DRUS: A New Proposed Interoperable
DRM Hardware Software Solution
System

By
Amr Mohamed Samir Tosson

A Thesis Submitted to the Faculty of Engineering at Cairo
University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science
In
Electronics

Under the supervision of

M.F.Abu El-Yazeed Hossam A.H. Fahmy
Professor Assistant Professor
Elec. and Comm. Dept. Elec. and Comm. Dept.

Faculty of Engineering, Cairo University, Giza, Egypt
December 2008

Abstract

The advent of consumer digital media products has vastly increased the concerns of
copyright-dependent organizations within the music and movie industries.

While analog media inevitably loses quality with each copy generation, digital media files
may be duplicated an unlimited number of times with no degradation in the quality of
subsequent copies. The advent of personal computers as household appliances has made it
convenient for consumers to convert media originally in a physical/analog form or a
broadcast form into a digital form, combined with the Internet and popular file sharing tools,
has made unauthorized distribution of copies of copyrighted digital media much easier.

The Digital Rights Management (DRM) field was thus spawned to prevent unauthorized
access to digital content. The DRM solutions exist as either proprietary products owned by
companies or as open standards.

Most of the implemented DRM solutions suffer mainly from interoperability issue.

The main problem with interoperability is that it could the competition in the market through

locking the users to certain products only.

In this work, we propose a new DRM system which overcomes the interoperability issue
which exists in today’s DRM products by creating a new system which supports basic DRM

functionalities and which can be extended for each specific service and functionality.

This thesis is organized as follows: In chapter | we introduce the DRM technology and its
different fields. A quick review of the current DRM solutions is provided in chapter 2.

The architecture and the different functionalities of our proposed system are explained in
details in chapter 3. In chapter 4, we discuss the simulation results of the implemented
hardware controller of our system. Chapter 5 summarizes our conclusion and introduces some

points that need more research.

http://en.wikipedia.org/wiki/Analog_signal
http://en.wikipedia.org/wiki/Generation_loss
http://en.wikipedia.org/wiki/Personal_computer
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/File_sharing

Acknowledgment

A word of thanks to ALLAH, the source of all knowledge, by whose abundant grace, this

work has come to life.

I wish to express my gratitude to those who generously helped me in carrying out this work
with their knowledge, valuable advices and kind encouragements.

I would like to express my sincere thanks, deep gratitude, and extreme appreciation to Prof.
Dr. Mohamed Fathy, Professor of Electronics and communication, Faculty of Engineering,
Cairo University, for his remarkable help, indispensable advice and encouragement

throughout this work.

I wish to express my deep everlasting gratitude to Dr. Hossam Fahmy, Lecturer of
Electronics and communication, Faculty of Engineering, Cairo University, not only for his
fruitful advice, but also for his constant valuable guidance and for his tremendous effort in the

presentation of this work.

Also, | would like to thank my company Mentor Graphics for its support and specially my

colleagues and my managers for their wonderful understanding and help.

Last but not least, | am deeply thankful and always indebted to my parents and my sister,

who were always there for me, supporting, encouraging and loving me.

Contents

ADSLIact ..., li
Acknowledgment ... lii
1 INtrodUCtION ... e 1-4
2 Literature REVIEWviviiii i e 5-26
2.1 Companies DRM Productsc.ooviiuiie i iiieie e e, 5-12
2.1.1 Content Guard COrp.oevvvviiiiiii i e ceeeeen 6
2.1.2 Intertrust Technologies Corp.ccoovviiiiiiiininnnnns 7
2.1.3 Macrovision Corp.cooviiiiiiiiiieiii i e e e e 8
2.1.4 MIcrosoft Corp. ...vvvviin i i 8-9
2.1.5 RealNetworks COorp.o.uvviinie i i e e 9-10
2.1.6 SONY COIP. wri it 10-11
2.1.7 IBM COrP. e e 11-12
2.2 Trusted Computing SYStEMSevivririii i e e e e, 13-14
2.3 Current DRM Solutions Problem: Interoperability 15-16
2.4 The DRM Standardscoovvr i e e e, 17-22
2.4.1 Content Protection and Interoperability Standards 17-20
2.4.1.1 OMADRM Standardcccoeiiiiniinnns 17-18
2.4.1.2 Marlin DRM Standardc.oooveiiinnnnnn, 18-19
2.4.1.3 Coral DRM Standardcovvvveiieinnnn. 19-20
2.4.1.4 DMP Standardc.ccooiiiiiiiiii 20
2.4.2 Rights Licensing Information Standards 21-22
2.4.2.1 Open Digital Rights Language(ODRL) 21
2.4.2.2 MPEG-21 Part5 (MPEG-21/5)c.ceee... 21-22

Contents continue

2.5 How Our System Addresses The Interoperability Issue 23-26
3 SYStEM OVEIVIEWviii it i e et e e e e 27-77
3.1 ODJECLIVE .ot 27
3.2 Flow Of The DRUS Functionalitiesccoovviiiiiiiinnnnnn, 28-40
3.2.1 Sending And Receiving File Operation 28-31
3.2.2 Assigning the license To The Fileccoovviinini. 31-34
3.2.3 Period Circuitry Setupcovvvvieiiiiiiii i 34-36
3.2.4 File Checking Operationsc.ccocvviiiiiiiieninnnnn 36-40
3.3 DRU AICRITECIUIE ..v it e e v ee e e 41-74
3.3.1 Decision Block Architecturec..coveviiiiieiinnnnn, 43-44
3.3.2 LAU AIChItECIUNE ... v e 45-62
3.3.2.1 “Check_UserIDs” Block Architecture 46-49
3.3.2.2 “Assignment_Unit” Block Architecture 50-53
3.3.2.3 “Period_Assign” Block Architecture 54-58
3.3.2.4 “Write_Buffer” Block Architecture 59-62
3.3.3 LCU ArChIteCtureoovveiii i i 63-74
3.3.3.1 “File_Check” Block Architecture 64-67
3.3.3.2 “Recheck_Block” Block Architecture 68-71
3.3.3.3 “Period_Check” Block Architecture 72-74
3.4 Requirements From Other Parts To Complete The DRU Job 75-78
3.4.1 The Operating SYStemsc.ooviviiiiiiiiiin e e 75-76
3.4.2 The Synchronization Circuitccovviiennnn, 76-77
3.4.3 The Provider’s Server Databaseccoceeenee. 78

Contents continue

4 Simulation ReSUItSoovviii e, 79-105
4.1 LAU Simulation ReSUISoceveiiiiiiiii e 79-92
4.1.1 “Check_UserIDs” Simulation Results 79-82
4.1.2 “Assignment_Unit” Simulation Results 83-85
4.1.3 “Period_Assign” Simulation Results 86-90
4.1.4 “Write_Buffer” Simulation Results 91-92
4.2 LCU Simulation ReSUItScvniiii e, 93-103
4.2.1 “File_Check” Simulation Results 93-96
4.2.2 “Recheck_Block” Simulation Results 97-100
4.2.3 “Period_Check” Simulation Results 101-103
4.3 Other Blocks Simulation Resultsccovviiiiiiiiiiiin e, 103-105
4.3.1 “Decision_Block” Simulation Results 104
4.3.2 “Clk_Circuitry” Simulation Results 105
5 Conclusion And Future Workccooviiiiiiiin e, 106
RETEIENCES ..o s 107-110

Vi

List of Figures

Figure 1
Figure 2

Figure 3
Figure 4

Figure 5
Figure 6

Figure 7

Figure 8

Figure 9

Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24

Send/Receive OPerationccovevvviecieiieiieinennanns 29
The Sent File’s Header ..., 30
The Assign License Procedurecoooevvvviiieninevnnn, 33
The File’s Header Format After The

Assignment Procedureocoovviii i 34
Period Circuitry SEtupooveveiiiiii i e e e e, 34

Header Formatted During The

Recheck Operation PRSP ¥ ¢

The Normal File Check Operé.t.i.c;.n” 39
The Recheck Procedurecooviviiiiiiiii i, 40
DRU ArChiteCtureccoiviiiiiiiiee e e e e 41
The “Decision_Block” Block Diagram 43
Flowchart For The “Decision_Block™ 44
LAU AFChIteCturecovevvee i 45
The “Check_UserIDs” Block Diagramccoenen. 46
The “Check_UserIDs” Flowchartc..ovvinn .. 49
The “Assignment_Unit” Block Diagram 50
The “Assignment_Unit” Flowchart 53
The “Period_Assign” Block Diagram 54
The “Period_Assign” Flowchartooieiil, 57-58
The “Write_Buffer” Block Diagramccccoeeieenin, 59
The “Write_Buffer” Flowchartoooiiiiinn . 62
The LCU ArchiteCturecoovveiviiiiiiiiieieee e, 63
The “File_Check” Block Diagramc..cooovevenn 64
The “File_Check” Flowchartccooovviiii i, 67
The “Recheck_Unit” Block Diagramccovenen. 68

vii

Figure 25
Figure 26
Figure 27

The “Recheck_Block” Flowchartoel.
The “Period_Check” Block Diagramccceunene.
The “Period_Check” Flowchartcooiien i,

List of Figures continue

Figure 28
Figure 29

Figure 30
Figure 31
Figure 32
Figure 33
Figure 34

Figure 35

Figure 36
Figure 37
Figure 38
Figure 39

Figure 40

Figure 41
Figure 42
Figure 43
Figure 44

Figure 45
Figure 46

Figure 47
Figure 48

The Dual-Stage Flip-Flop Synchronizer
Synchronizer Using Asynchronous FIFO

Entry At The Provider’s Serverccccovvinnnn
The Normal Operation Of “Check_UserIDs” (1% part)
The Normal Operation Of “Check_UserIDs” (2™ part)
The “No_Enable” Case For The “Check UserIDs”

The “No_Deactivate Ack” Case
For The “Check_UserlDs”
The “Different_UserIDs” Case Of

The “Check _UserIDs”cooviiiiiiiii e
The ”Reset” Case For The “Check_UserIDs”

The Normal Operation Of The “Assignment_Unit”
The “No_Enable” Case For The “Assignment_Unit”

The “No_Space_Available” Case For The
“Assignment_Unit” ...
The “No_Space_ FROM” Case Of

The “Assignment_Unit” ...
The Normal Operation Of The “Period_Assign”

The “Update_OS” Case For The “Period_Assign”
The “Normal_Update” Case For The “Period_Assign”

The “Update_OS_While _Normal_Update” Case

For The “Period_ASSIgN”ccvoiiiiiiii et ie e,
The “Enable_Assign_While_Update” Case

For The “Period_AsSSIgN”cooviiiiii i i,
The “Enable_OS_And_Enable_Assign” Case

For The “Period_ASSIgN”ccoiiiiiiii e ie e,
The “Reset” Case For The “Period_Assign”

The “Reset_With_Enable_OS” Case

viii

Figure 49

Figure 50
Figure 51

For The “Period_AsSSIgN”cuiiiiiiiii e,
The “Reset With_Update” Case

For The “Period_AsSSIgN”cuiiiiiiii e,
The Normal Operation Of The “Write_Buffer”

The “Reset” Case For The “Write_Buffer”

List of Figures continue

Figure 52
Figure 53
Figure 54
Figure 55
Figure 56
Figure 57
Figure 58

Figure 59
Figure 60

Figure 61
Figure 62

Figure 63

Figure 64
Figure 65
Figure 66

The Normal Operation Of The “File_Check”
The “Address_Out_Range” Case Of The “File_Check”
The “No_Deactivate Ack” Case For The “File_Check” ...
The “Reset” Case For The “File_Check”
The “Normal Case” For The “Recheck Block™
The “New_Sequence” Case For The “Recheck Block™
The “New_Sequence_Enable” Case

For The “Recheck _BIock”c.cooiiiiiiii i,
The “Reset” Case For The “Recheck_Block™
The “Reset_New_Sequence” Case

For The “Recheck BIOCK”ccooiiiiiiiiiiiiiii e,
The Normal Operation For The “Period_Check”
The “Check_While_Update” Case Of The

“Period _Check” ...vi i,
The “Update_While_Check” Case Of The

“Period _ChecK” ...vie i,
The “Reset” Case Of The “Period_Check”
The Simulation Results For The “Decision_Block™

The Simulation Results For The “Clock_Circuitry”

94
95
96
97
98

Chapter |
Introduction

Security design is one of the most challenging areas for system designers because it requires
an extraordinary effort to build a system offering strong security features but not hindering
the working process of users and being well accepted by them. This is particularly true as far
as the compromise between the content owner’s copyrights and the right of free access and
exchange of information is concerned. This is of critical importance for authors, publishers
and content providers as their business depends on the ability to control and to charge for
access to their content [4].

Long before the arrival of digital or even electronic media, many legal terms were developed
in order to protect the propriety rights.

These legal terms include copyrights, trademarks and patents. Each of these has different
protection limits.

Yet, with the advent of digital media and analog to digital conversion technologies, the
concerns of copyright-dependent organizations, especially within the music and movie
industries have vastly increased.

Even if the media is present in an analog format, it can be easily converted into a digital file
(This process is called digital ripping or digital hole [30]). This digital file, without
authorization, could be copied and distributed through the internet many times without losing
any of its quality unlike the analog files (This process is called network hole [30]).

Although the inherent insecurity of Internet, many upper-layer security protocols can be used
to protect data during transmission but content is still at risk when it arrives at its destination.
If the end device's boot process and critical information are not highly secure, the digital
content can be stolen after the transmission and distributed without permission.

Also, there are different user models in the media value chain that each has his specific
interests that should be fulfilled.

The main value chain users interests could be listed as follows [10]:

Table I: Different Media Value Chain Users

Value chain user
Creator

Producer

Content repository

Rights society

Digital Rights
Management
(DRM) solution
provider

Media company

Aggregator

Definition
A user who creates a work and generates its
first manifestation

Example:
Composer, Screen writer, Performer,
Artist, Engraver, Music Copyist

A user who produces a media content

Example:
Film/TV/Music studios Publishers

A user who offers services to long-term
store to identify, describe, locate, access,
manage, and validate media content

Example:
Library, studios of multimedia

Rights intermediary and standards developer

A user who sells or licenses tools to users

Example:
Provider of Rights Management Systems,
and integrators.

A user who selects content and makes it
available to other users and provides
promotional, sales enhancement, brand
enhancement and merchandising services.

Example:
Managers and owners of content, and often
production and distribution facilities

A user who provides procuring, packaging,
presenting, cataloguing, archiving and
indexing services

Example:
Radio/TV Stations

Interests

reduced dependence on
producers (they don't have
to be paid)

widening of market
presence (e.g. via internet)

Potential for control of
more value chain elements

Possibility to provide
universal access to media
content

Opportunities of new
services

Opportunities to deploy
solutions.

Potential for new products

More opportunities to
distribute content; e-
commerce, data asset;
consumer application sales

Radical reduction of piracy

No need to be concerned
with end-user devices

More ways to offer media
content

Back-office A user who provides the technology Demand for new

applications required components for management, and applications
provider consumption of the digital media all along
the value chain New opportunities to
deploy solutions
Connectivity A user who provides point-to-point or point- More connectivity/
provider to-multipoint connectivity between users bandwidth required by
users
Example:

Two way-IP based service providers

Network service A user who provides Internet protocol (or | Opportunities to bundle

provider equivalent) services and typically various network services with
other services above it, e.g. quality of higher-level services
service

Device A user who manufactures or assembles Creation of a dynamic

manufacturer hardware and/or software components to market of hardware and

make the required parts for management, software components
and consumption of the digital media all
along the value chain

Example:
Operating system (OS)
End user The last user in a value chain Richer access to content

Example:
Consumer of Media

The DRM (which stands for Digital Rights Management) enables the satisfaction of the
above needs.
DRM is an overall term for security approaches used to prevent unauthorized access to digital

media.

Many DRM solutions were implemented by different entities.

We can classify these solutions as follows:

1- DRM companies products

These include the hardware and/or software products and the patents developed by some

leading companies to protect their work.

Examples of these products are discussed in more details in chapter 2.

2- DRM standards

These standards could be subdivided into:

Content protection and Interoperability standards: These include the standards developed
specifically to prevent unauthorized access of the data and solve the interoperability issue
which exists between most of today’s DRM solutions.

Examples of these standards like OMA (Open Mobile Alliance) standard and Marlin standard
will be discussed in more details in chapter 2.

Rights licensing information standards: These include the different rights languages

developed to express the rights associated to a certain user with a media file.
A list of these languages will be given in chapter 2.

The aim of this work:

Our objective in this thesis is to purpose a DRM interoperable solution which:
1- Overcomes today’s DRM products main problem: interoperability.
2- Agrees with the work represented in today’s DRM interoperability standards.

3- Introduces some new features to the current DRM interoperability solutions.

The rest of the thesis is organized as follows:

A quick review of the current DRM solutions is provided in chapter 2.

The architecture and the different functionalities of our proposed system are explained in
details in chapter 3.

In chapter 4, we discuss the simulation results of the implemented hardware controller of our
system.

Chapter 5 summarizes our conclusion and introduces some points that need more research.

Chapter 11

Literature Review

In this chapter, we review the DRM solutions existing in today’s market.

In section 2.1, we list some of the DRM products of the most known companies which can be
classified in the market as vendors of DRM products.

In section 2.2, we discuss the advantages and disadvantages of the trusted computing systems.
In section 2.3, we discuss the main issue in today’s DRM products: interoperability and its
effect on the market.

In section 2.4, we review some of the current DRM standards which can be subdivided as
content protection and interoperability standards and rights information standards.

Finally, in section 2.5, we present our proposed system to solve the interoperability issue and

the extra features it offers beyond those in the current DRM interoperability standards.
2.1 Companies DRM Products

First, we talk about the patent holding companies. The biggest two companies in that field are
Intertrust Technology Corporation [15] and Content Guard Corporation [8]. These two
companies are the most famous in that field due to the number of patents they are holding.
Intertrust holds 77 U.S. patents, over 100 issued patents, and has more than 300 patent
applications pending worldwide.

Content Guard has over 203 issued patents and over 270 patent applications pending
worldwide.

Although, there are other companies like Macrovision [21] which has issued a lot of patents
but their patents’ main area of focus is about the DVD and video cassette protection

techniques [37].

This is unlike the patents issued from Intertrust and ContentGuard companies which offer a

much wider scope of DRM solutions for general end-to-end systems.

2.1.1 ContentGuard Corp.

ContentGuard originally started in the early 1990's in Xerox PARC (Palo Alto Research
Center, Inc.) and Microsoft, Thomson and Time Warner are the three primary shareholders.
The most important accomplishment of the company is the development of the eXtensible
Rights Markup Language (XrML) standard, which has also been used as the base of some of
the well-known Rights Expression Language (REL) like MPEG-21 REL [14].

The patent tilted “Systems and methods for integrity certification and verification of content
consumption environments” [36] is an example of their issued patents through which the
company offers suggestions of an end to end DRM system. We choose to discuss this patent
specifically as it is one of the ContentGuard’s patents that present an idea which we are trying
to overcome in our system due to its interoperability problem

The idea behind this patent is that content providers often want to have their contents
consumed by certified applications and systems that have desired characteristics and
behaviors. In order to certify that given applications and systems have desired characteristics
and behaviors, a verification of all the applications and system components needed to
consume the content need to be confirmed by a verification application. This patent describes
methods that provide certification and verification services to content consumption

environments.

The problem with that idea is that the content is restricted to be used by certain applications
only. So the switching to new emerging applications is not guaranteed as these applications
have to be certified by the content provider. This could kill the competition in the market and

then introduces an interoperability problem

http://www.contentguard.com/xrml.asp

2.1.2 Intertrust Technologies Corp.

Initially, InterTrust Technologies Corporation was originally founded in 1990 but in 2003, it

was acquired by Sony and Phillips corporations.

As discussed earlier, Intertrust contributes in the domain of DRM through their patents.

An example for the patents issued by Intertrust is the patent titled “Secure processing unit
systems and methods” [33]. This patent introduces the idea of the existence of a special
hardware unit on the user side which handles the different DRM tasks. The reason why we
choose to discuss that patent specifically is that the idea it introduces is very similar to what
we are presenting in our proposed solution.

In this patent the special hardware unit added is called Secure Processing Unit (SPU). A set
of minimal initialization and management hardware and software is added to a standard

CPU/microcontroller to create the SPU environment.

This system has many advantages like having a DRM solution implemented on the hardware
level instead of the software level. This has many security advantages like the less
susceptibility to reverse engineering its security functions.

Also, this proposed solution has the advantage of requiring minimum modification of the
current platforms.

However, this solution has an interoperability disadvantage.

In order to play a media file, a validation process must precede the grant for the calling
software to take control of the SPU resources to play the file.

During the validation process, the caller software must demonstrate authorization.

This is done mainly by that the calling software stores components of proof (e.g. Proof value,
Digital signature for proof value ,Caller validation key used to validate signature,
Authorization rules describing the permitted operations, etc.....) in certain hardware registers
in the SPU. Then, the calling software transfers control to the validation process software (An
executable code for validation process resides in an internal secure read-only memory) to
validate the digital signatures in proof. If the signatures are valid, the calling software will be

given the control of SPU to play the file.

This means that the validation process software and the calling software must be known to

each other otherwise the calling software will not be given a grant to use the SPU.

2.1.3 Macrovision Corp.

This company contributes in the DRM field through its hardware and software products
existing in the market.

One of their products is the Analog Content Protection (ACP) system. This product is
specifically chosen to be discussed because it shows the disadvantages of the DRM solutions
that exist for today’s DVD video files.

Through this system, manufacturers of DVD players and computer video cards incorporate a
circuit that recognizes the ACP “trigger bits” existing on the DVD disc. These bits activate
the ACP system that prevents copying the DVD video through inserting some artifacts that
distort or alternate bands of light and dark making the copy impossible to watch.

Other than the fact that the content’s owner has to pay Macrovision a few cents for each DVD
so that he/she can put the ACP trigger bits, the ACP has another disadvantages.

The copy protection techniques could be defeated as players can be modified to ignore the
ACP system [37].

Also, this technique has no way to extend the rights assigned to each video file.

For example, there is no specification in the ACP system to restrict the playing of a certain

content to specific users.

2.1.4 Microsoft Corp.

Well known for its Microsoft Windows operating system, Microsoft Corp. has also many
activities in the DRM field. Aside of being a part-owner of the ContentGuard company,
Microsoft is a member of the Trusted computing group who is the responsible for the trusted
computing technology which we will discuss in section 2.3. Also, the company has many

DRM products in the market.

http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Operating_system
http://www.contentguard.com/

An example of their DRM products is Windows Rights Management Services. We discuss
this product in specific as it is an example of the DRM solutions that are implemented on the
kernel-level of the operating system.

Windows Rights Management Services (WRMS), is a software package implemented on the
kernel level of the operating system which supports third party development of DRM-based
applications. This technology could be used for protecting documents such as corporate e-

mail, Word documents, and web pages [24].

The WRMS has the advantage that since it is implemented on the operating system level, a
more complete protection is achieved like preventing the user from copying the information
by taking a screenshot or using the “copy” commands (like control+c).

Yet this product has an interoperability problem. Microsoft’s RMS controller requires
applications to be “RMS enabled” before they may interact with DRM protected files.
Applications which are not RMS-enabled cannot perform simple functions such as opening a
file, even if the application is running in a RMS enabled kernel [2].

Moreover, the RMS servers are the devices that handle the protecting and monitoring of the
RMS-enabled documents. This adds the restriction that the RMS-enabled documents can not
be accessed except if the user is connected to the server. Also, this increases the load on the

servers in case there are many users accessing the same document.

2.1.5 RealNetworks Corp.

Aside of being famous for its subscription-based online entertainment services like Rhapsody
and its compressed audio and video formats, RealNetworks has also many DRM products in

the market.

As an example of these DRM products there is the Helix DRM product [1]. We choose to
discuss this product as it is an end to end DRM system that uses the same concept of
separating the content from its assigned rights we are using in our proposed system.
The Helix DRM has four components:
e DRM Packager — it uses strong encryption and secure container technology to prevent
unauthorized use of the content. The content and the rules governing its use are stored

separately, so that different rules can, over time, be applied to the same content.

9

http://en.wikipedia.org/wiki/E-mail
http://en.wikipedia.org/wiki/E-mail
http://en.wikipedia.org/wiki/Microsoft_Word
http://en.wikipedia.org/wiki/Rhapsody_%28online_music_service%29

e License Server — it enables content owners, distributors and retailers to manage,
authorize and report content transactions. The license server accepts requests, verifies
them and issues licenses to trusted Helix clients. Revocation of licenses is possible in
cases of breached security.

e DRM Client — it provides the security module for player software, creating a tamper
resistant environment in which content can only be played according to the
accompanying license.

e DRM Service Support — it supports consumer devices, either natively by being built
into the device at manufacture or by creating a secure memory and streaming

environment at run time.

The main advantage of the Helix DRM product is that it supports different media formats like
mpeg audio file format “.mp3” and mpeg4 video format. In addition to that, the Helix DRM
accommodates different business models such as subscription, purchase and rental.

The separation of the rights from the content has also the advantage of allowing swift changes
in the business cases without re-encoding or re-distributing of the content.

The main disadvantage is that being a proprietary product, the Helix DRM encrypted files
can’t be played on devices using Apple’s Fairplay DRM system like iPod devices [1].

In addition to this, the user must be connected to the license server in order to be able to play
the media file. This increases the burden on the license server in case the same file is

requested by many users at the same time.

2.1.6 Sony Corp.

Beside being well-known in the field of Consumer Electonics and its famous Playstation
video game console, Sony Corporation has proposed many DRM solutions in addition of

being a member of the trusted computing group.

We choose to discuss the XCP (eXtensible Copy Protection) software shipped with the music
CDs produced by Sony BMG which is a segment of Sony Corporation involved in the music
business [31]. This DRM product is specifically chosen to show the problems that the

application level DRM solutions could introduce.

10

The first time a user attempts to play such a music CD which contains the XCP software on a
system using the windows operating system, a program will be installed even before a dialog
box prompts the user to accept a license agreement. This software then remains resident and
undetected on the user's system, intercepting all accesses of the CD drive to prevent any
media player or ripper software other than the one included with XCP software from

accessing the music tracks of the Sony CD.

Although the XCP software prevents access of the music on CDs, it has two main
disadvantages. First, this software introduced interoperability issues through:
a- This software can’t operate except on computers using the windows operating system
restricting by that the use of the music CDs to these computers only.
b- This software prevented the contained music from being played on portable devices
like iPod.
Secondly, this software is very difficult to detect and remove in addition of intercepting the
normal functionality of the operating system with the CD players. This could be used as an

opened security hole for viruses to break through.

2.1.7 1BM Corp.

Beside its reputation in manufacturing and selling computer hardware and software , IBM
(International Business Machines) is a member of the trusted computing group which is
responsible for the trusted computing technology. Also, IBM has many DRM products in the
market.

The Electronic Media Management System (EMMS) is an example of these products. This

system is chosen to discuss as it is an example of an end to end DRM system offered by IBM.

The EMMS is a suite of seven software components that interact to provide a method to
manage and secure online [41].
The components of the EMMS suite comprise the following modules:
e Content Preparation — it enables content owners to encode their content (using
encryption techniques), set the rules under which it can be accessed and distribute it.
e Content Mastering — it enables music content owners to enforce rights, which can be

flexibly set.
11

http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Computer_software

e Web Commerce Enabler — it enables the integration DRM based services into web
applications, including the presentation of metadata in user-friendly form.

e C(learinghouse program — it enables the logging and reporting of all licensing
transactions based on secure encryption and enforcement of rules.

e Content Hosting Service —Content is distributed on request from a customer and
reports back to the rights controller.

e Multi-device server —The software converts content into the format appropriate to the
requesting device.

e Client software development kit — it enables software developers and device

manufacturers to create client software specific to user environments and devices.

The EMMS device has the advantage of letting the user develop their specific client software
to be able to decode and play the received music file according to their needs and
requirements.

The main disadvantage of the EMMS is that the license distribution and management is
handled by a license services center providing centralized license storage and centralized
security [20]. This means that the user should be connected to the license server to play the
music file. Also, this increases the burden on the license server in case the same file is

requested by many users at the same time.

12

2.2 Trusted Computing systems

Some researchers and scientists view that the DRM systems designed to work on general
purpose computing hardware, such as desktop PCs are not secured since the software written
for the DRM purposes must include all the information, such as decryption keys, necessary to
decrypt the content. It is suggested that one can always extract this information then decrypt

and copy the content, bypassing the restrictions imposed by a DRM system.

Hence the trusted computing systems had appeared. The trusted computing (TC) system is a
set of hardware and software combinations created to have a more secure environment to
support different DRM tasks. This technology is developed and promoted by the Trusted
Computing Group (TCG) [38]. This group, as mentioned earlier, includes some of the big
companies in the software and hardware industry like Microsoft, IBM, Intel, Helwett-
Packard. Through their specification documents found on their website, the TCG introduces
the trusted platform module (TPM) which is a hardware chip that performs security

functionalities like encryption and decryption operations.

Trusted computing encompasses five key technology concepts, of which all are required for a

fully trusted system, that is, a system compliant to the TCG specifications:

e Endorsement key: This is a 2048 bit encryption public and private key pair which is
created randomly on the chip at the manufacture time and cannot be changed. This
key is used to allow the executions of secure transactions.

e Secure input and output : Secure input and output refers to a protected path between
the user’s computer and the software with which it is interacting.

e Memory curtaining / protected execution : Memory curtaining extends common
memory protection techniques to provide full isolation of sensitive areas of the
memory, for example, locations containing cryptographic keys. Since the operating
system does not have full access to curtained memory, the information saved is secure

from any intruder who tries to take control of the OS.

13

http://en.wikipedia.org/wiki/Key_%28cryptography%29
http://en.wikipedia.org/wiki/Trusted_Computing_Group
http://en.wikipedia.org/wiki/Trusted_Computing_Group
http://en.wikipedia.org/wiki/Memory_protection
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Operating_system

e Sealed storage: Sealed storage protects private information by binding it to platform
configuration information including the software and hardware being used. This
means that the data is read only by the same combination of software and hardware.

e Remote attestation: Remote attestation allows changes to the user's computer to be
detected by authorized parties. It works by having the hardware generate a certificate
stating what software is currently running. The computer then presents this certificate
to a remote party to show that its software has not been tampered with.

The TC systems has a lot of advantages such as ensuring that the contents are being accessed
by the software recommended by the content provider guaranteeing his/her rights. In that way
the content providers are sure that for example their music files are not ripped nor damaged
by any virus or hacking software.

Also, the TC systems enforce their security measures by the introduction of their hardware
chip TPM. This has many advantages like being less susceptible to reverse engineering its
security functions in addition to the impossibility of modifying, removing or accessing any of
the implemented security features. Also, this provides with high level of security operations
without degrading the computer performance [25].

However, the TC systems are subject to many criticisms due to two main disadvantages in the

system.

1- With the sealed storage feature that exist in the TC systems, a user who wants to
switch to a competing program might find it impossible for the new program to read
old data, as the information is "locked in" to the old program. It could also make it
impossible for the user to read or modify their data except as specifically permitted by
the software.

2- If the TC hardware fails, gets upgraded or replaced one day, the user might be cut-off
from access to his/her own information, or to years' worth of expensive work-

products, with no opportunity for recovery of that information.
These in addition to the criticism from security experts who think that the TC system will

provide computer manufacturers and software authors with increased control to impose

restrictions on what users are able to do with their computers [12].

14

http://en.wikipedia.org/wiki/Vendor_lock-in

2.3 Current DRM solutions problem: Interoperability

The main problem with today’s DRM products is the interoperability problem.
As discussed in section 2.1 and 2.2, this problem exists throughout the different proposed

DRM solutions:

a- DRM solutions implemented on the application level

Other than the Sony BMG XCP software, there are a lot of current DRM systems that are
implemented at the application level which can not interoperate together [2].

For example, Apple's iTunes and Microsoft Windows Media DRM are examples of
successful proprietary DRM systems. Each of the two systems supports its own DRM format,
but cannot be merged into the other one.

Also, the only known system to implement DRM controller on the level of the kernel —
Microsoft’s Rights Management Services (RMS) — has interoperability disadvantages as

discussed in section 2.1.4.

b- DRM solutions discussed in patents

Today’s DRM solution patents mainly depend on the trust between the different components.
This means that the different components, either hardware or software, must be certified to
operate together which leads to the fact that not all the devices could work together as seen

through the SPU patent discussed in section 2.1.2.

c- DRM in trusted computing

These systems suffer from interoperability problems due to the sealed storage feature as

mentioned above in section 2.3.

The main problem with interoperability is its effect on the competition in the market.
As described in [3], the protection on hardware and software may harm competition, either in

the platform market or in the complementary markets.

15

On the level of the platform market, manufacturers of hardware and software platforms use
DRM components to prevent competitors from developing and marketing competing
platforms. An example of this is the two lawsuits filed by Sony in 1999 and in 2000 against
two companies that had developed software programs which emulated Sony’s video game
console “Playstation”. By using one of these programs, the user could play Playstation games
on his personal computer without having to buy a Sony game console at all.

On the level of the complementary market, developers of technology platforms also use DRM
components to control which complementary goods can use and access the platform.

As an example of this, printer manufacturers have increasingly used DRM-related
technologies to prevent third—party cartridge manufacturers from entering the cartridge
aftermarket with low—priced cartridges. Today, companies such as Hewlett—Packard and
Lexmark include sophisticated security chips in their printers to control the data flow between
the printers and the toner cartridges.

These security systems include challenge-response protocols, encryption systems, secure
hashing algorithms, radio communication, custom—designed chips, and custom—designed
communication protocols as well as periodic firmware updates, all of which are used to detect
toner cartridges that are produced by third—party manufacturers.

If such a toner cartridge is detected, the printer ceases to operate.

16

2.4 The DRM standards

As mentioned earlier in chapter 1, there are efforts to develop DRM standards which can be
classified as:
e Content protection and interoperability standards

e Rights licensing information standards

Our objective in this section is to list some of these standards to provide an overview of the

concepts used in each of them.

2.4.1 Content Protection and Interoperability Standards

Here we discuss four main standards which are OMA DRM, Marlin DRM, Coral DRM , and
DMP Standards.

2.4.1.1 OMA DRM Standard

OMA (Open Mobile Alliance) is a global organization set up by the mobile industry to
provide DRM solutions for the mobile different services.

The members of this organization include mobile phone manufacturers (e.g. Nokia, Motorola,
Samsung, Sony-Ericsson, BenQ-Siemens), mobile system manufacturers (e.g. Ericsson,
Siemens, Openwave), operators (e.g. Vodafone, O2, Cingular, Deutsche Telekom, Orange),

and IT companies (e.g. Microsoft, IBM, Sun) [27].

There are five major OMA entities involved in the digital rights management process:

1 - DRM Agent — responsible for controlling the use of the contents.

2 - Content Issuer — manages the delivery of the DRM contents.

3 - Rights Issuer — assigns permissions and constraints to the DRM contents and generates
rights object for expressing them. These rights objects are the rights associated with the DRM
contents written in ODRL (Open Digital Rights Language).

17

http://en.wikipedia.org/wiki/Nokia
http://en.wikipedia.org/wiki/Motorola
http://en.wikipedia.org/wiki/Samsung
http://en.wikipedia.org/wiki/Sony-Ericsson
http://en.wikipedia.org/wiki/BenQ-Siemens
http://en.wikipedia.org/wiki/Ericsson
http://en.wikipedia.org/wiki/Siemens_AG
http://en.wikipedia.org/wiki/Openwave
http://en.wikipedia.org/wiki/Vodafone
http://en.wikipedia.org/wiki/O2
http://en.wikipedia.org/wiki/Cingular
http://en.wikipedia.org/wiki/Deutsche_Telekom
http://en.wikipedia.org/wiki/Orange_SA
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/Sun_Microsystems

4 - User — the consumer of the DRM contents.
5 - Off-device Storage — provides an alternative storage space other than the consuming

mobile device.

A user can receive a specific DRM content from any content issuer. When consuming the
DRM content, the user should pass the DRM agent’s access control.

The control information is contained in the rights object associated with the content.
Therefore, the user must obtain a valid rights object from a rights issuer before accessing the
content. In addition, a rights object is designed to be bound to a specific DRM agent.
Typically different rights objects are required to consume the same content on different

devices [6].

2.4.1.2 Marlin DRM standard

The Marlin development group consists of Intertrust, Sony, Philips, Panasonic, and
Samsung.
The idea of Marlin is to create DRM that interoperates among portable media players from

different vendors -- in this case, Sony, Philips, Samsung, and Panasonic (Matsushita) [22].

Marlin includes a software toolkit for constructing lightweight DRM systems based on
clementary graph theory. The basic idea is this: there are nodes for entities in a DRM scheme
that represent users, devices, domains (groups of devices, such as those in one's home), and
subscriptions (usage licenses). Marlin-compliant media e-commerce systems create links
between the nodes.

A subscription node points to a content object that has keys to decrypt content and a control
program that determines specific rights to the content. Control programs are written in a
bytecode language called Plankton. When a user wants to exercise rights to content on a
Marlin client (Marlin-compliant device), the device runs the control program associated with
the content. The control program checks to see if there are links from the Marlin client node
back to the user's identity. It can also check things like device characteristics (e.g.,
resolution, fidelity) and data variables (e.g., counters for number of plays). If everything
checks out, then the control program enables the content to be decrypted and rights exercised.

18

One notable aspect of Marlin is that its device does not use rights expression languages
(RELs) unlike other standards; the functionality to determine what rights a user or a device
has to a content is bound up in the links, nodes, and control programs rather than in a
descriptive grammar.

Another interesting aspect of Marlin is that a Marlin-compliant device (Marlin client) can act
as an OMA DRM Agent [18].

2.4.1.3 Coral DRM Standard

The Coral Consortium is a cross-industry initiative that brings together content owners,
distributors, device makers and software providers to collaborate on interoperability solutions
between existing and emerging DRM products.

The coral consortium group includes a number of leading companies like Philips, Sony,

Intertrust and Twentieth Centry Fox Film Corporation [9].

The Coral architecture is based on the notion of a Rights Token (RT). An RT is a DRM-
independent data structure (P,C,U) that asserts that principal P (may refer to a device, to a
group of devices, a user or a group of users) is allowed to access content resource C under the

usage model specified by U.

The following shows how content rights are acquired and fulfilled in typical Coral
deployment [17]:

* A user visits his online content store and purchases an item C. As a result, a Rights Token
(P,C,U) is created, where the principal P designates a specific set of devices registered by the
user, and the usage model U designates the rights associated with the content C.

* The user selects a device 6 and requests an instantiation of the Rights Token. The
interoperability framework performs the following steps:

— DRM verification: The coral interoperability framework (CorallF) verifies that the selected
device 6 uses a DRM technology that supports usage model U such as a secure clock so that
access to C can expire at the end of certain period of time.

— Principal resolution: The CorallF verifies that device d is a member of the set of devices P.

19

— Content resolution: The CorallF locates a service S (or device) that has content C available
in a format that is compatible with device 9.
— License creation: The CorallF requests that S creates a native DRM license corresponding

to the rights token which is then sent to the user.

As discussed above, the interoperability feature is satisfied by the transformation of existing
DRM technologies. The transformation work, which is handled by the Coral servers, includes
not only rights mapping but also the transformation of the encryption techniques used in the

different DRM solutions.

2.4.1.4 DMP Standard

Digital Media Project (DMP) is a not-for-profit open organization lead by Leonardo
Chiariglione, who is also the chairman of MPEG, with the target to promote continuing

successful development, deployment and use of digital media in an interoperable way [11].

The DMP architecture defines users (e.g. consumers,producers, or publishers) as entities that
perform so-called primitive functions, which represent the underlying DRM services that
handle digital content.

DMP achieves interoperability within a single value chain by offering core primitive
functions with clearly defined interfaces. Multiple primitive functions from different vendors
can be composed into so-called tools that run at the consumer’s, producer’s, or publisher’s
side [5].

In other words, the flexibility of DMP platform comes via the ways in which devices' DRM
functionality can be expanded. DMP platform compatible devices can provide storage for
"DRM Tools," which expand their functionality beyond the core. If a content license (which
can be part of a content item or separate from it) comes to a device with rights that are
beyond the device's capability to process, then the device can contact a registration agency to

obtain the required DRM tools, provided they work with the device in question [7].

20

2.4.2 Rights licensing information standards

In this section, we discuss the rights expression languages (REL).

The rights expression languages are languages devised specifically to express the condition of
use of digital content.

It is worth mentioning that RELs themselves do not act on digital content, they need to be
used in systems that implement the rights management that they express.

We focus our talk here on two specific REL languages, which are ODRL and MPEG21-5
REL, as they are used in the DRM standards mentioned in section 2.4.1.

2.4.2.1 Open Digital Rights Language (ODRL) [28]

ODRL is a cooperative project with more than a dozen participating organizations.

ODRL utilizes two XML schemas. One schema defines the expression language elements and
constructs; the other defines the data dictionary elements which includes the key words used
to define the rights.

As an open license, all the ODRL specifications are available without any obligations and
have no licensing requirements.

ODRL is also the REL language used in the OMA DRM system to express the rights.

2.4.2.4 MPEG-21 Part 5 (MPEG-21/5) [14]

This standard is specifically intended to interact with software and hardware that will enforce
the license permissions. The REL was developed by the MPEG-21 standards group using
extensible rights markup language (XrML) as its basis which was developed by
ContentGuard corp.

Although the creators of the MPEG-21 standard represent mainly multimedia intellectual
property industries, the REL standard was expressly kept broad to make it usable for a wide
variety of digital products. MPEG21-REL is also the REL language used by the DMP
standard.

Unlike the ODRL, the ISO documents for MPEG-21/5 are available to ISO members and are for
sale to non-ISO members. Yet, the MPEG-REL has the advantage of being designed for generic

21

file transfer unlike the ODRL. This leads to that the rights information written in MPEG-REL can
be changed in more flexible manner which is advantageous for decentralized business models

[40].

There exist other rights expression languages but not as famous as the above mentioned
languages.

An example of these languages is the REL developed by Creative Commons (CC)
Corporation. This language provides an expression of rights for open access web resources,
including HTML documents, RSS feeds, and digital audio files. The CC licenses series are
designed to encourage creators of work to make their work available for public use. In addition to
the licenses, the CC Corporation provides two other services. The first is called “Public Domain
Dedication” which denotes that the creator surrenders all his/her right under copyright. The
second is called “Founder’s Copyright” which is a contractual undertaking between the creator
and the company that mimics the effect of the original copyright laws for 14 years and which can

be renewed for one additional 14 years [35].

22

2.5 How our system addresses the interoperability issue

As mentioned previously, the main objective of this work is to propose a solution that

overcomes the interoperability issue which exists in today’s DRM products.

To do this we follow the same approach undertaken by the DMP project by creating a new

system, that is called Digital Rights Unit System (DRUS), which supports basic DRM

functionalities and which can be extended for each specific service and functionality.

Our proposed system differs of the DMP project in:

1-

The rights language in our system is not restricted to a specific one like the DMP
which uses the MPEG REL language. Instead, the DRUS normally supports the
MPEG REL language and ODRL language but it can interoperate with any other
language by adding the software that provides the mapping of that language grammar
to the ODRL or MPEG REL language, similar to the work mentioned in [29]. Also for
all the other REL language, the software patch which converts this language’s
grammar to the MPEG REL grammar is sent with the license file. The security of the
license file is guaranteed through the special hardware components added to the
Digital Rights Unit (DRU). The DRU is the hardware unit existing at the end-user
device which handles the DRM tasks and whose architecture will be discussed in
chapter 3.

Referring to the Interoperable DRM platform document ver3.0 found on the DMP
website, the protocols to access contents rely on the existence of a server which
contains the rights license and to which the user can connect using the Remote Access
Protocol (RAP). This means that the license is saved on a device which is remotely
accessed by the user when he/she wants to access a media file. In our proposed
solution, the license and the content are saved on the user’s device so that the user will
not have to be connected to get his license checked. This has the advantage of that the
user can access the content at any time and at any place even those with no network

connections.

23

The above mentioned advantages come at the expense of the extra memory space required to
hold the license files and the extra security measures needed to protect that memory from

being accessed by any unauthorized usage as will be explained in more details in chapter 3.

Moreover, our proposed system solves the scalability problem that exists in the Coral DRM
standard.

Coral DRM standard achieves interoperability through the transformation of existing DRM
technologies. In that case different types of DRM solutions may still flood into the market
and accordingly the transformation work of the Coral system may expand without control.
Since the Coral servers take all the work of transformation, this will turn to a heavy burden to
the servers and the networks [26]. Hence, the scalability of the system will suffer and the
interoperability will have to be limited to a selected set of DRM solutions.

This is not the case in our proposed system as we suggest a new system with fixed hardware
configuration and flexible software settings that supports the different DRM tasks. These
DRM tasks are imposed through the license file sent with the media file whose security is
guaranteed through the added hardware units.

In order to support a large range of licenses written in various rights expression languages,
each license file written in other language than MPEG REL and ODRL should attach with it
the software that converts that language grammar to MPEG REL or ODRL.

This solves the scalability problem through that the server job is reduced to only provide the
software patch which translates from one language to MPEG-REL or ODRL.

Other than this, the DRUS provides solutions to the interoperability issue through the

following features.

a- Providing a DRM solution on the level of files:

Like in DMP, instead of applying the DRM solutions on the level of applications or operating
systems, it applies the DRM solutions on the level of files directly. This is done by specifying

the required DRM tasks in the license file sent with the content.

This feature has many advantages:

24

1- It establishes a flexible way for a variety of tools to handle the security of different
files in an interoperable way.

2- It helps in supporting the competition in the market as it doesn’t restrict the accessing
of a certain file to a specific application software/hardware or to a specific operating
system.

3- It makes the idea of existence of a platform-independent and interoperable DRM
solution possible through simplifying the required job of the operating system to just
providing a proper driver to support the DRUS different functionalities.

(This will be discussed in more details in chapter 3)

b- Allow the DRM content to run on different devices

The DRUS also provides the concept of “group ID” which offers the flexibility of accessing
the same file with different systems or devices which have the same “group ID” as will be
shown in chapter 3.

This is similar to the ideas used in Linux and Unix operating system of having a group id and
user id assigned for each file or process. Yet, the concept used in the DRUS differs from the
one used in the Unix/Linux operating systems and any system that relies on the existence of a
central server that controls the flow like Kerberos [13].

The difference is that it expands the group definition to include the devices that are not

connected to the network.

A simple example can clarify the meaning:
Suppose that a certain file “A” must not be changed for security reasons. So it has been
assigned only the right to be read within the group “G”. Assume that a user “B” of group “G”

betrays his group and copies the file to a machine belonging to another group “G1”.
In case of using only a Linux/Unix OS, if the other group is not connected to the same

network as group “G”, then any user of group “G1” can change the rights of that file to be not

only read but also modified.

25

In case if you are using the concept of “groupIDs” presented in the DRUS, the file can’t be
read or modified by the group “G1” as they have different groupID as that embedded within
the file.

26

Chapter 111

System overview

In this chapter, we are going to provide an overview of our proposed DRM system: DRUS.

In section 3.1, we review our objective. Then, in section 3.2, we explain the flow of the
different functionalities within the suggested system.

Through section 3.3, we discuss the architecture of the hardware part of the DRUS which
exists at the user side: DRU.

Finally, in section 3.4, we list the needed requirements of the different value chains of the

media industry to complete the job of our implemented hardware.

3.1 Objective

Our objective is to suggest a DRM scheme which prevents unauthorized usage and
distribution of the digital files without the interoperability issue which exists in most of the
existing DRM products. We focus during our talk here on the digital media files but this
solution could be used to work on any type of digital files like PDF documents and text

documents.

We accomplish the above mentioned objective through developing a new DRM system like
the DMP project which has basic jobs that could be extended afterwards for special services
or applications.

This new DRM system relies on the existence of a special hardware unit at the user side
called DRU (Digital Rights Unit) which controls the DRM tasks on the user’s platform.

27

3.2 Flow of the DRUS functionalities

The proposed DRM system consists mainly of four basic functionalities which are:

1
2
3-
4

Sending and receiving file
Assigning the license to the file
Period circuitry setup

File checking operations

Each of the above mentioned functionalities will be discussed separately.

3.2.1 Sending and Receiving file operation

In that operation, the sequence of events will be as follows:

1-
2-

The user/customer requests a file from the provider.
After going through some financial checks and some license request checks (like the
license for a user and /or group or only for a single user request), the provider asks the
user to send his/her user ID and group ID along with the file format and the Rights
expression language his/hers DRU requires and the space of its temporary buffer in
which the file is received at the user side (by default the rights expression language is
either MPEG REL or ODRL). The file format is a specially encrypted format for the
file through which the user’s operating system knows that this file should pass
through DRU.
The provider then sends the file attached with it its license file written in the REL
language the user’s DRU requested. The file is partitioned into smaller files according
to the communication protocol used and the information sent by the user previously
about the size of its buffer. Each of the file parts is encrypted with an efficient security
algorithm based on the hash function like SHACAL-2 [26] so that the file is not to be
vulnerable while traveling through networks and then it is sent to the user.
With each received file part at the user side, it is saved in a special buffer whose size
was sent to the provider. This buffer is a memory space allocated and accessed only
by the operating system’s kernel. Then this file part is decrypted and saved in a
temporary secured memory reserved by the operating system. When the last file part
28

is received and decrypted, the first 27 bytes of the file which contain the header of the
file are moved to a special memory location (accessible only by the operating
system’s kernel and the DRU). Note that the header bytes are not sent with the DRU
file format to reduce the amount of time and work for the license assignment
procedure.

5- The operating system informs the DRU that a new file exists in the temporary secure

memory so that it assigns the attached license to the file.

Figure 1 illustrates the above mentioned flow :

Provider Reauest a media file User
Side S|de

A

Interaction with the user for financial checks

A
A 4

Interaction with the user for license creation
Attach the

license to the
media file

v
Create the
header of the file
and attach it

A
A 4

— Send the file parts Decrypt file parts
Partition of the R .| .| andsave in the
file and " "I 7| temporary memory
encryption of Exchange signals until the last file part is received

each part Move the header of

file to a specific
memory location
and indicate to the
DRU the existence
of a new file

A
A 4

Fig. 1: Send/Receive Operation

29

Figure 2 illustrates the file’s header

IP bits User ID Group Group User Reserved bits Period Period XML
bits 1D bits exist bits exist bits for future use exist. bits time bits size bits
(48 bits) (64 bits) (64 bits) (3 bits) (3 bits) (2 bits) (3 bits) (5 bits) (8 bits)
License user’s Period bits
bits

Fig. 2: The Sent File’s Header

The IP bits: These 48 bits contain the IP address for the provider of the media content.

The first 32 bits are the company IP and the other 16 bits are used as a simple
check value of the anding operation of each two successive bits to ensure that
the company IP was received correctly.

These bits are saved with the file after its license is assigned to it. This has the
advantage that when the unit is damaged and the license is lost then the DRU
during the file checking operation will automatically contact the company
through its IP found with the file to reassign the file.

In case the company does not use a static IP, the IP bits field is extended to hold
the URL address of the company. Accordingly, the size of the IP bits field is 260
bytes which is the maximum size of the URL address.

In our current design, we have assumed that the company has a static IP to

simplify our prototype.

The user and group ID bits: These bits contain the user and group ID of the customer. These

bits are used to check that the file is really
assigned for that user of that group or not before assigning the
license for the file. The concept of group is very helpful in either
controlling the access of some files or in case if the file to be used
on other devices either portable or not that have the same group
ID.

30

The license user’s bits: These bits are used to define if this license is for a user and/or group.
This has the advantage of guaranteeing some operations like copying
the file to others within the group or not.

These bits are used to indicate if the file had a license attached with it
or not. If there is no license attached with the file, then these bits are
all set to Os.

We could have used only two bits for that purpose but we used
redundant bits so that in case of any faults that could have happened
during the communication with the provider it can be detected and
fixed.

The period bits: These bits are used to define if there is a period attached to that file and for
how long it is valid. These bits are updated by the license file if needed as
will be explained in more details in the period circuitry setup section. The
value of the period time bits defines the length of the period in days for

which the license is valid.

The XML size bits: These bits are used to describe the size of the XML license file in

Kilobytes.

3.2.2 Assigning the license to the file

The operation of assigning the license to the file can be summarized as follows:

1- When the operating system indicates the existence of a new file in the memory for the
DRU, the DRU asks the operating system to deactivate the interrupts(like the
interrupts from the key strokes like printscreen key) so that the DRU has a safe path to
communicate with the memory without being monitored or interrupted by another
software. This has the disadvantage of introducing some latency due to the context
switching and also has the disadvantage of memory usage due to the information
saved about each interrupted process [16]. These disadvantages exist in the exchange

of having a distinct protected address space and 1/0 channels to use by the operating

31

5-

6-

7-

system and the DRU. Multi-core processors, like Intel’s Hyper threading processors,
could be also used instead in which threads are processed by a separate dedicated
processor [32].

When the deactivate process is finished and acknowledged by the DRU, the DRU first
checks the user ID and group ID sent with the file with its user and group IDs. If they
are not the same, then the DRU requests the operating system to delete this file since
it is intended to another user. Otherwise, the DRU sends a grant to its other parts to
continue the license assignment process.

If there is a grant to the other parts to continue their job, the DRU requests of the
operating system to reserve a part of its secure memory dedicated for the license files
specified with the size of the XML file provided for that file in which the license file
is saved. This secure memory used by the operating system is a reserved memory
location of the user’s hard drive device. It is used as a buffer for the license files and
its size is specified by the user at the setup of the DRU as will be explained in more
details in section 3.3.

If there is a space in the memory for the file, the operating system responds to the
DRU’s request. If not, the operating system does not respond and after a certain time
the operating system automatically prompts the user to take action. This action will be
reserving more space on his hard drive memory to be used in addition to the one
reserved already at the setup time. If there is no space, then the user will be prompt to
delete certain files from the hard drive’s memory to free some space in it.

When the XML license file is saved, the operating system sends the address where the
XML file is saved. The DRU increments its counter which holds the number of files
that this DRU assigned and uses this new number to write in its internal memory
(inside the DRU) the address sent by the operating system. Finally, the DRU indicates
to the operating system to move the XML file to the curtained memory space assigned
for it.

Next, the DRU saves the period bits assigned with this license in its Period Setup
circuitry.

After finishing all of the above mentioned steps, the DRU formats the header that is
saved with the file and writes it to a special memory location reserved by the
operating system during the deactivate process. Then, it indicates the end of its job to

the operating system. Accordingly, the operating system assigns the header to the file

32

and saves the file to the storage medium the user chooses. Then, the operating system
allows all the interrupts and 10 operations to resume as before the DRU started its
license assignment procedure.

Figure 3 illustrates the assigning license procedure:

Memory where

OS DRU header is saved

Inform the existence of new file

»
>

Deactivate request

A

Deactivate operation acknowledged

»
»

Get the user/group IDs and license user’s bits
Request a

memory space
for the new
license file \ 4

Compare these IDs with the 1Ds saved
in its internal PROM and checks the
license user’s bits

A

Space request granted

P Save the sent address and the size of the license file
in its internal license memory.

Get the period bits

A 4

Save the period bits in its
internal period memorv

Inform the end
of its work

Format the header for the
file and write itin a
specific memory location

A

Fig. 3: The Assign License Procedure

33

Figure 4 shows the header saved with the file after the license assignment procedure is done.

Company IP File address/number assigned by the DRU
(48 bits) (8 bits)

Fig. 4: The File’s Header Format After The
Assignment Procedure

3.2.3 Period circuitry setup

One of the security operations handled in our proposed DRU hardware is the period

assignment and the checking operations which are handled by our period circuitry.

READ
» Memory
Write containing
Control .| the period
block of different
Address files
Data

Update

CLK Clock circuitry

Fig. 5: Period Circuitry Setup

As shown in figure 5, basically, our period circuitry is an internal memory (inside the DRU)

which is only accessed by the DRU.

34

When the period bits are passed to the period circuitry they are saved in the internal memory
with the address assigned to the file by the DRU.

The period bits could exist in the original file bitstream sent by the provider or they could be
modified by the operating system after parsing and executing the rules defined in the XML
license file.

In case the period bits need to be modified after executing the XML license file, the operating
system indicates to the DRU that it needs to change the period bits assigned to a new value.
Accordingly, the DRU assigns the new period bits to the file.

In case the period bits are sent with the original bitstream of the file, they are saved during the

license assignment procedure as explained previously.

The saved entries are automatically updated (by decrementing their values) with each day.
The clock which counts the hours of the day is an independent clock implemented within the
DRU different from the system clock (In other words, when the time reaches 12:00 AM , this
does not mean for the DRU that one day has passed.).

That is why we need a synchronization circuitry as will be explained in section 3.4.2.

As for the power supply required for that clock, in case if the power of the device is on, it
uses the provided power supply. In case the power supply is off, it uses its embedded backup
battery like lithium ion non-rechargeable coin battery. When this battery is completely
discharged, the DRU unit prompts the user to replace it in order to be able to run his/hers
licensed files. This is to protect the clock circuitry from any tampering attempt like for
example replacing the backup battery which could affect the time calculations handled inside
the Period Clock circuitry.

In order to have a reliable clock signal, it is required to design the clock circuitry such that it
does not drive large current from the backup battery. In that case the backup battery could be
used for a very long time without any trouble.

A simple numerical example can illustrate the above meaning:

Assume that we have a Lithium non-rechargeable coin battery which offers 48 mAh(milli
Ampere per hour) and our clock circuit that drives about 0.45u A, like ST Microelectronics’
Real-Time clock M41T56C64 chip [34], then the approximate time for the battery to

discharge is

35

48x10°
~ 12 years

0.45x10°x24x365.25

During the checking on license period, the DRU checks the period that exists in the memory
for that file.

If it is an all-zeros value, then the period circuitry notifies the operating system and the file is
deleted.

3.2.4 File checking operation

The steps of the file checking procedure are:

1-

After the operating system moves the header of the file to a special place in the
memory it reserved for this purpose, the operating system notifies the DRU. The DRU
then requests of the operating system to deactivate all 10 operations and all the
possible interrupts as what was explained previously during the license assignment
procedure.

Then the DRU checks the address within the header of the file. There are two possible

cases.

Case I: The specified address doesn’t exist

This is detected from the internal counter holding the number of files assigned so far

by the DRU.

In this case, either the file is moved from another device or the address of the file was
tampered in an attempt to assign a different license for the file. In both situations, the
DRU reformats the header of file such that it contains the company IP, the user and

group ID as shown in figure 6.

36

IP bits User ID bits Group ID bits
(48 bits) (64 bits) (64 bits)

Fig. 6: Header Formatted During The
Recheck Operation

The provider then checks the user 1D and group ID. If there were no previous
transactions, the provider sends a header with no license attached (through setting the
license existence bits as explained in section 3.2.3).

If there were previous transactions, the provider prompts the user for which file he
would like to recheck. According to the user’s choice, the provider requests certain
parts of the file to be sent back to him for recheck. (The provider had earlier generated
a secret key from these parts when the file was sent to the user for the first time).

In order to fasten the operation of rechecking and to reduce the burden on the
operating system, we let the DRU handle the task of automatically writing the
received number of sequences in a memory location allocated by the operating system
for this purpose.

When the needed sequence is sent to the provider, the secret key is then regenerated
and compared with the old one. If they are the same, a header with a new license is
sent back to the user after passing through some financial and license type checks. If

not, a header with no license attached is sent.

Case Il: The specified address exists

First of all, the address is checked if it is assigned to another file. This is done through
reviewing the integrity checks embedded in the license XML file saved with the file
as what was done in [6].

Embedding the integrity checks in the license file has a main advantage:

The integrity checks are protected from any attempt of tampering as they are
embedded in the license file which can’t be accessed except during the recheck
operation by the operating system’s kernel.

37

But this comes at the expense of having more memory space reserved for each license
file. However this is not a big problem as the curtained memory space reserved for the
license files is already a large memory space.

If the address is assigned to another file, this leads to the same procedure followed in
case I.

If the address is assigned to the right file, then the other license checks specified in the
XML file are applied.

If there are any period checks indicated in the license file then the period circuitry is

referenced as explained in section 3.2.3.

38

Figure 7 summarizes the normal file checking operation:

0§ DRU

Saves the header i a special

memory location and notify DRU
Deactivate Request
— Deactivate Granted
Run the integrity checks »p—> Checks the file address
in addition to other Check license terms
license rights term saved|, |, [
in the license file)
"Continue"/ "Recheck” signal
1} Unl (L. V
Grant""Delete" signal Check the Period bits

assigned to that license file

r 9
-~

Fig. 7: The Normal File Checking Operation

39

Figure 8 summarizes the recheck procedure:

oS

DRU
Get the company IP bits

A

Access the internal PROM to get user/group
IPs and format the recheck header

Indicate to the OS Write the recheck header
the end of its job

A 4

v

Send the formatted
header to the IP
specified in the
header

A 4

When receive a
sequence request
from provider,
reserve the memory
location where the
required sequence
will be saved

A

Indicate to the DRU
the existence of a
new sequence to the
DRU

A

Indicate to the DRU
the end of required
sequence

A 4

Take the sent sequence and save itin a

A\ 4

specified sequence

End its job with memory locations and

\ 4

Access the DMA
(Direct Memory
Access) unit to get
the required
sequences then sent
them to the provider

A 4

then indicate this back to OS

A

Fig. 8: The Recheck Procedure

40

Memory
specific
locatinns

3.3 DRU Architecture

Signals exchanged

with OS
<————>| Decision Block Enable for
LCU
Enable for

_ LAU Y Signals exchanged
Signals exchanged P with OS
with OS A

<|:> Update <,‘::>

LAU Signals LCU

Signals exchanged <:::> Signals exchanged
with memory with memory

Signals exchanged with the

internal memory Signals exchanged with

the internal memory

Internal Internal Internal Internal
License Period FROM PROM
Memory Memory counter Memory

Internal DRU memory

Fig. 9: DRU Architecture

Figure 9 shows the main units of the DRU:
1- License Assignment Unit (LAU): This is the unit responsible for assigning the sent
license to the media file.
2- License check unit (LCU): This is the unit which controls the checking operations on
the file’s license before granting the access of the file.
3- The decision block: This is the part which interfaces with the operating system to
know whether to let the LCU or the LAU operate. The decision block’s output signals

41

could be used to reduce the power consumption of the DRU by cutting off the power

to the non-operating unit.

In addition to the previously mentioned blocks, there is also an internal memory block which

consists of:

1- Internal License memory: This is the memory which holds the address where the
license file is saved in the curtained license memory and its size.

2- Internal Period memory: This memory is used to save the license period assigned for
the files.

3- Internal FROM (Flash memory read only) counter: This is a flash memory which
saves the number of files that are so far assigned by this DRU. This flash memory is
only updated by the DRU during the license assignment procedure. That is why for all
the other units, including the operating system, it is a read only memory. The design
of the DRU we have implemented supports upto 256 files to be assigned.

4- Internal PROM (programmable read-only memory) memory: This isa PROM

memory which holds the user ID and group ID bits chosen by the user at the setup of
the DRU.

In our current design of the DRU, we have assumed that the bus width between the DRU and

the internal and external memories is 8 bits.

When the DRU is first set on the system, a software which is run only once is invoked.

Through this software, the user is prompted to program the PROM by entering his/hers

userID and grouplD bits. Once programmed, the user and group ID bits can never change.

This is to prevent unauthorized access of files belonging to different users.

After that the memory which contains the above mentioned software is damaged.

During the installation of the operating system, the user is prompted to specify the size of the

memory space which will hold the license files. This memory space can only be expanded if

it is full by prompting the user.

42

3.3.1 Decision block architecture
Main Job

To decide whether to enable the LAU or the LCU unit based on the signals sent by the
operating system.

Block Diagram

New_file Enable_LAU
EEE—— .. EEEE—

Decision

Block

Ready Enable_LCU
—> —>
Reset
—>

Fig. 10: The “Decision_Block” Block Diagram

Pins description

- Ready: This signal is used to indicate that a file needs either to be assigned a license or

to check its license before accessing it.

New_file: This signal is used to specify that the ready signal is set for the purpose of
assigning a license to a media file.

Reset: This signal is used to initiate the reset procedure.
Enable_LAU: This is the enable signal sent to the LAU unit.
Enable_LCU: This is the enable signal sent to the LCU unit

43

Exact functionality

The exact functionality of the Decision block could be illustrated through the next flowchart:

I

set “Enable_LAU” and
“Enable_LCU” to zero
and reset the operation of
the block

Set the “Enable_LAU”
signal to ‘1’

Set the “Enable_LCU”
signal to ‘1’

A\ 4
(Start >

Fig. 11: Flowchart For The “Decision_Block”

44

3.3.2 LAU architecture

Figure 12 illustrates the main four blocks of LAU unit:

Signals
exchanged
with the

(0N}
<

Check_user
ID

Enable
signal

Signals exchanged
with the OS and the

file

Signals exchanged with the
OS and the memory where the
header assigned to the file is

written

S ——

Write
buffer

A

Fig. 12: LAU Architecture

As shown in figure 12, the four main blocks of the LAU are:

memory containing Signals _
the file’s header exchanged with
the OS
Period
bits
) — Period
Assignment assign
unit ;
Enable unit
signal
A
Data about the
Enable
signal Update
Signal

1- Check_userID: This block is used to check the user and group ID bits sent with the

file and to compare them versus those saved in the internal PROM of the DRU.

2- Assignment unit: This unit is responsible for handling the task of assigning the

license sent to the specific media file.

3- Period assign block: the main job of that block is to assign the specified license

period assigned to a certain file (either the period was specified with the sent bitstream

45

or specified by the operating system during the execution of the rules of the license

file)

4- Write buffer: This block formats the header that is saved with the file after the

assignment process.

3.3.2.1 “check users IDs”

Main job

To check the user and group IDs sent with the file and compare with the user’s IDs saved by

the user in the internal PROM of the DRU.

Block diagram

Enable_Decision

— >

Deactivate
«—

Deactivate_ack
—>

Delete
«—

Delete_ack

— >

Enable_rest
«—

Check_userIDs
Block

Address_t_ram (5 bits)
—>

Data_f _ram (8 bits)
<—

Read_ram
—

Clk_ram
—

Address_t PROM (4 hits)
—

Read PROM

>

Data_f PROM (8 bits)
<—

Clk_PROM
—>

Clk I I Reset

Fig. 13: The “Check_UserIDs” Block Diagram

46

Pins description

- Enable_decision: This is the enable signal sent by the “Decision_block”

- Deactivate: Through this signal, the “check_userIDs” sends its request to the operating
system to deactivate some interrupts and 10 operations to provide a secure path between
DRU and the external components like RAM.

- Deactivate_ack: This signal which is set by the operating system as a reply to the
“Deactivate” request.

- Delete: To inform the operating system to delete the file, the “check _userIDs” block
uses that signal.

- Delete_ack: This is the acknowledgment from the operating system side to the “Delete”
signal.

- Enable_rest: This is the enable signal that will be passed to the assignment unit.

- Address_t_ram: These are the address bits used to access certain location in the
memory “header memory” where the header of the file is loaded by the operating
system. The size of the “address_t_ram” is only 5 bits because the size of the
information in the file header will not exceed 32 bytes(they are 27 bytes only). As
explained previously, the “header memory” is a memory location reserved by the
operating system and in which the operating system moves the file’s header.

- Data_f_Ram: This is the bus from which the data saved in the header memory is read.

- Read_ram: This is the signal used to indicate the read operation from the header
memory.

- Clk_ram: This is the clock signal used to interact with the header memory.

- Address_t PROM: These are the address lines connected to the address bits of the
internal PROM memory of the DRU which contains the user and group IDs bits chosen
by the user at the setup of the DRU for the first time.

- Data_f PROM: This is the bus from which the data saved in the PROM memory is
read.

- Read_PROM: This signal is connected to the read enable signal of PROM memory .

- CIk_PROM: This is the clock signal used to interact with the PROM memory.

- CIk: These are the internal clock pulses which are generated independently of the
system clock signal.

- Reset: This signal is used to reset the operation of the “check_userIDs” block

47

Note that

- We used in our design the synchronous memories model because synchronous
operations are not prone to errors because signals are registered on clock edges which
simplify the design of the memories. This will allow the synchronous memories to
operate at much high frequencies compared to the asynchronous memories.

- The header memory is assumed to support the function of FIFO such that the
“check_userIDs” block can read at different clock speed than that used by the operating
system when writing the header in that memory. This targets that in the future it will
allow multi-threading tasks to be handled by the operating system during its interaction
with the main memory block in general. For example, the DRU could be checking on a

certain file while another file is being assigned.

48

Exact functionali

ty

This can be shown through the following flowchart:

Reset="1"

Enable_Decision
:111

Set

| “Enable_rest”,”Delete”,

“Deactivate” and
”Deactivate_ack” to zero
and reset the operation of
the block

to ‘1’

Set “Deactivate” signal

Deactivate_ack
e 7 1 7

Access the header

memory to get the user
and group ID bits sent
with the file

A

y

Access the i

PROM to get the user
and group ID bits saved

nternal

A 4

All ID bits match

Set “Delete” signal to ‘1’

End

Fig. 14: The “Check_UserIDs” Flowchart

49

Set “Enable_rest” signal
to ‘1’

3.3.2.2 “Assignment unit”

Main job

This block is responsible for handling the task of assigning the license sent to a specific

media file.

Block diagram

clk_FROM
—>
Enable_check_user
- 5 limit_FROM
Space_request <
. . FROM(8 bi
<+<— Assignment_unit 0_FROM(8 bits)
. - —
Space_available Block
S Data_ FROM(8 bits)
XML _size(8 bits)
— Read_FROM
Address_XML(32bits) >
| we_FROM
Enable_clk_circuitry
We_ram_license
] L 5
Period_bits(8 bits) clk_ram_license
] —>
Num_entry Address_ram_license (8 bits)
‘—
—>
Delete . .
Data_license(40 bits)
4—
Delete_ack I
—>
Clk Reset

Fig. 15: The “Assignment_Unit” Block Diagram

50

Pins description

- Enable_check_user: This is the enable signal sent by the “check_userIDs” block

- Space_request: This is the signal through which the assignment unit requests the

operating system to reserve a space in the curtained license memory to save the new
license file.

XML _size: These bits express the size of the license file sent with the file and they are
sent with the “space_request” signal so that the operating system knows the space it’s
going to reserve. Again, the value here is expressed in kilobytes.

Space_available: this is an acknowledgment signal to the “space_request” pulse.
Address_XML.: This is the start address of the space where the operating system has
saved the license file.

Enable_clk_circuitry: This is the enable signal sent to “Period_assign” block
Period_bits: These are the period bits that exist in the header of the file and which are
passed to the “Period_assign” block as will be seen after.

Num_entry: The value given by the “assignment_unit” for the file. This is the value
saved in the FROM counter after being read and incremented.

Delete: To inform the operating system that fatal errors occurred during the assignment
procedure, the “assignment_unit” block uses that signal.

Delete_ack: This is the acknowledgment from the operating system’s side to the
“Delete” signal.

Clk_FROM: This is the signal connected to the clock signal of the internal FROM
counter.

Limit_FROM: This signal is used to indicate that the DRU can’t support to assign
license for more files

g_FROM: These are the bits read from the internal counter FROM.
Data_FROM:These are the bits sent to internal FROM counter to be written.
We_FROM: This signal is connected to the write enable signal of the FROM counter.
Read_FROM: This is the signal connected to the read enable signal of the FROM

counter.

51

- We_ram_license: This signal is connected to the write enable signal of the internal

license memory.

- Clk_ram_license: This is the signal connected to the clock signal of the internal license

memory.

- Data_license: These are the license info bits to be saved in the internal license memory.

- Address_ram_license: These are the address bits used to save the license info bits at a

certain location in the internal license memory. The value of these bits is the value

saved in the FROM counter after being read and incremented.

- CIk: These are the internal clock pulses which are generated independently of the

system clock signal.

- Reset: This signal is used to reset the operation of the “assignment_unit” block

Note that:

- The tag “ram” ,existing within the signal names interacting the internal license memory,

is used to indicate the random access functionality not the volatile feature of the RAM

memories.

- The 40 bits of the license info which are saved with each license file are subdivided as

follows:

The first 32 bits are used to express the start address of the space where the
license file is saved in the curtained license memory. In other words, these bits
have the same value as the “address_ XML”. Here we have assumed that user
chose that the size reserved for the curtained license memory was 4 GB which is
not quite big for PCs platform. This size could be much more smaller for the
portable applications with taking into consideration that the average size of the
license file written with the MPEG-REL language (XrML) is 6KB. It’s also
worth mention that the size of the ODRL license files will be even smaller due
to the flexible architecture of the XrML file.

The last 8 bits are the “XML size” bits. These bits will be used during the file

checking procedures to be able to retrieve the license file.

52

Exact functionality

Its exact functionality could be explained through the following flowchart

‘ Start ’

<
<

>
N

y

Reset="1’

Enable_check_user
e ’ 1 7

Check on the license
user’s bits

License exists

| “Enable_clk_circuitry”,

Set

“Delete” and
”Space_request” to zero
and reset the operation of

Increment the FROM counter
value and write it back. Then
set “space_request” to ‘1’

Space_available
= b 1 b

Saves the license info
bits in the internal license
v memory

Access internal FROM
counter and check its

Set “Delete” signal to ‘1’

value to know if it’s full

Counter
value=255

A

Send the period bits and an
enable pulse and “num_entry”
value to the “period_assign”
block . The OS will also move
the license file to the location
specified by “address_XML"

v
e)

Fig. 16: The “Assignment_Unit” Flowchart

53

3.3.2.3 “Period assign’ block

Main job
This is the block which assigns the specified period of the license assigned to a file (either the
period was specified with the sent bitstream or specified by the operating system during the

execution of the sent license file)

Block diagram

Num_entry
RN clk_FROM
—
Period_bits(8 bits) .
q_FROM(8 bits)
. I
Enable_assign
- Read_FROM
—>
Period_assign g_ram(8 bits)
Enable_OS Block -«
—> Read_ram
—
Num_entry_OS We ram
_— > —
e
Period_bits_OS(8 bits) clk ram
—>
Enable_WB Address_ram(8 bits)
4—
—
Update_ON
«—] Data_ram(8 bits)
Update_OS_ON >
4—

Clk I I Reset

Fig. 17: The “Period_Assign” Block Diagram

54

Pins description

- Num_entry: This is the signal sent by the “assignment_unit” to specify the number
given to the file under assignment.

- Period_bits: These are the period bits sent by the assignment unit and which were
received from the file’s header.

- Enable_assign: This is the enable signal sent by the “assignment_unit”.

- Enable_OS: This is the signal through which the operating system indicates that it
needs to update the period of a certain file after checking its license file rules.

- Period_bits_OS: These are the new period bits sent by the operating system to be
assigned to the file. These bits were received by the operating system while executing
the license file rules during the file checking procedure.

- Num_entry_OS: This is the number of the file for which the operating system needs to
update its period.

- Enable_WB: This signal is connected to the enable signal of the “write_buffer”.

- Update_ON: This is the signal which indicates that the daily update process is in
progress.

- Update_OS_ON: This signal is used to indicate the an update process based on the
operating system request is in progress.

- Clk_FROM: This is the signal connected to the clock signal of the internal FROM
counter.

- _FROM: These are the bits read from the internal counter FROM,

- read_FROM: This signal is connected to the read enable signal of the FROM counter.

- g_ram: These are the bits read from the internal period memory.

- read_ram: This signal is connected to the read enable signal of the internal period
memory.

- we_ram: This signal is connected to the write enable signal of the internal period
memory

- Clk_ram: This is the signal connected to the clock signal of the internal period
memory.

- Data_ram: These are the period bits to be saved in the internal period memory.

55

- Address_ram: These are the address bits used to save the period bits at a certain
location in the internal period memory. The value of the “address_ram” is the value of
“num_entry” signal explained above

- CIk: These are the internal clock pulses which are generated independently of the
system clock signal.

- Reset: This signal is used to reset the operation of the “assignment_unit” block

Note that:

- The daily update process is indicated through an internal signal called “update” and
which is generated from the clock circuitry integrated in the “Period_assign” block.

- The tag “ram” ,existing within the signal names interacting with the internal period
memory, is used to indicate the random access functionality not the volatile feature of

the RAM memories

56

Exact functionality

This could be explained through the following flowchart:

block.

Interrupt the operation of the
assigning of the period bits for a
file either from the operating
system or the “assignment_unit”

Read the value of the
FROM counter and
reset an internal
counter to loop on the
number of files

A 4

Remove the

A

Enable_0S="1"
and Update="0"

Interrupt the
operation of the
assigning of the
period bits for a file
coming from
*assignment_unit”
block.

A 4

Update the period of
the file whose
number is specified
by the
“num_entry_0OS”
with the value of
“Period_bits_0S”

let the
“Period_assign”
resume its work

interrupt setting and

y

Decrement the period

value of the file whose
number is the number

of the loop counter

r

Loop counter value
> value read from
FROM counter

Period_exists bits
1="111" or the value
of the period is zero

Increment the loop

\ 4

counter

A 4

Remove the
interrupt setting and
let the
“Period_assign”
resume its work

57

set “Enable_WB” to zero
and reset the operation of
the block

Enable_assign="1"
and update="0" and
enable_os="0"

I

Save the period bits to the file
number specified by the
“num_entry” signal

A 4 \ 4

Set the “enable_wb” to ‘1’ 4’(Start ’

Fig. 18: The “Period_Assign” Flowchart

58

3.3.2.4 “Write buffer” block

Main job

This block formats the header that is saved with the file after the license assignment

procedure is done to be able to retrieve the information about that file.

Block diagram

Num_entry
S Address_t_ram (8 bits)
—>
Enable_SSU
EE—— Clk_ram
—>
Data_f_ram(8 hits)
. D —
Write_Buffer Read_ram
Block
—
Assign_finish
We_ram_w
<—
e
Ack_OS clk_ram_w
- L 5
Address_t_ram_w(8 bits)
—
Data_t_ram_w(8 bits)
—>

Clk I I Reset

Fig. 19: The “Write_Buffer” Block Diagram

59

Pins description

- Num_entry: This is the signal sent by the “assignment_unit” which specifies the
number given by the DRU to reference that file.

- Enable_SSU: This is the enable signal sent by the “period_assign” block.

- Assign_Finish: This is the signal by which the “write_buffer” indicates to the operating
system that the file’s header , which will be saved with it, is created and saved in the
location specified by the operating system before the start of the assigning procedure.

- Ack_OS: This is the acknowledgment signal from the operating system side to the
“Assign_Finish” signal.

- Address_t_ram: These are the address lines used to access a certain location of the
memory which contains the original file’s header (The header of the file that exists with
the file when it was sent by the provider’s server). This memory is called the header
memory as explained previously during our talk about the “check_userIDs” block.

- Data_f_Ram: This is the bus from which the data saved in the header memory is read.

- Read_ram: This is the signal used to indicate the read operation from the header
memory.

- Clk_ram: This is the clock signal used to interact with the header memory.

- we_ram_w: This signal is connected to the write enable signal of the memory where
the assigned header for the file is written. We will call that memory location
“write_buffer memory”.

- Clk_ram_w: This is the signal connected to the clock signal of the write_buffer
memory.

- Data_t_ram_w: These are the assigned header bits to be saved in the write_buffer
memory.

- Address_t_ram_w: These are the address bits used to save the assigned header bits at a
certain location in the write buffer memory.

- CIk: These are the internal clock pulses which are generated independently of the
system clock signal.

- Reset: This signal is used to reset the operation of the “write_buffer” block

60

Note that:

- The tag “ram” ,existing within the signal names with interacting the write_buffer
memory, is used to indicate the random access functionality not the volatile feature of
the RAM memories.

- The “SSU” tag found in the enable signal stands for “Security setting unit”. Since the
inputs for the “write_buffer” comes from the “assignment_unit” and the
“period_assign” blocks which both are the parts that ensure the security of the media

file, we choose the name of the enable signal to be “enable_SSU”

61

Exact functionality

The “write_buffer” functionality could be explained through the following flowchart:

» < 1

\ set “Assign_finish” to
| zero and reset the
operation of the block

Enable_SSU
=1’

Access the header
memory to get the
company IP bits

\ 4

Write in the
“write_buffer” memory
the company IP bits and
the “num_entry” value of
the file.

v
Set “Assign_finish”
sianal to ‘1’

>
).

Ack_os="1"

End

Fig. 20: The “Write_Buffer” Flowchart

62

3.3.3 LCU architecture

The main blocks of the LCU are shown in figure 21:

Signals exchanged with
the OS and the memory
where the recheck data is

Signals exchanged written
with the OS and the

memory containing

the header of the

file

<————4 Filecheck Enable signal Recheck
> block
Enable signal Signals exchanged
. with the OS
Period

check e ——

Fig. 21: The LCU Architecture

As shown in figure 21, the three main blocks of the LCU are:

1- File check: This unit is used to check on the header attached to the file.

2- Recheck block: this part is responsible for handling the task of rechecking the file
when the DRU can’t find a license for that file.

3- Period check: It checks on the period assigned to the file the user wants to access

63

3.3.3.1 “File check”

Main job

This unit checks the address attached to the file which the user wants to access to find out if

the file has any license information or not.

Block diagram

Deactivate
]

Deactivate_Ack
— >

Enable_decision

Enable_OS_check
<—

License_info(40 bits)
<—

Continue
—»
Check_req
—>

Enable_Recheck
4—

Enable_period_check
4—

Address_t_period
<—

File_check
Block

clk_FROM
>

g_FROM(8 bits)
<—

Read FROM

—>
Data_f_ram(8 hits)
4—

Read_ram
—

clk_ram

—

Address_t_ram(5 bits)
—

read_ram_license

—>

clk_ram_license

—

Address_license (8 hits)
—

Data_f_ram_license(40 bits)

¢—

Clk

Reset

Fig. 22: The “File_Check” Block Diagram

64

Pins description

Deactivate: Through this signal, the “file_check” block sends its request to the
operating system to deactivate some interrupts and 10 operations to provide a secure
path between DRU and the external components like RAM.

Deactivate_ack: This signal which is set by the operating system as a reply to the
“Deactivate” request.

Enable_decision: This is the enable signal sent by the “Decision_block”.
Enable_OS_check: This is the signal used to indicate to the operating system to start
the execution of the license file whose space and location are specified by the
“license_info” bits.

License_info: These are the license information bits saved in the internal license
memory of the DRU for the file whose number is specified in the file’s header. The
format of these bits was explained previously during the talk about the
“assignment_unit” block.

Continue: This signal is high if the integrity checks embedded in the license file
returned correct results. This means that this is a valid license file for the file under
check and the “file_check” block should enable the “period_check” block to test if the
license’s period is not expired.

Check_request: This signal is high if the integrity checks embedded in the license file
returned wrong results. This means that the “file_check” needs to access the
“recheck_block” to review the media file’s license with the provider’s server.
Enable_Recheck: This is the enable signal sent to the “recheck_block”.
Enable_Period_check: This is the signal connected to the enable signal of the
“Period_check” block.

Address_to_period: This is the number of the file found in the file’s header and which
is sent to the “Period_check” block to check on this file’s number license’s period.
Clk_FROM: This is the signal connected to the clock signal of the internal FROM
counter.

g_FROM: These are the bits read from the internal counter FROM of the DRU.
read_FROM: This signal is connected to the read enable signal of the FROM counter.
Address_t_ram: These are the address bits used to access a certain location in the

memory where the header of the file, the “header recheck memory”, is loaded by the

65

operating system. As explained previously, the “header recheck memory” is a memory
location reserved by the operating system in which the operating system moves the
file’s header.

- Data_f_Ram: This is the bus from which the data saved in the “header recheck
memory” is read.

- Read_ram: This is the signal used to indicate the read operation from the “header
recheck memory”.

- Clk_ram: This is the clock signal used to interact with the “header recheck memory”

- read_ram_license: This signal is connected to the read enable signal of the internal
license memory of the DRU.

- Clk_ram_license: This is the signal connected to the clock signal of the internal license
memory.

- Data_f_ram_license: These are the license info bits read from the internal license
memory.

- Address_license: These are the address bits used to read the license info bits at a certain
location in the internal license memory. The value of these bits is received from the file
number saved in the file’s header.

- CIlk: These are the internal clock pulses which are generated independently of the
system clock signal.

- Reset: This signal is used to reset the operation of the “file_check” block

Note that:

- The file header referenced here is the header created by the “write_buffer” block when

the file was assigned not the header which was sent with the file during the assignment.

Exact functionality

With the following flowchart, we can summarize the flow of operations within the
“file_check” block:

66

‘ Start ’

A

P\ 4

Reset="1"

Enable_Decision
:11,

| “Enable_period_check” ,

set

“Enable_recheck” and
“Enable_OS_check” to
zero and reset the
operation of the block

Set “Deactivate” signal
to ‘1’

Deactivate_ack
e b 1 7

Access the header
recheck memory to get
the number of the file.

A 4

h 4

FROM counter
value<number
assigned to the file

Y

Access the internal
license memory to get
the license information
bits assigned to the
specified line number

Set “Enable_recheck”
signal to ‘1’

A 4

Set “Enable_OS_check”
signal to ‘1’

Access the internal
counter FROM to get the
number of files so far
assigned by the DRU

Fig. 23: The “File_Check” Flowchart

»
»

Recheck_request
=1’

67

Set
“Enable_period_check”
signal to ‘1’

Set “Enable_recheck”
sianal to ‘1’

End

3.3.3.2 “Recheck unit”

Main job

It handles the task of rechecking the file when the DRU can’t find a license for that file.

Block diagram

We_seq
e
clk_seq
—
Enable_FCB Address_seq (8 bits)
—>
—
EOJ_OS Recheck_unit Value_seq(8 bits)
Block —>
Ack_0S Data_f_ram(8 bits)
Read_ram
—
New_sequence clk_ram
—> >

Address t ram(5 bits)

Sequence_needed
| We_t_ HC
—
End_seq_OS clk t HC
N —
Address_t_HC (5 bits)
End_required_seq —>
<« Data_t_HC(8 bits)

Ack_OS_seq

—> Address_t PROM (4 bits)
—>

Read PROM
—>

Data_f PROM (8 bits)
4—

Clk_PROM
e 4

Clk Reset

Fig. 24: The “Recheck_Unit” Block Diagram
68

Pins description

- Enable_FCB: This is the enable signal sent by the “file_check” unit

- EOJ_OS: Through this signal the “recheck_block” indicates to the operating system
that it has finished its normal job of writing the information needed to be sent to the
provider’s server in the memory location specified by the operating system. This
memory space is called “Header compliance memory”

- Ack_OS: This is the acknowledgement signal to the “EOJ_OS”. This signal is set when
the operating system has sent the information written by the “recheck_block” to the
provider’s server.

- New_Sequence: The operating system sets this signal high when there’s a request from
the provider’s side for certain parts of the file to be sent.

- Sequence_needed: This is the number of the requested KB part of the file to be sent.

- End_seq_OS: This is the signal which is set high by the operating system when the
provider’s server finishes sending its parts request.

- End_required_seq: By this signal, the “recheck_block” informs the operating system
that it has finished its writing operations in the memory location set by the operating
system before sending the “New_sequence” request. This memory location was set so
that the “recheck_block” registers in it the number of the parts requested. This memory
is called “sequence memory”.

- Ack_OS_seq: When the operating system has read all the required parts written by the
“recheck_block” in the special memory space, the operating system indicates this to the
“recheck_block” through this signal.

- Address_t_ram: These are the address bits used to access a certain location in the
memory where the header of the file, the “header recheck memory”, is loaded by the
operating system. As explained previously, the “header recheck memory” is a memory
location reserved by the operating system in which the operating system moves the
file’s header.

- Data_f_Ram: This is the bus from which the data saved in the header recheck memory
is read.

- Read_ram: This is the signal used to indicate the read operation from the header

recheck memory.

69

- Clk_ram: This is the clock signal used to interact with the “header recheck memory”

- we_t_HC: This signal is connected to the write enable signal of the Header Compliance
memory.

- Clk_t HC: This is the signal connected to the clock signal of the Header Compliance
memory.

- Address_t HC: These are the address bits used to write the header bits that will be sent
to the provider server in the Header Compliance memory.

- Data_t_HC: These are the header bits that will be sent to the provider’s server.

- we_seq: This signal is connected to the write enable signal of the sequence memory.

- Clk_seq: This is the signal connected to the clock signal of the sequence memory.

- Address_seq: These are the address bits used to write the requested file parts numbers
in the sequence memory.

- Value_seq: This is the requested file part number. The value of that signal is got from
the “sequence_needed” value.

- Address_t PROM: These are the address lines connected to the address bits of the
internal PROM memory of the DRU which contains the user and group IDs bits chosen
by the user at the setup of the DRU for the first time.

- Data_f_PROM: This is the bus from which the data saved in the PROM memory is
read.

- Read_PROM: This signal is connected to the read enable signal of PROM memory .

- CIk_PROM: This is the clock signal used to interact with the PROM memory.

- CIlk: These are the internal clock pulses which are generated independently of the
system clock signal.

- Reset: This signal is used to reset the operation of the “recheck_unit” block.

Note that:

- The operating system will identify that the received request from the provider’s server is
either to “initialize the sequence request” or to “end the sequence request” or to “request

for a certain part number of the file” through special format sent by the provider and
understood by the operating system.

70

Exact functionality

New_sequence

=1’

Interrupt the normal file
checking operations

A 4

Access the sequence
memory to save the
requested file numbers

End_seq_OS
=7

Reset all the signals used in
the communication with the
sequence memory

»

»

A 4

Set the “end_requiresd_seq”
high and the operating system
starts reading the numbers
saved in the sequence memory

Ack_OS_seq
='7’

Disable the interrupt

Through the following flowchart, the functionality of the recheck unit could be explained:

Enable_FCB="1" and
New seauence="0’

l Y

set the “EOJ_OS” and
“end_required_seq” to
zero and reset the

operation of the block

Access the header
recheck memory to get
the company IP bits

Access the internal
PROM memory to get
the user and group IP bits

Format the header that
will be sent to the
provider’s server and
save it in the Header
Compliance memory

Set the “EOJ_0OS”
sianal hiah

request

Fig. 25: The “Recheck _Block” Flowchart

71

3.3.3.3 “Period check”

Main job

This block is responsible for checking on the period assigned to the file the user wants to

access

Block diagram

Enable FCB

Address_f_FCB

Update_ON

Update_OS_ON

— >

—»

— >

— >

GRANT
4—

Delete
«—

Ack_OS

Period_check
Block

—>
Clk_Pram

>

g_Pram(8 bits)
4—
Read_Pram

—»

Clk T T Reset

Fig. 26: The “Period_Check” Block Diagram

72

Address_Pram (8 bits)

Pins description

- Enable_FCB: This is the enable signal sent by the “file_check” block.

- Address_f_FCB: This is the number of file that was got by the “file_check block from
the file’s header and passed to the “Period_check” block.

- Update_ON: This is the signal sent by the “Period_Assign” block which indicates that
the daily update process is in progress.

- Update_OS_ON: This signal sent by the “Period_Assign” block which is used to
indicate the an update process based on the operating system request is in progress.

- Grant : This signal ,when set high by the “Period_check” block, indicates to the
operating system that the license period did not expire.

- Delete: Through this signal the “Period_check” block indicates to the operating system
that the assigned period for the file is expired. Accordingly, the operating system will
delete the file or prompt the user to recontact the provider to get a new license.

- Ack_OS: This is the acknowledgement signal sent by the operating system for the
“Delete” or “Grant” signal.

- g_Pram: These are the bits read from the internal period memory.

- read_Pram: This signal is connected to the read enable signal of the internal period
memory.

- Clk_Pram: This is the signal connected to the clock signal of the internal period
memory.

- Address_Pram: These are the address bits used to read the period bits at a certain
location in the internal period memory. The value of the “address_Pram” is the value of
“address_f FCB” signal explained above

- CIk: These are the internal clock pulses which are generated independently of the
system clock signal.

- Reset: This signal is used to reset the operation of the “Period_check” block

73

Exact functionality

This could be summarized by the following flowchart:

| “DELETE?” to zero and

set “GRANT” and

reset the operation of the
block

Update_ ON="1"
or
update_OS_ON="1"

Access the internal period
memory to get the period bits for
the file whose address is the
value of the “address_f_FCB”

Period_exist
bits="111"
and period value=0

Set “Grant” signal to ‘1’

Set “Delete” signal to ‘1’

End

Fig. 27: The “Period_Check” Flowchart

74

3.4 Requirements from other parts to complete the DRU job

In order to have a complete DRM solution, some parts involved in the system should provide

some services to support the functionalities of the DRU unit.

We list the requirements of each of these parts separately as follows:

3.4.1 The operating system

Here is the list of requirements that the operating system(OS) should provide:

1-

All the transactions with the DRU should be implemented on the Kernel level to
prevent any other software to connect with the DRU. Accordingly, the security
settings offered by the operating system depend on securing its kernel from being
modified or replaced. To do this, the proposed operating system should include a tool
like Kernel Patch Protection (KPP) also known as Patch Guard introduced by
Microsoft in their products. This tool performs the required protection task through
monitoring the Kernel’s key resources like system service tables and if it finds any
modifications it shuts down the system [39]. This, in the existence of processor
structures like Intel x86 ring structure which define privilege levels of software
execution, can provide the desired kernel protection.

The OS should be able to encrypt and decrypt file parts or messages exchanged with
the provider’s server. If the encryption/decryption operation is handled by a hardware
engine, the OS kernel should exclusively deal with this hardware engine.

The OS should handle the network and communication protocols used during the send
and receive operations to and from the provider’s server.

It should contain a driver which can interface properly with the DRU signals such as
“DEACTIVATE” “DEACTIVATE_ACK”,”"DELETE” and "RESET". Also, the
driver should contain a time-out software to take action if there’s a problem in
communication either with the provider’s server during the rechecking procedure or

with other parts of the system.

75

5- It should be able to reserve and secure some parts of the memory during the
transactions with the DRU as for example reserving a memory location which
contains the file during the reception of the file parts.

6- It should protect the file from being tampered with during the checking of the file by
the DRU and after receiving a grant signal to access it. An example of the possible
tampering attempts is to access a file with outdated license by using the grant signal of
another file.

7- The OS should automatically deactivate the interrupts when there’s a sequence
request from the provider’s server during the recheck procedure before the operation
of the DRU.

8- It should understand and execute the license file written in a rights expression
language supported by this DRU and communicate with the DRU in case of any
updates such as updating the period of a file. In case the used language is other than
the MPEG-REL or the ODRL, it should be able to execute the software patch sent
with the license file.

9- The operating system should also reserve and protect the memory location defined by

the user during the setup of the DRU which will contain the license files.
3.4.2 Synchronization circuit
Due to the fact that our system is working on an independent clock signal, we need a

synchronization circuitry in order to properly interface it with the user’s system.
We will use two main kinds of synchronization circuits [19]:

1- Synchronizer using dual-stage flip-flops

Data In Data Out

FF1 FF2

CLK1 CLK2

Fig. 28: The Dual-Stage Flip-Flop Synchronizer
76

The reason for using two flip flops FF1 and FF2 at the system clock side is to solve the case if
FF1 goes meta-stable with clock signal clk2, by that FF2 does not look at data until a clock
period later, giving FF1 time to stabilize.

This synchronizer will be used to interface single bit signals like “WRITE”, “READ” signals
2- Synchronizer using asynchronous FIFO.
This synchronizer will be used to interface multi-bit signals such as the address lines

connected to the memory. The architecture of this synchronizer looks like the following

figure:

Dual Port
RAM

PORT1 PORT2
L A

_‘FE_L_ WR_PTR RD_PTR EMPTY
DATA_IN WR_DATA Rp_DATA DATA OUT
WRITE READ
LoGgic | === |LOGIC
- -

CLK1 CLK2

Fig. 29: Synchronizer Using Asynchronous FIFO

We couldn’t use the synchronizer with simple dual-stage flip-flops because we can’t
guarantee that all the bits of the signal would arrive at the same time together.

The main problem with the asynchronous FIFO design shown in figure 29 is the
implementation of the empty and full signals. This is because the write circuit should be able
to read the read pointer and vice versa which have different clocks. The suggested solution
for that issue is to implement the read and write pointers as gray coded values to eliminate the
problem that could occur if any of the pointer changes its position while the other is reading

its value.

77

3.4.3 The provider’s server

1- The server at the provider side should have for each user an entry as shown in figure:

File Name User ID Group ID User
Password

License info

Key generated

Sequences to generate
key

Fig. 30: Entry at the provider’s server

Also, the provider’s server should have the capability to search and check on these fields

when there is a recheck request sent by the user’s DRU.

2- When sending its sequence request, the provider’s server should have a bit always set high

which will be interfaced to the “new_sequence” bit of the DRU. This bit will be set to zero

when the sequence request ends.

3- The provider should have the bug free software patches that translate a license file rules
written with any other language than MPEG21-REL or ODRL to MPEG21-REL.

78

Chapter IV

Simulation Results

In this chapter we show the simulation results of the DRU unit after implementing its
functionalities in VHDL. These simulation results are obtained using Modelsim tool of
Mentor Graphics [23].

In section 4.1, we discuss the results of each of the LAU blocks separately.

In section 4.2, the results for the LCU blocks are shown.

For each of these blocks we show the normal operating condition and special cases to show
the different implemented features of the block.

In section 4.3, the simulation results for the blocks that are not part of the LAU or the LCU
like the decision block are listed.

4.1 LAU simulation results

4.1.1 “Check_userIDs” simulation results

a- Normal case

This is the normal operating condition that was discussed through the flowchart in section
3.3.21

clk | T e 0 i e o e = i ol o 5 e 2)
reset |

enable T 1

deactivate_ack | [

deactivate | |

address_t_ram |T B 17 5 €] fin
@:r—am -' |

:data_f_ram | Toolooog 1111 1101100110111 0}00007 010101

Fig. 31: The Normal Operation Of “Check_UserIDs”(1* part)

79

As seen in figure 30, the reset signal is set high first to initialize all the internal operations.
Then the “Deactivate” signal is set to’1” .When the “Deactivate_ack” reply is received the
operation of the “check_userIDs” starts by getting the IDs sent with the file which exist in a
specific memory location where the header of the file is saved through the signals

“address_t_ram”, “read_ram” and “data_f _ram”.

After that, the IDs that are saved in the internal PROM of the DRU are compared versus those

got from the header of the file as shown in figure 31.

clk II_I__I_I_I_I__I_I_I_I__I_I_I_I__I_I_I_I__I_I_I_I__I_I_I_I__

enable_rest | I |

user_id_prom | EEFREENAAAETELES
user_id_ram |FFFREE0AAABTEEAS
group_id_pram|__{FRFFEE_JFFFREE. [FFFFEEEEAABBRE3S

group_id_ram |FEFRFFEEAABBGEIS

Fig. 32: The Normal Operation Of “Check_UserIDs”(2" part)

If the two are the same, as is the case in the above figure, the “Enable_rest” signal is set high
and the “delete” signal is set to “0’.
Note that the “Enable_rest” signal is high for only four clock cycles to reduce the amount of

dissipated power.

b- “No_enable” case

This is the case where we show the effect of the Enable signal from the “Decision_block”.

Gl | (8 8 5 0 o 4 e 8 1 6 g

reset | ——— |

deactivate_ack | |
deactivate

address_t_ram i
read_ram | ———
data_f_ram | DUouuouL I

Fig. 33 : The “No_Enable” Case For The “Check_UserIDs”

80

As it can be seen here, since there’s no enable signal received from the decision block, no

operation was performed by the “check_userIDs” block.

c- “No_Deactivate Ack” case
Here we are showing that the whole operation of the “check_userIDs” block holds until the

“Deactivate_ack” signal is received.

clk, | I 5 O T (00 e 1 Y T T) s 1 T
reset |— [
enahle |
deactivate |— [
deactivate_ack |

address_t_ram]
read_ram |—

data_f_ram "oonuoon0

Fig. 34 : The “No_Deactivate_Ack” Case For The “Check_UserIDs”

The time out software of the operating system is responsible for indicating the failure of the
deactivate operation and resetting the “check_userIDs” block if after a certain period of time

there is no “Deactivate_ack” pulse received.

d- “Different_userIDs” case
This part is to show the response of the “check userIDs” block when different user and/or

group IDs are found in the header of the file.

delete [
delete_ack |
enahble_rest |

e o

user_id_prom |FFFREEDAAABTEESS
Lser_id_ram QFFFEEEEI.-‘-‘-.P.P.EI?B:.EIS

group_id_prom [[FFFEEE..JFFFFEE. JFFFFEE. JFFFFEEEEABBEEEIT

group_id_ram |FFFRFFEEAABRE5E33

Fig. 35: The “Different_UserIDs” Case Of The “Check_UserIDs”

81

As shown in figure 34, although the header of the file under assignment has the same group
ID as that saved in the internal PROM of the DRU, the delete signal is set high because the

user ID bits are not the same.

e- “reset” case
In this case, we can see that whenever the reset signal occurs, all the operations of the
“check_userIDs” block stop and start all over again from the beginning.

clk) P 0 o = I 5) O 0 == [e e i
enahle |

reset — | [T

deactivate — |

deactivate_ack _ LAl

addrass_t_ram (o B 17 6 [17 &
read_ram [— 1 1 |

Fig. 36: The "Reset” Case For The “Check_UserIDs”

82

4.1.2 “Assignment_unit” simulation results

a- Normal case
This is the normal operating condition for the assignment unit.

The functionality of this case was discussed in details in section 3.3.2.2

clk EmEpkyhyty Sy ledsds skt Sy By K
reset !—'—_l

enable_check_user | 1

period_hits \—og 7

fLn_entry !n Z

enable_clk_circuitry !—, L |
clk_from |— 1 1]

g_from |j 1

data_fram [T Iz 0

space_request !—, [

xtml_size | Jia IFE

space_available == 1 1

address_xm| I fonoooonn 0030067 inooopong
address_ram_license |0 IZ

data_license | I00300G7EFB

Fig. 37 : The Normal Operation Of The “Assignment_Unit”

As shown in figure 36, first the reset signal is set to initialize the assignment unit’s different
operation. Then, if the enable signal from the “check _userIDs” block is received through the
“enable_check _user” signal, the internal FROM counter of the DRU, which holds the number
of files so far assigned by the DRU, is read to ensure that the DRU internal memory is not yet
full. After reading the value the internal FROM counter value is automatically incremented.
This is shown through the signal “q_FROM?”, which holds the value of DRU internal counter
before assignment, and the signal “data_ FROM” which holds the value of the counter after
the increment.

After that, the license user’s bits are checked to be sure that there’s a valid license attached
with the file. The DRU then sets the “space_request” signal high to ask the operating system
to provide for it a space with the “XML_size” value in the special curtained memory region
where the license files are held.

When the acknowledgement is received from the operating system through the
“space_availablesignal, the assignment unit saves in the internal license memory of the DRU
the address sent by the operating system where the new license file is saved attached with it

the size of the license file.

83

Finally, the assignment unit sends the following signals to the “period_assign” block:
1- The enable signal for the period circuit through the “enable_clk_circuitry” signal
2- The address assigned by the assignment unit to that file through the “num_entry”
signal. This address value is the current value of the DRU internal counter.

3- The period bits that exist in the header of the file through the “period_bits” signal.

b- “No_enable” case

This is the case which shows that the assignment unit work holds until the enable signal from

the “check_userIDs” block is received.

cik EpglpglplipliplplpgininlinEplnEnly
reset — 1]

enable_check_user |

period_hits v 00

nurn_eitry |

enable_clk_circuitry | —

data_from T

o_from T

space_reguest | S |

space_available —

=ml_size % 0o 1 ! 1
adtiress_xl % 00000000 i i

Fig. 38 : The “No_enable” Case For The “Assignment_Unit”

c-“No_space_available” case
In this case we are discussing what happens if the operating system couldn’t allocate a space

in the curtained memory of the license files for the new file

clk (R I o e e e e e T T e I e T o I B
reset [— 1 7]

enable_check_user []

period_hits W oo

num_entry i}

enable_clk_circuitry R

data_from 0 =

o_from 0 il

space_reguest S [
=ml_size W o IFE
space_availahle '

Fig. 39: The “No_Space_Available” Case For the “Assignment_Unit”

84

As seen in figure 38, the enable signal to the period circuitry is not set waiting for the
“space_available” signal to be set high in reply for the “space_request” signal sent earlier by
the assignment unit.

The time out software of the operating system is responsible for indicating the failure of the
operation of reserving a memory location in the curtained memory space and resetting the
“Assignment_unit” block. This occurs if after a certain period of time there is no

“space_available” pulse received.

d- “No_space_ FROM?” case

Through this case we want to show what happens if the memory of the DRU is already full
when assigning a new file. The number of files assigned already by the DRU is used to
identify if the DRU’s internal memory is full or not.

In our case, the DRU design can assign up to 256 files.

5t N g e e e e e e s N
reset :_l—_|
enahble_check_user]

delete D LS,]
delete_ack I
enahle_clk_circuitry | ——

period_bits UUUU.. 00000000

num_entry

o_from 0 TEL
lirnit_fram

wee_from _

space_reguest S TR

space_availahle ot

Fig. 40: The “No_Space_ FROM” Case Of The “Assignment_Unit”

As seen in figure 39, when the signal “limit. FROM” is high this means that the DRU’s
internal memory is full. In that case, the assignment unit sets the “delete” signal high to let
the operating system prompt the user for the delete action it’s going to execute.

85

4.1.3 “Period_assign” simulation results

a- Normal case

This is the normal operating condition for the “period_assign”.

clk | S s S S S S) O) [e [= I (S (0 0] = [S (=1 [|
reset | T]

enahle_assign | 1]

period_hits | 5w =

num_entry | Iz

WE_Tarm | [

data_ram | 3H IEz

address_ram | D >

enahle_wh ! : T 1__|

Fig. 41: The Normal Operation Of The “Period_Assign”

As seen through figure 40, the “reset” signal is first set high to initialize the jobs of the
“Period_assign”. Then, if the enable signal from the assignment unit “enable_assign” is high
and there is no update operation request either from the operating system or the clock update
signal, the internal memory of the DRU which holds the period of the files is accessed to save
the period bits.

The address for that memory is the “num_entry” signal sent by the assignment unit.

At the end of its job, the “Period_assign” enables the “write_buffer” block through the signal
“Enable_wb”.

b- “Update_OS” case

Here we show what happens when the operating system needs to update the period of a
certain file. This could occur during the recheck operation, if the operating system needs to
update the period assigned to a certain file after parsing and executing its license file.

clk 355 s e -) S5 g e A e e)) g 0 0
enable_os | 1 1

nun_entry_os I 7

period_os | oo los foo

update_os_on | N

address_ram |= q

Wie_ram 1

_d_ata_ram | oo [

Fig. 42: The “Update_OS” Case For The “Period_Assign”
86

As seen in figure 41, when the operating system needs to update a period, the operating
system sets the signal “enable_OS” high. It then provides the number of the file it wants to
update through the signal “num_entry _os” and the new value for the period which is the
value of the “Period_OS” signal.

Accordingly, the “Period_assign” updates that memory location with the address value as that
of the “num_entry_OS” with the new period value.

c- “Normal_update” case

In this case, we discuss the update process initialized by the update signal from the clock

circuitry.

2l EEpEpEpEptpEp =g Eg T aey:
update | []

update_on | 1 |

read_fram f 1

o_from 0 7z

address_ram 1 0 Tz &

g_ram NN ool 1100010

read_ram | |

wE_ram -

data_ram i =

Fig. 43 : The “Normal_Update” Case For The “Period_Assign”

What exactly happens during the update process could be explained as follows:

1- After the “update” signal is set high, the Period block accesses the DRU FROM
counter to know the number of files whose period should be updated.

2- Then, for each file, the period existence bits are checked. If these bits are set to the
value “111”, then this means that this period has a certain period assigned for it and
accordingly the “Period_assign” decrements the value of the period bits if it is not
already all zeros. But if the period existence bits are set to different value from “111”,
then this means that this license has unlimited period and so the “Period_assign” does

not update this entry.

87

d-“Update_OS_while_normal_update” cases
In this section, we show the case when an update request from the operating system occurs

while the normal update process is not yet finished.

ok e Y e e o o o
update | 1

enable_os ! [1

num_entry_os EUUUUUUUL Jnooooogi

period_os |00 o2& Yoo

address_ram ! Z] nl e i3 i

data_ram {00 IE1 l0&

g_ram (XX fE2

we_ram | [[

Fig. 44: The “Update_OS_While_Normal Update” Case For
The “Period_Assign”

As seen through figure 43, when the “Enable_OS” signal is received while the normal update
operation is in action, the value of the “Period_OS” and the “num_entry_OS” will be saved
such that when the normal update process is finished, the period of the specified file is

updated according to the value of the “period_OS”.

e-“Enable_assign_while update case
In this section, we show the case when there is a request to assign a period to a new file while

the normal update process is not yet finished.

tk |y I S 6 O
Upifate | [

enable_assign '

period_hits T 11100010

nuth_entry (0 2

enahle_wh |

address._ran I 1 2 3 i

read_ram i '

Uptlate_on | — |

We_ram | 1 1
data_ram T0000000 ! 111100010 00000000

Fig. 45: The “Enable_Assign_While_Update” Case
For The “Period_Assign”

88

As seen through figure 44, the operation of assigning the period for a new file has lower
priority than the update process. This means that the period assignment process is held while

the normal update functionality is on.

f-“Enable_OS_and_enable_assign” case
In this section, we show the case when an update from the operating system occurs when the
period assignment process is also started.

Cik [- N
enahle_assign

enahle_os |

periad_hits R 3

num_entry T 5

address_ram i IE g
we_ram | 1 |]
data_ram | oo =] i
enahle_wh [|

period_os 3 A

U, SO0 | 00000 J00000001

Fig. 46: The “Enable_OS_And_Enable_Assign” Case
For The “Period_Assign™

When the “Enable_OS” signal is received with the “Enable_assign” signal, the update request
is recorded so that when the assignment process is finished, the required operating system
update is applied. This means that period assignment functionality has a higher priority than

the operating system update process.

g-“Reset” case
In this section, we discuss the effect of the rest signal on the period assignment procedure

reset | [
enahle_assign |

i

]
=

period_hits _i W EZ

num_entry il =

enable_wh | ; T s N |
address_ram | =1 10 >

weam | . 1 1

data_ram | X .] fEZ 100 Ez o0

Fig. 47: The “Reset” Case For The “Period_Assign”
89

As shown in figure 46, when the reset signal is high the whole period assignment

functionality is restarted from the beginning.

h-“Reset_with_Enable_OS” case

Here, the reset signal effect on the operating system update process is discussed.

ck g Sy
feset I —
enale_0s T L

SIS DIS S S e

1

num_entry_0s W% |
perind_0s WX O

=

address_ram I|;|

=
—L

n&

Fig. 48:The “Reset_With_Enable_OS” Case For The “Period_Assign”

As seen in figure 47, when the reset signal is high, the operating system update process is

stopped and reset. Also, it shown in the above figure that the reset procedure has a higher
priority than the operating system functionality.

i-“Reset_with_update’

’ case

In this case, the relation between the reset procedure and the normal update process is shown.

clk Do Mg N e Mg Al p Mg N B
reset 1 |

update '_|_|

address_ram |7 R 0

read_ram I] | |

Fig. 49: The “Reset_With_Update” Case For The “Period_Assign”

As seen in figure 48, the reset signal has no effect on the normal update functionality. This is

because the normal update operation is an operation that is only handled by the DRU and

need nothing from the operating system to continue its job.

90

4.1.4 “Write_buffer” simulation results

a-Normal case

This is the case which explains the normal operation of the “write_buffer” block.

%{_iwmwmwmwmwmm
lege |]

enable_ssu ; | | |

nlm_erty IR

negEny | |

adress f ram_w I 1 7 i 1 i

data L tan 5T T R A o I o VA

psh i —

ack_0s i i

Fig. 50 : The Normal Operation Of The “Write_Buffer”

As seen in figure 49, the “reset” signal is first set high to initialize all the signals involved in
the operation of the “write_buffer”.

Then, when the enable signal from the “Period_check” block, “enable_ssu”, is received, the
“write_buffer” accesses the memory location where the header of the file was saved to get the
company IP bits.

These bits are then written in the memory space reserved for the creation of the header which
is attached to the media file when stored after the license assignment procedure is finished.
After that, the “write_buffer” adds the number assigned by the DRU for that file to the
created header which is the “num_entry” value.

At the end of its operation, the “write_buffer” indicates the end of its job by setting the signal
“assign_finish” high and waits for the acknowledgement from the operating system which is
observed through the “ack_OS” signal.

The time out software of the operating system is responsible of indicating the failure of the
operation of saving the header created to the file and resetting the “write_buffer” block. This

happens if after a certain period of time there is no “ack_OS” pulse received.

91

b-“Reset” case
In this case, we are showing the effect of the “reset” signal on the operation of the

“write_buffer” block.

olk S 3) o
tesel — [
enale_ss ;]
L _entry 11 3
iR |— | L |
tata_t ram_yr XX T

auiiress_t ram_w 0 i I

LE

Fig. 51: The “Reset” Case For The “Write_Buffer”

As observed in figure 50, when the “reset” signal is set high the operation of the
“write_buffer” unit, which was started previously by the “enable_ssu” signal, is stopped and
returned to its initial state where the “write_buffer” is waiting for the “enable_ssu” to be set
high.

92

4.2 LCU simulation results

4.2.1 “file_check” simulation results

a-Normal case

The normal operating condition for the “file_check” block is discussed here.

ck el e I I BRI e (el S R Ll 30 il L Y
reset —

anadle]

deartivate —

teactvate_ack | \ 1 T
tata_f_ram ™ 0 | :

g fion 7 0 i T
enahle_os_check ‘ ; ‘ |

lense_nfo ¥ix]. Jooouonongn EESs5123

contine =

check_request ‘

enalle_racheck Lt

adress_to_perind 1 i

enable_period_check | ——— | : | 1

Fig. 52: The Normal Operation Of The “File_Check”

The functionality shown in figure 51 can be explained as follows:

The “reset” signal is first set high to initialize the different parts of the “file_check”
block.

If the “enable” signal , which is the enable signal from the “Decision_block™, is high
then the “file_check” block sends a “deactivate” signal for the operating system to
deactivate interrupts and 1/O operations.

When the acknowledgement from the operating system is received through the signal
“deactivate_ack”, the “file_check” accesses the memory where the header of the file
is saved to get the number of the file which is received through the signal
“data_f ram”.

Then, the “file_check” unit accesses the internal FROM counter of the DRU,

whose value is held by the signal “g_from”, to check that the number assigned to the

93

file is within the range of the number of files assigned by this DRU or not. If not, then
the “recheck_block™ is invoked to let the provider checks on that file.

In our case the number of the file is “2”, according to the value of “data_f Ram” signal and
the value of the internal FROM counter is “4” and so the file is in range. The next step is to
provide the operating system with the information about the license file assigned to that file
number.

This is done through that “file_check” accesses the internal memory of DRU which holds the
license files information. Then, it sends an enable signal to the operating system,
“enable_OS_check” signal, along with the license information which is read by the operating
system through the signal “license_info”.

Then the flow of the normal operation continues as follows:

- The operating system sets high either the “Continue” signal , in case the integrity
checks included in the license file run successfully, or the “Enable_recheck” signal in
case of wrong results produced from the integrity check. In our case, we assume that
“Continue” signal is set high.

- Accordingly, the “file_check” sends an enable signal to the “period_check” block
through the signal “Enable_period_check” to test the period assigned to the file under
check. Also, the “file_check” sets the value of the “address_to_period” to the number

assigned to that file.

94

b-“address_out_range” case

Here, we show what happens when the number assigned to the file is out of the range of the
number of files assigned by the DRU. This could happen for example if the file is copied
from another place where another DRU holds the license file of that file.

oK | 0050 0 5 0 6 0) 4 g

teset ! — \

teacfivate | \
deacivate_ack . | T !
enafle
data_f_ram ; Y 07
i from i i

enable_recheck : | |
enahile_os_check,
atdress_to_period I

enable_period_check _i—i_‘ | |

Fig. 53: The “Address_Out_Range” Case Of The “File_Check”

In our case here, the number of files assigned by this DRU is “1” but the address saved within
the file header is “2”.
By consequence, the “Enable_recheck” is set high to check on this file license with the

provider.

c-“No_Deactivate Ack” case
In this section, we show what happens when the signal “Deactivate_ack” sent by the
operating system to confirm that the “Deactivate” request is granted.

Etk Ephyplpiptpiphyepigsgepey gty gty dyin

enahle |]

deactivate
deactivate_ack

read_ram

address_t ram i

data_f_ram AT,

enahle_recheck

enable_period_check

Fig. 54: The “No_Deactivate Ack’ Case For The “File_Check”
95

As seen in figure 53, when the “Deactivate_ack” signal is not received, the whole operation
of the “file_check” unit is held. The time out software of the operating system is responsible
of indicating the failure of deactivating the interrupts and resetting the “file_check” block.
This happens if after a certain period of time there is no “Deactivate_ack” pulse received.

d-“Reset” case

In this case, the effect of the reset signal on the operation of the “file_check” unit.

|
W |1 1 8 5 0 (O 4 0
reset |
enable ; L |
deactivate I |
deactivate_ack |
advess_t_ram 1 ETh i
fead_tam = 1] []
data f ram [y 102
i_from T i
enable_recheck _|
enable_os_check |— |
licansa_info | Tnonanonom JEE3351 2345
aldress_fo_period | 2
cantinue f
anahle_period_check | — |

Fig. 55: The “Reset” Case For The “File_Check”

As shown in figure 54, when the reset signal is high, the operation of the “file_check” unit is

stopped and restarted from the beginning.

96

4.2.2 “recheck_block” simulation results

a- Normal case

In this section we discuss the normal operation flow of work in the “recheck_block”

reget)
enahle . M
data fram S |]
éddress_t_hc I
we_t_hc h

datathec [T ez FF JEEJna Tealerliez 133 JFF [JEE[AR JBE J86 59
B0j_0% = M

ack_0s L |

0 1002 13 A4 135 16017 118 119 Jg0 J211ee

Fig. 56 : The “Normal Case” For The “Recheck_Block™

After the “reset” signal initialized the different parts of the “recheck block”, the memory
which contains the header of the file is accessed to get the company IP bits which are
received through the signal “data_f _ram”.

Then, the PROM of the DRU is accessed to get the user and group ID bits.

At the end of its job, the “recheck block” indicates to the operating system to send the
required recheck information saved in the memory location reserved by the operating system
before the start of the “recheck_block” operation to the provider. This is done through setting
the signal “eoj_OS” high.

The “recheck_block” then waits for the acknowledgment from the operating system that
should be asserted through the signal “Ack_0OS”.

The time out software of the operating system is responsible of indicating the failure of the
reading and sending the saved header to the provider and resetting the “recheck block”

operation. This happens if after a certain period of time there is no “ack_OS” pulse received.

97

b- “New_Sequence” case

This is the case where we discuss the effect of the “new_sequence” signal.

As explained previously, the “new_sequence” signal is used by the operating system to
indicate to the “recheck block” that a provider is sending a request for certain parts (or
sequences) of the file to check on them.

Again, the “recheck block™ is invoked in that operation to speed up the operation of
rechecking process and also for the target that this procedure will be completely handled by

the “recheck_block” in the future.

clk (nigNgigigipighpigip)

new_sequence |
seguence_needed |7
address_seq _| 0 | . .
We_seq |
value_serq I 17z 176 Ja0 Ja4l Jom
end_required_seq | [1
Bnd_seq_os l [
ack_os_seq | 1]

sligE
S
5
S
5
s
=

Fig. 57: The “New_Sequence” Case For The “Recheck_Block”

As seen in figure 56, when the “new_sequence” signal is received, the data sent by the
provider “sequence_needed” is automatically sent to the memory location reserved by the
operating system for the “recheck_block”.

The numbers here of the sequence required refers to the number of Kbytes of the file.

In other words, the number “72” means that the provider’s server is requesting that the Kilo
byte number 72 of the file to be sent to check.

At the end of the sequences’ request, the signal “end_seq_OS” is sent to the “Recheck_block”
so that it disables the write enable signal “we_seq”. After that, the “recheck_block” requests
the acknowledgment from the operating system after it finishes reading the data through the
signal “end_required_seq”.

The “recheck_block” then waits until the operating system acknowledgment is received

through the signal “ack_os_seq”.

98

The time out software of the operating system is responsible for indicating the failure of

reading the saved sequences and restarting the recheck procedure from the beginning by

requesting the sequences once again. This happens if after a certain period of time there is no

“ack_OS_seq” pulse received.

c-““new_sequence_while_normal” case

Here, we discuss what happens when there’s a sequence reply for a certain file from the

provider’s server while there’s a request for another file to be checked.

clk II_I_I_ 5 1 6 0 e
enahle ; [|

address_t he |;| i T s I
we_t_hc . i | | by B I
data_t_hc ixx 00 [AE = = [JEE_JCC 10D IB7)

Nnews_sequence

sequence_needed |

lG0 | Tad

address_seq

Bi

WE_SEQ

value_seq

l&0 | Tad

end_required_

se

end_seq_os

ack_os_seq

Fig. 58 : The “New_Sequence _Enable” Case For The “Recheck Block™

When the “new_sequence” request is detected, the normal recheck operation is held, as could

be seen in figure 57, through the “address_t_hc” signal which is the address through which

the recheck header data is saved.

When the “ack _os_seq” signal is set high, the normal recheck operation is resumed.

d-“Reset” case

In this case, we discuss the effect of the reset signal on the operation of the recheck block.

Bk VR S i 6 9 0 0 1 e o 0
reset — |

enahle ! | I

address_t ram IT i Z 10 1 Iz I
read_ram I— | |

data_T_rarm | JUOuOuoy [Jn00000go 10101170 11101110 /00000000 10101110 101110 11

Fig. 59 : The “Reset” Case For The “Recheck Block”

99

When the “reset” request is detected, the normal recheck operation is stopped and restarted

from the beginning by retrieving the file’s company IP saved in the memory containing the

header of the file.

d-“Reset_new_sequence” case

Here, we discuss the effect of the reset signal when it is received when there’s a sequence

reply for a certain file from the provider’s server.

ol

reset

O e

8 e

Nevy_seguence

address_seq

I

7

We_ser]

value_seq

| l72

14

i

132

196

Fig. 60 : The “Reset_New_Sequence” Case For The “Recheck _Block”

As shown in figure 59, when the reset signal is received, the operation of saving the required

sequence of the file is stopped. This is because when the reset signal is high, this means that

there is a security issue. An example of these security issues is that if a software is trying to

access the memory locations where the required sequences are saved.

It is the responsibility of the operating system to request again the needed sequence of the file

from the provider when this case happens.

100

4.2.3 “Period_Check” simulation results

a- Normal Case

clk i ipipipigipigiaipipigipipipigigipipigipiph
reset —

enable]

address_{ fch |7

address_pram i 1=

read_pram l——]

g_pram RN INRININN] 1100001

grant_pch R,]

delete_pch S

ack_os R]

Fig. 61 : The Normal Operation For The “Period_Check”

As seen in figure 60, after the reset is applied to initialize the different signals involved in the
“Period_check” operation, since the enable from the “file_check” is received through the
signal “enable”, the internal Period memory of the DRU is invoked to check on the period
specified for the file.
The address used to access the internal period memory, ”address_pram” is the address of the
file which is sent by the “file_check” block through the signal “address_f fcb”.
As explained previously, the period bits are subdivided as:

- Bit 0-4: define the value of the period assigned to that file in term of days.

- Bit 5-7: define if that file has an unlimited period assigned for it or not.
Since in our case the period assigned for that file is still valid for 1 more day, the signal
“grant_pcb” is set to ‘1’ and sent to the operating system to inform it that the media file under
check could be accessed.
In case the period assigned to that file expires (the period value is zero and the file has a
limited license period), the signal “delete_pcb” is set “’1” for the operating system so it can
prompt the user to choose either to access the provider’s server to get a new license or to
delete the media file.

101

b-“check_while_update” case
In this case, we show what will happen when the period values are being updated when the

request to check on a certain entry value is received.

Elk ' [T T R e R E R R R R
reset =]

EE;&ate_cln —_

enable

address_f_fch z

address_pram | o Iz
read_pram S]
4_pram TNATNRTNINN 1100001
grant_pch f— []
delete_pch :—,

ack_nos | | . Ml

Fig. 62 : The “Check_While_Update” Case Of The “Period_Check”

Referring to figure 61, we can see that the update process is detected by the “update_on”
signal which is set by the “Period_assign”.

The “update_on” signal is set high if there is a normal update process due to that one day has
passed.

It can be seen from the above figure that as long as the “update_on” signal is high the whole
operation of the “period_check” is on hold.

When the “update_on” signal is set to ‘0’, the “Period_check” block resumes its work.

c-“update_while_check” case
Here, we show what happens when the request to check on a certain entry value is received

while the period values are being updated.

clk i e g g 8 8 o g o g g i o Bl
reset R |

enahle T

update_on — I

address_f_fch |z

address_pram |7 5

read_pram iy]]
grant_pch — [
f_prarm | UOOOLuU 11100007

Fig. 63 : The “Update_While_Check’ Case Of The “Period_Check”
102

As shown in figure 62, when the “update_on” is high, the checking operation is held until the

update functionality is finished. Then, the checking operation resumes its flow.

d-“Reset” case
In this section, we show the effect of the reset signal on the operation of the “Period_check”
block.

ck Egigipipipigigigipigipgigigigigigpiphpl
e — T L]

arlress_pram T 7] 7

read_pran - i]

A.pran IO 11100001

grant_pch — =l

Fig. 64: The “Reset” Case Of The “Period_Check”

Figure 63 shows that when the reset signal is high, the entire job of the “Period_check” block
is stopped and restarted from the beginning by reading the period assigned to the specified
file.

103

4.3 Other blocks simulation results

The first block we are going to discuss that is not part of the LAU and LCU block is the
“Decision_block”

4.3.1 “Decision_block” simulation results

Fig. 65 : The Simulation Results For The “Decision_Block”

The above simulation result can be explained as follows:

- The “reset” signal sets all the output signals of the “Decision_block” t0’0’. These
output signals are the enable signals to the LCU unit, “enable_LCU” signal, and the
enable to the LAU unit, “Enable_LAU” signal.

- The operating system indicates to the “Decision_block” that a certain file needs to be
either assigned a license or checked before being accessed through the signal “ready”.
If that file is to be assigned a license, then the operating system indicates this to the
“Decision_block” through the signal “new_file”.

- When the “ready” signal is high and the “new_file” is high, an enable pulse is sent to
the LAU. If only the “ready” signal is set high, then the enable pulse is sent to the
LCU.

104

4.3.2 “clock circuitry” simulation results

During this section, we discuss the “clock_circuitry” simulation results.

Basically, the “clock_circuitry” is a group of counters that count the hours, minutes and
seconds of the day.

When one day passes, an “update” pulse is sent to the “Period_assign” unit to update all the
entries saved in the internal period memory.

Figure 65 illustrates this functionality:

ck_ L1 L 1 el e T
update_signal :]
LI T A < N N 20 I A A A
counter_min 53
counter_hours |73

L L_J1L !
[

Fig. 66: The Simulation Results For The “Clock_Circuitry”

As shown in the above figure, when one day passes, an update pulse is generated.

105

Conclusion And Future Work

In this thesis we have presented a general overview of the DRM different technologies.
We have provided an overview of the employed efforts in the different fields of the DRM
either through the different companies products or through the different DRM emerging

standards.

Then we have discussed the problem with most of today’s DRM solutions, which is the
interoperability problem, and how it will effect the competition in the platform market or in

complementary markets.

After that we have presented our new proposed system, DRUS, and its hardware unit DRU
and its architecture. Also, we have compared our DRUS system versus different of today’s

DRM solutions showing its advantage over them.

In conclusion, in this thesis we have provided a DRM solution usable by anyone and which
can be easily integrated throughout today’s platforms because of its stand-alone hardware

unit.

As discussed previously through this thesis, to complete the DRUS, the DRU needs the
support from different parts in the system. These systems parts include the operating system,

the synchronization circuit and the provider’s server database.

In our future work plan, our primary focus will be to develop the operating system’s required
functionalities. This is because, as shown throughout the thesis, if these functionalities are
implemented, this will lead to have an effective communication channel between the DRU

and the other DRUS system components.

106

References

1. Arjona, A., and Grenman, T., “Evaluation Criteria for Digital Rights Management
scheme with focus on Music e-business”, Proceedings of the 12" Europian
Conference on IT Evaluation (ECITE 2005) pp.59-67, Turku, Finland, September
2005.

2. Arnab, A., Paulse, M., Bennett D., and Hutchison, A., “Experience in implementing a
Kernel-level DRM controller”, appeared on Third International Conference on
Automated Production of Cross Media Content for Multi-Channel Distribution,
AXMEDIS '07, Barcelona, Spain, November 2007.

3. Bechtold, S., “The present and future of Digital Rights Management”, appeared in
Digital Rights Management — Technological, Economic, Legal and Political Aspects,
Springer, Berlin, pp. 597-654, 2003.

4. Biddle, P., England, P., Peinado, M. and Willman, B., “The Darknet and the future of
content protection in Digital Rights Management-Technological, Economic, Legal

and Political Aspects”, Springer, 2003.

5. Buyens, K., Michiels, S., and Joosen, W., “A Software Architecture to Facilitate the
Creation of DRM Systems”, appeared on the 4th IEEE Consumer Communications
and Networking Conference proceedings, pp. 955 — 959, Nevada, United States,
January 2007.

6. Chang, F. C., Wu, C. L., and Hang, H. M.,“A Switchable DRM Structure for
Embedded Device”, appeared in Third International Conference on Intelligent
Information Hiding and Multimedia Signal Processing, Kaohsiung, Taiwan,
November 2007.

107

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4457470
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4457470

10.

11.

12.

13.

14.

15.

16.

17.

18.

Chen, X., and Huang, T., “Interoperability issues in DRM and DMP solutions”,
appeared in IEEE international conference on Multimedia and Expo., Beijing, China,
July 2007.

Content Guard company website, http://www.contentguard.com

Coral consortium website, http://www.coral-interop.org/

Digital Media Project, “Value Chain Functions and Requirements document”, Version
3.0, July 2007.

DMP website, http://www.dmpf.org/

Felten, E.W, “Understanding trusted computing: will its benefits outweigh its
drawbacks?”, IEEE security & privacy magazine, volume 1, issue3, May-June 2003,
pp. 60-62.

Garman, J., “Kerberos: The Definitive Guide”, O'Reilly, 2003.

Information Technology-Multimedia Framework (MPEG-21)-Part 5: Rights
Expression Language, ISO/IEC 21000-5:2004, May 2004.

Intertrust Technology Corporation website, http://www.intertrust.com

Irtegov, D., “Operating System Fundamentals”, Firewall media, 2005.
Kalker, T., et.al, The Coral DRM Interoperability Framework, appeared on the 4th
IEEE Consumer Communications and Networking Conference proceedings, pp.930-

934, Nevada, United States, January 2007.

Kamperman, Frank L. A. J., etal., “Marlin Common Domain: Authorized Domains

in Marlin technology”, appeared on the 4th IEEE Consumer Communications and

108

http://www.contentguard.com/
http://www.coral-interop.org/
http://www.dmpf.org/
http://www.intertrust.com/

19.

20.

21.

22,

23.

24,

25.

26.

217.

28.

29.

Networking Conference proceedings, pp.935-939, Nevada, United States, January
2007.

Kilts, S., “Advanced FPGA Design: Architecture, Implementation, and Optimization”,
Wiley-IEEE, 2007.

Lim, E. P., and Siau, K.,” Advances in Mobile Commerce Technologies”, Idea
Group Inc (IGI), 2003.

Macrovision Company website,_http://www.macrovision.com/

Marlin DRM website, http://www.marlin-community.com/

Mentor Graphics “ModelSim Reference Manual”, Mentor Graphics ModelSim

software version 6.3c, September 2007.

Microsoft Corporation, "Technical overview of windows rights management services

for windows server 2003”, Microsoft Corporation white paper, November 2003.
Nickolova, M., and Nickolov, E., “Hardware-based and software-based security in
Digital Rights Management solutions, International Journal "Information

Technologies and Knowledge", vol.2, pp. 7-11, 2008.

NIST Standard FIPS PUB 180-2, “Secure Hash Signature Standard (SHS)”, August
2002.

OMA website, http://www.openmobilealliance.org/

Open Digital Rights Language, http://odrl.net/

Polo, J., Prados, J., and Delgado, J., ”Interoperability between ODRL and MPEG-21
REL”, appeared in First International ODRL workshop, Vienna, Austria, April 2004.

109

http://www.macrovision.com/
http://www.marlin-community.com/
http://www.openmobilealliance.org/
http://odrl.net/

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Reuvid, J., “The Secure Online Business Handbook: E-commerce, IT Functionality

and Business Continuity”, Kogan Page Publishers, 2005.

Rimmer, M., “Digital Copyright and the Consumer Revolution: Hands Off My IPod”,
Edward Elgar Publishing, 2007.

Rump, N., “Digital rights management: Technological aspects”, in “Digital Rights
Management”, Eberhard Becker, Willms Buhse, Dirk Gilinnewig, Springer, 2003.

Secure processing unit systems and methods, US patent number 7,124,170, October
2006.

ST Microelectonics, M41T56C64 chip datasheet, September 2006.

St. Laurent, M. Andrew, “Understanding Open Source and Free Software Licensing”,
O'Reilly, 2004.

Systems and methods for integrity certification and verification of content
consumption environments, Europe Patent number 1 301 863 B1, May 2006.

Tassel, J. V., “Digital Rights Management: Protecting and Monetizing Content”,
Elsevier, 2006.

Trusted Computing Group website, https://www.trustedcomputinggroup.org/

Tulloch, M., et.al, “Windows Vista Resource Kit”, Microsoft Press, 2007.

Unlii, V. “Content Protection: Economic Analysis and Techno-legal
Implementation”, Herbert Utz Verlag GmbH, 2005.

Young, C., “Exploring IBM E-Business Software: Become an Instant Insider on

IBM's Internet Business Tools”, Maximum Press, 2003.

110

http://v3.espacenet.com/publicationDetails/originalDocument?CC=EP&NR=1301863&KC=B1
https://www.trustedcomputinggroup.org/

ol

L sall el) Jareil) Aadaional) A I claiiall il Jlaa A ull a081) ¢
Lem)sis Wl (3 gia o 2JaY e2ed davinall S LEN 3l 534) (gl 22V
Al ki e Sy il 35S aa Lgiaga J8 Al sl Wiy sa G 2D8Y) O Y
Gsin o ddbladl (s W yi Jeuw 4l LS saae G el Lediws Jgoy 43ld 28)
i Y aadil) Canlal) alasiaf Ll ae daala daiall S Qal a5 sl 5 il
gl s laiiall il aied gl gl o Jery paradie Jlae eds 13¢]
"l)l (3 siadl 3)l Jlaall 138 cany 5 Sl 4y jSall ASLal (3 s e Ldlas
(DRM)

Cleasi 5l A8, IS0 dals Gilga i) Jlaall 138 8 dpalal) clga il aansdli (S
AL (358 el ale (g lne bl Jaal

Al (e (ilxy Lgabiza f (DRM) J dlend) clga sill Guudai ie T) 4l LS
i) s Leadl oY) 3 (380 6ill ane

8 a5 sall Laadl ¢laY) (381 53 ane JSUie (oaldi) ypaa Ui (Gulai ~ i3 Casll 134
(DRM) J adlall gyl

J b Aule clard aady o) plaill apaadl e & ial) daal) HUaill 13 andy
Adbiaal) IS il g Yl claliay) ki by ok (S Sl (DRM)

D VS A Sl aylaii a1

Albaads alise s (DRM) I Jlaal ana 58 (iape e J 501 Jucdll 8

s Ll 50 g sall Adbidall Cilga sill g ABY) [and i yry Liad S Jeadll b
.(DRM) Jlas b (ks

Adbiaal il g g sl aUaill sl o 6 e Callil) Juadll (5 ging LS

Ac stiall ol s 43lSal g 2l apanaill dlanll il ol N Jucadl) 8 Lia ye

Uz Linia gl s Gand) 138 e LialiiiaY jage (e e Ll Gudad) Juadll &) il
aisall (8 a2 el dalay) A gidal) Ll

MG o Jary i gasasl) cilbala g 83gaY L ali))
(DRM) JI b laadl (38 sil) p2e

das
Ggmish haw daaa g pes

5l Raals — Figll AIS Y Faia Ala

& ofaladl da o e J gandl Sldlie (e 6 3aS
il o STV dsaia

g.a.géguag.bem.d *ng\y\gﬂam:\
B_aLAl) daala —duaigl) A<y (u jaa BALAN daaly — duigl A4S M

5 alall aala — dutigl) A
An) e i) s — 8 all
& 1429 — 22008

	1- Title english.doc
	2-Table of contents.doc
	3-Chapter1.doc
	4-Chapter 2.doc
	5-Chapter III.doc
	6- Chapter 4.doc
	7- Conclusion and future work.doc
	8- References.doc
	9- Arabic title.doc

