effective quantization with optimal

number of bits of both received signals and internal signals without affecting

coding performance. Received signals are represented by output systematic and

parity signals from the channel. Internal signals are the branch and state metrics

 69

and likelihoods. Many papers addressed the problem of Turbo decoder

quantization and fixed point analysis [25 – 28].

In this section, fixed point simulation results is presented showing the

optimal number of quantization bits for both input signals and internal signals.

4.4.1 Quantization of received signals

In Figure 4.9, quantization of input signals is indicated, it is shown that 4

bits for input data has a good performance, it approaches the performance of the

floating point model but 3 bits results in a loss that exceeds 0.5 dB. This BER

curve is for 4 iterations of turbo decoding.

Figure 4.9 Fixed point vs Floating point model for received signals

 70

4.4.2 Quantization of internal signals

It is shown the effect of quantization of extrinsic likelihood on system

performance. Choosing the number of bits is affected by saturation limits of

extrinsic likelihood, and affects values of other internal signals. Simulation

parameters are fixed for number of bits of received data = 4 bits, rate 1/3, AWGN

channel, Block size N=240, Window size (Ws)=32 and guard window (Wg)=4.

This curve is plotted for 6 iterations of turbo decoding.

Figure 4.10 Effect of saturation of extrinsic likelihoods

Table 4-2 summarizes the number of quantization bits used for received and

internal signals of turbo decoder

 71

Table 4-2 Number of quantization bits for signals used in turbo decoder

Signal Number of quantization bits

Received signals 4 bits

Branch metrics 4 to 7 bits

State metrics 8 bits

Extrinsic Likelihood 6 bits

The branch metrics are represented in a number of bits that ranges from 4 to

7 bits. This means that not all the branch metrics are represented in the same

number of bits. We find that 4 bits are sufficient to represent some metrics, and the

maximum is represented in no more than 7 bits. This is due to the proposed branch

metric normalization method which is described in details in 5.3.2.1.

 72

Chapter 5

5 Hardware Implementation of Turbo coding

5.1 Introduction

This chapter presents a hardware implementation of various blocks used in

802.16e Turbo encoder and Turbo decoder. It also discusses various aspects of

optimization techniques used to guarantee good performance suitable for high data

rate requirements by current wireless communication standards. Although many

researchers addressed the turbo decoding implementation, some problems still

represent a crucial issue such as metric representation in optimum number of bits,

the minimum number of bits used to represent both input words and internal

words. Another issue is the metric normalization, which will be discussed in

section 5.3.3, to solve the problem of arithmetic overflow, arises from recursive

computation. In this thesis, we present the previous work in this issue, and

introduce a novel effective normalization technique suitable for the reduction of

number of bits, memory requirements and avoiding arithmetic overflow without

affecting the BER performance. An efficient implementation of this normalization

scheme is also described using a redundant number system representation.

The platform of hardware prototyping and testing is Field Programmable

Gate Array (FPGA). The target FPGA is STRATIX II. At last synthesis output of

each block is presented.

5.2 Hardware Implementation of Turbo Encoder

As described in chapter 3, Turbo encoder consists of two constituent

encoders and an interleaver. It uses double binary recursive systematic constituent

encoders. It is considered as a rate 1/3 encoder as it has 2 input streams and six

output streams.

 73

The I/O block description of Turbo encoder is illustrated in Figure 5.1.

The input signals to this encoder are A, B, Block_ID. The first two inputs represent

input information bits to be encoded, while Block_ID input determines some

information about block such as Block size N. Other inputs are used for control

such as CLK, RST. This encoder has six output signals which consist of two

systematic and four parity coded bits. A valid_out signal is used to indicate that

output is ready.

Figure 5.1 Turbo Encoder Block diagram

5.2.1 Constituent encoders

Each constituent encoder consists of three Flip flops and four mod-2 adders

as indicated in Figure 5.2. The implementation of this block is very simple. Each

constituent encoder has 2 inputs and 2 outputs. Other I/O signals are used such as

CLK, asynchronous RST, INIT_STAT, INIT and Valid_out signals. The INIT_STAT

signal loads the encoder with the initial state which is used in circular encoding as

discussed in section 3.2.3. The loading process is controlled by the INIT input

signal.

Valid_in

Rate_ID

RST CLK

Block_ID

B

Turbo ENC

A
Valid_out

As

Bs

Y1

W1

Y2

W2

 74

(a)

 (b)

Figure 5.2 (a) Block diagram of Constituent encoder

(b) Structure of Constituent encoder

5.2.2 CTC Interleaver design

The function of the interleaver is to change the order of the incoming

symbols; it consists of two steps as described in section 3.2.2. The first step is to

exchange the order of bits of the input symbol alternatively. For even symbols,

Clk Rst Init

INIT_STATE

Valid_out

Y

W

As

Bs

Constituent

Encoder

RST

Y

W

CLK

A

B

FF FF FF

 75

swap A, B and for odd symbols keep their original order. The swapping criterion

is simply implemented using two multiplexers. The Selection line of the MUXs

changes with the symbol rate; this means that it equals half the input clock rate.

Figure 5.3 illustrates the block diagram of the first stage of the interleaver with

two input bits A, B and two swapped output bits A1, B1.

Figure 5.3 Interleaver first stage

The next step is to change the order of input symbols for the complete

block of size N. This is implemented with a RAM module where input symbols

are written with a certain sequence of addresses and read with a different

sequence. The sequence of addresses is specified in the standard. In fact one RAM

module is not sufficient as it will result in an overrun error. One possible solution

is to use two RAM modules where writing and reading are performed in both

modules alternatively.

The conventional architecture of this block consists of address generator

and two RAM modules as indicated in Figure 5.4. The address generator has two

outputs, one represents the linear address used in reading and the other represents

the interleaved address used in writing.

CLK/2

MUX

MUX

A

B

A1

B1

 76

Figure 5.4 Interleaver structure

The address generator has two outputs, one represents the linear address,

and the other represents the interleaved address. The sequence of generating linear

address is simply carried out using a Mod-N counter. The sequence of generating

the interleaved address is performed by the procedure specified in the standard

(List 3.1). In conventional architectures, interleaver address generator can be

implemented via a Look Up Table (LUT). However, in our case, LUT

implementation consumes large storage capacity that reaches up to 12 Kbits

approximately. The alternative solution is to implement the logic function of the

address generator. Section 5.2.2.1illustrates the address generator architecture

using LUT implementation, and in section 5.2.2.2, the proposed implementation is

presented.

5.2.2.1 LUT Implementation

 The LUT implementation of the address generator has the benefit of a

straightforward design. In our case, the proposed architecture is given in Figure

Data

out

MUX

Data_in

Interleaved

Address

Linear

Address

Address

Generator

RAM1

RAM2

MUX

MUX

 77

 5.5, where memory organization is divided into several banks, a bank

corresponding to each block size N. Only one bank is enabled at a time, this plays

a role in reducing power consumption relative to the case of implementing the

LUT as one memory bank. Another issue is that accessing one bank with smaller

memory depth decreases the memory access time.

Figure 5.5 Address generator using LUT

5.2.2.2 Proposed Address generator Implementation

The proposed structure of the address generator is shown in Figure 5.6. To

generate the interleaved address, an efficient implementation is carried out by

replacing the multiplication with a simple accumulator. This has its significant

reduction in hardware resources, area and power consumption beside enhancement

of speed.

Interleaved Address

…………………

Control

SEL

Data

………

Mod-N counter

LUT

1

LUT

12

LUT

2

Address
Data

clk

Linear Address

 78

Figure 5.6 Proposed address Generator structure

The key idea behind this implementation is re-writing of the equations mentioned

in List 3.1 to a new set of equations as shown below. This new form has the same

function and simplifies the hardware implementation at the same time.

P(0) = 1

P(1) = (P0+1+N/2+P1) modN

P(2) = (2P0+1+P2) modN

P(3) = (3P0+1+N/2+P3) modN

for j = 4 to N-1

 P(j) = (P(j-4) + 4P0) modN List 5.1

end

Interleaved

address

Linear

Address

2P0+1+P2

3P0+1+N/2+P

3

P0+1+N/2+P1

4P0
1

Mod N counter

Mod

N

Mod

N

Mod

N

Mod

N

Reg

Reg

Reg

Reg

Reg

MUX

Reg

Reg

Reg

Reg

SEL

 79

These initial values represented by P(0), P(1), P(2) and P(3) are stored in a specific

ROM module, then the remaining addresses are calculated recursively. The

contents of the ROM module are specified in Table 5-1.

Table 5-1 Interleaver parameters stored in ROM

N (P0+1+N/2+P1) modN (2P0+1+P2) modN (3P0+1+N/2+P3) modN

24 18 11 4

36 12 23 34

48 14 27 40

72 54 23 4

96 8 39 46

108 12 79 90

120 14 27 40

144 20 107 126

180 12 23 34

192 12 71 82

216 14 27 40

240 14 87 100

A further optimization can be added to address generator indicated in

Figure 5.7. By taking into consideration that not all adders are used

simultaneously, a resource optimization is available through using only one adder

and multiplexing its four inputs. This can also be applied to the MOD-N block. In

the new structure the critical path may be slightly increased due to additional

multiplexers and demultiplexers, but it is much smaller compared to significant

decrease in resources and area.

In addition, the implementation of MOD-N is not simply carried out by

considering the least significant k-bits of the input to this block, instead a divider

is needed. However, to avoid division, this implementation can be carried out

through successive subtractions as given in equation (5.1). The problem that arises

 80

from successive subtraction is the variable latency which is not desired in

hardware implementation.

Figure 5.7 Optimized address generator structure

mod
N

X
X X N

N
= −    

 (5.1)

In our case, for all possible values of X, we notice that we need to calculate only

X, X-N, and X-2N in the worst case. This simplifies the implementation to use only

two subtractions. In order to avoid variable latency, they can be computed in

parallel. An exhaustive testing was performed and indicated that this

Interleaved

address

Linear

Address

2P0+1+P2

3P0+1+N/2+P3

P0+1+N/2+P1

4P0
1

Mod N counter Reg

Reg

Reg

Reg

Reg

Reg

-N

-2N

 81

implementation scheme works properly. The output of this block is connected

back to the accumulator before calculation of the subsequent interleaved address.

The interleaver introduces a certain delay that depends on the block length.

In order to guarantee that both constituent encoders generate their output

simultaneously, a queue is used to introduce an equivalent delay before the first

constituent encoder. The block diagram of the encoder becomes as indicated in

Figure 5.8

Figure 5.8 Block diagram of CTC encoder

5.2.3 Circulation state look up table

The tail biting scheme used in IEEE802.16e turbo encoder is circular

coding, this scheme guarantees that the initial state is the same as final state. The

sequence of determination of circulation state Sc was described in section 3.2.3.

This is implemented with a ROM module that contains different circulation states

corresponding to different block sizes (N) and final state S0N-1.

As

Bs

Y1

W1

Y2

W2

A

B

FIFO

Interleaver

Constituent

Encoder

Constituent

Encoder

 82

After determination of the circulation state, re-encoding of block takes

place after initializing each of the constituent encoders with the correct circulation

state. This means that incoming data should be buffered again while being

encoded for the first time, this is performed using two queues, one to buffer the

original stream and the other to buffer the interleaved stream. Two other

constituent encoders are used to encode the original stream after being initialized

by circulation state.

The construction of Sc ROM module is simple that its address consists of

two parts, the final Sc of first encoding concatenated with the value of Nmod7.

Each of them consists of 3 bits. The overall ROM address consists of 6 bits; each

location inside ROM consists of 3 bits that determines the corresponding Sc. ROM

contents are initialized with respect to Sc Table 3-1. The ROM output is connected

to the init_stat input signal of constituent encoder and this signal is triggered by

the control input INIT signal which is activated at the end of each block. The

resulting block diagram of Turbo encoder is shown in Figure 5.9.

Figure 5.9 Circular Rate 1/3 Turbo Encoder

5.2.4 Sub-packet generation

The main blocks in sub-packet generation is sub-packet interleaving,

symbol grouping and puncturing as discussed in section 3.2.4.

As

Bs

Y1

W1

Y2

W2

A

B

FIFO

Interleaver

Constituent

Encoder

Constituent

Encoder

FIFO

FIFO

Sc

LUT

Sc

LUT

Constituent

Encoder

Constituent

Encoder

 83

5.2.4.1 Implementation of sub-block interleaver

 The sub-block interleaver has the same structure as the CTC interleaver

discussed in 5.2.2. It consists of two RAM modules in addition to the interleaver

address generator. In this case, one address generator is sufficient to generate

linear and interleaved address for all six sub-blocks simultaneously. In order to

generate interleaved address, we need to implement the procedure discussed in

 3.2.4.2. The flow chart in Figure 5.10 illustrates the operation of interleaved

address generation.

Figure 5.10 Sub-block interleaver address generation flow chart

No

k++

No

Yes

Yes

I=0, k=0















+=) mod (2

J

k
BROJkT m

m

K

NTK >

ADi = Tk

NI <

I++, k++

Exit

 84

In this thesis, we propose an efficient implementation for the sub-block

interleaver address generator. In order to calculate Tk, we notice that addition

operation is simply carried out using concatenation of two values. Moreover, these

two values can be simply generated using two counters as follows:

1- 2-bit counter is used to calculate the value of Jk mod . This counter is

triggered each clock cycle.

2- m-bit counter is used to calculate the value of 














J

k
BROm . The order of

the output of this counter is reversed.

The tentative computed address KT is then compared to the value of sub-block size

N. The problem arising from this comparison is the added latency and recursive

calculation of KT . However, it is found that we need at most one recursive

calculation at a time. In order to remove latency, we propose an efficient

implementation to perform comparison of the next address in parallel to current

tentative address computation. If the comparator output indicates that Tk>N, we

should reset the 2-bit counter and increment the m-bit counter. The block diagram

of the proposed address generator is given in Figure 5.11

 Figure 5.11 Sub-block interleaver address generator

N

Tk

Tk_next

2-bit

counter

Logic

RST

m-bit

counter

clk

>

 85

5.3 Hardware Implementation of Turbo decoder

5.3.1 General Architecture

As explained in chapter 3, Turbo decoder consists of two component

decoders, each one corresponding to one constituent encoder. The decoder should

be implemented as Soft Input Soft Output (SISO) decoder using any decoding

techniques specified in chapter 3. In this thesis, Sliding Window Max Log MAP

algorithm is used for SISO decoder implementation. This algorithm is widely used

in implementation of turbo decoders. Many proposed implementation techniques

were addressed in order to reduce the area, delay, and power consumption and

enhance performance.

Each SISO decoder, as indicated in Figure 5.12, has two received

systematic symbols, two received parity symbols and three extrinsic likelihoods

needed in double binary as explained before. Other control inputs are CLK and

RST signals. It has two outputs A_out, B_out that corresponds to decoded bits.

Other outputs are Le_01, Le_10, Le_11 which represent extrinsic likelihoods. A

valid_out signal is used for indication of ready output. Sc_in and Sc_out indicate

input and output circulation states simultaneously. Block_start signal is an input

signal which is activated at the start of a block for each iteration it is decoded.

Figure 5.12 SISO decoder Block description

Le_01

Le_10

Le_11

A_out

B_out

Valid_out

Sc_out

SISO

Le01

Le10

Le11

RA

RB

RY

RW

CLK RST Block_start Sc_in

 86

The implementation of each SISO decoder implies the calculation of

forward state metric (ALPHA), Backward state metric (BETA) and Branch metric

(GAMMA) at each time slot. In case of SW-Log MAP, each block is divided into

windows while backward estimation is calculated for each window separately. The

window size specifies the memory storage requirements of both branch and

forward state metrics. The proposed architecture of the decoder is given in Figure

 5.13.

Figure 5.13 SISO Architecture

5.3.2 Branch Metric Block (GAMMA)

As explained before, the calculation of each branch metric implies a cross

correlation between received systematic and parity data bits with original bits

corresponding to this branch. In case of 802.16e turbo decoder, the trellis diagram

has 8 states, each has four output branches. This implies the calculation of 32

branch metrics each time slot. In fact, the calculations may be halved. Only 16

metrics are sufficient, the other 16 metrics are the same, as shown from the state

transition table given below.

Forward

State

 Metric

RAM

LLR

Computation

Unit

FIFO

Extrinsic

LLR

Branch

Metric

 RAM

Branch

Metric

Unit

Backward

State

metric

Forward

State

metric

 87

Table 5-2 Turbo decoder state transition table

I/P 00

OP/next state

I/P 01

OP/next state

I/P 10

OP/next state

I/P 11

OP/next state

S0 00 / 0 11 / 7 11 / 1 00 / 6

S1 11 / 3 00 / 4 00 / 2 11 / 5

S2 10 / 4 01 / 3 01 / 5 10 / 2

S3 01 / 7 10 / 0 10 / 6 01 / 1

S4 00 / 1 11 / 6 11 / 0 00 / 7

S5 11 / 2 00 / 5 00 / 3 11 / 4

S6 10 / 5 01 / 2 01 / 4 10 / 3

S7 01 / 6 10 / 1 10 / 7 01 / 0

The Calculation of each branch metric is calculated as given in equation (3.39),

where the values A, B, Y1, Y2 Є {-1, 1} So, the implementation of each metric is

simply carried out with a multi-operand adder, as shown in Figure 5.14.a. Each

multi-operand adder is constructed from a set of Carry Save adders (CSA) and the

last stage is the Carry Propagation adder (CPA).

After the calculation of the branch metrics, they should be stored in RAM modules

to be used later in calculation of LLRs. This is implemented through parallel RAM

modules, as indicated in Figure 5.14.b one module for each metric calculated. The

depth of each RAM module depends on the window size.

 88

(a)

(b)

Figure 5.14 (a) Branch metric Multi-operand Adder (b) Branch metric Memory organization

As in case of SW-MAX Log MAP, at backward recursion, LLRs can be

calculated immediately, so there is no need to store backward metrics in memory.

Also, at backward recursion, the values of branch metrics are read from memory.

At the same time, branch metrics of next window are calculated and stored in

memory. In order to handle this case, we propose to use two modules for each

window; Reading and Writing in are performed alternatively between the two

groups.

5.3.2.1 Proposed Branch metric Normalization scheme

In this thesis, a hardware efficient branch metric normalization scheme is

used. In this scheme, all calculated branch metrics are normalized with respect to

the all zeros branch metric, which is the first branch in the trellis. The key idea

behind this normalization is that the main concern is not in the values of the

metrics themselves, but it is in the difference between them.

The benefit of normalization to zero metric is a significant reduction in

hardware and storage requirements. This is obvious as equation (3.39) will be

reduced to

RA

RB

RY

RW

Le(a,b)

………….......

………….......

Branch

Metric

Unit

RAM

1

RAM

16

RAM

1

RAM

16

 89

1 (00) ()* ()*k k Y WAB R k Y R k W− →Γ ⇔ = +

1 (01) () ()* ()* (0,1)k k B Y W kAB R k R k Y R k W Le− →Γ ⇔ = + + +

1 (10) () ()* ()* (1,0)k k A Y W kAB R k R k Y R k W Le− →Γ ⇔ = + + +

1 (11) () () ()* ()* (1,1)k k A B Y W kAB R k R k R k Y R k W Le− →Γ ⇔ = + + + + (5.2)

Where Y1, W1 Є {0, 1}

The reduction obtained is the decrease in the number of the required additions than

the case of the conventional calculation schemes. This has its effect on speed

enhancement by reducing the critical path delay. In this case a specific hardware is

designed to each metric separately. In addition to hardware reduction, it reduces

the number of bits required to represent some branch metrics. In other words, each

metric can be represented in a lower number of bits optimized for this metric.

In this normalization scheme, only 15 branch metrics are needed to be

calculated, no need for storage of 16 metrics as the previous schemes. This results

also in reduction in memory modules needed. Another benefit of this scheme is the

reduction of the critical path in some branch metric units, due to a lower number

of CSAs. This also means smaller power consumption.

Table 5-3 Resource reduction of proposed normalization

 Without Normalization Proposed Normalization

Number of

CSAs for each

unit

4 units with 1 CPA

8 units with

2 CSAs +1 CPA

4 units with

3 CSAs + 1 CPA

3 units have only 1 CPA

5 units with 1 CSA+1 CPA

4 units with 2 CSAs+1 CPA

1unit with 3 CSAs +1 CPA

Total area

Estimation in

terms in

number of

CSAs and

CPAs

28 CSAs + 16 CPAs 16 CSAs + 13 CPAs

 90

From the results obtained in Table 5-3, we get a reduction of the area by

approximately 34% over the conventional scheme without normalization.

Moreover, as we have lower number of bits for some branch metrics, we obtain a

reduction in the memory requirements over the conventional implementation. The

results obtained in Table 5-4 indicate that for our case of SW-MAX Log MAP, of

window size Ws=32, we need 6656 bits to store all branches of a certain window

and 6208 memory bits in case of proposed normalization. This means a reduction

of about 6.7% of the memory requirements.

Table 5-4 Reduction in storage due to proposed normalization

Without

Normalization

Proposed

Normalization

Branch metric

memory bits
6656 bits 6208 bits

 A further simplification can be applied to the special case of non HARQ

support. In this case, we find that for all coding rates, we obtain punctured parity

outputs W1, W2. If we consider this at the receiver, RW1 and RW2 signals are

always considered zeros. Taking this into consideration, we need only to calculate

8 branch metrics and we obtain the new set of branch metric equations as follows

1 (00) ()*k k YAB R k Y− →Γ ⇔ =

1 (01) () ()* (0,1)k k B Y kAB R k R k Y Le− →Γ ⇔ = + +

1 (10) () ()* (1,0)k k A Y kAB R k R k Y Le− →Γ ⇔ = + +

1 (11) () () ()* (1,1)k k A B Y kAB R k R k R k Y Le− →Γ ⇔ = + + + (5.3)

The branch metric unit consists in this case of 7 Multi-operand adders, they are

classified as follows:

• 2 units with 1 CPA

 91

• 3 units with 1 CSA + 1 CPA

• 1 unit with 2 CSAs + 1 CPA

The total number is 5 CSAs and 6 CPAs. This means an approximate additional

decrease in the branch metric unit area by about 75% of the original scheme, and

62% of our proposed scheme with normalization. Moreover, the required number

of memory bits will be reduced to 2944 bits. This means a reduction of the storage

requirements by 55.77% of the original scheme and by 52.58% of the proposed

technique.

5.3.3 Forward State Metric Block (ALPHA)

The purpose of the forward state metric unit is to calculate forward state

metrics of the eight states and store them in memory for the computation of LLRs.

The block diagram of the forward metric unit is shown in Figure 5.15. The input

states are either the states of the previous iteration or the circulation states in the

first iteration.

Figure 5.15 Forward State metric Unit

CLK

RST

Gamma_in

Alpha_Sc

Forward

State Metric

 Unit

Alpha_out

Alpha_in

 92

5.3.3.1 State Metric Unit Implementation

The state metric unit, consists mainly of an Add/Compare and Select (ACS)

unit as shown in Figure 5.16. The main drawback in implementing state metrics is

the recursive computation. This may lead to an arithmetic overflow. To avoid

overflow, a large number of bits is needed for representation of state metrics. This

means more area, hardware resources, higher storage requirements, and increased

delay.

Many papers addressed the problem of the state metric arithmetic overflow.

To overcome this problem, state metric normalization is carried out. Two

normalization techniques were proposed by researchers; Rescaling and Modulo-

Normalization. These two techniques maintain the dynamic range of the state

metrics. The key idea is that the main concern is not in the value of the state metric

itself, but in the value of the difference between the state metrics. Taking this into

consideration, we can have a more efficient representation of state metrics.

5.3.3.2 Normalization by rescaling

Normalization by rescaling is carried out via subtraction of the maximum

or minimum state metric from each state metric [29], [30]. This preserves the

dynamic range and required number of bits to represent state metrics. Some other

techniques proposed to normalize branch metric instead of the state metrics [31].

The main drawback of state metric normalization is the increase in the critical path

of the state metric unit. It is considered the bottleneck of the SISO decoder that

limits the maximum frequency of operation. The critical path implies Addition,

comparison, MUX, and normalization which includes both comparison and

subtraction.

 93

Figure 5.16 State metric unit

5.3.3.3 Modulo-Normalization

In case of modulo-normalization, instead of subtraction of the maximum or

minimum metric, the state metrics are represented in a
2

mod b based operation [32].

The calculation of LLR is invariant with respect to the
2

mod b as the difference

between the original state metrics does not change in case of modulo-

representation. This idea was proposed first time by Hekstra [33], who applied it

to viterbi decoding. To illustrate the idea, assume that we have a bound on the

value of branch metrics such that

() max1 ' Bsskk ≤→→−γ (5.4)

where maxB represents the upper bound on the value of any branch metric. It can be

proved that the upper bound on the difference of state metrics is

() () ()

()()mB

ssss kkk

2ln2

 ,

maxmax

2121

+=∆

−=∆ αα
 (5.5)

Max or

Min Metric

Compare

MUX

Norm

α1 γ1 α2 γ2 α3 γ3 α4 γ4

 94

where m is the memory order of the convolutional code used in CTC encoder. This

proof can be found in [33].

We define () ()
2

~

mod bk k
s sα α=

() () () ()1 2 1 22

~ ~

mod bk ks s s sα α α α− = − 
 
 

 (5.6)

In order for (5.6) to be satisfied, the number of bits b should be chosen such that

()2 maxlog 1b  = ∆ +  (5.7)

Moreover, the number of bits b’ used to represent the LLRs must guarantee

invariance in calculation of LLR after performing
2

mod b operation. As a result, as

mentioned in (17) of [32], the number of bits b’ is set to

()2 max max' log 2 B 1b  = ∆ + +  (5.8)

This normalization scheme has its benefits in speeding up the operation, as no

extra hardware is needed for the normalization unit. However, this scheme has its

disadvantage in the larger number of bits needed to represent the state metrics

compared to the case of normalization by subtraction. In this case, we find that at

least 10-bit representation is required for state metrics. This means an increase in

memory storage requirements.

 In this thesis, we propose an implementation of normalization scheme that

is based on rescaling, so it preserves the number of bits, and at the same time it

removes the normalization unit from the critical path. This is carried out through

redundant representation of normalized state metrics. In the next section, we

present an introduction to the redundant number representation, and then in the

succeeding one, we introduce how the redundant representation is applied to the

state metric normalization.

 95

5.3.3.4 Redundant Number Representation

Redundant number representation is defined in arithmetic operations as a

way to increase the speed of the addition operation [34]. Carry propagation is

considered the bottleneck that limits the speed of any addition operation. The

delay of carry propagation varies according to the addition technique which can be

ripple carry adders, Carry look-ahead, Conditional sum adder ...etc.

In redundant number system, carry-free addition is achieved. The key idea

is the extension of number representation of a radix β system such that it is not

limited to [0... β-1]. For example, in the decimal radix 10 system, we represent any

number with the set of digits [0, 1…9]. In case of redundant representation, we

allow a representation with further digits such as 10, 11… 18 so any number can

be represented with a set of digits [0…18]. This representation eliminates carry

propagation in addition as shown in the following example:

Assume we need to add two numbers 362910 and 278635. The ordinary addition

which is held via carry propagation will be

 5 4 5 1 4 6

 5 3 6 8 7 2

0 1 9 2 6 3

 1 1 1

+

And with redundant representation

 5 4 15 10 13 5

 5 3 6 8 7 2

0 1 9 2 6 3

+

The previous example illustrates the redundant number system in addition in case

of inputs are in the non-redundant format. Moreover, we can consider an example

if the input operands are in the redundant format. One can think that if the inputs

 96

occupy the digit range [0, 18], the output is extended to the range [0, 36].

However, any digit in the range [0, 36] can be decomposed into an interim sum in

the range [0, 16] and a transfer digit (carry) in the range [0, 2].i.e. it is represented

as [0, 1, 2… 36]=10 x [0, 1, 2] + [0, 1, 2….16] , Then, one additional concurrent

addition stage is necessary to recover the output in the range [0, 18]. To illustrate

this idea, consider the following example

 11 9 17 10 12 18

 6 12 9 10 8 18

 17 21 26 20 20 36

 7 11 16 0 0 16

1

+

↓ ↓ ↓ ↓ ↓ ↓

 1 1 2 2 2

1 8 12 18 2 2 16

We find that we have two concurrent addition levels. Another representation for

the same example can be as follows

 11 9 17 10 12 18

 6 12 9 10 8 18

 17 21 26 20 20 36

 7 1 6 10 10 16

1

+

↓ ↓ ↓ ↓ ↓ ↓

 2 2 1 1 2

1 9 3 7 11 12 16

We find two different representations for the same result; this is why it is a

redundant number system representation. If we convert it back to the non-

redundant format, we have the same result for the two different representations. It

is 1 9 3 8 2 3 6 .

 97

In case of a redundant representation, addition in all digit positions is

performed concurrently; this is called carry save additions. A possible redundant

form on which we can represent the binary systems is the set of digits






 −

1, 0, 1 . In

this case, each of the 3 digits is represented using two bits. Assume we need to

subtract 10011 from 01010, the result in redundant format will be
−−

1 0 0 1 1 . This

idea can be applied to the case of metric normalization with subtraction. Instead of

performing subtraction of () () ()1 1 0

n

k k ks s sΑ = Α −Α , the direct combination of

() ()1 0, k ks sΑ Α is considered a redundant representation of ()1n

k sΑ .

5.3.3.5 Proposed Normalization using redundant representation

In this thesis, we propose to normalize the state metrics with respect to

state-0 instead of maximum or minimum state. In this scheme, the normalization

block comprises subtraction only instead of comparison and subtraction. This

means a decrease in the critical path delay. Moreover, this scheme removes the

memory bank used to store state 0 metric. Table 5.3 illustrates the memory

reduction due to this normalization scheme. It is shown that the proposed

normalization scheme reduced the required storage by 6.7% of the branch metric

memory and 12.5% of state metric memory.

Table 5-5 Comparison between number of storage bits of conventional and proposed schemes

 Conventional Normalization Proposed Normalization

State metric

memory bits
4096 bits 3584 bits

Additionally, we introduce a novel implementation for the proposed

normalization. This is carried out via redundant representation of normalized state

 98

metrics. In this scheme, instead of performing normalization after Add/Compare

and Select operation, the un-normalized state metrics are forwarded to the next

recursion. This form of un-normalized metrics is a redundant representation of the

normalized metric. The normalization step is combined with the addition of the

next recursion in one step. The key idea behind improvement of this

implementation is that the CPA delay is converted to a CSA delay which is

significantly lower than CPA delay.

In this case,

1 1 1() max{ () () (0)}k j k i k k i j ks s s s− − → −Α = Α +Γ → −Α (5.9)

1 1 1() max{ () () (0)}k j k i k k i j ks s s s− − → −Β = Β +Γ → −Β (5.10)

The critical path of the proposed implementation implies 1 CSA, 1 CPA,

Comparison and MUX as shown in Figure 5.17. The double line arrow represents

an operand in redundant format.

Figure 5.17 Reduced State metric unit

A further reduction in worst case delay is achieved by taking advantage of

full redundancy. This is carried out by removal of the CPA. In this case, we deal

with the computed values in redundant format as a separate sum and carry vectors.

Compare

MUX

α1n γ1 α2n γ2 α3n γ3 α4n γ4

+ + + +

 99

Comparison stage has its inputs and outputs in redundant format and the output of

this unit is also in redundant format.

The worst case delay in this case comprises 3 CSAs, redundant comparison and

MUX stage as shown in Figure 5.18.

Figure 5.18 full redundant reduced State metric unit

The redundant comparator is implemented such that it has two stages; each

stage has a delay which is considered O(log(n)). To illustrate the operation of the

comparator that deals with redundant operands, we present the ordinary

comparator with delay O(log(n)) and then show how we extend it to handle

redundant operands. The key idea of the O(log(n)) comparator that compares

between X, Y is to generate two signals L (stands for Larger than), E (stands for

Equal to) at each bit position such that :

Redundant

Comparator

MUX

α1 γ1 -α0 α2 γ2 -α0 α3 γ3 -α0 α4 γ4 -α0

+ + + +

 100

 if(X(i)> Y(i))

 L(i) = 1

 else

 L(i) = 0

 if(X(i)= Y(i))

 E(i) = 1

 else

 E(i) = 0 List 5.2

The next step is to combine two neighboring bit positions to generate a second

level L1, E1 signals such that:

L1(j) = L(2j+1) + (L(2j). E(2j))

E1(j) = E(2j+1). E(2j)

At each step, the number of L, E signals is halved until we reach to the final

decision. This takes a delay of log(n). Implementation of the above procedure is

carried out via simple logic gates.

The ordinary comparison is based on that () () { }, 0,1X i Y i = . In case of operand in

redundant format, we have () () { }, 0,1, 2X i Y i = . The operation of generating L, E

signals is illustrated in Table 5-6.

Table 5-6 Comparison between ordinary and redundant comparator

 Ordinary Comparator Redundant Comparator

L(i)=1 X(i)=1 and Y(i)=0 X(i)=2 and Y(i)=0

X(i)=2 and Y(i)=1

X(i)=1 and Y(i)=0

E(i)=1 X(i)=1 and Y(i)=1

X(i)=0 and Y(i)=0

X(i)=2 and Y(i)=2

X(i)=1 and Y(i)=1

X(i)=0 and Y(i)=0

 101

It is shown that the difference between the ordinary and redundant comparator

occurs only in first step, the remaining steps are similar.

 A further optimization of the critical path delay is suitable by taking into

consideration that the comparison does not depend on the operand –α0. We can

combine addition of –α0 with comparison. This results in a removal of 2 CSA

levels from the critical path. The final architecture of the SMU will be as shown in

Figure 5.19.

Figure 5.19 Enhanced full redundant State metric unit

The drawback of our proposed normalization technique is the increase in

the area due to the increase in the number of CSAs and comparators that deal with

redundant operands. Another drawback is the increase in memory as we need to

store state metric of state 0. However, in order to preserve memory storage, we

propose to normalize states by subtraction before storing into memory. This is

performed via a 2-stage pipelined architecture as shown in Figure 5.20

-α0 -α0 -α0 -α0

Redundant

Comparator

MUX

 α1 γ1 α2 γ2 α3 γ3 α4 γ4

+ + + +

+ + + +

 102

Figure 5.20 Proposed State Metric RAM interface

These different implementation techniques are tested using Mentor Graphics

Precision RTL synthesis tool. The design platform is Altera-STRATIX II FPGA,

EP2S15F484C family. The synthesis results are performed before place and route.

Table 5-7 represents area and delay report of the four different architectures;

Normalizing with respect to maximum or minimum, normalization with respect to

state 0, redundant representation of normalized state metrics, and full redundant

architecture.

Table 5-7 Area-Delay report for different state metric architectures

 Normalize to

minimum or

maximum

Normalize to

state 0

Redundant

Normalized

state metrics

Full redundant

architecture

Area (Number

of LUTs)
812 644 928 1424

Critical path

delay
17.88 ns 11.477 ns 11.279 ns 8.26 ns

Maximum

Frequency
55.928 MHZ 87.13 MHZ 88.66 MHZ 121.065 MHZ

State

Metric

Unit

Reg

State

Metric

RAM

Norm

By

subtraction
Redundant

 103

The results in Table 5-7 indicate that the second architecture is the best

area-saving architecture and the fourth one is the best delay-saving one. The full

redundant architecture increases the maximum frequency with 113.7% over the

first architecture and 37.65% over the second one. However, it increases the area

by 75.49% over the first architecture and 123% over the second one. We conclude

that the redundant representation speeded up the operation at the cost of increasing

the hardware area.

5.3.4 Backward Metric Unit

The backward state metric unit implementation is similar to that of forward

state metric unit, except that no need to use extra memory to store backward state

metrics. Some implementations consider one unit to be used for both forward and

backward state computation, however, we need to take advantage of full speed

SISO architecture, so separate unit are assumed in our implementation. Moreover,

in our proposed implementation, LLRs are computed as soon as Backward metrics

are ready. At the beginning of the traceback for each sliding window, all backward

metrics are assumed to be equiprobable, at the last window, we initialize metrics

such that circulation state Sc has the largest metrics.

5.3.5 LLR Computation Unit

The purpose of this unit is to calculate the soft output LLRs. In order to calculate

the three LLRs as explained in section 3.3.6, we need to calculate four soft outputs

as given by equation (3.40).

1 1(,) max{ () () ()}k k i k k i j k jT a b s s s s− − →= Α +Γ → +Β

For each value of (,)ku a b= , we have 8 corresponding branches on which we add

corresponding forward, branch and backward metrics for each, then select the

maximum value. This is carried out via ACS unit as shown in Figure 5.21.

 104

Figure 5.21 LLR Computation unit

In our case, we need to calculate four values; one corresponding to each

symbol (,)ku a b= . After this step, normalization of (,)kT a b with respect

to (0,0)kT takes place in order to calculate the three LLRs. After calculation of

LLRs, extrinsic LLRs should be calculated and final estimated bits are also

calculated. However, our proposed implementation combines normalization of

LLRs with the calculation of extrinsic LLRs in one step.

5.3.6 Extrinsic LLR Computation Unit

Extrinsic LLRs represent the a-priori information that is bypassed from one

component decoder to the other component decoder. The calculation of the

extrinsic LLR is carried out through subtraction of input systematic and extrinsic

LLR from the corresponding output obtained LLR as follows

+ + + + + + + +

Comparator

MUX

A1 B1 Γ1 A2 B2 Γ1 A3 B3 Γ2 A4 B4 Γ2 A5 B5 Γ3 A6 B6 Γ3 A7 B7 Γ4 A8 B8 Γ4

 105

() () () ()
() () () ()
() () () ()

, ,

, ,

, ,

0,1 0,1 0,0 0,1

1,0 1,0 0,0 1,0

1,1 1,1 0,0 1,1

o
Be k k k e k

o
Ae k k k e k

o
BAe k k k e k

L T T R L

L T T R L

L T T R R L

= − − −

= − − −

= − − − −

 (5.11)

The normalization of the LLRs is combined in the calculation of extrinsic LLRs.

This has the benefit of converting CPA needed for normalization into a CSA,

which should have much smaller delay.

 The problem of the calculation of extrinsic LLRs is the increase of the

dynamic range with the increase in the number of iterations. Consequently, this

increases the number of bits of extrinsic LLRs, branch metrics and state metrics.

In order to resolve this problem, saturation of extrinsic likelihoods is carried out.

This is implemented through a saturating adder/subtractor. Its main function is to

saturate at the maximum or minimum values in case of overflow, so that it

guarantees that the output is in the range
2 2

, 1
2 2

n n 
− − 
 

 for n-bit precision. The

main issue is to select the minimum suitable number of bits to represent extrinsic

likelihoods, and preserve good performance at the same time. Fixed point analysis

indicates that a 6-bit representation is considered the optimum number of bits for

extrinsic likelihoods.

As shown in Figure 5.22, each of the three extrinsic likelihoods is

calculated via multi-operand addition followed by a MUX for saturation purposes.

For (), 0,1o

e kL and (), 1,0o

e kL , the multi-operand adder consists of 2 CSA levels

followed by 1 CPA level. The multi-operand adder of (), 1,1o

e kL consists of 3 CSA

levels followed by 1 CPA level.

 106

Figure 5.22 Extrinsic LLR computation unit

 Extrinsic likelihoods are used by the next component decoder as a-priori

information in improving the decoding estimation. In SW-Log MAP with our

proposed architecture, the obtained likelihoods are in the reverse order as they are

generated in the backward recursion phase. Some implementations proposed to

use a Last Input First Output (LIFO) for likelihoods after they are generated [31].

However, this has its drawback in increased latency. In this thesis, we propose a

lower latency implementation. It depends on passing the extrinsic likelihoods

through an interleaver / deinterleaver before the second component decoder. In

order to remove latency from LIFO block, we propose that generated likelihoods

are passed directly through the interleaver / deinterleaver. On one hand, this

permits the removal of the LIFO latency. On the other hand, we can not use the

address generator in section 5.2.2.2. This forces us to use the LUT implementation

of the address generator specified in 5.2.2.1 which consumes a larger memory

area.

2 2
 1

2 2

n n

− −
2 2

 1
2 2

n n

− −

 Tk (0,1) -Tk (0,0) RB Le,k (0,1) Tk (1,0) -Tk (0,0) RA Le,k (1,0) Tk (1,0) -Tk (0,0) RA RB Le,k (1,0)

+

MUX

+ +

MUX MUX

2 2
 1

2 2

n n

− −

 107

5.4 Synthesis Results

In order to test our implementation for satisfying performance requirements,

all the implemented blocks are synthesized on Altera FPGA. The target device is

Altera StratixII EP2S15F484C3 using Quartus II software tools, targeting

optimization for speed. We obtain the following results as indicated in Table 5-8

Table 5-8 Synthesis results for CTC encoder

Block
Number of

LUTs

Number of

Registers

Number of

Memory bits

Maximum

Frequency of

operation

Constituent

encoder
5 5 __

Maximum

achieved (500

MHZ)

CTC

interleaver
139 83 1024 194 MHZ

Sc ROM __ __ 192 __

Subblock

interleaver
73 32 3072 177 MHZ

CTC encoder 232 200 6480 164 MHZ

 From the results given in Table 5-8, we conclude that our implementation

for turbo encoder blocks has around 2% Logic utilization, with an operating

frequency much higher than that required by WiMAX.

 108

Table 5-9 Synthesis results for Turbo decoder components

Block
Number of

LUTs

Number of

Registers

Number of

Memory bits

Maximum

Frequency of

operation

Branch metric

Unit
244 149 6208 384.32 MHZ

State Metric

Unit
699 120

3584 (For

Forward state

unit only)

154 MHZ

2-stage

pipelined LLR

Computation

Unit

610 237 __ 204.58 MHZ

Extrinsic LLR

Computation

unit

118 84 __ 304 MHZ

SISO +

Interleaver /

Deinterleaver

2926 1112 36704 150.15 MHZ

From the above results, we conclude that our SISO component can be used

four times and satisfies the timing requirements of the IEEE 802.16e standard.

This means that we can use one SISO block to achieve two successive decoding

iterations. In order to have four decoding iterations, two SISO blocks are required.

There are other proposed architectures in the literature. The WiMAX CTC decoder

architecture proposed in [35] targets Xilinx XC4VLX80-11FF1148 chip and

operates at 125MHZ. However, the CTC decoder proposed in [35] supports H-

ARQ, but our decoder does not support it. The main difference between HARQ

support and non HARQ support is that the HARQ supports interleaver block sizes

up to 2400 couples, but in our case, the maximum CTC block size is 240 couples

(480 bits). This has the impact on the interleaver memory size. The WiMAX CTC

decoder proposed in [36] operates at maximum frequency of 200 MHZ, but it

targets 0.18 µm 4-Metal CMOS standard cell.

 109

Chapter 6

6 Sampling clock and Frequency Tracking

6.1 Introduction

Synchronization in OFDM systems has been a crucial issue. OFDM systems

are much more sensitive to offset in carrier frequency than single carrier schemes

with the same bit rate. Mis-synchronization leads to a loss of orthogonality among

different subcarriers, and hence we have the problem of ICI.

Good synchronization techniques play a key role in system performance, and

they drive the need of efficient implementation techniques. Many techniques have

been proposed in order to handle OFDM synchronization. OFDM synchronization

can be basically divided into Symbol (Timing) synchronization and Carrier

frequency synchronization.

Timing Synchronization in OFDM systems is used in order to achieve

synchronization and alignment to the received OFDM symbol windows. The mis-

synchronization can lead to a severe effect in decoding. The OFDM Timing

Synchronization comprises three steps; Frame detection, Fine symbol timing and

Sampling clock frequency tracking. The first step, Frame detection, is responsible

for detecting an incoming frame at the receiver terminal. This is performed by

continuously sensing the energy at the receiver input and comparing it to a

threshold. The second step is fine symbol timing, which is responsible for

detection of the beginning and end of the OFDM symbol. It represents a fine

estimation over the first step. More information about symbol timing techniques

can be found in [11], [37]. The third step, in contrast, is responsible for tracking

the sampling clock frequency error that occurs between sampling clock at Digital

to Analog Converter (DAC) at transmitter and sampling clock at Analog to Digital

Converter (ADC) at receiver. In this thesis, we consider only the sampling clock

frequency tracking step. We represent the effect of the sampling error on the

 110

received subcarriers and show an algorithm used to correct this sampling error.

Finally, the hardware implementation of this algorithm is represented. The

Hardware implementation of the Frame detection and Symbol Timing blocks is

described in [13].

Similar to the Timing synchronization, the Frequency synchronization is used

to compensate for the effect of frequency error between local oscillator at

transmitter and local oscillator at receiver. It also comprises three steps; Coarse

Frequency offset estimation, Fine Frequency offset estimation and Residual

Carrier Frequency offset tracking. The frequency offset can be divided into an

integer part and a fractional part. Fine frequency offset is responsible for

estimation of the fractional part and coarse frequency offset is used in estimation

of the integer part [38]. The frequency offset tracking is used to further

compensate for mis-estimation that may occur from the two previous steps, or the

continuous variation of oscillator frequency that may depend with environmental

conditions. In this thesis, we concern with the frequency tracking step.

6.2 Effect of sampling clock frequency offset

Sampling Clock Frequency Offset (SCFO) occurs as a result of difference of

oscillator frequencies at transmitter DAC and receiver ADC. This offset has its

effect in both time and frequency domains. Figure 6.1 illustrates the sampling

error phenomena with solid lines indicating exact sampling time slots, and dashed

lines indicating sampling time slot drift due to sampling error. In IEEE 802.16e, it

is specified that at the station set, the sampling clock frequency shall be

synchronized and locked to the base station (BS) with a tolerance of maximum 5

parts per million (ppm) as specified by IEEE 802.16e standard [7]. The SCFO has

its impact in both time domain and frequency domain. In the time domain, it

causes a drift in the OFDM symbol window. In the frequency domain, SCFO

 111

causes a change in subcarrier phases. The two effects should be handled. In order

to handle the effect of SCFO, many techniques were proposed, some depend on

using closed loop techniques based on Delay Locked Loop (DLL) [39]. Other

techniques based on open loop synchronization [40], [41].

Open loop techniques that depend on pilot subcarriers or preambles are suitable

for digital implementation platforms. The next section describes in details the

effect of SCFO in both time domain and frequency domain then the tracking

algorithm is described.

Figure 6.1 Sampling error phenomena

6.2.1 Effect of sampling error in time domain

 In the time domain, the effect of SCFO appears as a drift in the OFDM

symbol window; this drift accumulates each OFDM symbol. After a while, this

drift will cause irreducible error that can not be recovered in the frequency

domain. The operation of OFDM symbol window drift can be described as

follows:

For an OFDM symbol with Ns samples, if the OFDM symbol index is l, then the

expected interval is [(l-1)Ns , lNs], but due to the drift, it will be [(l-1)(1+∆)Ns ,

l (1+∆) Ns] as shown in Figure 6.2. It is obvious that the total drift in time domain

is a factor of the symbol index l. In fact the problem will occur if the total drift

exceeds half the sample time. In this case, one sample should be added if the

sampled version is faster than the original or dropped if the sampled version is

slower. This operation is defined as ROB/STUFF or ADD/DROP mechanism.

 112

Figure 6.2 OFDM Symbol window drift

6.2.2 Effect of sampling error in frequency domain

SCFO represents a time error between sampling time Ts at transmitter and

sampling time Tr at receiver. This offset in time will be converted to a phase shift

in subcarrier phases in the frequency domain after the FFT block at receiver. The

effect of phase rotation in the frequency domain can be expressed in a

mathematical form as follows:

Let Nu be the useful number of samples in one OFDM symbol window, it should

be equal to FFT size.

 n is the sample index in a certain OFDM symbol, 1
22
−≤≤− uu N

n
N

Ns=Nu+Ng is the total number of samples of OFDM symbol window in time

domain including useful samples Nu and guard interval samples Ng.

m is the sample index in the time domain, which can be expressed as

 =1,2,3,....
2

u
s

N
m lN n l= + − (6.1)

Then, for a certain OFDM symbol with index l, a subcarrier with index K is

expressed as

1 2
2

2

() ().

u

u

u

N
K n

j
N

N
n

X K x m e

π−
−

= −

= ∑

Original Window

2∆ ∆

……………..

.

……………..

.

Received Window

 113

After applying the effect of SCFO, we have the new time index is ()1m + ∆

instead of m. In this case, a subcarrier with index K is expressed as

()2 1 .
21

2

2

'() '().

u
su

u

u

K

j

N
n l NN

N

N
n

X K x m e

π
  
  
   −

+∆ + − ∆
−

= −

= ∑ (6.2)

 where ∆ is the relative sampling error and it is equal to

s

sr

T

TT −
=∆ (6.3)

()
()()2 11

2 0.5 2

2

' .'()

u
s

uu

u

N K nN jj K l
NN

N
n

x m eX K e

π
π

+∆−  −− ∆ 
 

= −

= ∑

By neglecting the value of the relative sampling error ∆ with respect to 1 in the

exponent, we get

2 0.5

'() ()

s

u

N
j K l

N
X K e X K

π
 
  
 

− ∆

≈ (6.4)

We conclude that the effect of sampling error represented by a delay in the time

domain is converted to a linear phase shift in the frequency domain. A similar

results can be obtained from [41].

It can be proven from equation (6.4) that the phase error line is approximately

equal to

∆−)5.0(2
u

s

N

N
lkj

e
π

; this means that the first OFDM symbol has a phase error

with slope 2 0.5s

u

N

N
π
 

− 
 

, the second OFDM symbol has a phase error with

slope 2 2 0.5s

u

N

N
π
 

− 
 

, and so on. Figure 6.4 plots the phase error with the

subcarriers for successive OFDM symbols.

 114

 This phase shift is represented by a rotation to the constellation diagram as

indicated in Figure 6.3.a,b,c. Figure 6.3.a shows the ideal QPSK constellation

where Figure 6.3.b and Figure 6.3.c show the effect of SCFO on rotating the

constellation for QPSK and 16-QAM respectively.

(a) Ideal QPSK constellation (b) Rotated QPSK constellation

(c) Rotated 16-QAM constellation

Figure 6.3 (a) Ideal QPSK constellation (b) Rotated QPSK constellation
 (c) Rotated 16-QAM constellation

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Q
u

a
d
ra

tu
re

In-Phase

Ideal QPSK Constellation

 115

0 100 200 300 400 500 600 700 800 900 1000 1100
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Subcarrier index

P
h
a
s
e
 e

rr
o
r

Phase error for successive OFDMA symbols, SCFO=50ppm

1st

Symbol

2nd

Symbol

Figure 6.4 Phase error line for successive OFDM symbols

6.2.3 SCFO Synchronization algorithm

SCFO synchronization implies two steps: Correcting phase error in frequency

domain, and correcting drift in time domain. This synchronization technique is

carried out with the aid of pilot subcarriers and was proposed in [41].

The key idea behind this algorithm is to use the pilot subcarriers to estimate

the phase rotation of the data subcarriers. After this estimation, a derotation of data

subcarriers is carried out to compensate for the effect of SCFO error. At the same

time, the add/drop mechanism is done via controlling the length of the removed

CP at the receiver before the FFT operation. The number of removed samples of

the CP can be either increased or decreased according to the drift of the OFDM

symbol window.

Many techniques have been proposed to estimate the phase rotation of the

pilot subcarriers. Some of these techniques, as mentioned in [11], depend on cross

correlation between pilots of a certain OFDM symbol with pilots of the previous

OFDM symbol. However, in case of 802.16e, we find that in some permutation

 116

schemes, pilot locations can differ among successive symbols. It can be defined in

a certain set for odd OFDM symbols and another set in even symbols. The case

studied in this thesis is the most commonly used FUSC permutation with FFT size

1024.

The used technique depends on estimating the pilot phases for each OFDM

symbol separately. This is carried out through cross correlation of the received

pilot subcarriers with the pre-known transmitted pilot subcarriers. This can be

described as follows:

Let Pk,l be the modulated pilot subcarrier with index k for OFDM symbol with

index l , the received pilot subcarrier is indicated as Rp k,l such that

φj
lklk ePRp .,, = (6.5)

We obtain the angle rotation

())(conj . ,,, lklklk RpP∠=φ (6.6)

The value of lk ,φ is calculated for all pilots. The next step is to estimate the

equation of phase error line in order to estimate phase rotation of other data

subcarriers. The most accurate used algorithm is to fit the obtained pilot phases to

the nearest line. This is done via Least Square (LS) Linear Curve Fitting

algorithm.

6.2.3.1 Phase tracking via LS linear curve Fitting

The Least Square (LS) algorithm is used to obtain the best curve f(x) that fits

to a set of points (xi, yi). The linear curve fitting is used to obtain the best straight

line that fits to some set of points. The key idea behind this is that it minimizes the

error between line and data points as follows:

For a set of points (xi, yi), and the line equation () baxxf ii += , we can define

the sum of squared errors as:

 117

Figure 6.5 LS linear curve Fitting

()()2∑ −= ii xfyerr

()2∑ −−= iii baxyerr (6.7)

The mission of LS algorithm is to calculate a, b coefficients such that the error is

minimized.

() 02 =−−−=
∂
∂

∑ iiii baxyx
a

err
 (6.8)

() 02 =−−−=
∂
∂

∑ iii baxy
b

err
 (6.9)

Solving equations(6.8), (6.9) we can re-write them as follows

∑ ∑ ∑=+ iiii yxxbxa .2

∑ ∑=∗+ ii ynbxa

Then, the obtained set of equations can be written in a matrix form as









=
















∑
∑

∑∑
∑

ii

i

ii

i

yx

y

a

b

xx

xn

2 (6.10)

where n is the number of points.

In our case, yi represents estimated phase of pilot with index xi.

Phase estimation of the remaining data tones is carried out through the phase line

equation

(x4, y4)

(x3,y3)

(x2, y2)

(x1, y1)

 118

bkae

lk += . ,φ (6.11)

where e

lk ,φ indicates the estimated phase error of subcarrier with index k for OFDM

symbol l. a is the slope and b is the bias or intercept.

The last step is to correct the phase error through subcarrier derotation

(), , . exp -j
e e
k l k l k,lZ Z φ= (6.12)

6.2.3.2 Symbol Re-timing with ROB/STUFF

The next step with phase tracking is called symbol re-timing. It plays a key

role in synchronization process as it compensates for the drift caused to OFDM

symbol window. Symbol re-timing is performed through controlling the length of

the removed CP before the FFT operation. This also is called ADD/DROP

mechanism. The process of removing one extra symbol to the CP or dropping one

symbol is needed when the drift in the OFDM symbol window exceeds sT
2

1
. It can

be proven that a drift in the OFDM symbol window will exceed sT
2

1
 when the

difference in phase error between the first and last subcarriers in the same symbol

exceeds a value of π. This procedure is described as follows:

For each OFDM symbol of index l

If (π≥−−−),
2

_
(),1

2

_
(l

SIZEFFT
φl

SIZEFFT
φ ee) then

 Remove CP-1

If (π−≤−−−),
2

_
(),1

2

_
(l

SIZEFFT
φl

SIZEFFT
φ ee) then

 Remove CP+1

 119

LS linear curve fitting is the best algorithm to estimate phase error line, as it is less

sensitive to AWGN channel effects.

Figure 6.6 illustrates the resultant constellations before and after the phase

recovery in constellation for QPSK and 16-QAM respectively.

(a) (b)

(c) (d)

Figure 6.6 (a) QPSK before de-rotation (b) QPSK after de-rotation

 (c) 16-QAM before de-rotation (d) 16-QAM after de-rotation

 120

In Figure 6.7, phase error tracking is indicated in case of symbol re-timing and

without symbol re-timing. It is shown that without symbol re-timing, the phase

error accumulates, until no further tracking can correct it.

(a)

(b)

Figure 6.7 (a) Phase tracking without Add/drop mechanism

 (b) Phase tracking with Add/drop mechanism

 121

6.3 Effect of Residual Carrier Frequency offset

In addition to the timing offset discussed before, OFDM is more sensitive to

frequency offset than single carrier schemes. The main reason of the frequency

offset is the mismatch between the local oscillator at the transmitter and the

receiver. Other factors such as Doppler shift in high speed mobile systems, may

participate in the increase of the frequency offset.

Frequency offset results in a loss of orthogonality among subcarriers, which

results in the ICI. Many papers addressed the problem of frequency offset in

OFDM systems. Some proposed techniques use the pilot subcarriers to estimate

the frequency offset [42]. Others are proposed to use time domain techniques, such

as redundancy in CP to estimate frequency offset [43]. Some approaches depend

on Phase locked loop to correct the frequency offset [44].

The Residual Carrier Frequency offset (RCFO) is a result from a non-perfect

estimation from the Coarse and fine frequency offset stages. The local oscillator

carrier frequency may also change slightly due to environmental conditions. The

function of the frequency offset tracking stage is to track RCFO and correct its

effect. In this thesis, we focus on the frequency offset tracking stage, illustrating

its effect and tracking algorithm.

The RCFO results in a phase offset in each subcarrier of every OFDM

symbol. It can be seen as a rotation of the constellation axis in frequency domain.

This is in contrast to the effect of SCFO, which has a linear phase error that varies

with subcarrier index and OFDM symbol number. Figure 6.8 illustrates the effect

of phase rotation due to RCFO in a certain OFDM symbol in case of 16-QAM

modulation.

 122

Figure 6.8 Constellation rotation due to RCFO

This effect can be derived as follows:

1 .22

2

() ()

u

u

N
kn

j
N

N
n

X K x n e
π−

−

= −

= ∑

In case of RCFO ∆f, we obtain

sfmTj
emxmx

∆= π2.
).()('

where
2

u
s

N
m n lN= + −

1 .22

2

'() '()

u

u

N
kn

j
N

N
n

X K x m e
π−

−

= −

= ∑

1 .22 2
2

2

'() (). .

u

u
s s

u

N
Nkn j f lN n Tj

N

N
n

X K x m e e
π π

−  
− ∆ + −−  

 

= −

= ∑

 123

1 .222
2 2

2

'() (). .

u

u
s s

s

u

N
N knj f lN T j

j fnTN

N
n

X K e x n e e
ππ

π

− 
− ∆ − −  − ∆ 

= −

= ∑

()
1 .2

22
2

2

'() ().

u

u
s us s

u

u

N
nN

j k fT Nj f lN T
N

N
n

X K e x n e

π
π

−  − +∆− ∆ − 
 

= −

= ∑

2
2'() ()
u

s s

N
j f lN T

X K e X K
π  − ∆ − 

 ≈ (6.13)

It is shown that RCFO results in a phase offset that is proportional to OFDM

symbol index. The added term ∆f.Ts.Nu is very small and can be neglected. Its

effect begins to occur with higher values of ∆f as an increase in ICI. In general, it

should have a small value after coarse and fine frequency offset stages. The value

of phase offset differs among successive OFDM symbols as shown in Figure 6.9.

Figure 6.9 Effect of RCFO on phase error

 124

We conclude that combining the effect of both RCFO and SCFO, the RCFO

results in a bias in the phase error of each OFDM symbol, and SCFO determines

the slope of phase error line for each OFDM symbol. The used technique for

estimation and correction of SCFO can be used as a joint estimation of both SCFO

and RCFO. The LS algorithm determines the bias and the slope of phase error in

each OFDM symbol. The bias is caused mainly by RCFO and the slope is affected

by SCFO. Figure 6.10 represents the phase error due to the combined effect of

both RCFO and SCFO. The estimated phase of any tone will be the combined

effect due to both RCFO and SCFO. Derotation of data subcarriers is a correction

to both SCFO and RCFO effects.

Figure 6.10 Phase error for combined SCFO and RCFO

 125

6.4 Simulation results

6.4.1 LS algorithm performance

This section illustrates the performance of the LS estimation algorithm in case of

RCFO and SCFO. Simulation parameters assumes the case of FUSC permutation

scheme and FFT size =1024

Number of used subcarriers Nused = 851

Number of pilot subcarriers = 82

Number of left guard subcarriers = 87

Number of right guard subcarriers = 86

Subcarrier spacing = 10.94 kHZ.

Useful OFDM symbol time (Tu) = 91.4 µs

Total OFDM symbol time (Ts) = 102.9 µs

Cyclic Prefix (CP) = 1/8

It is shown the BER for different values of Eb/No for AWGN channel in Figure

 6.11. Different values of SCFO and RCFO used in simulation are large enough

compared to practical values. The LS algorithm is still efficient in more severe

conditions.

 126

Figure 6.11 BER vs Eb/No for different RCFO values

6.5 Hardware Implementation:

In this section, we discuss the FPGA implementation of sampling clock and

frequency tracking block.

6.5.1 Block diagram

The function of this block is to estimate the phase rotation of subcarriers and

perform a derotation. This is performed by an estimation of pilot phases, followed

by an estimation of the phases of other subcarriers. The required steps are

1- Estimation of Pilot Phases

2- Estimation of phase line coefficients

3- Estimation of data subcarriers phases

4- Subcarrier derotation

 127

Figure 6.12 Sampling clock and frequency tracking block diagram

6.5.2 Pilot Phase estimation Block

This block is responsible for the estimation of received pilot phases,

depending on the information of the transmitted pilots. Estimation of pilot phases

can be implemented with the aid of CORDIC rotation. It is a simple algorithm that

is used to rotate a vector with a certain phase through successive Add and Shift

operations.

Inputs to this block are Rx_re, Rx_im that represent real and imaginary parts

of received subcarrier, pilot_flag signal is activated to indicate that the received

subcarrier is a pilot subcarrier. The output of this block is Rot_rx_re, Rot_rx_im

that represent real and imaginary part of rotated subcarrier respectively. Est_angle

is the estimated angle of pilot subcarrier, which will be used by next block to

estimate data subcarriers. Valid_out signal is activated once the output is valid.

Estimate

Pilot

Phases

Estimate

Phase line

coefficients

Estimate

data

subcarrier

phases

Subcarrier

derotation

Rob / Stuff

 128

Figure 6.13 Phase estimation block diagram

6.5.2.1 CORDIC algorithm:

CORDIC stands for COordinate Rotation DIgital Computer. It is used as an

alternative to complex multiplication to rotate vectors [34].The key idea behind

CORDIC operation can be described as follows

Figure 6.14 Basic CORDIC rotation

If the initial value of a certain vector is given as x1 = (1,0), and it is rotated by

an angle z, the new value will be x2 = (cos z, sin z). The value of cos z or sin z can

is the real or imaginary value of x2 after rotation. The CORDIC algorithm is based

 Clk RST

Pilot Phase Estimation

Block

Rx_re

Rx_im

Pilot_flag

Rot_rx_re

Rot_rx_im

Est_angle

Valid_out

()'

1

'

1 , ++ ii yx

()11 , ++ ii yx

αi

()ii yx ,

x

y

 129

on rotating a vector with a single angle through successive rotations of constant

pre-calculated angles. As the number of iterations increases, we obtain a better

accuracy. Figure 6.14 illustrates a sample CORDIC iteration.

Assume that a vector with coordinates (xi, yi) is to be rotated by an angle αi to

the new coordinates (xi+1, yi+1). The values of the new coordinates are

1 cos sini i i i ix x yα α+ = −

()
1

2

tan

1 tan

i i i
i

i

x y
x

α

α
+

−
=

+

1 cos sini i i i iy y xα α+ = +

()
1

2

tan

1 tan

i i i
i

i

y x
y

α

α
+

+
=

+

iii zz α−=+1 (6.14)

After m iterations, we obtain ∑−= im zz α0

In order to simplify these calculations, the values of iα are chosen to be ()1tan 2 i− −

such that multiplications are converted to simple add and shift operations. The

term ()21 tan iα+ in the denominator can be omitted such that rotations are

converted to pseudo-rotations, which are a scaled version from the conventional

rotations as shown in Figure 6.14. After pseudo-rotations, we obtain the new

coordinates as ()1 1

' ',i ix y+ + . The general form of CORDIC rotation is obtained as

follows

 1

'' ' . .2
ii i

i
ix x y d

+

−= −

 1

'' ' . .2
ii i

i
iy y x d

+

−= +

1
1 . tan 2 i

i i iz z d − −
+ = − (6.15)

where { }1 , 1−∈id

 130

The values of angles tan
-1
2
-i
 are pre-calculated and stored in a LUT. The structure

of the basic CORDIC hardware consists of two adders and a LUT as shown in

Figure 6.15.

Figure 6.15 Basic CORDIC Hardware

The approximate values of angles tan
-1
2
-i
which should be stored in a LUT are

given in Table 6-1 as shown

Table 6-1 Approximate values of tan-12-i

i 1 2 3 4 5 6 7 8 9 10

tan
-12-i

(degrees)

45
0

 26.6
0

 14
0

 7.1
0

 3.6
0

 1.8
0

 0.9
0

 0.4
0

 0.2
0

 0.1
0

tan
-12-i

(radian)

0.785 0.464 0.245 0.124 0.062 0.031 0.016 0.008 0.004 0.002

To perform a set of rotation, the values of di are selected for each rotation such

that the final angle equals ∑ iα .

A multiplication by the constant

+/- +/-

xi yi

xi+1 yi+1

LUT +/-

zi

zi+1

Reg Reg Reg

ASR ASR

 131

∏ ∏ −+
=

+
=

i

i

K
22 21

1

tan1

1

α

216467602581.1=K normalizes the final values and converts the rotations into

conventional rotations.

This constant is used in calculation of final value of xm, ym such that:

'1
m mx x

K
=

'1
m my y

K
=

The CORDIC algorithm operates in two modes; Rotation and Vectoring.

They are both based on the aforementioned procedure, except that they differ in

the mechanism of rotation. In case of rotation mode, the vector is rotated

according to a target rotation angle so that the factor di is determined according to

the sign of the angle zi at iteration i. It is suitable when we need to rotate a vector

with a certain angle. It is suitable for final subcarrier derotation.

In case of vectoring mode, the target is to rotate the vector with a certain

angle α such that its imaginary part approaches zero. The decision of rotation is

based on the sign of real and imaginary part of rotated vector after each iteration.

It is suitable for pilot phase estimation.

The entity block of CORDIC unit is shown in Figure 6.16. This version of

CORDIC algorithm is a digit recurrence technique; this means that it calculates

one correct bit per iteration. It is also defined as Radix-2 CORDIC. Its advantage

is the design simplicity, but latency increase with the increase of number of

iterations. In order to preserve higher throughput, pipelined architectures can be

used, or either high radix CORDIC such as Radix-4 CORDIC may be used. The

 132

Radix-4 CORDIC is a faster version of conventional Radix-2 CORDIC algorithm.

It combines two iterations of conventional CORDIC into one iteration, so it

generates two correct bits per iteration. The total number of iterations is halved.

The cost of improving the speed is the larger hardware complexity. In Radix-4

CORDIC, there are 4 sets of rotation angles for each iteration. Moreover, the

constant K is not simply determined as in the case of Radix-2 CORDIC.

In our implementation, the conventional Radix-2 CORDIC is more

convenient to be used. The input received signals are quantized in 8-bit precision.

Hence, 8 rotations are required for Radix-2 CORDIC. The synthesis results

discussed in section 6.6 indicate that the mobile WiMAX timing requirements are

still satisfied with the usage of one CORDIC unit for complete 8 iterations.

Figure 6.16 CORDIC Unit entity

As shown in Figure 6.16, the CORDIC unit has the quantized real and

imaginary part of input vector that are represented in real_in and imag_in. Each is

represented in an 8-bit precision. The mode input controls the mode of operation to

be in rotation or vectoring mode. The iter_no input controls the shift operation

inside the CORDIC unit. The Zin input represents the desired rotation angle in

CORDIC

Unit

real_in

imag_in

Zin

mode

iter_no

Clk RST valid_in

real_out

imag_out

Zout

valid_out

 133

rotation mode. The rotated vector is represented in real_out and imag_out. The

valid_out signal is activated as soon as output is ready.

6.5.2.2 Pilot rotation using CORDIC

In this section we apply the CORDIC algorithm in estimation of pilot

rotation. The original transmitted pilot subcarriers are known to have no imaginary

part. In order to estimate the phase rotation of a rotated pilot subcarrier, successive

CORDIC rotations are carried. The vectoring mode is used such that each rotation

targets to moves the imaginary part towards zero as shown in Figure 6.17. In this

case, the value of di is determined such that yi+1 approaches zero value. Table 6-2

illustrates determination of rotation factor di for each iteration.

Table 6-2 Determination of CORDIC rotation factor di

xi yi di

Positive Positive -1

Positive Negative +1

Negative Positive +1

Negative Negative -1

The rotation factor di is calculated by a simple XOR logic function between

the sign bits of real part xi and imaginary part yi. After the last iteration, the

sequence of di’s can be used as an address to memory which stores the

corresponding phase or it can be determined through recursive additions.

In our implementations, eight iterations are used for CORDIC with a

pipelined architecture to achieve higher throughput. Received data subcarriers

should be stored in a FIFO block until they are used by the subsequent block after

 134

estimation of data subcarrier phases. Moreover, pilot estimated phases should be

stored in a RAM module until they are used in phase line coefficients estimation.

Figure 6.17 Convergence of imaginary part in vectoring mode

6.5.3 Phase Coefficient Computation block

The main purpose of this block is to calculate the slope and bias of the

phase line equation, based on estimated pilot subcarriers phases. Figure 6.18

illustrates the entity of this block. It has inputs pilot_angle that represents the

estimated angle of pilot subcarrier, and outputs a_coef, b_coef that represent phase

error line slope and bias respectively.

Figure 6.18 Phase Coefficients entity

CLK

imag_out

Valid_in

Pilot_angle

Clk

RST

Phase Coefficients

Estimation block

a_coef

b_coef

 135

In the proposed implementation, LS algorithm is used to estimate phase

coefficients. In this thesis, we study the case of FFT size =1024, and FUSC

permutation scheme. In this case 82 pilot subcarriers are defined. The locations of

pilot subcarriers are divided into constant sets and variable sets. Constant sets are

fixed locations for all OFDM symbols, while variable sets vary depending on

whether it is an even or odd OFDM symbol. There are two constant sets and two

variable sets, defined as indicated in Table 6-3 with respect to subcarrier index

Table 6-3 Pilot locations for FUSC permutation with 1024 FFT size

 Pilot locations

Constant set 0 [-415 -271 -127 17 161 305]

Constant set 1 [-343 -199 -55 89 233]

Variable set 0 [-424 -400 -376 -352 -328 -304 -280 -256 -232 -208 -

184 -160 -136 -112 -88 -64 -40 -16 8 32 56 80

 104 128 152 176 200 224 248 272 296 320 344

 368 392 416]

Variable set 1 [-388 -316 -244 -172 -100 -28 44 116 188 260 332

 404 -412 -340 -268 -196 -124 -52 20 92 164 236

 308 380 -364 -292 -220 -148 -76 -4 68 140 212

 284 356]

 For even OFDM symbol, pilot locations consist of constant sets and

variable sets. However, for odd OFDM symbols, they consist of constant sets, and

variable sets + 6.

In this case, we construct the LS matrix as follows:

For even symbols









−

−
=







=

∑∑
∑

4898731889

88982
2

ii

i

xx

xn
A (6.16)

 136

For odd symbols









−

−
=







=

∑∑
∑

4897879463

46382
2

ii

i

xx

xn
A (6.17)

where n represents the number of pilot subcarriers

 xi represents the set of locations of the pilot subcarriers

The phase line coefficients can be estimated as follows

 symbols, oddfor
100428.2101.1534

101.15340122.0

 symbols,even for
100454.2102175.2

102175.20122.0

.

76

6

76

6

1


















××

×
=


















××

×
=









=








∑
∑
∑
∑

∑
∑

−−

−

−−

−

−

ii

i

ii

i

ii

i

yx

y

yx

y

yx

y
A

a

b

Implementation of this block implies two main units, Accumulator (ACC) to

calculate ∑ iy and Multiply/Add and Accumulate (MAC) unit as shown in Figure

 6.19.

Figure 6.19 ACC and MAC units

xi yi

+ +

yi

MAC ACC

 137

The next step is to calculate a, b coefficients through matrix multiplications.

Having a constant matrix simplifies multiplication operations. However, in this

thesis, we propose a further approximation that simplifies the implementation of

this unit. This approximation removes the matrix multiplication and has an

insignificant loss in estimation performance. This approximation simply implies

the calculation of a, b coefficients as follows

∑≈ ii yxa
222

1

7 8

1 1 1 1

82 2 2
i i i ib y y y y

n
≈ = ≈ +∑ ∑ ∑ ∑ (6.18)

The key idea of this approximation is that the coefficient multiplied by

i ix y∑ in calculation of b coefficient has a very small weight. On the other hand,

in the calculation of a coefficient, although the weights of the two factors are

close, the aggregate weight of 61.1534 10 iy−× ∑ is much smaller than

72.0428 10 i ix y−× ∑ , and the coefficient of i ix y∑ can be approximated to
22

1

2
.

This approximation removes the excess hardware needed for a, b

calculation. Calculation of the slope a is carried out via a simple shift operation,

and the calculation of the bias b is carried out via constant multiplication which

can be performed with only one addition operation. This approximation has a

small effect on degradation of the system performance. The comparison between

BER performance in case of matrix multiplication and approximation is illustrated

in Figure 6.20.

 138

Figure 6.20 Comparison of the perfect and approximated phase coefficients

The above approximation indicates that the output of the MAC unit should

be shifted to the right. A large number of least significant bits should be truncated.

In this thesis, a proposed implementation of the MAC unit is carried out which

leads to a significant reduction in the area of the MAC unit. The proposed

implementation of the MAC unit is not constructed from a multiplier followed by

an adder, but a common used implementation is to perform the multiplication and

addition together as one operation in one Partial Product Array (PPA) [45]. This is

carried out by inserting the last operand to be added as an extra partial product

inside the PPA. When we insert the additional operand inside the PPA, we obtain

it as shown in Figure 6.22. The next operation is to reduce the whole PPA using

any Partial Products reduction techniques. In this implementation, we use the PPA

proposed in [46] for signed multiplication. In our case, we need 10 x 10 signed

multiplier. This PPA is illustrated in Figure 6.21. If we have X=X9….. X1X0,

Y=Y9…..Y1Y0, then Pij=XiYj

 139

 1 P09 P08 P07 P06 P05 P04 P03 P02 P01 P00

 P19 P18 P17 P16 P15 P14 P13 P12 P11 P10

 P29 P28 P27 P26 P25 P24 P23 P22 P21 P20

 P39 P38 P37 P36 P35 P34 P33 P32 P31 P30

 P49 P48 P47 P46 P45 P44 P43 P42 P41 P40

 P59 P58 P57 P56 P55 P54 P53 P52 P51 P50

 P69 P68 P67 P66 P65 P64 P63 P62 P61 P60

 P79 P78 P77 P76 P75 P74 P73 P72 P71 P70

 P89 P88 P87 P86 P85 P84 P83 P82 P81 P80

1 P99 P98 P97 P96 P95 P94 P93 P92 P91 P90

Figure 6.21 PPA for 10 x 10 signed multiplier

 1 P09 P08 P07 P06 P05 P04 P03 P02 P01 P00

 P19 P18 P17 P16 P15 P14 P13 P12 P11 P10 Z0

 P29 P28 P27 P26 P25 P24 P23 P22 P21 P20 Z1

 P39 P38 P37 P36 P35 P34 P33 P32 P31 P30 Z2

 P49 P48 P47 P46 P45 P44 P43 P42 P41 P40 Z3

 P59 P58 P57 P56 P55 P54 P53 P52 P51 P50 Z4

 P69 P68 P67 P66 P65 P64 P63 P62 P61 P60 Z5

 P79 P78 P77 P76 P75 P74 P73 P72 P71 P70 Z6

 P89 P88 P87 P86 P85 P84 P83 P82 P81 P80 Z7

1 P99 P98 P97 P96 P95 P94 P93 P92 P91 P90 Z8

 Z19 Z18 Z17 Z16 Z15 Z14 Z13 Z12 Z11 Z10 Z9

Figure 6.22 MAC operation in one PPA

 140

Additionally, we propose another improvement that reduces area and delay

in a significant way. This is achieved through applying a truncation to a part of the

PPA instead of constructing the entire PPA. As we need to consider only a few of

most significant bits of the result. The fixed point analysis indicates that we need

only to consider the 5 most significant bits of the result. In our analysis, we can

determine the number of least significant bit positions to truncate as follows

()
2

21

1 1

2 82 2
N j

N iN

j i

−

= =

> ∑∑

Where N1 represents the bit position from which we consider the final output, N2

represents the most significant bit position of the truncated part of the PPA. The

number of bits that are truncated should have insignificant effect on the final

result. This means that their effect is considered as one carry input to the least

significant bit of the considered part of the final result. We have 82 accumulations.

In order to determine the number of truncated bits N2, consider one multiplication

operation. We find that the largest value of the truncated part of the PPA is

2 2 2 2 22 2 2 2 2
...... 1

2 2 4 2 4

N N N N N   
+ + + + + +   
   

, we need this to be smaller than 12N . This

summation is multiplied by 82 as we have 82 accumulations corresponding to the

number of pilots. Our analysis shows that for N1=20, we get N2=10. This leads to a

truncation of about half of the entire PPA, which in sequence leads to a saving of

approximately half of the original area. The resulting truncated PPA is shown in

Figure 6.23.

 141

 1 P19

P29 P28

 P39 P38 P37

 P49 P48 P47 P46

 P59 P58 P57 P56 P55

 P69 P68 P67 P66 P65 P64

 P79 P78 P77 P76 P75 P74 P73

 P89 P88 P87 P86 P85 P84 P83 P82

1 1 1 1 1 1 P99 P98 P97 P96 P95 P94 P93 P92 P91

Z24 Z23 Z22 Z21 Z20 Z19 Z18 Z17 Z16 Z15 Z14 Z13 Z12 Z11 Z10

Figure 6.23 Proposed truncated MAC PPA

6.5.4 Data subcarriers Phase estimation block

The next step after calculation of phase line coefficients is to calculate the

phase of data subcarriers. This is carried out by a simple MAC unit. Subcarrier

index is generated via a 10 bit subcarrier index counter. The output of this counter

is multiplied by the coefficient a then added to the estimated bias b. This operation

is demonstrated in Figure 6.24.

 142

Figure 6.24 Phase estimation hardware

6.5.5 Subcarrier de-rotation via CORDIC

The last step after estimating the phase of each subcarrier is to perform de-

rotation in order to correct the effect of both RCFO and SCFO. The de-rotation

operation is simply implemented via CORDIC algorithm. The CORDIC unit used

for subcarrier de-rotation is similar to the one used in pilot phase estimation, but it

operates in rotation mode instead. In case of pilot phase estimation, the rotation

phase is not known and di is selected such that the imaginary part approaches zero

value. However in the de-rotation case, we need to satisfy that phase reaches zero

value after m iterations such that:

 ∑ −−−= i

im dzz 2tan. 1

0 (6.19)

The value of zm represents the difference between desired angle and rotated angle.

The decision on value of di is performed such that the angle zi+1 approaches zero.

Estimated data

subcarrier angle

Subcarrier index

counter

CLK

RST a

b

 143

6.6 Synthesis Results

The implemented blocks of sampling clock and frequency tracking unit are

synthesized on Altera StratixII FPGA platform using Altera Quartus tools,

targeting optimization for speed. The target device is EP2S15F484C3. We obtain

the following synthesis results

Table 6-4 Synthesis results for Sampling clock and Frequency tracking

Component
Number of

LUTs

Number of

Registers

Number of

memory bits

Maximum frequency

of operation

Pilot Phase

detection
101 106 ___ 152 MHZ

Phase

Coefficients

estimation

block

178 142 ___ 327.23 MHZ

Data

subcarriers

phase

estimation

11 + 2 DSP

block 9-bit

elements

19 ___ 250.44 MHZ

Subcarrier

derotation

block

101 106 ___ 152 MHZ

The complete

Timing /

Frequency

tracking block

347 + 2

DSP block

9-bit

elements

300 17560 145.31 MHZ

 144

From the synthesis results obtained in Table 6-4, we conclude that one

Radix-2 CORDIC unit is suitable to be used in Pilot phase detection and pilot

phase estimation. It can be used for successive 8 CORDIC iterations and satisfy

the symbol timing requirements of IEEE 802.16e standard.

 145

Chapter 7

Conclusion and Future work

In this thesis, we present the simulation model of optional CTC used in

IEEE802.16e mobile WiMAX. It is found that it has a better performance over the

mandatory convolutional coding schemes for higher number of iterations. We also

present the hardware implementation of CTC encoder and decoder with efficient

implementation techniques that target area reduction or speed enhancement over

the existing conventional techniques. Our implementation targets the FPGA design

platform. The implementation was held to satisfy the system requirements and

throughput. We introduced a novel implementation of state metric unit

normalization using the redundant number system. However, the new

implementation is more suitable in custom design platforms rather than FPGA.

The improvement in speed can be rather insignificant in FPGA compared to the

increase in the area. This is due to that some other components affect the delay in

FPGA such as routing delay and interconnect. However, this improvement is

significant in case of custom design.

We also presented an efficient quantization of turbo decoder with the

optimum number of bits compared to that in the literature. Moreover, we achieved

high speed SISO architecture for the FPGA platform. Our SISO decoder operates

at 150 MHZ. It is faster than other architectures that targets the FPGA platform

and mentioned in the literature.

We also present the Timing and Frequency tracking simulations and

hardware implementation using least square error linear curve fitting. It is found

that LS algorithm is the best that minimizes the effect of the channel noise in

correction of the sampling error and residual carrier frequency offset effect.

 146

Additionally, it is simple in hardware implementation. We presented an optimized

implementation for a common used special case of FUSC with FFT size 1024. Our

implementation is suitable for the other permutation schemes. We can think about

extending our implementation to be generic and handle different permutation

schemes and FFT sizes.

The work is still open for future improvements. Our implementation of Turbo

codes and sampling clock/Frequency tracking is suitable for hardware

implementation on other platforms using standard cells and ASIC. The FPGA is

used only for proto-typing. But in order to achieve a turbo decoder chip, our

implementation should target the ASIC design. Other optional coding schemes

may be studied and implemented such that LDPC codes. They also have a good

performance that competes with that of CTC. Another issue is the study of channel

estimation with timing and frequency tracking. We implement a simple algorithm

that assumes perfect channel estimation, but for case of non-channel estimation,

this algorithm fails to achieve its performance. We can search for a joint algorithm

for channel estimation and clock / Frequency tracking.

 147

REFERENCES

[1] Senza Fili “Fixed, nomadic, portable and mobile applications for 802.16-2004

and 802.16e WiMAX network” Consulting on behalf of the WIMAX Forum,

November 2005.

[2] Henrik Schulze and Christian Luders “Theory and Applications of OFDM and

CDMA Wideband Wireless Communications” ISBN, 2005

[3] Loutfi Nuaymi “WiMAX technology for broadband wireless access” ENST

Bretagne, France, Wiley, 2007

[4] Jeffrey G. Andrews, Arunabha Ghosh, Rias Muhamed “Fundamentals of

WiMAX” Prentice Hall, 2007

[5] Syed Ahson, Mohammad Ilyas “WiMAX standards and security” CRC press,

September 2005.

[6] “Air Interface for Fixed Broadband Wireless Access Systems” IEEE P802.16-

REVd/D5, May 2004.

[7] “Air Interface for Fixed Broadband Wireless Access Systems” IEEE Std

802.16e-2005

[8] Simon Haykin “Communication Systems” 4th edition, Bill Zobrist, McMaster

University, 2001, pp 626-695

 148

[9] Yushi Shen and Ed Martinez “Channel Estimation in OFDM Systems”,

Freescale Semiconductor, Inc., 2006.

[10] S. Colieri; M. Ergen; A. Puri; A. Bahai “A study of channel estimation in

OFDM systems”, IEEE 56
th
 proceeding on Vehicular Technology, 2002,

Vol.2, pp.894-898

[11] John Terry, Juha Heiskala “OFDM Wireless LANs, A theoretical and

practical Guide” Sams Publishing, 2001

[12] G.D.Forney “The Viterbi Algorithm” IEEE proceeding, Mar.1973, vol.61,

pp. 268-278.

[13] Abd-Elmohsen Khater “Simulation and Implementation of the timing

synchronization, cell identification, and FFT for the OFDMA-based mobile

WiMAX 802.16e”, MSc. Thesis, Faculty of Engineering, Cairo University,

2007

[14] M. Ismail Ali “Simulation and implementation of the Frequency

Synchronization and Viterbi decoding for the OFDMA-based mobile

WiMAX 802.16e”, MSc. Thesis, Faculty of Engineering, Cairo University,

2007

[15] Berrou, C., Glavieux, A., and Thitimajshima, P., “Near Shannon Limit Error-

Correcting Coding and Decoding: Turbo Codes,” IEEE Proceedings of the

Int. Conf. on Communications, Geneva, Switzerland, May 1993 (ICC’93),

Vol. 2, pp. 1064-1070.

 149

[16] Berrou, C. and Glavieux, A. “Near Optimum Correcting Coding and

Decoding: Turbo Codes” IEEE Transactions on Communications, October

1996, Vol. 44, pp.1261-1271

[17] C.Douillard, M. Jézéquel, C. Berrou, N. Brengarth, J. Tousch and N. Pham

“The Turbo Code Standard for DVB-RCS”

[18] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear

codes for minimizing symbol error rate,” IEEE Trans. Inf. Theory, Mar.

1974, vol. IT-20, no. 2, pp. 284–287.

[19] L.Hanzo, T.H.Liew, B.L.Yeap “Turbo Coding, Turbo equalization and

Space time Coding for transmission over fading channels” Wiley, 2002

[20] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and

sub-optimal MAP decoding algorithms operating in the log domain,” in Proc.

IEEE Int. Conf.Communications, Jun. 1995, pp. 1009–1013.

[21] Jörg Vogt and Adolf Finger “Improving the Max-Log-MAP Turbo Decode”

Electronics Letters Vol 36, Issue 23, 9 Nov 2000 pp. 1937 - 1939

[22] M. Marandian, J. Fridman, Z. Zvonar, and M. Salehi1 “Performance

Analysis of Sliding Window Turbo Decoding Algorithms for 3GPP FDD

Mode”, International Journal of Wireless Information Networks, 2002, Vol.

9, pp. 39-54

[23] Matthew C. Valenti, Shi Cheng, and Rohit Iyer Seshadri “Turbo and LDPC

Codes for Digital Video Broadcasting” Turbo codes Applications book, pp.

301-319

 150

[24] Roshni Srinivasan, Jeff Zhuang, Louay JalloulRobert Novak, Jeongho Park

“Draft IEEE 802.16m Evaluation Methodology Document” IEEE

contributions, IEEE C802.16m-07/080r3, August 2007

[25] Marco A. Castellon, Ivan J. Fair, Duncan G. Elliott “Fixed-Point Turbo

Decoder Implementation suitable for Embedded Applications” IEEE,

Canadian Conference on Electrical and Computer Engineering

CCECE/CCGEI, Saskatoon, May 2005, pp.1065-1068

[26] Heiko Michel and Norbert Wehn “Turbo-Decoder Quantization for UMTS”

Communications Letters, IEEE Volume 5, Issue 2, Feb 2001 pp.:55 – 57

[27] Zhongfeng Wang, Hiroshi Suzukit and Keshab K. Parhi “VLSI

Implementation issues of Turbo decoder design for wireless applications”

IEEE Workshop on Signal Processing Systems, 1999 pp.:503 – 512

[28] S. S. Pietrobon, “Implementation and performance of a TURBO/MAP

decorder”, International Journal of Satellite Communications and

Networking, 1998, Vol. 16, pp. 23-46

[29] Zhongfeng Wang, Hiroshi Suzukit and Keshab K. Parhi “VLSI

Implementation issues of Turbo decoder design for wireless applications”

IEEE Workshop on Signal Processing Systems, 1999 pp.:503 – 512

[30] S. S. Pietrobon, “Implementation and performance of a TURBO/MAP

decorder”, International Journal of Satellite Communications, 1998

 151

[31] J.H.Han, A.T.Erdogan, T.Arslan “High speed Max-Log-Map Turbo SISO

decoder Implementation using Branch Metric Normalization” Proceedings of

IEEE Computer Society Annual Symposium on VLSI, 2005.

[32] B. Shim and H.G. Myung “A novel metric representation for low-complexity

log-MAP decoder” IEEE International Symposium on Circuits and Systems,

2005, Vol.6 , pp.5830-5833

[33] A.P Hekstra “An alternative to metric rescaling in Viterbi decoders” IEEE

transactions on Communications, 1989, Vol.37, pp 1220-1222

[34] B. Parhami “Computer Arithmetic, Algorithms and Hardware Design”,

Electrical and Computer Engineering department. University of California,

Santa Barbara, Oxford University Press 2000

[35] C. Anghel, A. A. Enescu, O. M. Bugiugan, C. R. Cacoveanu “FPGA

implementation of a CTC Decoder for H-ARQ complaint WiMAX systems”

International Conference on Design and technology of integrated systems in

Nanoscale Era, September 2007, pp.82-86

[36] Ji-Hoon Kim, In-Cheol Park “Double binary Circular Turbo decoding based

on Border metric Encoding ” IEEE transactions on Circuits and Systems, Jan

2008, Vol.55, pp. 79-83

[37] Yong Wang1, Ge Jian-hua, Bo Ai, Li Zong-qiang, and Nie Yuan-fei ”A

Novel Scheme for Symbol Timing in OFDM WLAN Systems”

[38] Haiyun Tang, Kam Y. Lau, and Robert W. Brodersen. ”Synchronization

Schemes for Packet OFDM System”

 152

[39] Baoguo YANG, B. Letaief, Roger S. Cheng, and Zhigang “An Improved

Combined Symbol and Sampling Clock Synchronization Method for OFDM

Systems”,

[40] Wang Dan , Hu Ai qun “A Combined Residual Frequency and Sampling

Clock Offset Estimation for OFDM Systems” IEEE Asia Pacific Conference

on Circuits and Systems APCCAS, 2006, pp.1184-1187

[41] Jen-Ming Wu and Chun-Hung Chou “Baseband Sampling Clock Frequency

Synchronization for WiMAX Systems”.

 <http://mail.com.nthu.edu.tw/~jmwu/record/SFO_paper_v5.pdf>, 2006

[42] W. D. Warner and C. Leung, “OFDM/FM frame synchronization for mobile

radio data communication,” IEEE Trans. Veh. Technol., Aug. 1993, vol. 42,

pp. 302-313.

[43] Jan-Jaap van de Beek, Magnus Sandell and Per Ola B.rjesson “ML

Estimation of Time and Frequency Offset in OFDM Systems” In IEEE

Transactions on Signal Processing, July 1997, vol. 45, no. 7, pp. 1800-1805

[44] M. R. Dacca, G. Levin, and D. Wulich “Frequency offset tracking in OFDM

based on Multi-carrier PLL” MILCOM 2000 Page(s):912 - 916 vol.2

[45] Israel Koren “Computer Arithmetic Algorithms” 2nd edition, University of

Massachusetts, Amherst, A.K.Peters Ltd, 2002

[46] C.R. BAUGH and B.A. WOOLEY, "A two's complement parallel array

multiplication algorithm" IEEE transactions on Computers, Dec. 1973 ,Vol.

C-22 ,pp. 1045-1047

