
Aِbstract

Most computers today support binary floating-point in hardware. While 

suitable for many purposes, binary floating-point arithmetic should not be used 

for financial, commercial, and user-centric applications or web services because 

the decimal data used in these applications cannot be represented exactly using 

binary floating-point [1].

The problems of binary floating-point can be avoided by using base 10 

(decimal) exponents and preserving those exponents where possible. So, in 

order to overcome this problem, we introduce a decimal floating-point adder 

subtractor based on the final version of the IEEE Standard for Floating-Point 

Arithmetic P754r which was published in August 2008.

The previously mentioned standard is the revised version of IEEE 754-

85 which is the IEEE standard for the Binary floating-point arithmetic that was 

published in 1985.

The design performs addition and subtraction on 64-bit operands in a 

single path adder with exception handling fulfilling the released standard and it 

can easily be extended to also support operations on 128-bit decimal floating-

point numbers.  

We introduced 2 different implementations for the BCD-subtractor 

internal design. The tens complement and the nines complement. We found out 

that in case we should complement the output the rippling of the carry in case 

of tens-complement makes it much slower than the nines complement. So, we 

tried another architecture in which we added another BCD-subtractor block for 

which we interchanged the 2 operands so that in case we need to complement 

the output all we have to do is -with the aid of an extra multiplexer- we select 

either the first or second BCD-subtractor so we won't wait for the carry 

rippling. This implementation enhanced the speed but on the other hand the 
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area is also increased. Regarding both the area and speed, we found out that the 

nines complement is more suitable for our design for both area and speed

The internal design of the BCD-adder is the carry-ripple adder which is 

known by its small area, we introduced another implementation for the BCD-

adder which is the carry look-ahead adder and we used the nine's complement 

for subtraction. We found out that the speed is enhanced and the area is a 

increased (as expected).

 We compared the overall performance of the decimal adder from the 

point of view of area and speed for the same FPGA families. We synthesized 

the design for 2 families of Xilinx, Spartan II and Vertix II. And we got the 

previously mentioned results.

Complete test and verification is performed on all the design versions 

fulfilling 3063 test vectors supplied by IBM Corp. and supporting 7 rounding 

modes (5 stated by the standard and 2 proposed by IBM) with exception 

handling for overflow, inexact and invalid operations.
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Quiet operation: Any of the operations specified by this standard 

that never generate an exception.

Biased exponent: The sum of the exponent and a constant (bias) 

are chosen to make the biased exponent's range nonnegative.

Binary floating-point number: A floating-point number with radix 

two.

Cohort: In a given format, the set of floating-point representations 

with the same numerical value.

Decimal floating-point number: A floating-point number with 

radix ten.

Declet: An encoding of three decimal digits into ten bits using the 

densely

packed decimal encoding scheme. Of the 1024 possible declets, 

1000

canonical declets are produced by computational operations, while 

24 noncanonical declets are not produced by computational 

operations, but are accepted in operands

Exception: An event that occurs when an operation has no 

outcome suitable for every reasonable application.

Exponent: The component of a binary floating-point number that 

normally signifies the integer power to which the radix two is raised 

in determining the value of the represented number. Occasionally 

the exponent is called the signed or unbiased exponent.

Floating-point number: A bit-string encoding characterized by 

three components: a sign, a signed exponent, and a significand. Its 
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numerical value, if any, is the signed product of its significand and 

its radix two rose to the power of its exponent. In this standard a bit-

string is not always distinguished from a number it may represent.

NaN: Not a Number, a symbolic entity encoded in floating-point 

format. There

are two types of NaNs , quiet and signaling. quiet NaNs propagate 

through almost every arithmetic operations without signaling 

exceptions, while signaling NaNs signal the invalid operation 

exception whenever they appear as operands.

Signal: When an operation has no outcome suitable for every 

reasonable application, that operation might signal one or more 

exceptions by invoking the default or user-specified alternate 

handling. Note that “exception” and “signal” are defined in diverse 

ways in different programming environments.

Significand: A component of an unencoded binary or decimal 

floating-point number containing its significant digits. The 

significand may be thought of as an integer, a fraction, or some 

other fixed-point form, by choosing an appropriate bias. The 

component of a binary floating-point number that consists of an 

explicit or implicit leading bit to the left of its implied binary point 

and a fraction field to the right.
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Chapter 1

Introduction

Background

Although most people use decimal arithmetic when performing manual 

calculations, computers typically only support binary arithmetic in hardware. 

This is primarily due to there being only two logic values, zero and one, that are 

represented in modern computers.  While it is possible to use these two logic 

values to represent decimal numbers, doing so is wasteful in terms of storage 

space and is also less efficient.  For example, in binary, four bits can represent 

sixteen values; while in binary coded decimal (BCD), four bits only represent 

ten values.  Since most computer systems do not provide hardware support for 

decimal arithmetic, numbers are typically input in decimal, converted from 

decimal to binary, processed using binary arithmetic, and then converted back 

to decimal for output. 

In spite of the current dominance of hardware support for binary 

arithmetic, there are several motivations that encourage the provision of support 

for decimal arithmetic. First, applications that deal with financial and other 

real-world data often have errors introduced, since many common decimal 

numbers cannot be represented exactly in binary. For example, the decimal 

number “0.1” is a repeating fraction when represented in binary.  Second, 

people typically think about computations in decimal, even when using 

computers that operate only on binary representations, and therefore may 

experience what is perceived as incorrect behavior when processing decimal 

values.  Third, converting between binary and decimal floating-point numbers 

is computationally intensive and may take thousands of cycles on modern 

processors.[2]
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Decimal data permeates society, as humans most commonly use numbers 

in  base-ten.  An  increasing  demand  for  decimal  real  number  computations 

across a wide range of exponents has spurred the IEEE 754R Working Group to 

include specifications for Decimal Floating-Point (DFP) arithmetic in the new 

IEEE P754 Draft Standard for Floating-point Arithmetic [11]

Decimal Floating-Point (DFP) computations are critical for many financial 

and commercial  applications.  With  trends  towards  globalization,  many laws 

and standards require decimal calculations. For example, the European Union 

requires  currency  conversion  to  and  from  the  euro  to  be  calculated  to  six 

decimal places. One study estimates that a large telephone billing system can 

accumulate errors of up to $5 million per year, if using binary floating-point 

arithmetic, rather than decimal. Both hardware and software solutions for DFP 

arithmetic are being developed to remedy these problems [11].

Also, another important question is why do we need to replace the existing 

software conversion from decimal to BCD than back to decimal into hardware. 

An  interesting  study  [14]  shows  that  application  can  realize  performance 

improvements ranging from about 10% (for applications whose respective DFP 

routines  consumes  10%  of  the  execution  time)  to  nearly  1000%  (for 

applications whose respective DFP routines consumes 90% of the execution 

time)

Due  to  the  rapid  growth  in  financial,  commercial,  and  Internet-based 

applications, there is an increasing desire to allow computers to operate on both 

binary and decimal floating-point numbers.  Consequently, specifications for 

decimal floating-point arithmetic are being added to the IEEE-754 Standard for 

Floating-Point  Arithmetic  which was  published in  1985.   In  this  thesis,  we 

present  the  design  and  implementation  of  a  decimal  floating-point 

adder/subtractor  that  is  compliant  with  the  final  revision  of  the  IEEE-754r 

Standard.  The adder supports operations on 64-bit (16-digit) decimal floating-
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point operands.  We provide 2 different architectures for the adder/subtractor 

and 2 different internal designs for the subtractor in accordance with 2 different 

internal designs for the adder. Synthesis results indicating the area usage and 

the clock frequency with 2 Xilinx FPGA families, Spartan II and Vertix II for 

our design were introduced. Also, comparison with other designs is introduced.

Problem description

Binary floating-point cannot exactly represent decimal fractions, so if binary 

floating-point is used it is not possible to guarantee that results will be the same 

as those using decimal arithmetic. This makes it extremely difficult to develop 

and test applications that use exact real-world data, such as commercial and 

financial values [4]. 

Here are some specific examples: 

1. Taking the number 9 and repeatedly dividing by ten yields the following 

results shown in Table 1.1: 

Decimal Binary

0.9 0.9
0.09 0.089999996
0.009 0.0090

0.0009 9.0E-4
0.00009 9.0E-5

0.000009 9.0E-6
9E-7 9.000000E-7
9E-8 9.0E-8
9E-9 9,0E-9
9E-10 8.999999E-10

                  Table 1.1: Binary versus Decimal division.

2. Here, the left hand column shows the results delivered by decimal floating-

point arithmetic (such as the BigDecimal class for Java or the decnumber C 
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package), and the right hand column shows the results obtained by using the 

Java float data type. The results from using the double data type are similar 

to the latter (with more repeated 9s or 0s). 

3. Some problems like this can be partly hidden by rounding, but this confuses 

users. Errors accumulate unseen and then surface after repeated operations. 

4. For example, Consider the calculation of a 5% sales tax on an item (such as a 

$0.70 telephone call), which is then rounded to the nearest cent. Using 

double binary floating-point, the result of 0.70 x 1.05 is 

0.73499999999999998667732370449812151491641998291015625; the 

result should have been 0.735 (which would be rounded up to $0.74) but 

instead the rounded result would be $0.73 (using Banker’s rounding). Which 

will introduce an error of 1 cent per telephone call.

5. Even a single operation can give much unexpected results. For example: 

• Similarly, the result of 1.30 x 1.05 using binary is 

1.3650000000000002131628207280300557613372802734375; this 

would be rounded up to $1.37. However, the result should have been 

1.365 – which would be rounded down to $1.36 (using Banker’s 

rounding). 

Taken over a million transactions of this kind, as in the ‘telco’ 

benchmark, these systematic errors add up to an overcharge of more 

than $20. For a large company, the million calls might be two-minutes-

worth; over a whole year the error then exceeds $5 million. 

• Using binary floating-point, calculating the remainder when 1.00 

is divided by 0.10 will give a result of exactly 

0.099999999999999950039963891867955680936574935913085937

4

http://speleotrove.com/decimal/telco.html
http://speleotrove.com/decimal/telco.html


Even if rounded this will still give a result of 0.1, instead of 0, the 

result obtained if decimal encoding and arithmetic are used. 

Related work

The decimal-encoded formats and arithmetic described in the new IEEE 754-

2008 standard now have many implementations in hardware and software 

including: 

• The hardware decimal floating-point unit  in the  IBM Power6 

processor, the firmware (with assists) in the  IBM System z9 (mainframe) 

processor, and the hardware decimal floating-point unit in the IBM System 

z10 mainframe which is the first mainframe with hardware support for the 

DFP format in the IEEE 754-2008 floating-point standard. It joins the IBM 

POWER6  processor-based  System  p  570  server  as  the  only  hardware 

support available for this format [13].

• Benchmark  suite  of  financial  Decimal  Floating-Point  (DFP) 

applications. The benchmark suite includes a banking benchmark, a euro 

conversion benchmark,  a  risk management  benchmark,  a  tax preparation 

benchmark,  and  a  telephone  billing  benchmark.  The  benchmark  suite  is 

being made publicly available [11].

• SilMind's   Decimal Floating Point Arithmetic hardware IP Cores 

Family. Two hardware implementations are introduced for decimal floating-

point adder that  is  compliant with the IEEE 754-2008 Standard; one for 

High-Speed applications and the other for Low Power/Area ones [12].

• IBM  XL  C/C++  for  AIX,  Linux and  z/OS,  DB2  for  z/OS, 

Linux,  UNIX, and Windows, and  Enterprise PL/I  for z/OS; IBM is  also 

adding  support  to  many  other  software  products  including  z/VM  V5.2, 

System i/OS, the dbx debugger, and. Debug Tool Version 8.1 
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• SAP NetWeaver 7.1  , which includes the new DECFLOAT data 

dtype  in  ABAP,  with  support  for  hardware  decimal  floating-point on 

Power6 

• GCC   4.2 was released in July 2007; this is the first GCC release with 

support for the proposed ISO C extensions for decimal floating point. 

Also, some related work on decimal arithmetic includes designs for fixed-

point decimal adders and floating-point decimal arithmetic units.  An extensive 

bibliography of support for decimal arithmetic is presented in [1]. 

The proposed decimal floating-point adder differs from previous decimal 

adders in that it is compliant with the final version of the revised IEEE-754 

Standard. 

Thesis outline

The following chapters provide detailed information about the IEEE 754-2008 

standard for floating-point Arithmetic, architecture and implementation for our 

64-bit decimal floating point adder/subtractor compliant with the standard with 

extensive testing according to IBM test suite.

Chapter Two: Overview of the final IEEE 754-2008 standard for floating-

point arithmetic with focus on the decimal part of it from the 

point of view of the format, encoding, rounding modes and 

exception handling.

Chapter Three: Architecture and Implementation which gives detailed 

information for our 64-bit adder/subtractor discussing the 

internal design of each block and its hierarchal levels as well 

(if any).
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Chapter Four: Verification and Testing for the design, the problem we faced 

during testing and how we solve it. Also, synthesis results are 

discussed in details. 

Chapter Five: Similar work comparison, which is a review of what has been 

done as hardware implementation for decimal adder/subtractor 

from companies as well as universities.

Chapter  Six: Illustrates  the  conclusions  and  offers  suggestions  for  future 

work.

References
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History 
 

The first IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754-1985) 

set the standard for floating-point computation for 23 years. It became the most 

widely-used standard for floating-point computation, and is followed by many 

CPU and FPU implementations. Its binary floating-point formats and arithmetic 

are preserved in the new IEEE 754-2008 standard which replaced it.

The 754-1985 standard defines formats for representing floating-point 

numbers and special values (infinities and NaNs) together with a set of floating-

point operations that operate on these values. It also specifies four rounding 

modes and five exceptions (including when the exceptions occur, and what 

happens when they do occur).

The draft version of the standard including the decimal part was first issued on 

12 Feb 2001 and finally released in August 2008.

  

We  started  by  following  the  DRAFT  Standard  for  Floating-Point 

Arithmetic P754/D0.10.4 2005 March 14 16:43 and then after the publishing of 

the standard we made the required modification so that the current design is 

now following the final version.

Scope 

This standard specifies formats and methods for binary and decimal floating-

point arithmetic in computer programming environments: standard and 

extended functions in 32-, 64-, and 128-bit basic formats single, double, quad, 

and extended precision formats, and recommends formats for data interchange. 

Exception conditions are defined and default handling of these conditions
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An implementation of a floating-point system conforming to this standard 

can be realized entirely in software, entirely in hardware, or in any combination 

of software and hardware. For operations specified in the normative part of this 

standard,  numerical  results  and  exceptions  are  uniquely  determined  by  the 

values of the input data, sequence of operations, and destination formats, all 

under user control.

Keywords:  computer,  floating-point,  arithmetic,  rounding,  format, 

interchange, number, binary, decimal, subnormal, NaN, significand, exponent.

 Purpose 

This standard provides a discipline for performing floating-point computation 

that yields results independent of whether the processing is done in hardware, 

software, or a combination of the two. For operations specified in this standard, 

numerical results and exceptions are uniquely determined by the values of the 

input data, sequence of operations, and destination formats, all under user 

control.

Formats 

This standard defines five basic floating-point formats and two storage floating-

point formats, in two radices, two and ten. Binary basic format lengths are 32, 

64, and 128 bits; the binary storage format length is 16 bits.

Decimal  basic  format  lengths  are  64 and 128 bits;  the  decimal  storage 

format  length  is  32  bits.  A  programming  environment  conforms  to  this 

standard, in a particular radix, by providing one or more of the basic formats for 

that radix.

Binary floating-point formats are indicated for:
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• supporting scientific computation

• Applications for which the input data is not known exactly

• Applications for which arithmetic time dominates time spent in conversion 

between internal floating-point formats and external decimal formats

• Applications for which maximum performance is critical – binary is 

either faster or cheaper than decimal of the same fixed word size

• Applications for which maximum accuracy is critical – binary packs 

more precision in a fixed word size and the change in roundoff is less 

extreme at powers of the radix

Decimal floating-point formats are indicated for:

• The bulk of casual numerical applications for which ease of debugging 

is the most important numerical quality

• Supporting business applications especially those with financial data

• Applications for which the input data is known exactly in decimal

• Applications for which time spent in conversion between internal 

floating-point formats and external decimal formats dominates 

arithmetic time

Many applications work well with data and computation in 64-bit formats. 

128-bit formats are useful as native formats for computations in which roundoff 

error would otherwise dominate accuracy of results, and as evaluation formats 

for complicated expressions involving 64-bit formats.

Binary32  is  useful  as  a  computational  format  for  applications  which 

consume  or  produce  much  low-precision  data,  especially  if  that  data  is  in 

binary16  storage  format.  If  those  computations  perform few operations  per 
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datum,  then  binary32  may  be  a  satisfactory  expression  evaluation  format; 

otherwise binary64 is good for complicated expression evaluation.

Basic Decimal Format Encodings 

Unlike basic binary floating-point formats, a representable number may have 

multiple representations in a basic decimal format.  The set  of floating-point 

representations a number maps to is called the number’s cohort; the members of 

a cohort are distinct representations of the same number. For example, if c is a 

multiple of 10 and q is not its maximum, (s, q, c) and (s, q+ 1, c ÷ 10) are two 

representations for the same number and are members of the same cohort.

Numbers in the decimal formats are encoded in the following four fields 

ordered as shown in table 2-1:

1. 1-bit sign S

2. 5-bit combination field G encoding classification, two leading exponent 

bits whose value together is 0, 1, or 2, and one leading significand digit 

3. w-bit following exponent field F which, when combined with the two 

leading exponent bits from the combination field, provides a w+2-bit 

biased exponent                  E = q + bias

4. t-bit trailing significand field T = J1 ... JJ. There are J = t÷10 groups Ji; 

each these groups of ten bits is a declet encoding three decimal digits. 

When the declets are combined with the leading significand digit from 

the combination field, the format has a total of p = 1 + 3 J decimal 

digits. Computational operations produce only 1000 canonical declets, 

but also accept 24 noncanonical declets in operands according to 

Tables 2-3 and 2-4.
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Width 1 Bit 5 Bits W Bits t=10 J bits=3 J digits

Field Sign S Combination  G
Following 

Exponent F

Trailing signficand T 

Containing J declets

Most/least 

significant 

bit

Most........….Least

G0……………G4

Most..Least

F2……..Fw+1

Most………..Least

d1……………d3J

j1……….……..jJ

Table 2.2:  Basic Decimal Floating-Point Format

The values of w, bias, and t for the basic decimal formats are listed in Table 

2-2.

Basic Decimal Format Encoding Parameters
Format Name Decimal32 Decimal64 Decimal 128
Storage Width 32 64 128

Trailing significand 

field width t
20 50 110

Following exponent 

field width w
6 8 12

Combination field 

width
5 5 5

emax 96 384 6144
Exponent bias 101 398 6176
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Table 2.3: Decimal Encodings

The floating point representation r and representable entity v are inferred 

from the constituent fields, thus:

1. If G is 11111, then r is qNaN or sNaN and v is NaN regardless of S. The 

values of F and T distinguish various NaNs. If F2, the most significant bit 

of F, is 1, then r is sNaN; otherwise r is qNaN. [This allows the all-1 bit 

pattern to be a decimal signaling NaN. However, the all-1 bit pattern 

might not be propagated; A canonical NaN representation has bits F3 to 

Fw+1 zero, and trailing significand declets are all canonical.

2. If G is 11110, then r and v = (–1) S ∞. The values of F and T are ignored. 

The two canonical infinity representations have F = 0, T = 0.

3. For finite numbers, r is ( S, E–bias, c ) and v = (–1) S 10 E–bias c ; the 

decimal digit string d0 d1...dp1 of the significand c is encoded in the 

combination and trailing significand fields, while the biased exponent E is 

encoded in the combination and following exponent fields:

• When the combination field G is 110xx or 1110x, the leading significand 

digit d0 is 8+G4, a value 8 or 9, and the leading exponent bits are 2G2+G3 , a 

value 0, 1, or 2.

• When the combination field G is 0xxxx or 10xxx, the leading significand 

digit d0is 4G2+2G3+G4, a value in the range 0..7, and the leading exponent 

bits are 2G0+G1 , a value 0, 1, or 2. Consequently if T is 0 and G is 00000, 

01000, or 10000, then v = (–1) S 0.

The trailing significand field T contains J declets, groups of ten bits each 

encoding three decimal digits using the densely packed decimal encoding 

scheme described in Cowlishaw, M.F., “Densely Packed Decimal Encoding,” 
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IEE Proceedings - Computers and Digital Techniques, ISSN 1350-2387, Vol. 

149, No. 3, pp102-104, May 2002.

A canonical number representation has only canonical declets – see Tables 

2-3 and 2-4.

b(6), b(7), b(8), 

b(3), b(4)

d (1) d (2) d (3)

0 x x x x 4b(0) + 2b(1) +b(2) 4b(3) + 2b(4) +b(5) 4b(7) + 2b(8) +b(9)

1 0 0 x x 4b(0) + 2b(1) +b(2) 4b(3) + 2b(4) +b(5) 8 +b(9)

1 0 1 x x 4b(0) + 2b(1) +b(2) 8 +b(5) 4b(3) + 2b(4) +b(9)

1 1 0 x x 8 + b(2) 4b(3) + 2b(4) +b(5) 4b(0) + 2b(1) +b(9)

1 1 1 0 0 8 + b(2) 8 + b(5) 4b(0) + 2b(1) +b(9)

1 1 1 0 1 8 + b(2) 4b(0) + 2b(1) +b(5) 8 + b(9)

1 1 1 1 0 4b(0) + 2b(1) +b(2) 8 + b(5) 8 + b(9)

1 1 11 1 8 + b(2) 8 + b(5) 8 + b(9)

Table 2.4: Decoding 10-bit Densely Packed Decimal to 3 Decimal Digits

Decoding Densely Packed Decimal

Table 2.3 decodes a declet, with 10 bits b(0) to b(9), into 3 decimal digits d(1), 

d(2), d(3). The first column is in binary and an “x” denotes “don’t care”. Thus 

all 1024 possible 10-bit patterns shall be accepted and mapped into 1000 

possible 3-digit combinations with some redundancy.

d(1,0), d(2,0,), d(3,0) b(0) , b(1) , b(2) b(3) , b(4) , b(5) b(6) b(7) , b(8) , b(9)

0 0 0 d(1,1:3) d(2,1:3) 0 d(3,1:3)

0 0 1 d(1,1:3) d(2,1:3) 1 0, 0, d(3,3)

0 1 0 d(1,1:3) d(3,1:2), d(2,3) 1 0, 1, d(3,3)

0 1 1 d(1,1:3) 1, 0, d(2,3) 1 1, 1, d(3,3)

1 0  0 d(3,1:2), d(1,3) d(2,1:3) 1 1, 0, d(3,3)

1 0 1 d(2,1:2), d(1,3) 0, 1, d(2,3) 1 1, 1, d(3,3)

1 1 0 d(3,1:2), d(1,3) 0, 0, d(2,3) 1 1, 1, d(3,3)
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1 1 1 0,0, d(1,3) 1, 1, d(2,3) 1 1, 1, d(3,1,3)

Table 2.5: Encoding 3 Decimal Digits to 10-bit Densely Packed Decimal

Encoding Densely Packed Decimal 

Table 2.4 encodes 3 decimal digits d(1), d(2), and d(3), each having 4 bits 

which can be expressed by a second subscript d(1,0:3), d(2,0:3), and d(3,0:3), 

where bit 0 is the most significant and bit 3 the least significant, into a declet, 

with 10 bits b(0) to b(9). Computational operations generate only the 1000 

canonical 10-bit patterns defined by table 2.2c.

The 24 noncanonical patterns of the form 01x11x111x, 10x11x111x, or 

11x11x111x (where an “x” denotes “don’t care”) are not generated in the result 

of  a  computational  operation.  However,  as  listed  in  table  2-3,  these  24  bit 

patterns do map to valid numbers. The bit pattern in a NaN significand can 

affect how the NaN is propagated.

Rounding

Rounding takes a number regarded as infinitely precise and, if necessary, 

modifies it to fit in the destination's format while signaling the inexact 

exception. Every operation shall be performed as if it first produced an 

intermediate result correct to infinite precision and with unbounded range, and 

then rounded that result according to one of the modes in this section.

The  rounding  modes  affect  all  computational  operations  that  might  be 

inexact. The rounding modes may affect the signs of zero sums, and do affect  

the thresholds beyond which overflow and underflow are signaled.
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Rounding Modes to Nearest

In these modes However an infinitely precise result with magnitude at least 

bemax ( b – ½ b1-p  ) shall round to ∞ with no change in sign; here emax and p are 

determined by the destination format unless overridden by a rounding precision 

mode 

Round to Nearest, Ties to Even

An implementation of this standard shall provide round to nearest, ties to even, 

as the default rounding mode. In this mode the representable number nearest to 

the infinitely precise result shall be delivered; if the two nearest representable 

numbers bracketing an unrepresentable infinitely precise result are equally near, 

the one with it's an even least significant digit shall be delivered.

Round to Nearest, Ties Away from Zero

A decimal implementation of this standard shall provide round to nearest, ties 

away from zero, as a user-selectable rounding mode. In this mode the 

representable number nearest to the infinitely precise result shall be delivered; 

if the two nearest representable numbers bracketing an unrepresentable 

infinitely precise result are equally near, the one with larger magnitude shall be 

delivered.

Directed Rounding Modes

An implementation shall also provide three other user-selectable rounding 

modes: the directed rounding modes are:

Round toward +∞: When rounding toward +∞ the result shall be the 

format's representable number (possibly +∞) closest 

to and no less than the infinitely precise result. 
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Round toward –∞: When rounding toward –∞ the result shall be the 

format's representable number (possibly –∞) closest 

to and no greater than the infinitely precise result. 

Round toward 0:  When rounding toward 0 the result shall be the 

format's representable number closest to and no 

greater in magnitude than the infinitely precise result.

Rounding Precision

Normally, a result is rounded to the precision of its destination. However, some 

systems deliver arithmetic results only to destinations wider than their 

operands. On such a system the user, which may be a high-level language 

compiler, shall be able to specify that a result be rounded instead to any 

supported narrower precision with only one rounding, though it may be stored 

in a wider format with its wider exponent range.
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Chapter 3

Architecture and Implementation

 Background

Before proceeding with the architecture and the implementation, a quick 

overview about the floating point representation motivation, properties and 

computation problem is introduced.

 Floating Point Number representation 
   

Motivation and Terminology
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The problem with fixed point arithmetic is the lack of dynamic range, which can be 

illustrated by the following example in the decimal number system.

Assuming that there are four decimal digits. Then the dynamic range 9999 to 0 

is ≈ 10,000. This rang is independent of the decimal point positions, that is, the 

dynamic  range  of  0.9999 to  0.0000 is  also  ≈  10,000.  Since  this  is  4-digits 

number, we may want to represent during the same operation both 9999 and 

0.0001; but is impossible to do in fixed point arithmetic without scaling.

The  above  example  illustrates  the  motivation  for  floating  point 

representation: dynamic range.

Floating point representation is similar to scientific notation; that is

                                          Fraction x (radix)exponent  

For example the number 9999 is expressed as 0.9999 X 104. In a computer 

with floating point instructions, the radix is implicit, so only the fraction and 

the exponent need to be represented explicitly.

The floating point format for the above four decimal digits could be like 

this:

                                            
exponent        fraction

    Properties of floating point Representation    

Lack of Unique Representation

Generally, a floating point number is evaluated by the equation M x ße 

where 

M  =  mantissa
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ß   =  radix

e =  exponent

In a 5-digit  decimal floating point  representation,  the number 9 can be 

written as 0.9 X 101 or as 0.09 X 102 . The lack of unique representation makes 

comparison  of  numbers  difficult.  Consequently,  floating  point  numbers  are 

usually  represented  in  normalized  from,  where  the  mantissa  is  always 

represented by a nonzero most significant digit. Obviously, this rule could not 

apply  to  the  case  of  zero.  Therefore,  by  definition,  normalized  zero  is 

represented by all zero digits (which simplifies zero detection circuitry). It is 

interesting to  note  that  a  normalized zero is  floating point  representation is 

designed to be identical to the fixed point representation of the zero.

Range and Precision

The range is a pair of numbers (smallest, largest) which bounds all 

representable numbers in a given system. Precision, on the other hand, indicates 

the smallest difference between the mantissas of any two such representable 

numbers.

The largest number representable in any normalized floating point system is 

approximately equal to the radix raised to the power of the most positive 

exponent, and the absolute value of the smallest nonzero number is 

approximately equal to the radix raised to the power of the most negative 

exponent.

Assuming Mmax and expmax to be the largest mantissa and exponent 

respectively, we write the largest representable number as:

max = Mmax × βexp
max

Similarly, we get the minimum representable number min from the 

minimum normalized mantissa Mmin and the minimum exponent expmin:

min = Mmin × βexp
min
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For a given radix, the range is mainly a function of the exponent. By 

contrast, the precision is a function of the mantissa. Precision is the resolution 

of the system, and it indicates the minimum difference between two mantissa 

representations, which is equal to the value of the least significant bit of the 

mantissa. Precision is defined independently of the exponent; it depends only 

on the mantissa and is equal to the maximum number of significant digits 

representable in a specific format. In the IBM short format, there are 24 bits in 

the mantissa. Therefore, the precision is six hexadecimal digits because 16−6 = 

2−24. If we convert this to human understandable numbers 2−24 ≈ 0.6 × 10−7, or 

approximately seven significant decimal digits.

In the literature, some prefer to express the precision as the difference 

between two consecutive mantissas so that in the previous example, it would be 

16−6 and not six.

 Floating Point Addition and Subtraction

Addition and subtraction require that exponents of the two operands be 

equal. This alignment is accomplished by shifting the mantissa of the smaller 

operand to the right, while proportionally increasing its exponent until it is 

equal to exponent of the larger number. (In general scientific notation, the 

alignment could be accomplished by the converse operation, that is, shift the 

mantissa of the larger number left, and while decreasing it is exponent. 

However, this is impossible in normalized floating point system, since a left-

shifted normalized mantissa has to be larger than1, but 1- ß-p  is the largest 

representable p–digit mantissa). After the alignment, the two mantissa are 

added (or subtracted), and the resultant number, with the common exponent, is 

normalized. The latter operation is called postnormalization.

 Problems in Floating Point Computations
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Loss of Significance

The following example illustrates the loss of significance problem. Assume the 

two numbers are different by less than 2-24. (The representation is the IBM 

System 370 short format.)

A = 0.100000 X 161

B = 0.FFFFFF X 160

 When one is subtracted from the other, the smaller must be shifted right to 

align the radix points. (Note that the least significant digit of B is now lost.)

A = 0.100000 X 161

B = 0.FFFFFF X 16  1  
A - B = 0.000001 X 161 =  .1 X 16-4    

Now let us calculate the error generated due to loss of digit in the smaller 

number. The result is (assuming infinite precision):

A = 0.100000 X 161

B = 0.FFFFFF X 16  1  
A - B = 0.000001 X 161 =  .1 X 16-5   

ERROR = 0.1 x 16-4  - 0.1 x 16-5   = 0.F x 16-5   .

Thus, the loss of significance (error) is 0.F x 16-5. An obvious solution to 

this problem is a guard digit, that is, additional bits are used to the right of the 

mantissa to hold intermediate results. In the IBM format, an additional 4 digit 

(one hexadecimal digit) are appended to the 24 bits of the mantissa. Thus with a 

guard digit the above example will produce no error. On first thought, one 

might think that in order to obtain maximum accuracy it is necessary to equate 

the number of guard bit to the number of bits in the mantissa. However, it has 

proven that two guard digits are always sufficient to preserve maximal 
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accuracy. Regardless of operation (subtraction and multiplication are the 

operation of concern), only one nonzero bit can be left-postshifted into the 

result mantissa. Thus, no more than one guard digit will enter the final 

significant result. However, to insure an unbiased rounding, a third digit (sticky 

digit) can be added beyond the two guard digits [7].

 Design Specification

 The target design has to fulfill the following specifications:

- Decimal Adder/Subtractor unit.

- Single path.

- 64bits.

- Support 5 rounding modes.

oRound to zero.

oRound to +∞.

oRound to -∞.

oRound to nearest

• Ties to even.

• Ties away from zero.

- Support exception handling by raising a flag.

oInvalid.

• Any operation on a signaling NaN except those 

operations defined to be quiet.

• Magnitude subtraction of infinities, such as (+∞) + (-∞

).

oOverflow.

oInexact.
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 Unit Interface

The unit interface as shown in figure 3.1 has 2 input operands with 64-bit wide, 

one bit (sign_in) indicating the operation to be performed, two inputs for clock 

and reset signals and finally 3 bits specifying the rounding mode that will be 

applied on the intermediate final result. As output of this unit we have the result 

as 64-bit wide in the standard format in addition to 3 flags for exception 

handling (inexact, overflow and invalid).   

Figure 3.1: Unit Interface

 Internal representation

In our design we used the single path technique and we tried different internal 

design  for  some  blocks  that  will  be  explained  in  details.  A block  diagram 

describing our 64-bit decimal floating-point adder/subtractor design is shown in 

Figure 3.2.  In which, the two input operands are decomposed from the Densely 

Packed format to extract the sign, the significand and the exponent fields of 

each operand. The two significands are then transformed to BCD.
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With the operation specifier and the sign of each operand the effective 

operation is then deduced.

The two significands are then aligned to have the same exponent to be 

added or subtracted according to the effective operation.

The result of the BCD adder is shifted and adjusted according to the 

rounding mode specifier.

After the calculation of the exponent field it is adjusted in accordance with 

the shifting done on the BCD result. 

The sign of the result is calculated in parallel with the BCD result and the 

exponent of the result, and then all the fields are repacked into Densely Packed 

format with all the exception handling and raising the appropriate flags.
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Figure 3.2: Block Diagram

Decompose

Figure 3.3: Decompose Interface

The two IEEE-754 decimal encoded numbers (operand_a and operand_b) are 

unpacked into their corresponding sign-bits (sign_a and sign_b), 10-bit biased 

binary exponents (ea and eb), and 16-digit significands. 

 

Each 64-bit operand has the format shown in table 3.1, which consists of a 

1-bit sign field, an 8-bit exponent continuation field, a 50-bit coefficient 

continuation field, and a 5–bit combination field.  The combination field is 

decoded and combined with the exponent and coefficient continuation fields to 

determine the operand’s exponent and coefficient, respectively.

Decompose
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Length (bits) 1 5 8 50

Contents Sign
Combination 

Field

Exponent 

continuation

Coefficient 

continuation

 Table 3.6: Densely Packed Decimal-64 Operand Format.

With the sign_in signal and the deduced sign of each operand the effective 

operation is then deduced according to the following equation:

Eff_op = sign_in      sign_a      sign_b.

The two unpacked operands are decoded from Densely Packed Format 

(DPF) (54 bits) to their corresponding 64 bits (16 digits) in BCD format (na1 

and nb1) table 3.2.

Length (bits) 1 10 64
Contents Sign Exponent Coefficient

Table 3.7:  BCD Operand Format

Exponent Difference

Figure  3.4  shows  the  interface  of  this  block  in  which  the  two  input  BCD 

operands (na1 and nb1) are checked to calculate the number of leading zeros in 

each (na_zero, nb_zero). At this step we will internally calculate a signal called 

"effective exponent" which represents the difference between the exponent and 

the number of leading zeros for each operand.

With the number of leading zeros and the effective exponent we deduce the 

larger operand which will be placed on (NA2) and if we have equal effective 
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exponent we assume that operand_a is the larger.

In  order  to  align  the  2  operands,  calculation  for  the  amount  the  larger 

operand has to be shifted left (left_amount) as well as the amount the small 

operand has to be shifted right should (right_amount) also be calculated.

In case the small operand has a larger exponent then it has to be shifted left  

(left_small_amount) in order to align the 2 operands.

Internal initial calculation for the result exponent (er_int_out) is done inside 

this block based on the calculated large operand, shift amounts and the initial 

exponents for both operands.

Figure 3.4: Exponent Difference Interface

The exponent difference block calculates the amount of shift for each of the 

two BCD significand values so that their corresponding exponents are equal.  It 

determines  the  largest  value by  which  NA1 can be shifted to  the  left,  thus 

decreasing  its  exponent  towards  the  value  of  the  lesser  exponent  without 

encountering  a  loss  of  information.  This  is  done  in  accordance  with  the 

following formula:

Exp_Diff
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Left_amount = min {EA –EB, X - M} (1)

Where(EA – EB) is the exponent difference of the 2 operands, M is the index of 

the most significant non-zero digit  of NA1, and X is the index of the most 

significant digit available for the operand (for our 16-digit implementation, X = 

16) on the condition of being positive number.  

In parallel with this, it is also determined if and by how much NB must be 

shifted to the right or left in order to complete the alignment process.  This is 

done in accordance with the following formulas:

Right_amount = max {EA – EB + M - X, 0} (2)

left_small_amount = max {EB – EA + X -  M, 0} (3)

Once the left and right shift amounts are computed, the significand that is 

associated with the larger exponent (NA1) is shifted to the left up to the edge of 

its available register space to guarantee no loss in the accuracy of the result.  At 

the same time, the operand with the smaller exponent (NB1) is shifted to the 

right until the two significands have associated exponents that are equal.  This 

shift does not affect the result unless non-zero digits are shifted out of the 64-bit 

(16-digit)  significand field.   In this case these digits are shifted through the 

round digit, guard digit and sticky bit, which are later used for rounding.  Fig. 

3.5 shows the adder operation and result format.

na2 large Significand

nb2  Small Significant Guard Round Sticky

   

Carry 
out

Guard Round Sticky

+
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Figure 3.5: Adder operation and result format.

An  example  that  illustrates  the  workings  of  the  significand  alignment 

procedure is provided in the following example:

Example1. Illustrating significand alignment:

Definitions:

na1  input significand A (associated with ea1)

nb1  input significand B (associated with eb1)

ea1  input exponent A (ea1 >= eb1)

eb1  input exponent B (eb1 < ea1)

Input values:

na1 = 0786 0000 0000 0000

nb1 = 0000 0000 0004 3720

ea1 = 6

eb1 = 0

Taking into account the available significand round and guard digits and the 

sticky bit, the two input significands are shown below (also refer to Figure 3.7):

na1 =    0786 0000 0000 0000

nb1 =    0000 0000 0004 3720 00

Using equation (1), it can be found that na2 must be left-shifted one digit:

Left_amount = min {6 – 0, 16 – 15} = 1
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In parallel, equation (2) can be used to determine the right-shift amount for 

nb2:

Right_amount = max {6 – 0 + 15 – 16, 0} = 5

In parallel, equation (3) can be used to determine the left_small_amount shift 

for nb2:

Left_small_amount = max {0 - 6 +15– 16, 0} = 0 

Given  these  shift  amounts,  the  two  significands  and  their  associated 

exponents are adjusted to become the following:

NA2 = 7860 0000 0000 0000

NB2 = 0000 0000 0000 0000 4372 0000 0

Er_int_out = 5 (common exponent)

Example2: As example for the shift left small amount, note the following 

case in which the input values are:

na1 = 0000 0023 0786 0000 

nb1 = 0000 0000 0000 0004 

ea1 = 7

eb1 = 10

Here we should start first by calculating the effective exponent (eff_exp) for 

both operands.

eff_exp_a = ea1 – na_zero  = 7 – 5 =2

eff_exp_b = eb1 – nb_zero  = 10 – 15 = -5
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 So it's clear that operand_a is the larger and we should align both operands 

to have a common exponent of 2 so using equation (1), it can be found that 

NA1 must be left-shifted six digits:

Left_ amount = min {7 – 10, 16 – 10} = 6

Right_amount = max {7 -10 + 10-16, 0} = 0

Left_small_amount = max {10 – 7 +16 – 10, 0} = 9 

Given  these  shift  amounts,  the  two  significands  and  their  associated 

exponents are adjusted to become the following:

na2 = 2307 8600 0000 0000  

nb2 = 0000 0040 0000 0000 0000 0000 0

Er_int_out = 1 (common exponent)

Significand Alignment

This block is responsible for shifting the two input operands (na1, nb1) with the 

amount calculated by the previous block (Exponent difference). So that, 

depending on the large operand value it places the larger operand on na2 and 

the smaller operand on nb2. It adds to the smaller a guard digit, a round digit 

and a sticky bit to keep some of the digits whenever a shift to the right is done. 

The guard digit, round digit and the sticky bit are used later for rounding 

purposes.
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Figure 3.6: Significand Alignment Interface

BCD Adder

The adder block is the most critical block for the overall delay of the design. 

So, we tried 2 internal design for the adder itself and 2 different designs for the 

subtractor.

We will  represent first  the ripple  carry adder in which we are using the 

nine's-complement  for  subtraction  as  shown  in  fig.3.7.  In  which  the  two 

standard BCD operands are added/subtracted after being aligned in the previous 

step.

Figure 3.7: BCD Adder/Subtractor.
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The 2 input operands na2 and nb2 are 64-bit and 73-bit wide respectively. 

First, the sticky bit in nb2 is extended to be one digit. Second, in order to be 

able to add or subtract the 2 operands, the na2 is also extended by 3 digits 

which are all zeros in order to have same length for both operands. So that now 

we have to add/subtract 19 digits using our BCD adder. 

Also, after getting the intermediate result including the end around carry, we 

need to check whether the intermediate result has to be complemented or not 

depending on effective operation and the end around carry.

Each subblock of the 19 identical blocks in first row of fig 3.7 is a BCD 

adder/subtractor cell which will be illustrated in details as follows.

Adder cell

Each subblock has two 4-bit input operands (inp_a) and (inp_b), an input carry 

(cin) from the previous stage and an operation specifier (operation). It generates 

a sum vector of 4 bits (sout) and a carry out signal (cout) as shown in fig.3.8.

. 

Figure 3.8:  BCD Adder/Subtractor cell

Adder/
Subtractor
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We have  implemented  the  subtractor  by  2  different  designs,  the  nine's-

complements  and  the  ten's-complements.  We  are  using  here  the  nine's-

complements which will be explained in details. Operand B is fed into a nine's 

complement block to prepare it, then according to the operation specifier signal 

this operand is kept as it is or we get its nine's complement to be fed to the 

BCD  adder  with  input_a  which  generates  the  output  (sout)  according  to 

equation (3) and the carry (cout) according to equation (4).

Sout =  inp_a XOR inp_b XOR cin…………………………………(3)

Cout = (cin AND (inp_a OR inp_b)) OR (inp_a AND inp_b)………(4)

Carry effect

Figure 3.9: carry effect block interface 

This block is responsible of generating the input carry to the LSD cell in the 

adder  block  as  well  as  detecting  whether  the  generated  output  should  be 

complemented or not.

If  the  effective  operation  is  addition,  then  the  cin  and  complement_out 

signals are equal to zeros. While,  in case of effective subtraction if the end 
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round carry (carry_out) is generated this means that the result is positive and 

we should  generate  cin  to  be  equal  to  '1'  which  is  fed to  the  LSD and no 

complementation is needed for the output.

In case of effective subtraction and no carry is generated this will only occur 

in case we had both operand having the same effective exponent and we 

assumed that operand-a is the larger which was not correct. So, we got a 

negative result (carry_out='0') in which case we should complement the output 

by raising the complement_out signal.

Nine's complement

The 9's complement of a decimal number as shown in fig.3.10 can be found by 

subtracting each digit in the number from 9 as shown in table 3.3.

Figure 3.10: nine's complement block interface 

DECIMAL DIGIT 9’s COMPLEMENT

0 9
1 8
2 7
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:

:

:

:
9 0

Table 3.8:  9’s Complenment 

Example: 9’s COMPLEMENT of 28 = 99 –28 = 71

9’s COMPLEMENT of 562 = 999 –562= 437

Subtraction of a smaller decimal number from a larger one can be done by 

adding the 9's complement of the smaller number to the larger number and then 

adding the carry to the result (end round carry)[6].

When subtracting a larger number from a smaller one, there is no carry 

and the result is in 9's complement form and negative.

Examples:

37



Figure 3.11:  shows the uncorrected and the corrected BCD sums.

So, from figure 3.11 we can deduce some general rules to follow in case of 

subtraction:

1 Add 9's complement of b to a

2 If the result >9 correct by adding 0110.

3- If most significant carry is produced [i.e.=1]then the result is positive and 

the end around carry must be added.

4- If most significant carry is not produced [i.e.=0]then the result is negative 

and we get the 9's complement of the result.

Correction unit

A correction  unit  is  embedded  with  each  cell  of  the  adder.  This  unit  is 

responsible of correcting the calculated result. When adding two BCD digits the 

obtained result  may be ranged between (0 -18).  It  is  not allowed to have a 

calculated decimal numbers greater than 9. Only numbers between 0 and 9 are 

allowed in order to have the correct BCD code. 

DECIMAL 

DIGIT

UNCORECTED 

BCD SUM

C, 
3 S, 3 S, 2 S, 1 S, 0

9, COMPLEMENT

BCD SUM

C 
3 S 3 S 2 S 1 S 0

0 0 0 0 0 0 0 0 0
:

:

:

:

:

:
9 1 0 0 1 1 0 0 1

10 1 0 10 1 0 0 0 0
11 1 0 1 1 1 0 0 0 1
12 1 1 0 0 1 0 0 1 0
13 1 1 0 1 1 0 0 1 1
14 1 1 1 0 1 0 1 0 0
15 1 1 1 1 1 0 10 1
16 1 0 0 0 0 1 0 1 1 0
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17 1 0 0 0 1 1 0 1 1 1

18 1 0 0 1 0 1 1 0 0 0

19 1 0 0 1 1 1 1 0 0 1

Table 3.9:  BCD sum correction 

Thus, for sums between 10 and 18 we must subtract 10 and produce a carry, 

Subtracting 10 means by other words adding its 2's complement. So, by adding 

0110 the result will be correct.

Also, for answers between 0 and 3 we should check if a carry is produced or 

not. If a carry is produced this means that the answer is between 16 and 19, and 

then we must correct the output in the same manner as previous.

Ten's complement

The  ten's-complement  block  interface  is  shown  in  fig  3.12.  The  ten's-

complements  of  a  BCD  number  is  obtained  by  adding  '1'  to  the  nine's 

complement  of  the  overall  result.  In  other  words,  in  case  of  effective 

subtraction we put the cin_compl of the LSD equal to '1'. The "cout_compl" 

of each cell is fed to the following one. 

Figure 3.12: nine's complement block interface 

Tens_c

ompl
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The main advantage of the ten's-complement over the nine's-complement is 

that we don't have to wait for the end round carry to get the correct result. But  

the main disadvantage is that we have to wait for the carry to ripple to the MSD 

to get the correct answer.

We shall evaluate the behavior in the synthesis time to decide which one is 

convenient for the overall system performance.

We introduced another system architecture in order to avoid the waiting for 

the rippling of the carry. As shown in fig.3.13 we added another BCD-adder 

block and a selector. 

Figure 3.13: Alternative block diagram 
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In which the second BCD-adder has the 2 input operands interchanged. So 

that we have at the same time a block is subtracting na1 from nb1 and the other 

is subtracting nb1 from na1.  

According  to  the  complement-out  signal  the  selector  will  select  which 

output shall be delivered to the next stage.

We  introduced  another  design  for  the  BCD  adder  which  is  the 

carry_look_ahead architecture [7] as shown in figure 3.14.

Figure 3.14: Carry_look_ahead adder block diagram 

In  the  last  decade,  the  carry-look-ahead  has  become  the  most  popular 

method of addition, due to a simplicity and modularity that make it particularly 

adaptable  to  integrated  circuit  implementation.  To  see  this  modularity,  we 

derive the equations for a 4-bit slice[7].

The sum equations for each bit position are:
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S0 = A0 ⊕ B0 ⊕ C0
S1 = A1 ⊕ B1 ⊕ C1
S2 = A2 ⊕ B2 ⊕ C2
S3 = A3 ⊕ B3 ⊕ C3

The carry equations are as follows:

C1 = A0B0 + C0(A0 + B0)

C2 = A1B1 + C1(A1 + B1)

C3 = A2B2 + C2(A2 + B2)

C4 = A3B3 + C3(A3 + B3)

In this adder design, instead of waiting for the end around carry, we grouped 

each 4 digits together and duplicate it one time assuming the carry from the 

previous stage is '1' and the other time assuming the carry from the previous 

stage is  '0'.  We have two multiplexers,  one to select  which carry should be 

passed to the next stage and the other selects the 4-digit output that will be fed 

to the final output. 

At the end, the ripple carry adder and the carry look ahead will be compared 

with the whole design from both point of view, area and speed.

Sign result

in general:
Si = Ai ⊕ Bi ⊕Ci

in general:
Ci+1 = AiBi + Ci(Ai + Bi)
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Figure 3.15: result sign block interface

Figure 3.15 shows the interface of the block responsible for generating the sign 

of the final result. The sign of the result depends mainly on the effective 

operation. In case of effective addition the sign of the result always follows 

operand_a sign as shown in table 3.5. 

Table 3.10:  sign result 

INPUTS OUTPUTS

SA SB Operation
Effective 

Operation
Sign Result

+ + Add Add + = Sign A
+ + Sub Sub TBD
+ – Add Sub TBD
+ – Sub Add + = Sign A
– + Add Sub TBD
– + Sub Add - = Sign A
– – Add Add - = Sign A
– – Sub Sub TBD

TBD: to be deduced
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In case of effective subtraction we should check whether there is output 

complementation in the BCD adder block or not. If operand_b is the larger 

operand or when "complement_out" signal is generated while the large operand 

is operand_a, then the sign of the result is according to the following equation:

Sign_r = sign_in XOR sign_b.

Otherwise, the sign of the result is equal to sign_a.

Exp adjust

Figure 3.16: exponent adjust block interface

Figure 3.16 shows the interface of the exponent adjust block. The final result 

exponent in addition to an alert signal for max exponent is calculated within 

this block.
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The previously calculated exponent (er_int_out) within the exponent 

difference block is adjusted according to the effect of shift and round step. The 

adjustment may be by increasing or decreasing the previously calculated 

exponent. 

The rising of the input "normalize" signal indicates the generation of a carry 

out signal after performing the necessary shift during the effective addition 

operation. This means that a shift to the right to the complete final result has 

been done in order to keep the generated carry out within the final result. At 

this condition we should increment the previously calculated exponent by one.

Another adjustment is required, whenever the "exp_zero" signal is raised we 

should  decrease  the  previously  calculated  exponent  by  the  amount  of  the 

"rslt_zero " signal.  Because at this condition, there was leading zeros in the 

final  result  and  the  amount  of  exponent  calculated  allows  for  shift  while 

keeping the final exponent as required by the standard 

The preferred exponent is min (Q(x), Q(y)) [3].

Where Q(x) and  Q(y) are the exponents of  operand_a and operand_b 

respectively.

Whenever the previously calculated exponent (er_int_out) is equal to the 

max (767) with effective addition and either a carry_out (from the BCD adder) 

is generated or an ex_adj (from shift and round) then, "max" signal is raised and 

the "er" signal is equal to zeros (which is the condition of overflow). 
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Shift & Round

Figure 3.17: shift and round block interface

Figure 3.17 shows the interface of the shift and round block. This block is 

responsible for the followings:

- Calculate the intermediate result"inter_result_1" after shifting and 

rounding operation.

- Raise "ex_adj" when there's a need to adjust the exponent. 

- Raise the "inexact" and "overflow" flags when their appropriate 

conditions are available. 
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- Raise a signal "exp_zero" when a shift to the left has to be performed 

and send the amount of this shift to the exponent adjust block via 

"rslt_zero" signal. 

- Raise a signal "normalize" when a shift to the right has to be 

performed. To discuss in details the internal structure, consider the 

fig.3.18 which represents the internal structure of this block. We are 

going to elaborate each block separately.

Figure 3.18: shift and round internal structure
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Rounding Circuit

The output of the BCD adder "inter_result" is fed to this block in order to check 

for  the  number  of  leading  zeros  and  then  check  the  intermediate  exponent 

(er_int) if it is equal to the is minimum of the exponents of the 2 operands then 

no shift will be performed. Otherwise shift the whole result to the left and raise 

the  "exp_zero"  signal  and  put  the  amount  to  be  shifted  in  the  "rslt_zero" 

variable which is equal to the number of leading zeros.  

In case we have the first 2 least digits are non-zero, we raise the 

"inexact_flag" signal.

The "round_flag" is raised whenever the round digit is greater than "4" or 

when the round digit is equal to "4" and the guard digit is greater than "4". 

If the round digit is equal to 5 and the guard digit and the sticky bit are 

equal to zero then the tie signal is raised.

The generation of the "carry out" signal from the BCD adder is fed into this 

block which in case of effective addition will generate the "normalize" signal 

indicating a shift to the right for the complete intermediate result will be 

performed by one digit place.

In case we have the "max" signal raised, then accordingly, the 

"overflow_flag" is raised which will raise the "inexact_flag" as reference to the 

standard.

Round Decision

In this block we are adopting the following five rounding modes stated by the 

standard.
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Round towards zero

Round towards zero never increments the digit prior to a discarded fraction, 

that is, truncates. This rounding mode never increases the magnitude of the 

calculated value. Some references call it round down as shown in figure 3.19.

Figure 3.19: round towards zero

Round towards positive infinity

Also is called round ceiling. If the decimal is positive, the output value is 

incremented (it behaves as for round away from zero); if negative, the output 

value is not incremented (it behaves as for round towards zero). This rounding 

mode never decreases the calculated value as shown in figure 3.20.

Figure 3.20: round towards positive infinity

`

Round towards negative infinity

Also is called round floor. If the decimal is positive, the output value is not 

incremented (it behaves as for round towards zero); if negative, the output 

value is incremented (it behaves as for round away from zero). This rounding 

mode never increases the calculated value as shown in figure 3.21. 

-∞                            -3     -2     -1       0       1       2       3                                +∞   

-∞                            -3     -2     -1       0       1       2       3                                +∞   
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Figure 3.21: round towards negative infinity

Round to nearest, tie to even

Round towards the "nearest neighbor" unless both neighbors are equidistant, in 

which case, round towards the even neighbor. If the digit to the left of the 

discarded fraction is odd then, the output value is incremented (it behaves as for 

round half up); if it is even, the output value is not incremented (it behaves as 

for round half down). This is the rounding mode that minimizes cumulative 

error when applied repeatedly over a sequence of calculations, and is 

sometimes referred to as Banker's rounding as shown in figure 3.22. 

Figure 3.22: round to nearest, tie to even 

Round to nearest, away from zero

Round towards "nearest neighbor" unless both neighbors are equidistant, in 

which case round up. , the output value is incremented (it behaves as for round 

towards positive infinity) if the discarded fraction is greater than, or equal to, 

0.5; otherwise, the output value is not incremented (it behaves as for round 

-∞                            -3     -2     -1       0       1       2       3                                +∞   

-∞                            -3     -2      -1       0       1        2      3                            +∞   
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towards negative infinity). This is the rounding mode that is typically taught in 

schools as shown in figure 3.23. 

Figure 3.23: round to nearest, away from zero

In addition to the previously mentioned rounding modes, following are two 

other rounding modes proposed by IBM.

Round away from zero

The output always increments the digit prior to a nonzero discarded fraction. 

This rounding mode never decreases the magnitude of the calculated value as 

shown in figure 3.24.

 

Figure 3.24: round away from zero

Round half down

Round towards "nearest neighbor" unless both neighbors are equidistant, in 

which case the output value is not incremented (it behaves as for round towards 

negative infinity). If the discarded fraction is grater than 0.5 the output value is 

-∞                            -3     -2     -1       0       1       2       3                                +∞   

-∞                           -3      -2      -1       0       1       2       3                           +∞   
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incremented (it behaves as for round towards positive infinity) as shown in 

figure 3.25. 

Figure 3.25: round half down

Table 3.6 summarizes the 7 implemented rounding modes

Table 3.11 rounding table

Table 3.7    shows some examples according to the different rounding modes 

[10].

Inputs Outputs
Round 

flag

Sticky 

bit

To

0

Toward  

+ ∞

Toward 

 - ∞

To 

Even

Away 

from 0
Half Up Half Down

0 0 0 0 0 0 0 0 0

0 1 0
+ve -ve   +ve -ve

0 +1 0 0
+1 0 0 +1

1 0 0 +1 0 0 +1
Check 

LSB
+1 +1

T=

1
T=0

0 +1
1 1 0 +1 0 0 +1 +1 +1 +1 0 +1

-∞                            -3     -2     -1       0       1       2       3                                +∞   
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Table 3.12 rounding table

Table 3.8 shows the internal code corresponding for each rounding mode

Table 3.13 Rounding codes 

Input 
number

Round 
away 
from 
zero 

Round 
toward 
zero 

Round 
toward 

+ ∞ 

Round 
toward 

- ∞  

Round 
ties to 
even

Round 
half up

Round 
half 

down

5.5 6 5 6 5 6 6 5
2.5 3 2 3 2 2 3 2
1.6 2 1 2 1 2 2 2
1.1 2 1 2 1 1 1 1
1.0 1 1 1 1 1 1 1
-1.0 -1 -1 -1 -1 -1 -1 -1
-1.1 -2 -1 -1 -2 -1 -1 -1
-1.6 -2 -1 -1 -2 -2 -2 -2
-2.5 -3 -2 -2 -3 -2 -3 -2
-5.5 -6 -5 -5 -6 -6 -6 -5

Round

mode
Code

Round to Nearest ties to Even 000
Round  away from zero 001
Round Toward Positive 010
Round Toward Negative 011

Round Toward Zero 100
Round-half-up 101

Round-half-down 110
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Incrementer

This block increments the output of the rounding_circuit by one and generates 

(if needed) a carry out flag which will be anded with the round signal in order 

to generate the "ex_adj" signal.

The round signal selects whether the output of the rounding circuit will be 

passed as is to the output "inter_result_1"or the incremented value instead.

DPF converter

Figure 3.26: Densely Packed  Format Converter
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The last block in our architecture is shown in figure 3.26. This block is 

responsible for adjusting the final result and put it in the "Densely Packed 

Format" as well as raising the invalid flag.

The internal implementation of this block transforms the BCD input 

"inter_result_1" into its corresponding DPF. There are several checks that 

should be done before passing this value to the output.

1- The 2 input operands are fed to this block in order to check for if any of the 2 

operands is a sNaN at which case the output is as shown in table 3-9. Also, 

the invalid flag is also raised.

Table 3.14  output in case of sNaN 

 

2- In case of having operand_a equals to infinity then I need to be sure that the 

other operand is neither infinity nor sNaN, in that case the result is 

operand_a and invalid flag is not raised. But if the other operand is infinity 

then I need to check if the effective operation is addition then the final result 

is again operand_a and the invalid flag is not raised. Otherwise (effective 

subtraction) the result is qNaN and invalid flag is not raised.

Width 1 Bit 5 Bits 8 Bits 50 Bits

Field Sign S
Combination 

G

Following 

Exponent F

Trailing signficand T 

Containing J declets
Most/least 

significant 

bit

0 11111 000…0 0000…0

2- If any of the 2 operands is a qNaN, we have the same output as the previous 

case but without raising the invalid flag.
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The same  procedure  is  followed  in  case  of  having  operand_b  equals  to 

infinity except that the sign of the result is equal to the XOR of the input 

sign and the operand_b sign.

4- In case of overflow the final result is either zeros or the maximum value 

depending on the rounding mode and the sign of the result.

In  case  of  Rounding  toward  zero  OR rounding  toward  +  infinity  with 

effective subtraction OR rounding toward - infinity with effective addition 

the result is the maximum as shown in table 3.10.

   

Table 3.15 output in case of infinity

Otherwise:

Table 3.16 output in case of infinity

5- In case of effective subtraction, exact result and the whole operand is 

zero,  a  check to  the  rounding mode is  mandatory.  If  we have  rounding 

Width 1 Bit 5 Bits 8 Bits 50 Bits

Field Sign S
Combinatio

n  G

Following 
Exponent 

F

Trailing signficand T 
Containing J declets

Most/least 
significant 

bit

Sign_
r

11110 111…1
0011111111001111111100
1111111100111111110011

111111

Width 1 Bit 5 Bits 8 Bits 50 Bits

Field Sign S
Combination 

G

Following 

Exponent F

Trailing signficand T 

Containing J declets
Most/least 

significant 

bit

Sign_r
11101

000…0 000…0
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toward negative then the sign of the result is negative and the rest is as 

calculated  by  the  combination  field,  the  follow_expo_64  and 

trailing_sig_64.

Chapter 4

57



4-Verification &Testing

Test plan

To test the design we are following the IBM test suite [8]. 3063 test cases were 

applied to the design covering the five standard rounding modes:

- Round to nearest ties to even (000) 
- Round away from zero (001)
- Round toward positive (010) 
- Round toward negative (011)    
- Round toward zero (100)

 As well as the two following testing modes:

- Round half up (101): in which if the round digit is greater than 4 then 

round up, otherwise keep the result as is.

- Round half down (110): in which if the round digit is greater than 5 then 

round up, otherwise keep the result as is.

First,  a test bench to test each case separately was implemented in order to  

study each problem individually.

Second, a behavioral test bench has been implemented to read the input test 

vectors from a file with the following format as shown in table 4.1.

- The sign in (one bit)

- The rounding mode (3 bits)

- The 2 operands (each 64 bits in DPF)

Finally, write the final result in another file.

Using special software, we compare the original output file from IBM with the 

output from our design.
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Table 4.17 Input test vector format

 Problems:

During testing,  we faced some problems which we had solved to fulfill  the 

required standard output. Following are some of these solved problems.

1- In case of effective subtraction, I use to leave the 

round and guard digits as they are and if a carry in (cin) is generated it was 

fed to the LSD before the round, guard & sticky bit.    

Sol: the sticky bit should be expanded as 4 bits in order to feed the cin to its 

input so that any change in the intermediate adder result (either by adding a 

carry at the input or taking the 9's complement of the result) will  affect the 

whole result not just a part of it
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2- While  specifying  the  larger  operand  I  used  to 

depend only on the value of the exponent and in case of equal exponent I 

assumed operand_a is the larger.    

Sol: to specify the larger operand first I should calculate the number of leading 

zeros in each operand then compare it with its exponent to calculate what so 

called the effective exponent which is so far follow the following equation:

Effective exponent  =  the original exponent  -  Leading zero.

3- After  specifying  the  larger  exponent,  if  a  shift 

operation has to be performed then the larger operand shall be shifted left 

and  the  small  operand shall  be  shifted  right  (when needed).  A  problem 

appeared when the small operand has originally larger exponent in which 

case the result exponent should be that of the larger operand. 

 

Sol: in this particular case a shift left to the small operand has to be performed 

in order to adjust the final result.

Example: If operand_a = 0000 1456 2345 0023 with exponent = 10

                    operand_b = 0000 0000 2345 0023 with exponent = 12

Here: 

The Effective exponent_a = 10 - 4 = 6

The Effective exponent_b = 12 - 8 = 4

So the larger operand (a in this case) should be shifted left 4 digits and the 

small operand should also be shifted left 6 digits in order to have the same 

exponent.

 

4- In case of having leading zero in the final result, I 

use to shift left the result as much as the exponent allows. 

Sol: I should take care of the minimum exponent of two input operands because 

as stated in the standard section 5.4.1 Arithmetic operations [3] 
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The preferred exponent is min(Q(x), Q(y)).

So, I should not go beyond the minimum of the 2 exponent even if the exponent 

and the number of leading zeros of the result allows this.

5- I use to calculate the maximum allowed exponent in 

an incorrect way as emax+ ebias which is in case of 64 bits(Table 2-2a) 

operands is:    

                                                 384 + 398 = 782.

Sol: It shows that I should remove the number of digits of the precision (-1) 

which in our case is 15 so the maximum exponent. After which overflow occurs 

is emax + ebias – 15 = 782 -15 = 767.

6- The "inexact flag" was raised whenever only round 

or guard or sticky are not equal to zero, this was an incomplete condition. 

Sol: After checking the rounding mode and the rounding condition, in some 

cases  where  the  rounding  condition  is  fulfilled  I  have  to  add  "1"  to  the 

intermediate which affects the final result and produce an inexact number. So, I 

should also check the round, guard and sticky after rounding.

7- The overflow condition was depending only on the 

exponent if it is 767 and there is carryout then raises the overflow flag.

 But, it appeared that this is not the only condition, we should tie this condition 

with  the  effective  operation  (when  addition)  and  also  whether  a  carry  is 

generated as a result from the BCD adder or the signal exp_adj is generated 

from the shif& round block when a carry out is generated as result of rounding.
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8- In case of overflow, I used to raise the overflow flag 

only, but I realized that whenever there is an overflow the inexact flag is 

raised.

9- In case of overflow the final result is either zeros or 

the maximum value depending on the rounding mode and the sign of the 

result.

In  case  of  Rounding  toward  zero  OR rounding  toward  +  infinity  with 

effective subtraction OR rounding toward - infinity with effective addition 

the result is the maximum value which is:

   Combination ="11101"

   follow_expo_64 = "11111111"

   trailing_sig_64="00111111110011111111001111111100111111110011111111"
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Figure 4.27: Simulation result of overflow case

Otherwise  the  Combination  ="11101",  while  the  rest  of  the  result  is  all 

zeros.

10-  I use to handle the Quite NAN & Signaling NAN 

in a same manner. For both I use to raise the invalid flag. But the invalid 

flag is  raised when any of the operands is  a signaling NAN (SNAN) in 

which for any operand bits from (62 downto 57) are all "1" So the result 

should  be  in  the  form "011111"  & 58_zeros  with  the  invalid  flag  rose. 

Which for the QNAN, the result is the same but without raising the invalid 

flag.

Figure 4.28: Simulation result in case one of the input is SNAN
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11-  In case of having operand_a equals to infinity then 

I need to be sure that the other operand is neither infinity nor SNAN, in that 

case the result is operand_a and invalid flag is not raised. But if the other 

operand is infinity then I need to check if the effective operation is addition 

then  the  final  result  is  again  operand_a  and  invalid  flag  is  not  raised. 

Otherwise (effective subtraction) the result is QNAN and invalid flag is not 

raised.

The  same  procedure  is  followed  in  case  of  having  operand_b  equals  to 

infinity except that the sign of the result is equal to the XOR of the input 

sign and the operand_b sign.

12- In case of having both inputs equal to zero, I should 

check their exponent and select the operand with the small exponent to be 

the final result. In case of effective addition the sign of the result shall be 

equal to sign operand A irrespective which operand will be delivered to the 

output. In case of effective subtraction the sign of the result is +ve and the 

O/P is either operand A or operand B depending on the minimum exponent. 

13-  In case of one of the exponent is zero and the other 

is not. I need to check  the other operand exponent and if it has the lower 

exponent then the result  is  the other operand otherwise I  should use the 

calculated  fields  with  the  sign  of  the  result  is  either  the  sign  of  the 

operand_a (in case of effective addition) or not sign of operand_a (in case of 

effective subtraction).

14-  After  calculating  the  intermediate  final  result,  if 

there is a carry out produced in case of effective addition so a shift right to 

the complete final result should be performed with recalculation of the final 

exponent, round, guard digits as well as the sticky bit.
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15- The sign of the final result is always following the 

sign  of  operand_a  in  case  of  effective  addition.  In  case  of  effective 

subtraction the sign of the result depends on the large operand,, the carry out 

and the complement out signal.
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Figure 4.29: Output files comparison
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Alternative design for subtraction units:

After solving all the problems of the original design and passing all the test 

vectors from IBM, another design for the subtractor unit has been implemented. 

Originally we tried the nines complement design for the BCD subtraction as 

previously mentioned, now we are introducing the tens complement instead.

 

The internal design of the adder is as shown in fig.4.4 in which, in case of 

subtraction the carry_in fed to the full adder and the complement blocks are 

always  '1'  since  the  tens  complement  is  basically  the  same  as  the  nines 

complement except that after getting the nines complement we add '1'.  Also 

there's no need to adjust  the carry since from the characteristics of the tens 

complement the carry is automatically adjusted from the forward path and no 

need to adjust it.

Figure 4.30: BCD adder with tens complement
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Synthesis 

Synthesizing the decimal adder with Xilinx FPGA for both designs to different 

families and compare the area and delay reports.

First, we synthesized the design including the ripple carry adder for Spartan 

II family and we found that the "2s200fg456" chip is the most suitable for the 

design regarding the number of I/Os and function generators.

 Table 4.2 shows the comparison between the nine's and ten's complements 

from the delay  and area  point  of  views.  In  which it  is  seen that  the  nine's  

complements design runs at higher frequency (almost the double)

Table 4.18 Delay and area comparison for "2s200fg456" 

Second, we synthesized the design for Vertix II family and we found that 

the "2V500fg456" chip is the most suitable for the design regarding the number 

of I/Os and function generators.

 Table 4.3 shows the comparison between the nines and tens complement 

from the  delay  and area  point  of  views.  In  which  it  is  seen  that  the  nines 

complement design runs at higher frequency as well as the area is less by a 

small amount

Spartan II
2s200fg456 

CLK
Area

I/O FG CLB DFF
Nines 

Complemen
t

6.7 MHz 70.14% 75.72% 75.72% 11.08%

Tens 
complement

3.4 MHz 70.14% 79.83% 79.85% 11.08%
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Table 4.19 Delay and area comparison for "2V500fg456" 

Then, we tried the architecture shown in figure 3.13 in which we added a 

second adder with interchanged operands and based on the ten's-complements 

for subtraction. A multiplexer is used to select the output which will be fed to 

the next block based on the complement_out signal.

Table 4.4 shows the comparison between the nine's and ten's complement in 

the second architecture from the delay and area point of views for Spartan II 

family and the "2s200fg456" chip. In which it is seen that the speed of the ten's-

complements design has increased by 70 % and its area is also increased by 

7.6% by which we conclude that the nines complement design runs at higher 

frequency as well as using smaller area.

Vertix II
2V500fg456

CLK
Area

I/O FG CLB DFF
Nines 

Complemen
t

11.2 MHz 76.52% 57.37% 57.39% 8.90%

Tens 
complement

6.7 MHz 76.52% 60.51% 60.51% 8.90%
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Table 4.20 Delay and area comparison for "2s200fg456" 

Table 4.5 shows the comparison between the nine's and ten's complement in 

the second architecture from the delay and area point of views for Vertix II 

family and the "2V500fg456" chip. In which it is seen that the speed of the 

ten's-complements design has increased by 49.2 % and its area is also increased 

by 7.6% by which we conclude that the nines complement design runs at higher 

frequency as well as using smaller area.

Spartan II
2s200fg456 

CLK
Area

I/O FG CLB DFF
Nines 

Complemen
t

6.7 MHz 70.14% 75.72% 75.72% 11.08%

Tens 
complement

5.8 MHz 70.14% 85.91% 85.93% 11.10%

Vertix II
2V500fg456

CLK
Area

I/O FG CLB DFF
Nines 

Complemen
t

11.2 MHz 76.52% 57.37% 57.39% 8.90%

Tens 
complement

10 MHz 76.52% 65.15% 65.17% 8.91%
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Table 4.21 Delay and area comparison for "2V500fg456" 

Finally, we conclude that using the nines complement for BCD subtraction 

gives better results as regards the area and the delay.

So,  now  we  try  the  nine's-complement  with  another  adder  architecture, 

which is the carry look ahead one. We synthesized the design for both families 

and table 4.6 shows the comparison between the ripple carry adder and the 

carry look ahead adder for the Spartan II family and the "2s200fg456" chip. In 

which it is seen that the speed of the carry look ahead design has increased by 

56.7 % and its area is also increased by 7.9% by which we conclude that the 

carry look ahead design runs at higher frequency and the increase in area is 

negligible.

Table 4.22 Delay and area comparison for "2s200fg456"  for two different BCD 
adder architecture

Table 4.7 shows the comparison between the  ripple  carry  adder and the 

carry look ahead adder for the Vertix II family and the "2V500fg456" chip. In 

which it is seen that the speed of the carry look ahead design has increased by 

42 % and its area is also increased by 7.9% by which we conclude that the carry 

Spartan II
2s200fg456 

CLK
Area

I/O FG CLB DFF
Ripple 
carry 6.7 MHz 70.14% 75.72% 75.72% 11.08%

Carry look 
ahead

10.5 MHz 70.14% 81.68% 81.68% 11..08%
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look  ahead  design  runs  at  higher  frequency  and  the  increase  in  area  is 

negligible.

Table 4.23 Delay and area comparison for "2V500fg456"  for two different BCD 

adder architecture

So, finally it is seen that the carry look ahead adder with the nine's-

complements for subtraction gives better results on FPGA as regards the speed. 

Chapter 5

5- Similar work Comparison 

Preview 

Since the IEEE 754r standard for binary and decimal floating point was finally 

issued on August 2008. Few works have been done on its draft version. We are 

going to compare our work with some of the work done.

A 64-Bit Decimal Floating-Point Adder

University of Wisconsin Madison 

Spartan II
2s200fg456 

CLK
Area

I/O FG CLB DFF
Ripple 
carry 11.2 MHz 76.52% 57.37% 57.39% 8.90%

Carry look 
ahead

15.9 MHz 70.14% 61.88% 61.88% 8.90%
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The University of Wisconsin Madison has introduced hardware designs for 

decimal adder/ subtractor compliant with decimal floating point standard.  The 

first implementation of a 64-bit decimal floating-point adder that is compliant 

with the draft revision of the IEEE-754 Standard was introduced on 2004 [9]. 

The design performs addition and subtraction on 64-bit operands with the 

architecture shown in Fig. 5.1.

Figure 5.31: university of Wisconsin Madison Architecture

It can be seen from fig.5.1 that from the point of view of the architecture, 

we are using the same single path technique in the adder implementation with 

some differences in the internal design. One is that for the adder they are using 

the excess-3 BCD encoding but we are using the conventional BCD encoding.

One main issue is that for BCD subtraction, nine’s complement logic is 

needed before and after the adder to generate correct results. This approach is 

used in the IBM S/390 machines. Which is the same as we found after 

comparing the overall decimal adder as regards the ten's and nine's complement 

for BCD subtraction.
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They introduced some optimization on the design of the decimal adder 

based on the architecture of fig. 5.1[9] with some modifications [15] as shown 

in fig.5.2. 

Figure 5.32: university of Wisconsin Madison Architecture

The optimizations include the internal use of the BCD encoding, instead of 

the excess-3 encoding, which leads to simpler circuitry in the “Precorrection 

and Operand Placement Unit” and a more efficient placement of the corrected 

operands for addition and subtraction to simplify the design of the “Shift and 

Round Unit.”

SilMind Company
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Another design was proposed by SilMind Company which has the 

architecture shown in fig.5.3.

Figure 5.33: SilMind adder design

The proposed design is based on the kogge-Stone parallel prefix network 

for decimal significand addition and subtraction.

Two hardware implementations were introduced for decimal floating-point 

adder that is compliant with IEEE 754-2008 standard; one for high speed and 

the other for low Power/Area.

IBM Company
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6- Conclusions and future work

6.1 Conclusions

In this thesis, a design and implementation of a 64-bit adder/ subtractor 

compliant to the IEEE-2008 standard for floating point arithmetic has been 

introduced.

 The design performs addition and subtraction on 64-bit operands in a 

single path adder with exception handling fulfilling the released standard and it 

can easily be extended to also support operations on 128-bit decimal floating-

point numbers.  

We introduced 2 different implementations for the BCD-subtractor 

internal design. The tens complement and the nines complement. We found out 

that in case we should complement the output the rippling of the carry in case 

of tens-complement makes it much slower than the nines complement. So, we 

tried another architecture in which we added another BCD-subtractor block for 

which we interchanged the 2 operands so that in case we need to complement 

the output all we have to do is -with the aid of an extra multiplexer- we select 

either the first or second BCD-subtractor so we won't wait for the carry 

rippling. This implementation enhanced the speed but on the other hand the 

area is also increased. Regarding both the area and speed, we found out that the 

nines complement is more suitable for our design for both area and speed

The internal design of the BCD-adder is the carry-ripple adder which is 

known by its small area, we introduced another implementation for the BCD-

adder which is the carry look-ahead adder and we used the nine's complement 

for subtraction. We found out that the speed is enhanced by 42% and the area is 

increased but the design is still fitting in the same FPGA chip.
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 We compared the overall performance of the decimal adder from the 

point of view of area and speed for the same FPGA families. We synthesized 

the design for 2 families of Xilinx, Spartan II and Vertix II. And we got the 

previously mentioned results.

A behavioral test bench has been implemented to test the design against 

test vectors supplied by the IBM Corporation. Complete test and verification is 

performed on all the design versions fulfilling 3063 test vectors and supporting 

7 rounding modes (5 stated by the standard and 2 proposed by IBM) with 

exception handling for overflow, inexact and invalid operations.

After testing the different design and passing all the test vectors, we 

concluded that the carry look ahead adder with the nine's-complements for 

subtraction gives better results on FPGA as regards the speed and fitting the 

same FPGA chip.

 

6.2 Future work

Based  on  the  work  presented  in  this  thesis  and  the  results  obtained,  we 

recommend the following items as the future work

The current design may be easily extended to include the 128 bits wide 
operands as the second decimal format in the IEEE 754-2008 standard.

Using Parallel architecture technique instead of the single path one, this will 
probably increase the speed.

The main block that introduces the large delay is the BCD adder, trying 
other designs for it may speed up the design.

Design and implementation of a decimal ALU.

Multiplier.
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