Abstract

Most computers today support binary floating-point in hardware. While
suitable for many purposes, binary floating-point arithmetic should not be used
for financial, commercial, and user-centric applications or web services because
the decimal data used in these applications cannot be represented exactly using

binary floating-point [1].

The problems of binary floating-point can be avoided by using base 10
(decimal) exponents and preserving those exponents where possible. So, in
order to overcome this problem, we introduce a decimal floating-point adder
subtractor based on the final version of the IEEE Standard for Floating-Point

Arithmetic P754r which was published in August 2008.

The previously mentioned standard is the revised version of IEEE 754-
85 which is the IEEE standard for the Binary floating-point arithmetic that was
published in 1985.

The design performs addition and subtraction on 64-bit operands in a
single path adder with exception handling fulfilling the released standard and it
can easily be extended to also support operations on 128-bit decimal floating-

point numbers.

We introduced 2 different implementations for the BCD-subtractor
internal design. The tens complement and the nines complement. We found out
that in case we should complement the output the rippling of the carry in case
of tens-complement makes it much slower than the nines complement. So, we
tried another architecture in which we added another BCD-subtractor block for
which we interchanged the 2 operands so that in case we need to complement
the output all we have to do is -with the aid of an extra multiplexer- we select
either the first or second BCD-subtractor so we won't wait for the carry

rippling. This implementation enhanced the speed but on the other hand the

area is also increased. Regarding both the area and speed, we found out that the

nines complement is more suitable for our design for both area and speed

The internal design of the BCD-adder is the carry-ripple adder which is
known by its small area, we introduced another implementation for the BCD-
adder which is the carry look-ahead adder and we used the nine's complement
for subtraction. We found out that the speed is enhanced and the area is a

increased (as expected).

We compared the overall performance of the decimal adder from the
point of view of area and speed for the same FPGA families. We synthesized
the design for 2 families of Xilinx, Spartan II and Vertix II. And we got the

previously mentioned results.

Complete test and verification is performed on all the design versions
fulfilling 3063 test vectors supplied by IBM Corp. and supporting 7 rounding
modes (5 stated by the standard and 2 proposed by IBM) with exception

handling for overflow, inexact and invalid operations.

ii

Contents

LSt Of TaDIeS. ccueeceeeeeeeccesseencoessnnssasssssssasssssssssassssssssssssssssssssssssssV

LIST Of FiQUTI@S.eeeceeeeccessecssssecssssessssssssssossssssssssssssssssssssssssssssssssssVi

INtrOAUCTION. . eeeeesrecssscsssesssscsssess

BaCKgIrOUNG..uueeiiiiiiiiiiiiiiiiiiiieieiieiieiiee ettt eeeeii e e eeiaeeeeeeen 1
Problem deSCription....e.eeeeeeeueeeiiiiiiieiiiiiieeieiieeeeieiieeeieiieeeeeeieeeeeieeeeeeiaeeeeeenee 3
Related WOTK. iiiiiuuieiieiiiiiiiiiiiiiiiie e eeeiiieeee e eeeeeiieieeeeeeeeiieeeeeeeeeeeiisseeeseesainnennn 5
Thesis OULHNe. . ccouueeiiiiiiiiiiiiiiieiiiiiiieeeeeieeeeeeee e et eeieeeeeeeieeeeeeieeeeeeiieeeeeeeeeeenns 6

HiStOTY oiiieieiiiiieeee ittt ettt ee ettt e eee e et ieeeeeeeeereeat e eert e eeratieeeraneeens 8
ST e(0) o]I U 8
PUIPDOSE ittt ettt e et er et eeeeeeeeaibeeen 9
FOTTNALS Luuvutttitieitetititetitttt ettt teeeeeaesassaeeeeaans 9

BacKgroUNd.....coouveeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiee ettt e e 18
Floating Point Number repreSentationccc..eeeeeeeeeiiiiuveeeeeeeeiiiiiiiieieeieeeiiiieeeeeenn. 18
Motivation and TerminolOgV.......ceeeeuveiiiiiueiiiiiiiiiiiiiiieiiiiiiieeeiiiieeiiiiieeeeeeeeeennn, 18
Properties of floating point Representation ccceceeeeeeiveeeeeeiiiiiiiiinnennnees 19
Lack of Unique Representation.......e.eeeeeeerueeeiiisieeeeiiiiieeiiiiiieeeeiiiiiiiieeeeeeeeeeeeennn, 19
Range and PreCiSion........eeeeiieiiiiiiiiiieeiiiiiiiiiiiiieiieiieeiieiiiiieeieeeeeieiiiiieieeeeeeeeiennanns 20
Floating Point Addition and Subtraction.........ccceeceeeeeiiiviiiiiiieeeeiiiinieieeeeeeeeeennn. 21
Problems in Floating Point COmMPUtatioNS..........ceiieieueeeeeiiieiiiiiiiiieeieeeeeeeieeeeeeenes 21
L.0SS Of SignifiCanCe.......cceeueeiiiiiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieiieee e 22
Design SpeCifiCation.....cceueeieiiieeiiiiiiiiiiiiiiiiiieeiiiieeeeiieeeeeiee et 23
Unit INterface. . .cieeueeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiei e, 24
Internal repreSentation.cc...eeeeeeeiiiiiiiieeeeieeeieiiiiiieeieeeeeieiiiiieieeeeeeeeeeeeeesreeeereeeeeenns 24
DO COMIPOSE. ittt ettt ettt 26
Exponent DifferencCe. .. coueeiieeeeiiiiiieiiiiiiieiiiiiiiiieieiiieeeeieeeeeeieeeeeieeeeeeeeeeennn 27
Significand AlIgNMEeNT.cceeiviiiiiiiireiiiiiiiiiiiiiieeieiieeeeeiiiieeeieiieeeeeiiieeeeeeeeeenns 32

BCD AT uuuiiiiiiiiiiiiiiiiiiiiieeeeeieeeee ettt 33
Adder Cell....cceiuuiiiiiiiiiiiiiiiiiiiiiiiii et 34
CaITY €ffOCt . iiiuueiiiiiiiiiiiiiiiiieeieiiieeeie ettt eeeeeeeeeeeann 35
Nine's COMPIOIMONT. ...eeiieereeieiiiiiiiiiiiiiiiiieieieeiiiiieeeeiieeeeeeiieeeeeeieeeeeeeieeeeeeinnene 36
COTITECHION UMt uiiiiieieiiiiiiiiiiiiiiiiiiiiiiieieieieiiieieieieieieieieieieieeeeeieieieeeeeeeeeeeeeeseesiiieeeeenes 38
Ten's COMPIOMENt . ..eeiiiurieiiiiiiieiiiiiieeeiiiieeeieiieeeeeiteeeeeeiieeeeeeiieeeeeeeasaaeeeeeeee 39

il

SO TS ULttt e ettt et e et e ee et ettt aaeaeeaaeeaeennnnaaasesesesssnnnassennnssecennssannnn 42

EXD Q0 USE. c e eieieiiiiiiiiieiiieieeeeeeeeeteeeranenaaseeeeennnnsseseeees 44
Shift & ROUNA..ceeiiiiiiiiiiiiiiiiiiiiiieeie ettt eeeeeeeteieeeeeteteeeeeeeeeeeeeeeeeeeeeeereeetereeennnaaasss 46
ROUNAING CITCUI . e eeaeeaeeaaaaaaaaaaeaeeeaaasaaeaaaaeasaeeasasns 48

RoUNA DOCISION. ceiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiee ettt eeeeiiieeeeeeeeeeeiiieeeeeeeeeiennaens 48
RoUNd tOWAIdS ZOT0...uveiiiiiuieiiiiiiiiiiiiiiiiiiiiiieiieeiiieeeieeiieeeeeiieeeeeiiiieeeeeeeeeeeeeenns 49
Round towards positive iNfinity......ceeeeeeeereeeiiiieiiiiiiiiiiieeiiiiiiiiiiiieiieiieeeeeieene, 49
Round towards negative infinity........cceeeeeeeeiiiieeieiiiiniiiiiiiiiiiiiieeieiiiieeiiiiieeenne. 49

Round t0 Nearest, tie t0 Veiiiieiieiiiiieeeeeeeeiiiiiiiieieeeeeeeiiiiiiieeeeeeeeeiiiiiieeeeees 50
Round to nearest, away from Zer0..........ceeeeuveiiiiiineeiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeennnn, 50
Round away frOm ZeI0...uueiiieeeeiiiiiiiiiiiiiiiiiiiiiieeeeeieeeeeeee e 51
Round half dOWN.....uueeiiiiiieiiiiiiiiiiiiiiiiiiiiiiiiiiieiieeeeeee e 51
I T OIMIOIE T e euuteeeeeeeeeiiiieeeee ettt et ee et eeeeee ettt eerea e ee et eeranens 54

University of WiSCONSIiN MadiSOM ..uuuuuueeueeeeeeeeeeeeeeeeeeeieteeeeeeieeeeseeesesnaaeezeeeeennaaaaaesees 72
SHMING COMPDANY ..t eeeeeeeeeeeeaeaeaeeeeeaeaeaaaaaaaeaseaaaaaaaeaaeseesees 74
TBIM COI DAY et titttiunsttunsteuneeeunsseunnseusnssennsseansseunseeenssnnsssennssennsssensssnsesnsonseonsenssansen 75

6- Conclusions and future WOorK....c.cccceeeecesseecsssscsssssosssssssssssse 2 7.

6.1 CONCIUSIONS. ...uvveiiiiiiiiiiiiiiiiiiiiiiieeiiiiiee e eeieie e eeeeeeeeeiieeeeeiiaeeeeeeeaeeeeeiiaeeeeeeaans 77
6.2 FULUI® WOTK..iiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeee ettt e e e eeeiiieeeeeeeeeeeeaeeannens 78
The current design may be easily extended to include the 128 bits wide operands as
the second decimal format in the IEEE 754-2008 standard..........ccoceeeevivveeeeinnnnnnn... 78
Using Parallel architecture technique instead of the single path one, this will
probably increase the speed........cocccuveeeeeiiiiiiiiiiiieiieiiiiiiiieeeee e, 78
The main block that introduces the large delay is the BCD adder, trying other
designs for it may speed up the deSign........c.eeeeeeeueieiiiieeeiiiiiiiiiiiiiieeiiiiiiiienns 78
Design and implementation of a decimal ALU........cceevvviiieiineiiiiiinieeiiiiiiiiiiiinnnneee, 78

I UL D O . .. ettt ettt e ettt seeeeeeeeeettaeaaaeeaseeesenennnnaaaseaessnnnseenannasnnnnanas 78

iv

List of Tables

Table 1.1: Binary versus Decimal division............ 3
Table 2.2: Basic Decimal Floating-Point Format................. 12
Table 2.3: Decimal Encodings............ccceevnereccssssnnrecssscnnnnreecces 13
Table 2.4: Decoding 10-bit Densely Packed Decimal to 3
Decimal DiGitS....cccvverieerssrnriecssssnrecsssssnssessssssasssssssssssssssssssssssans 14
Table 2.5: Encoding 3 Decimal Digits to 10-bit Densely
Packed Decimal........cceeeeeveriiivvnnicsisnnncssnencsssnnnenecssssnssnnccssnnns 15
Table 3.6: Densely Packed Decimal-64 Operand Format.. .27
Table 3.7: BCD Operand FOormat.........ccccceesvvnnnnneeecccccccecceces 27
Table 3.8: 9’s Complenmentccccooevreriisnssssssssssssssssssssssns 37
Table 3.9: BCD Sum COITectioncccceeeeneeeeccsscsnnsenccsssnnes 39
Table 3.10: SiN reSUlteciieerrreriicniirrnniecssssnnniccsssnneersesccssses 43
Table 3.11 rounding table............cccovvvuericcirvnnrecsscsnnrecsssnnneees 52
Table 3.12 rounding table............cccovvvurrecnirrnnrecsscsnnrecsssnaneees 53
Table 3.13 Rounding codesccovvvueereccsrrnnrrccsscsnnnsecsssnaneens 53
Table 3.14 output in case of SNaNccccoerrrvccnneenreeeccccsssssnns 55
Table 3.15 output in case of infinity......ccccceevvccvnneeeecieccccccannns 56
Table 3.16 output in case of infinity......ccccceevvccvcnneneeeeeccccccannns 56
Table 4.17 Input test vector format........ccccceeeeecerscnneeeecccccsans 59

Table 4.18 Delay and area comparison for "2s200fg456" ...68
Table 4.19 Delay and area comparison for "2V500fg456" . 69
Table 4.20 Delay and area comparison for "2s200fg456" ...70
Table 4.21 Delay and area comparison for "2V500fg456" . 71

Table 4.22 Delay and area comparison for "2s200fg456" for

two different BCD adder architecture.........cccceeeeeeeecereceseccseees 71
Table 4.23 Delay and area comparison for "2V500fg456"
for two different BCD adder architecture..........ccceeeecereeenneees 72

List of Figures

Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 3.9:

Unit Interface..........coeieeveicnsercssnnicssercssanecssnenecsans 24
Block Diagram.........cccoveeeiccssssnniecsssssssssssssssssscces 26
Decompose Interface.........cccoeeereercnneerccssscsnneseccsane 26
Exponent Difference Interface...........cccceucerreeenee.. 28
Adder operation and result format..................... 30
Significand Alignment Interface........c..ccccceeuneee. 33
BCD Adder/Subtractor...........cccceeeescsnrecssscnnnerecns 33
BCD Adder/Subtractor cell..............cccoceuuuerreenne. 34
carry effect block interfaceccocceeeevcneeeiccinnns 35

vi

Figure 3.10:
Figure 3.11:

Figure 3.12:
Figure 3.13:
Figure 3.14:
Figure 3.15:
Figure 3.16:
Figure 3.17:
Figure 3.18:
Figure 3.19:
Figure 3.20:
Figure 3.21:
Figure 3.22:
Figure 3.23:
Figure 3.24:
Figure 3.25:
Figure 3.26:
Figure 4.27:
Figure 4.28:

Figure 4.29:
Figure 4.30:
Figure 5.31:

73

nine's complement block interface

shows the uncorrected and the corrected BCD

... 38
nine's complement block interface 39
Alternative block diagramcccceevevnvvnaneene 40
Carry_look_ahead adder block diagram 41
result sign block interface.........ccccceeeerevnvvaanennee 43
exponent adjust block interface.............ccccuuu... 44
shift and round block interface......................... 46
shift and round internal structure.................... 47
round towards Zer0...........eeeeescssnnereccssssnnsneccsaes 49
round towards positive infinity........ccceceeeeeeeeenes 49
round towards negative infinity.........cecceeeereeeee 50
round to nearest, tie t0 VeIcccceeeerrereeerenecens 50
round to nearest, away from zero.............ccc.... 51
round away from zero............cccoecveeeiccsscsvenneeennes 51
round half down............uueiieeiivnneiicciiisnnniiccsnnnns 52
Densely Packed Format Converter.................. 54
Simulation result of overflow case.................... 63
Simulation result in case one of the input is

... 63
Output files comparison............ccceeccvnereccsssnnneenes 66
BCD adder with tens complement..............c..... 67

university of Wisconsin Madison Architecture

vii

Figure 5.32: university of Wisconsin Madison Architecture

74

Figure 5.33: SilMind adder design.........cccccceevvruvnneeereeccccessnnes 75
Table 1.1: Binary versus Decimal division............ 3
Table 2.2: Basic Decimal Floating-Point Format................. 12
Table 2.3: Decimal Encodings...........ccccovvnereecssssnnsecssscnnsssesees 13
Table 2.4: Decoding 10-bit Densely Packed Decimal to 3
Decimal DiGitS.....cciereveeicscranicsssanicsssanesssanissssassssssssssssssssssssssssses 14
Table 2.5: Encoding 3 Decimal Digits to 10-bit Densely
Packed Decimal..........cooueieierinsueinsnrcssnnissnicssnnencsssnnencsssnsescans 15
Table 3.6: Densely Packed Decimal-64 Operand Format.. .27
Table 3.7: BCD Operand Format...........ccceeeueressrnnecsscsneeseces 27
Table 3.8: 9’s Complenmentcccceeeeeeiccvnnericcsscsnnenccsssnnns 37
Table 3.9: BCD Sum COITectionccoeeevneereccssssnnsssscssssnnes 39
Table 3.10: sign resultccocveieiiveicsssnnicsssnniesssanecssssnsesseces 43
Table 3.11 rounding table...........ccccovvrveericnsrrnnrecssssansccsssnancens 52
Table 3.12 rounding table...........ccccovvveericciirnniecssssansccsssssansens 53
Table 3.13 Rounding codesccoovveericcssvneiecssssnnsccsssnassens 53
Table 3.14 output in case of SNaNccceevvuerriccsscrnerrccsscnnes 55

viii

Table 3.15 output in case of infinity......cccceeevvvvrnnnnneriecccccssnn 56
Table 3.16 output in case of infinity......cccceeevvvvrnnnnenerieccccessnn 56
Table 4.17 Input test vector format.........cceevveeeecssvraneereeccccses 59
Table 4.18 Delay and area comparison for "2s200fg456" ...68
Table 4.19 Delay and area comparison for "2V500fg456" . 69
Table 4.20 Delay and area comparison for "2s200fg456" ...70
Table 4.21 Delay and area comparison for "2V500fg456" . 71
Table 4.22 Delay and area comparison for "2s200fg456" for
two different BCD adder architecture.............cccoeeevuneereccssnnns 71
Table 4.23 Delay and area comparison for "2V500fg456"

for two different BCD adder architecture..........cccceeeeeveeenneees 72

Definitions

ix

Quiet operation: Any of the operations specified by this standard

that never generate an exception.

Biased exponent: The sum of the exponent and a constant (bias)

are chosen to make the biased exponent's range nonnegative.

Binary floating-point number: A floating-point number with radix

two.

Cohort: In a given format, the set of floating-point representations

with the same numerical value.

Decimal floating-point number: A floating-point number with

radix ten.

Declet: An encoding of three decimal digits into ten bits using the
densely

packed decimal encoding scheme. Of the 1024 possible declets,
1000

canonical declets are produced by computational operations, while
24 noncanonical declets are not produced by computational

operations, but are accepted in operands

Exception: An event that occurs when an operation has no

outcome suitable for every reasonable application.

Exponent: The component of a binary floating-point number that
normally signifies the integer power to which the radix two is raised
in determining the value of the represented number. Occasionally

the exponent is called the signed or unbiased exponent.

Floating-point number: A bit-string encoding characterized by

three components: a sign, a signed exponent, and a significand. Its

numerical value, if any, is the signed product of its significand and
its radix two rose to the power of its exponent. In this standard a bit-

string is not always distinguished from a number it may represent.

NaN: Not a Number, a symbolic entity encoded in floating-point
format. There

are two types of NaNs , quiet and signaling. quiet NaNs propagate
through almost every arithmetic operations without signaling
exceptions, while signaling NaNs signal the invalid operation
exception whenever they appear as operands.

Signal: When an operation has no outcome suitable for every
reasonable application, that operation might signal one or more
exceptions by invoking the default or user-specified alternate
handling. Note that “exception” and “signal” are defined in diverse
ways in different programming environments.

Significand: A component of an unencoded binary or decimal
floating-point number containing its significant digits. The
significand may be thought of as an integer, a fraction, or some
other fixed-point form, by choosing an appropriate bias. The
component of a binary floating-point number that consists of an
explicit or implicit leading bit to the left of its implied binary point
and a fraction field to the right.

xi

Chapter 1

Introduction
Background

Although most people use decimal arithmetic when performing manual
calculations, computers typically only support binary arithmetic in hardware.
This is primarily due to there being only two logic values, zero and one, that are
represented in modern computers. While it is possible to use these two logic
values to represent decimal numbers, doing so is wasteful in terms of storage
space and is also less efficient. For example, in binary, four bits can represent
sixteen values; while in binary coded decimal (BCD), four bits only represent
ten values. Since most computer systems do not provide hardware support for
decimal arithmetic, numbers are typically input in decimal, converted from
decimal to binary, processed using binary arithmetic, and then converted back

to decimal for output.

In spite of the current dominance of hardware support for binary
arithmetic, there are several motivations that encourage the provision of support
for decimal arithmetic. First, applications that deal with financial and other
real-world data often have errors introduced, since many common decimal
numbers cannot be represented exactly in binary. For example, the decimal
number “0.1” is a repeating fraction when represented in binary. Second,
people typically think about computations in decimal, even when using
computers that operate only on binary representations, and therefore may
experience what is perceived as incorrect behavior when processing decimal
values. Third, converting between binary and decimal floating-point numbers
is computationally intensive and may take thousands of cycles on modern

processors.[2]

Decimal data permeates society, as humans most commonly use numbers
in base-ten. An increasing demand for decimal real number computations
across a wide range of exponents has spurred the IEEE 754R Working Group to
include specifications for Decimal Floating-Point (DFP) arithmetic in the new

[EEE P754 Draft Standard for Floating-point Arithmetic [11]

Decimal Floating-Point (DFP) computations are critical for many financial
and commercial applications. With trends towards globalization, many laws
and standards require decimal calculations. For example, the European Union
requires currency conversion to and from the euro to be calculated to six
decimal places. One study estimates that a large telephone billing system can
accumulate errors of up to $5 million per year, if using binary floating-point
arithmetic, rather than decimal. Both hardware and software solutions for DFP

arithmetic are being developed to remedy these problems [11].

Also, another important question is why do we need to replace the existing
software conversion from decimal to BCD than back to decimal into hardware.
An interesting study [14] shows that application can realize performance
improvements ranging from about 10% (for applications whose respective DFP
routines consumes 10% of the execution time) to nearly 1000% (for
applications whose respective DFP routines consumes 90% of the execution

time)

Due to the rapid growth in financial, commercial, and Internet-based
applications, there is an increasing desire to allow computers to operate on both
binary and decimal floating-point numbers. Consequently, specifications for
decimal floating-point arithmetic are being added to the IEEE-754 Standard for
Floating-Point Arithmetic which was published in 1985. In this thesis, we
present the design and implementation of a decimal floating-point
adder/subtractor that is compliant with the final revision of the IEEE-754r

Standard. The adder supports operations on 64-bit (16-digit) decimal floating-

point operands. We provide 2 different architectures for the adder/subtractor
and 2 different internal designs for the subtractor in accordance with 2 different
internal designs for the adder. Synthesis results indicating the area usage and
the clock frequency with 2 Xilinx FPGA families, Spartan II and Vertix II for

our design were introduced. Also, comparison with other designs is introduced.

Problem description

Binary floating-point cannot exactly represent decimal fractions, so if binary
floating-point is used it is not possible to guarantee that results will be the same
as those using decimal arithmetic. This makes it extremely difficult to develop
and test applications that use exact real-world data, such as commercial and

financial values [4].
Here are some specific examples:

1. Taking the number 9 and repeatedly dividing by ten yields the following

results shown in Table 1.1:

Decimal Binary
0.9 0.9
0.09 0.089999996
0.009 0.0090
0.0009 9.0E-4
0.00009 9.0E-5
0.000009 9.0E-6
9E-7 9.000000E-7
9E-8 9.0E-8
9E-9 9,0E-9
9E-10 8.999999E-10

Table 1.1: Binary versus Decimal division.

2. Here, the left hand column shows the results delivered by decimal floating-

point arithmetic (such as the BigDecimal class for Java or the decnumber C

package), and the right hand column shows the results obtained by using the
Java float data type. The results from using the double data type are similar

to the latter (with more repeated 9s or 0s).

3. Some problems like this can be partly hidden by rounding, but this confuses

users. Errors accumulate unseen and then surface after repeated operations.

4. For example, Consider the calculation of a 5% sales tax on an item (such as a
$0.70 telephone call), which is then rounded to the nearest cent. Using
double binary floating-point, the result of 0.70 x 1.05 is
0.73499999999999998667732370449812151491641998291015625; the
result should have been 0.735 (which would be rounded up to $0.74) but

instead the rounded result would be $0.73 (using Banker’s rounding). Which

will introduce an error of 1 cent per telephone call.
5. Even a single operation can give much unexpected results. For example:

. Similarly, the result of 1.30 x 1.05 using binary is
1.3650000000000002131628207280300557613372802734375; this
would be rounded up to $1.37. However, the result should have been
1.365 — which would be rounded down to $1.36 (using Banker’s

rounding).

Taken over a million transactions of this kind, as in the ‘telco’
benchmark, these systematic errors add up to an overcharge of more
than $20. For a large company, the million calls might be two-minutes-

worth; over a whole year the error then exceeds $5 million.

. Using binary floating-point, calculating the remainder when 1.00
is divided by 0.10 will give a result of exactly
0.099999999999999950039963891867955680936574935913085937

http://speleotrove.com/decimal/telco.html
http://speleotrove.com/decimal/telco.html

Even if rounded this will still give a result of 0.1, instead of 0, the

result obtained if decimal encoding and arithmetic are used.

Related work

The decimal-encoded formats and arithmetic described in the new IEEE 754-
2008 standard now have many implementations in hardware and software

including:

. The hardware decimal floating-point unit in the IBM Power6

processor, the firmware (with assists) in the IBM System z9 (mainframe)

processor, and the hardware decimal floating-point unit in the IBM System
210 mainframe which is the first mainframe with hardware support for the
DFP format in the IEEE 754-2008 floating-point standard. It joins the IBM
POWERG6 processor-based System p 570 server as the only hardware

support available for this format [13].

. Benchmark suite of financial Decimal Floating-Point (DFP)
applications. The benchmark suite includes a banking benchmark, a euro
conversion benchmark, a risk management benchmark, a tax preparation
benchmark, and a telephone billing benchmark. The benchmark suite is

being made publicly available [11].

. SilMind's Decimal Floating Point Arithmetic hardware IP_Cores
Family. Two hardware implementations are introduced for decimal floating-
point adder that is compliant with the IEEE 754-2008 Standard; one for
High-Speed applications and the other for Low Power/Area ones [12].

. IBM XL C/C++ for AIX, Linux and z/OS, DB2 for z/OS,

Linux, UNIX, and Windows, and Enterprise PL/I for z/OS; IBM is also

adding support to many other software products including z/VM V5.2,
System i/OS, the dbx debugger, and. Debug Tool Version 8.1

http://www.ibm.com/common/ssi/rep_ca/6/897/ENUS207-266/index.html
http://www.ibm.com/common/ssi/rep_ca/1/897/ENUS207-261/index.html
https://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp?topic=/com.ibm.db2.luw.sql.ref.doc/doc/r0000927.html
http://www.ibm.com/software/awdtools/czos/features/czosv1r9.html
http://www.ibm.com/software/awdtools/xlcpp/
http://www.silminds.com/index.php?option=com_content&task=view&id=51&Itemid=36
http://www.silminds.com/index.php?option=com_content&task=view&id=51&Itemid=36
http://www.silminds.com/
http://www-03.ibm.com/systems/z/
http://www-03.ibm.com/systems/z/
http://www.ibm.com/common/ssi/rep_ca/0/897/ENUS107-190/ENUS107190.PDF
http://www.ibm.com/press/us/en/pressrelease/21580.wss
http://www.ibm.com/press/us/en/pressrelease/21580.wss

. SAP NetWeaver 7.1, which includes the new DECFLOAT data

dtype in ABAP, with support for hardware decimal floating-point on

Power6
+ GCC 4.2 was released in July 2007; this is the first GCC release with

support for the proposed ISO C extensions for decimal floating point.

Also, some related work on decimal arithmetic includes designs for fixed-
point decimal adders and floating-point decimal arithmetic units. An extensive

bibliography of support for decimal arithmetic is presented in [1].

The proposed decimal floating-point adder differs from previous decimal
adders in that it is compliant with the final version of the revised IEEE-754

Standard.

Thesis outline

The following chapters provide detailed information about the IEEE 754-2008
standard for floating-point Arithmetic, architecture and implementation for our
64-bit decimal floating point adder/subtractor compliant with the standard with

extensive testing according to IBM test suite.

Chapter Two: Overview of the final IEEE 754-2008 standard for floating-
point arithmetic with focus on the decimal part of it from the
point of view of the format, encoding, rounding modes and

exception handling.

Chapter Three: Architecture and Implementation which gives detailed
information for our 64-bit adder/subtractor discussing the

internal design of each block and its hierarchal levels as well

(if any).

http://gcc.gnu.org/
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101104
http://www.sap.com/platform/netweaver

Chapter Four: Verification and Testing for the design, the problem we faced
during testing and how we solve it. Also, synthesis results are

discussed in details.
Chapter Five: Similar work comparison, which is a review of what has been
done as hardware implementation for decimal adder/subtractor

from companies as well as universities.

Chapter Six: Illustrates the conclusions and offers suggestions for future

work.

References

Chapter 2

Overview of the standard

History

The first IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754-1985)
set the standard for floating-point computation for 23 years. It became the most
widely-used standard for floating-point computation, and is followed by many

CPU and FPU implementations. Its binary floating-point formats and arithmetic

are preserved in the new IEEE 754-2008 standard which replaced it.

The 754-1985 standard defines formats for representing floating-point
numbers and special values (infinities and NaNs) together with a set of floating-
point operations that operate on these values. It also specifies four rounding
modes and five exceptions (including when the exceptions occur, and what

happens when they do occur).

The draft version of the standard including the decimal part was first issued on

12 Feb 2001 and finally released in August 2008.

We started by following the DRAFT Standard for Floating-Point
Arithmetic P754/D0.10.4 2005 March 14 16:43 and then after the publishing of
the standard we made the required modification so that the current design is

now following the final version.

Scope

This standard specifies formats and methods for binary and decimal floating-
point arithmetic in computer programming environments: standard and
extended functions in 32-, 64-, and 128-bit basic formats single, double, quad,
and extended precision formats, and recommends formats for data interchange.

Exception conditions are defined and default handling of these conditions

http://en.wikipedia.org/wiki/NaN
http://en.wikipedia.org/wiki/Infinity
http://en.wikipedia.org/wiki/IEEE_754-2008
http://en.wikipedia.org/wiki/Floating_point_unit
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/IEEE

An implementation of a floating-point system conforming to this standard
can be realized entirely in software, entirely in hardware, or in any combination
of software and hardware. For operations specified in the normative part of this
standard, numerical results and exceptions are uniquely determined by the
values of the input data, sequence of operations, and destination formats, all

under user control.

Keywords: computer, floating-point, arithmetic, rounding, format,

interchange, number, binary, decimal, subnormal, NaN, significand, exponent.

Purpose

This standard provides a discipline for performing floating-point computation
that yields results independent of whether the processing is done in hardware,
software, or a combination of the two. For operations specified in this standard,
numerical results and exceptions are uniquely determined by the values of the
input data, sequence of operations, and destination formats, all under user

control.

Formats

This standard defines five basic floating-point formats and two storage floating-
point formats, in two radices, two and ten. Binary basic format lengths are 32,

64, and 128 bits; the binary storage format length is 16 bits.

Decimal basic format lengths are 64 and 128 bits; the decimal storage
format length is 32 bits. A programming environment conforms to this
standard, in a particular radix, by providing one or more of the basic formats for

that radix.

Binary floating-point formats are indicated for:

« supporting scientific computation
» Applications for which the input data is not known exactly

« Applications for which arithmetic time dominates time spent in conversion

between internal floating-point formats and external decimal formats

* Applications for which maximum performance is critical — binary is

either faster or cheaper than decimal of the same fixed word size

» Applications for which maximum accuracy is critical — binary packs
more precision in a fixed word size and the change in roundoff is less

extreme at powers of the radix

Decimal floating-point formats are indicated for:

* The bulk of casual numerical applications for which ease of debugging

is the most important numerical quality
» Supporting business applications especially those with financial data
* Applications for which the input data is known exactly in decimal

» Applications for which time spent in conversion between internal
floating-point formats and external decimal formats dominates

arithmetic time

Many applications work well with data and computation in 64-bit formats.
128-bit formats are useful as native formats for computations in which roundoff
error would otherwise dominate accuracy of results, and as evaluation formats

for complicated expressions involving 64-bit formats.

Binary32 is useful as a computational format for applications which
consume or produce much low-precision data, especially if that data is in

binary16 storage format. If those computations perform few operations per

10

datum, then binary32 may be a satisfactory expression evaluation format;

otherwise binary64 is good for complicated expression evaluation.

Basic Decimal Format Encodings

Unlike basic binary floating-point formats, a representable number may have
multiple representations in a basic decimal format. The set of floating-point
representations a number maps to is called the number’s cohort; the members of
a cohort are distinct representations of the same number. For example, if c is a
multiple of 10 and q is not its maximum, (s, g, c) and (s, g+ 1, c = 10) are two

representations for the same number and are members of the same cohort.

Numbers in the decimal formats are encoded in the following four fields

ordered as shown in table 2-1:
1. 1-bit sign S

2. 5-bit combination field G encoding classification, two leading exponent

bits whose value together is 0, 1, or 2, and one leading significand digit

3. w-bit following exponent field F which, when combined with the two
leading exponent bits from the combination field, provides a w+2-bit

biased exponent E = q + bias

4. t-bit trailing significand field T =J' ... J'. There are J = t+10 groups J;
each these groups of ten bits is a declet encoding three decimal digits.
When the declets are combined with the leading significand digit from
the combination field, the format has a total of p = 1 + 3 J decimal
digits. Computational operations produce only 1000 canonical declets,
but also accept 24 noncanonical declets in operands according to

Tables 2-3 and 2-4.

11

Width 1 Bit 5 Bits W Bits t=10 J bits=3 J digits
Following Trailing signficand T
Field Sign S | Combination G
Exponent F Containing J declets
Most/least Most............Least | Most..Least Most........... Least
significant GO..ovveea G4 F2........ Fw+1 d1 . .d3j
bit Jieeeeneenennnnnnfy

Table 2.2: Basic Decimal Floating-Point Format

The values of w, bias, and t for the basic decimal formats are listed in Table

2-2.

Basic Decimal Format Encoding Parameters
Format Name Decimal32 Decimal64 Decimal 128
Storage Width 32 64 128
Trailing significand
20 50 110
field width t
Following exponent
6 8 12
field width w
Combination field
5 5 5
width
emax 96 384 6144
Exponent bias 101 398 6176

12

Table 2.3: Decimal Encodings

The floating point representation r and representable entity v are inferred

from the constituent fields, thus:

1.If Gis 11111, then r is gNaN or sNaN and v is NaN regardless of S. The
values of F and T distinguish various NaNs. If F,, the most significant bit
of F, is 1, then r is sNaN; otherwise r is qNaN. [This allows the all-1 bit
pattern to be a decimal signaling NaN. However, the all-1 bit pattern
might not be propagated; A canonical NaN representation has bits F; to

F.+1 zero, and trailing significand declets are all canonical.

2. If Gis 11110, then r and v = (1) ®° oo, The values of F and T are ignored.

The two canonical infinity representations have F =0, T = 0.

3. For finite numbers, r is (S, E-bias, ¢) and v = (-1) ® 10 *"* ¢ ; the
decimal digit string do d;...d,[} of the significand c is encoded in the
combination and trailing significand fields, while the biased exponent E is

encoded in the combination and following exponent fields:

» When the combination field G is 110xx or 1110x, the leading significand
digit do is 8+G,, a value 8 or 9, and the leading exponent bits are 2G,+Gs, a

value 0, 1, or 2.

* When the combination field G is Oxxxx or 10xxx, the leading significand
digit dois 4G,+2G3+Gy, a value in the range 0..7, and the leading exponent
bits are 2G,+G; , a value 0, 1, or 2. Consequently if T is 0 and G is 00000,
01000, or 10000, then v = (1) ® 0.

The trailing significand field T contains J declets, groups of ten bits each
encoding three decimal digits using the densely packed decimal encoding

scheme described in Cowlishaw, M.F., “Densely Packed Decimal Encoding,”

13

IEE Proceedings - Computers and Digital Techniques, ISSN 1350-2387, Vol.
149, No. 3, pp102-104, May 2002.

A canonical number representation has only canonical declets — see Tables

2-3 and 2-4.

b
©. b0 bo dg de dg
bg), b
0xxXxX 4b(o) + 2b(1) +b(2) 4b(3) + 2b(4) +b(5) 4b(7) + 2b(8) +b(9)
100xx 4b(o) + Zb(l) +b(2) 4b(3) + 2b(4) +b(5) 8 +b(9)
101xx 4b(o) + 2b(1) +b(2) 8 +b(5) 4b(3) + 2b(4) +b(9)
110xx 8+ b(z) 4b(3) + 2b(4) +b(5) 4b(o) + 2b(1) +b(9)
11100 8+ b(z) 8+ b(s) 4b(o) + 2b(1) +b(9)
11101 8+ b(z) 4b(0) + 2b(1) +b(5) 8+ b(g)
11110 4b(0) + 2b(1) +b(2) 8+ b(5) 8+ b(g)
11111 8+b(2) 8+b(5) 8+b(9)

Table 2.4: Decoding 10-bit Densely Packed Decimal to 3 Decimal Digits

Decoding Densely Packed Decimal

Table 2.3 decodes a declet, with 10 bits b(0) to b(9), into 3 decimal digits d(1),

d(2), d(3). The first column is in binary and an “x” denotes “don’t care”. Thus

all 1024 possible 10-bit patterns shall be accepted and mapped into 1000

possible 3-digit combinations with some redundancy.

da0, deoy, Ao be s by , be b bay, bs) | be | ba s be s be

000 daia dp.13) 0 dia

001 da,i3) deas 1 0,0, dis
010 dais) dii2) desy 1 0,1, dgs
011 dai:3) 1, 0, degs) 1 1,1, dgas
100 dii2) dag) dpas) 1 1,0, das
101 de,i2), dag) 0,1, dps 1 1, 1, dgs
110 d(3,1;2), d(1,3) 0, 0, d(2,3) 1]_, 1, d(3,3)

14

111 | 0,0, dus) | 1L1,dey | 1 | 1,1,dewsn |

Table 2.5: Encoding 3 Decimal Digits to 10-bit Densely Packed Decimal

Encoding Densely Packed Decimal

Table 2.4 encodes 3 decimal digits d(1), d(2), and d(3), each having 4 bits
which can be expressed by a second subscript d(1,0:3), d(2,0:3), and d(3,0:3),
where bit 0 is the most significant and bit 3 the least significant, into a declet,
with 10 bits b(0) to b(9). Computational operations generate only the 1000

canonical 10-bit patterns defined by table 2.2c.

The 24 noncanonical patterns of the form 01x11x111x, 10x11x111x, or
11x11x111x (where an “x” denotes “don’t care”) are not generated in the result
of a computational operation. However, as listed in table 2-3, these 24 bit
patterns do map to valid numbers. The bit pattern in a NaN significand can

affect how the NaN is propagated.

Rounding

Rounding takes a number regarded as infinitely precise and, if necessary,
modifies it to fit in the destination's format while signaling the inexact
exception. Every operation shall be performed as if it first produced an
intermediate result correct to infinite precision and with unbounded range, and

then rounded that result according to one of the modes in this section.
The rounding modes affect all computational operations that might be

inexact. The rounding modes may affect the signs of zero sums, and do affect

the thresholds beyond which overflow and underflow are signaled.

15

Rounding Modes to Nearest

In these modes However an infinitely precise result with magnitude at least
b*" (b — ¥ b"") shall round to co with no change in sign; here emax and p are
determined by the destination format unless overridden by a rounding precision

mode

Round to Nearest, Ties to Even
An implementation of this standard shall provide round to nearest, ties to even,
as the default rounding mode. In this mode the representable number nearest to
the infinitely precise result shall be delivered; if the two nearest representable
numbers bracketing an unrepresentable infinitely precise result are equally near,

the one with it's an even least significant digit shall be delivered.

Round to Nearest, Ties Away from Zero
A decimal implementation of this standard shall provide round to nearest, ties
away from zero, as a user-selectable rounding mode. In this mode the
representable number nearest to the infinitely precise result shall be delivered;
if the two nearest representable numbers bracketing an unrepresentable
infinitely precise result are equally near, the one with larger magnitude shall be

delivered.

Directed Rounding Modes

An implementation shall also provide three other user-selectable rounding
modes: the directed rounding modes are:
Round toward +oo: When rounding toward +oo the result shall be the
format's representable number (possibly +o) closest

to and no less than the infinitely precise result.

16

Round toward —co: When rounding toward —oo the result shall be the
format's representable number (possibly —) closest

to and no greater than the infinitely precise result.

Round toward 0: When rounding toward O the result shall be the
format's representable number closest to and no

greater in magnitude than the infinitely precise result.

Rounding Precision

Normally, a result is rounded to the precision of its destination. However, some
systems deliver arithmetic results only to destinations wider than their
operands. On such a system the user, which may be a high-level language
compiler, shall be able to specify that a result be rounded instead to any
supported narrower precision with only one rounding, though it may be stored

in a wider format with its wider exponent range.

17

Chapter 3

Architecture and Implementation

Background

Before proceeding with the architecture and the implementation, a quick
overview about the floating point representation motivation, properties and

computation problem is introduced.

Floating Point Number representation

Motivation and Terminology

18

The problem with fixed point arithmetic is the lack of dynamic range, which can be
illustrated by the following example in the decimal number system.

Assuming that there are four decimal digits. Then the dynamic range 9999 to 0
is & 10,000. This rang is independent of the decimal point positions, that is, the
dynamic range of 0.9999 to 0.0000 is also = 10,000. Since this is 4-digits
number, we may want to represent during the same operation both 9999 and

0.0001; but is impossible to do in fixed point arithmetic without scaling.

The above example illustrates the motivation for floating point

representation: dynamic range.

Floating point representation is similar to scientific notation; that is
Fraction x (radix)®o™™

For example the number 9999 is expressed as 0.9999 X 104. In a computer

with floating point instructions, the radix is implicit, so only the fraction and

the exponent need to be represented explicitly.

The floating point format for the above four decimal digits could be like

this:

AN J AN J
Y Y

exponent fraction

Properties of floating point Representation

Lack of Unique Representation

Generally, a floating point number is evaluated by the equation M x [°
where

M = mantissa

19

[= radix

e = exponent

In a 5-digit decimal floating point representation, the number 9 can be
written as 0.9 X 101 or as 0.09 X 102 . The lack of unique representation makes
comparison of numbers difficult. Consequently, floating point numbers are
usually represented in normalized from, where the mantissa is always
represented by a nonzero most significant digit. Obviously, this rule could not
apply to the case of zero. Therefore, by definition, normalized zero is
represented by all zero digits (which simplifies zero detection circuitry). It is
interesting to note that a normalized zero is floating point representation is

designed to be identical to the fixed point representation of the zero.

Range and Precision

The range is a pair of numbers (smallest, largest) which bounds all
representable numbers in a given system. Precision, on the other hand, indicates
the smallest difference between the mantissas of any two such representable
numbers.

The largest number representable in any normalized floating point system is
approximately equal to the radix raised to the power of the most positive
exponent, and the absolute value of the smallest nonzero number is
approximately equal to the radix raised to the power of the most negative
exponent.

Assuming M.« and expmax to be the largest mantissa and exponent
respectively, we write the largest representable number as:

max = Minax X B™Pmax

Similarly, we get the minimum representable number min from the

minimum normalized mantissa My, and the minimum exponent eXpmin:

min = Mmin X Bexpmin

20

For a given radix, the range is mainly a function of the exponent. By
contrast, the precision is a function of the mantissa. Precision is the resolution
of the system, and it indicates the minimum difference between two mantissa
representations, which is equal to the value of the least significant bit of the
mantissa. Precision is defined independently of the exponent; it depends only
on the mantissa and is equal to the maximum number of significant digits
representable in a specific format. In the IBM short format, there are 24 bits in
the mantissa. Therefore, the precision is six hexadecimal digits because 16°° =
27%* If we convert this to human understandable numbers 2%~ 0.6 x 1077, or
approximately seven significant decimal digits.

In the literature, some prefer to express the precision as the difference
between two consecutive mantissas so that in the previous example, it would be

167° and not six.

Floating Point Addition and Subtraction

Addition and subtraction require that exponents of the two operands be
equal. This alignment is accomplished by shifting the mantissa of the smaller
operand to the right, while proportionally increasing its exponent until it is
equal to exponent of the larger number. (In general scientific notation, the
alignment could be accomplished by the converse operation, that is, shift the
mantissa of the larger number left, and while decreasing it is exponent.
However, this is impossible in normalized floating point system, since a left-
shifted normalized mantissa has to be larger thanl, but 1- £-* is the largest
representable p—digit mantissa). After the alignment, the two mantissa are
added (or subtracted), and the resultant number, with the common exponent, is

normalized. The latter operation is called postnormalization.

Problems in Floating Point Computations

21

Loss of Significance

The following example illustrates the loss of significance problem. Assume the
two numbers are different by less than 2. (The representation is the IBM

System 370 short format.)

A =0.100000 X 16'
B = 0.FFFFFF X 16°

When one is subtracted from the other, the smaller must be shifted right to

align the radix points. (Note that the least significant digit of B is now lost.)

A =0.100000 X 16'
B = 0.FFFFFF X 16'
A -B=0.000001 X 16" = .1 X 16™

Now let us calculate the error generated due to loss of digit in the smaller

number. The result is (assuming infinite precision):

A =0.100000 X 16'
B = 0.FFFFFF X 16'
A -B=0.000001 X 16'= .1 X 16®

ERROR=0.1x16"-0.1x16° =0.Fx 16 -

Thus, the loss of significance (error) is 0.F x 16°. An obvious solution to
this problem is a guard digit, that is, additional bits are used to the right of the
mantissa to hold intermediate results. In the IBM format, an additional 4 digit
(one hexadecimal digit) are appended to the 24 bits of the mantissa. Thus with a
guard digit the above example will produce no error. On first thought, one
might think that in order to obtain maximum accuracy it is necessary to equate
the number of guard bit to the number of bits in the mantissa. However, it has

proven that two guard digits are always sufficient to preserve maximal

22

accuracy. Regardless of operation (subtraction and multiplication are the
operation of concern), only one nonzero bit can be left-postshifted into the
result mantissa. Thus, no more than one guard digit will enter the final
significant result. However, to insure an unbiased rounding, a third digit (sticky

digit) can be added beyond the two guard digits [7].

Design Specification

The target design has to fulfill the following specifications:
- Decimal Adder/Subtractor unit.
- Single path.
- 64bits.
- Support 5 rounding modes.

o Round to zero.
o Round to +oo.
o Round to -,
o0 Round to nearest
* Ties to even.
» Ties away from zero.

- Support exception handling by raising a flag.

o Invalid.

* Any operation on a signaling NaN except those
operations defined to be quiet.

« Magnitude subtraction of infinities, such as (+) + (-0

).

0 Overflow.

o Inexact.

23

Unit Interface

The unit interface as shown in figure 3.1 has 2 input operands with 64-bit wide,
one bit (sign_in) indicating the operation to be performed, two inputs for clock
and reset signals and finally 3 bits specifying the rounding mode that will be
applied on the intermediate final result. As output of this unit we have the result
as 64-bit wide in the standard format in addition to 3 flags for exception

handling (inexact, overflow and invalid).

- operand_a : (63:0)

 result: (63:0)
operand_b : (63:0)

C - inexact_flag
rounding_mode : (2:0)

. . . ovérfldw_flag .
sign_in

B - invalid_flag
_ cl_k

: rs:t

Figure 3.1: Unit Interface

Internal representation

In our design we used the single path technique and we tried different internal
design for some blocks that will be explained in details. A block diagram
describing our 64-bit decimal floating-point adder/subtractor design is shown in
Figure 3.2. In which, the two input operands are decomposed from the Densely
Packed format to extract the sign, the significand and the exponent fields of

each operand. The two significands are then transformed to BCD.

24

With the operation specifier and the sign of each operand the effective

operation is then deduced.

The two significands are then aligned to have the same exponent to be

added or subtracted according to the effective operation.

The result of the BCD adder is shifted and adjusted according to the

rounding mode specifier.

After the calculation of the exponent field it is adjusted in accordance with

the shifting done on the BCD result.

The sign of the result is calculated in parallel with the BCD result and the
exponent of the result, and then all the fields are repacked into Densely Packed

format with all the exception handling and raising the appropriate flags.

Fle Edt Wiew HOL Diagram Tools Flows Smulation Add Options ‘Window OLE Help
8- Fes0HEQ BB HEFLLAPL|[s 11 ===k,
[b-A® WEBBMAG L L -B-e=2s<00¢ o A48 nDH N
d_a bl
and_b
sign_in =
clk
st
ling_mode
= inexact_flag
= overflow_flag
result
invalid_flag M
£ | 1l } m
[B-2-A-d|=-=-a-2-0-\-Q|F-#-]a<ae%%EH 25
Desion "decimal_adderiop 14stuct” saved successfull

= —————————
i T 7| T Master_Thesis ghada,, | H{§ Design Browse) T

Figure 3.2: Block Diagram

Decompose

b
Flo Edt View HDL m Add Options Window OLE

@ o - ME®L AL 0 AL h-AT>reoOeed

operand_a : (63:0) na1: (63:0)

operand_b : (63:0) nb1:(63:0)

puse

eb: (9:0)

sign_in
clk

rst sign_a

sign_b

eff_op

Figure 3.3: Decompose Interface

The two IEEE-754 decimal encoded numbers (operand_a and operand_b) are
unpacked into their corresponding sign-bits (sign_a and sign_b), 10-bit biased

binary exponents (ea and eb), and 16-digit significands.

Each 64-bit operand has the format shown in table 3.1, which consists of a
1-bit sign field, an 8-bit exponent continuation field, a 50-bit coefficient
continuation field, and a 5-bit combination field. The combination field is
decoded and combined with the exponent and coefficient continuation fields to

determine the operand’s exponent and coefficient, respectively.

26

Length (bits) 1 5 8 50

Combination Exponent Coefficient
Contents Sign

Field continuation continuation

Table 3.6: Densely Packed Decimal-64 Operand Format.

With the sign_in signal and the deduced sign of each operand the effective

operation is then deduced according to the following equation:

ESf op=sin_in sign_a sign_b.

The two unpacked operands are decoded from Densely Packed Format
(DPF) (54 bits) to their corresponding 64 bits (16 digits) in BCD format (nal
and nb1) table 3.2.

Length (bits) 1 10 64
Contents Sign Exponent Coefficient

Table 3.7: BCD Operand Format

Exponent Difference

Figure 3.4 shows the interface of this block in which the two input BCD
operands (nal and nb1) are checked to calculate the number of leading zeros in
each (na_zero, nb_zero). At this step we will internally calculate a signal called
"effective exponent” which represents the difference between the exponent and

the number of leading zeros for each operand.

With the number of leading zeros and the effective exponent we deduce the

larger operand which will be placed on (NA2) and if we have equal effective

27

exponent we assume that operand_a is the larger.

In order to align the 2 operands, calculation for the amount the larger
operand has to be shifted left (left_amount) as well as the amount the small
operand has to be shifted right should (right_amount) also be calculated.

In case the small operand has a larger exponent then it has to be shifted left

(left_small_amount) in order to align the 2 operands.

Internal initial calculation for the result exponent (er_int_out) is done inside
this block based on the calculated large operand, shift amounts and the initial

exponents for both operands.

MR aECmal . \ERPONENE i\ 5ymbol * (Symbol)
File Edt Viey L Diagram Add Cptions Window OLE Help

|8 -3 csHdE8d 1 2B[o-MAFPL AP 7 u=

£ h-ADler oo neem

na1t: (63:0) difference : (11:0)
nb1 : (63:0) na_zero : (4:0)

ea: (9:0) nb_zero : (4:0)
left_amount : (11:0)
eff_op large_op

right_amount : (11:0)

left_small_amount : (11:0)

er_int_out: (9:0)

I m] [2]
B-2-4 L= =-2-5 [0\ D[F-#-nr3%e)n%%6E60

Figure 3.4: Exponent Difference Interface

The exponent difference block calculates the amount of shift for each of the
two BCD significand values so that their corresponding exponents are equal. It
determines the largest value by which NA1 can be shifted to the left, thus
decreasing its exponent towards the value of the lesser exponent without
encountering a loss of information. This is done in accordance with the

following formula:

28

Left_amount = min {EA-EB, X - M} (1)

Where(EA — EB) is the exponent difference of the 2 operands, M is the index of
the most significant non-zero digit of NA1, and X is the index of the most
significant digit available for the operand (for our 16-digit implementation, X =
16) on the condition of being positive number.

In parallel with this, it is also determined if and by how much NB must be
shifted to the right or left in order to complete the alignment process. This is

done in accordance with the following formulas:

Right_amount = max {EA—EB + M - X, 0} 2)

left_small_amount = max {EB—EA + X - M, 0} 3)

Once the left and right shift amounts are computed, the significand that is
associated with the larger exponent (NA1) is shifted to the left up to the edge of
its available register space to guarantee no loss in the accuracy of the result. At
the same time, the operand with the smaller exponent (NB1) is shifted to the
right until the two significands have associated exponents that are equal. This
shift does not affect the result unless non-zero digits are shifted out of the 64-bit
(16-digit) significand field. In this case these digits are shifted through the
round digit, guard digit and sticky bit, which are later used for rounding. Fig.

3.5 shows the adder operation and result format.

| na2 large Significand |

nb2 Small Significant Guard | Round | Sticky |

Carry

Guard | Round | Sticky
out

29

Figure 3.5: Adder operation and result format.

An example that illustrates the workings of the significand alignment

procedure is provided in the following example:

Examplel. Illustrating significand alignment:

Definitions:

nal -> input significand A (associated with eal)
nbl —> input significand B (associated with eb1)
eal —> input exponent A (eal >= eb1)

ebl -> input exponent B (ebl < eal)

Input values:

nal = 0786 0000 0000 0000
nbl = 0000 0000 0004 3720
eal =6
ebl =0

Taking into account the available significand round and guard digits and the

sticky bit, the two input significands are shown below (also refer to Figure 3.7):

0786 0000 0000 0000
0000 0000 0004 3720 00

nal

nbl

Using equation (1), it can be found that na2 must be left-shifted one digit:

Left amount =min {6 -0, 16 - 15} =1

30

In parallel, equation (2) can be used to determine the right-shift amount for

nb2:

Right_amount = max {6 -0+ 15-16,0} =5

In parallel, equation (3) can be used to determine the left_small_amount shift

for nb2:

Left_small _amount =max {0 -6 +15- 16, 0} =0

Given these shift amounts, the two significands and their associated

exponents are adjusted to become the following:

NA2 = 7860 0000 0000 0000
NB2 = (0000 0000 0000 0000 4372 0000 0

Er_int_out =5 (common exponent)

Example2: As example for the shift left small amount, note the following

case in which the input values are:

nal = 0000 0023 0786 0000
nbl = 0000 0000 0000 0004
eal =7

ebl =10

Here we should start first by calculating the effective exponent (eff_exp) for
both operands.

eff exp_.a =eal-na_zero =7-5=2

eff exp_b =ebl-nb_zero =10-15=-5

31

So it's clear that operand_a is the larger and we should align both operands
to have a common exponent of 2 so using equation (1), it can be found that

NA1 must be left-shifted six digits:

Left amount =min {7 - 10, 16 — 10} =6
Right_amount =max {7 -10 + 10-16, 0} =0
Left small amount =max {10-7+16-10,0} =9

Given these shift amounts, the two significands and their associated

exponents are adjusted to become the following:

na2 = 2307 8600 0000 0000
nb2 = 0000 0040 0000 0000 0000 0000 0

Er_int_out =1 (common exponent)

Significand Alignment

This block is responsible for shifting the two input operands (nal, nb1) with the
amount calculated by the previous block (Exponent difference). So that,
depending on the large operand value it places the larger operand on na2 and
the smaller operand on nb2. It adds to the smaller a guard digit, a round digit
and a sticky bit to keep some of the digits whenever a shift to the right is done.
The guard digit, round digit and the sticky bit are used later for rounding

purposes.

32

nai: (63:0)

nb1: (63:0)
right_amount : (11:0)
left_amount : (11:0) na2 : (63:0)
left_small_amount : (11:0)
nb2:(72:0)
large_op

clk

rst

Figure 3.6: Significand Alignment Interface

BCD Adder

The adder block is the most critical block for the overall delay of the design.
So, we tried 2 internal design for the adder itself and 2 different designs for the

subtractor.

We will represent first the ripple carry adder in which we are using the
nine's-complement for subtraction as shown in fig.3.7. In which the two
standard BCD operands are added/subtracted after being aligned in the previous

step.

0=
jiiid

Figure 3.7: BCD Adder/Subtractor.

33

The 2 input operands na2 and nb2 are 64-bit and 73-bit wide respectively.
First, the sticky bit in nb2 is extended to be one digit. Second, in order to be
able to add or subtract the 2 operands, the na2 is also extended by 3 digits
which are all zeros in order to have same length for both operands. So that now

we have to add/subtract 19 digits using our BCD adder.

Also, after getting the intermediate result including the end around carry, we
need to check whether the intermediate result has to be complemented or not

depending on effective operation and the end around carry.

Each subblock of the 19 identical blocks in first row of fig 3.7 is a BCD

adder/subtractor cell which will be illustrated in details as follows.

Adder cell

Each subblock has two 4-bit input operands (inp_a) and (inp_b), an input carry
(cin) from the previous stage and an operation specifier (operation). It generates

a sum vector of 4 bits (sout) and a carry out signal (cout) as shown in fig.3.8.

B E L pe E-AN>e>oo0le@

Declarati
Ports:
cil

inp

o
5
=l

g 8
£E2% 5
ERC T

op

Il inp_a:(3:0)

inp_b : (3:0) date(l?‘)”
cin btractor

operation

s
User:

Figure 3.8: BCD Adder/Subtractor cell

34

We have implemented the subtractor by 2 different designs, the nine's-
complements and the ten's-complements. We are using here the nine's-
complements which will be explained in details. Operand B is fed into a nine's
complement block to prepare it, then according to the operation specifier signal
this operand is kept as it is or we get its nine's complement to be fed to the
BCD adder with input_a which generates the output (sout) according to

equation (3) and the carry (cout) according to equation (4).

Sout = inp_a XOR inp_b XOR CiN....ooviiiiiiiiiiiiiiiiiiiieeas 3)
Cout = (cin AND (inp_a OR inp_b)) OR (inp_a AND inp_b)......... 4)
Carry effect

eff_op

carry_out cin

clk complement_out

rst

Figure 3.9: carry effect block interface

This block is responsible of generating the input carry to the LSD cell in the
adder block as well as detecting whether the generated output should be

complemented or not.

If the effective operation is addition, then the cin and complement_out

signals are equal to zeros. While, in case of effective subtraction if the end

35

round carry (carry_out) is generated this means that the result is positive and
we should generate cin to be equal to 'l' which is fed to the LSD and no

complementation is needed for the output.

In case of effective subtraction and no carry is generated this will only occur
in case we had both operand having the same effective exponent and we
assumed that operand-a is the larger which was not correct. So, we got a
negative result (carry_out='0") in which case we should complement the output

by raising the complement_out signal.

Nine's complement

The 9's complement of a decimal number as shown in fig.3.10 can be found by

subtracting each digit in the number from 9 as shown in table 3.3.

b :(3:0)
b_in: (3:0)
operation

Figure 3.10: nine's complement block interface

DECIMAL DIGIT 9’s COMPLEMENT
0 9
1 8
2 7

36

Table 3.8: 9’s Complenment
Example: 9’s COMPLEMENT of 28 =99 -28 = 71
9’s COMPLEMENT of 562 =999 —-562= 437
Subtraction of a smaller decimal number from a larger one can be done by
adding the 9's complement of the smaller number to the larger number and then

adding the carry to the result (end round carry)[6].

When subtracting a larger number from a smaller one, there is no carry

and the result is in 9's complement form and negative.

Examples:

(a) 8 -8
+Ge= 9's COMP. OF 3

'\)'II fad

(1) 4
r—» +1 END AROUND CARRY
5

(b) 54 54
21 78 <— 9's COMP. OF 3

33 (1) 32
L 1 END AROUND CARRY
33

(©) 15 15
28 7] «— 9’s COMP. OF 3
I3 86 —»>-13

NO CARRY === NEGATIVE RESULT

86-99=-13

37

Figure 3.11: shows the uncorrected and the corrected BCD sums.

So, from figure 3.11 we can deduce some general rules to follow in case of
subtraction:
1- Add 9's complement of b to a
2- If the result >9 correct by adding 0110.
3- If most significant carry is produced [i.e.=1]then the result is positive and
the end around carry must be added.
4- If most significant carry is not produced [i.e.=0]then the result is negative

and we get the 9's complement of the result.

Correction unit

A correction unit is embedded with each cell of the adder. This unit is
responsible of correcting the calculated result. When adding two BCD digits the
obtained result may be ranged between (0 -18). It is not allowed to have a
calculated decimal numbers greater than 9. Only numbers between 0 and 9 are

allowed in order to have the correct BCD code.

UNCORECTED 9, COMPLEMENT
DECIMAL
BCD SUM BCD SUM
DIGIT

C’3S’3S’2S’1S’0 C383828180
0 0000 0000
9 1001 1001
10 1010 10000
11 1011 10001
12 1100 10010
13 1101 10011
14 1110 10100
15 1111 10101
16 10000 10110

38

17 10001 10111

18 10010 11000

19 10011 11001

Table 3.9: BCD sum correction

Thus, for sums between 10 and 18 we must subtract 10 and produce a carry,
Subtracting 10 means by other words adding its 2's complement. So, by adding
0110 the result will be correct.

Also, for answers between 0 and 3 we should check if a carry is produced or
not. If a carry is produced this means that the answer is between 16 and 19, and

then we must correct the output in the same manner as previous.

Ten's complement

The ten's-complement block interface is shown in fig 3.12. The ten's-
complements of a BCD number is obtained by adding 'l' to the nine's
complement of the overall result. In other words, in case of effective
subtraction we put the cin_compl of the LSD equal to '1'. The "cout_compl"

of each cell is fed to the following one.

® oo pln - ol = =& -]

comp_in : (3:0)

cin_compl

complement_out

Figure 3.12: nine's complement block interface

39

The main advantage of the ten's-complement over the nine's-complement is
that we don't have to wait for the end round carry to get the correct result. But
the main disadvantage is that we have to wait for the carry to ripple to the MSD

to get the correct answer.

We shall evaluate the behavior in the synthesis time to decide which one is

convenient for the overall system performance.
We introduced another system architecture in order to avoid the waiting for

the rippling of the carry. As shown in fig.3.13 we added another BCD-adder

block and a selector.

operand_a m
operand_b =
sign_in =

clk
rst
1 1

s

rounding_mode

inexact_flag
overflow_flag

result

invalid_flag

Figure 3.13: Alternative block diagram

In which the second BCD-adder has the 2 input operands interchanged. So
that we have at the same time a block is subtracting nal from nb1 and the other

is subtracting nb1 from nal.

According to the complement-out signal the selector will select which
output shall be delivered to the next stage.
We introduced another design for the BCD adder which is the

carry_look_ahead architecture [7] as shown in figure 3.14.

Figure 3.14: Carry_look_ahead adder block diagram

In the last decade, the carry-look-ahead has become the most popular
method of addition, due to a simplicity and modularity that make it particularly
adaptable to integrated circuit implementation. To see this modularity, we
derive the equations for a 4-bit slice[7].

The sum equations for each bit position are:

41

SO0=A0 CIB0 C1C
S1=A1 CIB1 C1C
S2=A2 [1B2 1C
S3=A3 [I1B3 [1C

in general:
Si=Ai CIBi CICi

The carry equations are as follows:

C1=A0B0 + CO(A0 + BO))

= + n in general:
C2=AIBL+CI(AL+BI) v Ci+1 = AiBi+ Ci(Ai + Bi)
C3=A2B2 + C2(A2 + B2)

C4 = A3B3 + C3(A3 + B3)

In this adder design, instead of waiting for the end around carry, we grouped
each 4 digits together and duplicate it one time assuming the carry from the
previous stage is '1' and the other time assuming the carry from the previous
stage is '0'. We have two multiplexers, one to select which carry should be
passed to the next stage and the other selects the 4-digit output that will be fed

to the final output.

At the end, the ripple carry adder and the carry look ahead will be compared

with the whole design from both point of view, area and speed.

Sign result

42

complement_out

Figure 3.15 shows the interface of the block responsible for generating the sign
of the final result. The sign of the result depends mainly on the effective

operation. In case of effective addition the sign of the result always follows

carry_out

large_op

si

si

si

eff_op

gn_in
gn_a

gn_b

sign_r

Figure 3.15: result sign block interface

operand_a sign as shown in table 3.5.

INPUTS OUTPUTS

Effective

SA | SB | Operation Sign Result
Operation

+ + Add Add + = Sign A

+ + Sub Sub TBD

+ — Add Sub TBD

+ — Sub Add + = Sign A

— + Add Sub TBD

— + Sub Add - =Sign A

— — Add Add - =Sign A

— — Sub Sub TBD

Table 3.10: sign result

43

TBD: to be deduced

In case of effective subtraction we should check whether there is output
complementation in the BCD adder block or not. If operand_b is the larger
operand or when "complement_out" signal is generated while the large operand

is operand_a, then the sign of the result is according to the following equation:

Sign_r = sign_in XOR sign_b.

Otherwise, the sign of the result is equal to sign_a.

Exp adjust

er_int_out
exp_zero
max

rslt_zero

ex_adj

carry_out
normalize er
eff_op
clk

rst

Figure 3.16: exponent adjust block interface

Figure 3.16 shows the interface of the exponent adjust block. The final result
exponent in addition to an alert signal for max exponent is calculated within

this block.

44

The previously calculated exponent (er_int_out) within the exponent
difference block is adjusted according to the effect of shift and round step. The
adjustment may be by increasing or decreasing the previously calculated

exponent.

The rising of the input "normalize" signal indicates the generation of a carry
out signal after performing the necessary shift during the effective addition
operation. This means that a shift to the right to the complete final result has
been done in order to keep the generated carry out within the final result. At

this condition we should increment the previously calculated exponent by one.

Another adjustment is required, whenever the "exp_zero" signal is raised we
should decrease the previously calculated exponent by the amount of the

n

"rslt_zero " signal. Because at this condition, there was leading zeros in the
final result and the amount of exponent calculated allows for shift while

keeping the final exponent as required by the standard

The preferred exponent is min (Q(x), Q(y)) [3].

Where Q(x) and Q(y) are the exponents of operand_a and operand_b

respectively.

Whenever the previously calculated exponent (er_int_out) is equal to the
max (767) with effective addition and either a carry_out (from the BCD adder)
is generated or an ex_adj (from shift and round) then, "max" signal is raised and

the "er" signal is equal to zeros (which is the condition of overflow).

45

Shift & Round

inter_result

rounding_maod

na_zero
ex_ai)
nb_zero
i inexact_flag
difference
. overflow_flag
er_imt
exp_zero
ea
inter_result_1
ebh
rsh_zero
left_amount
. normalize
sign_r
large_op
carry_out
eff_op
max
clk
rst

Figure 3.17: shift and round block interface

Figure 3.17 shows the interface of the shift and round block. This block is

responsible for the followings:

- Calculate the intermediate result"inter_result_1" after shifting and

rounding operation.

- Raise "ex_adj" when there's a need to adjust the exponent.

- Raise the "inexact" and "overflow" flags when their appropriate

conditions are available.

46

inter_result
left_amount
carry_out
max
difference
clk

st

er_int
na_zero
nh_zero
(-]

eh

large _op
eff_op

sign_r

rounding_mode

Raise a signal "exp_zero" when a shift to the left has to be performed

and send the amount of this shift to the exponent adjust block via

"rslt_zero" signal.

Raise a signal "normalize" when a shift to the right has to be

performed. To discuss in details the internal structure, consider the

fig.3.18 which represents the internal structure of this block. We are

going to elaborate each block separately.

b

¥ ¥ ¥

¥ ¥ ¥ W

rounding_circuit

"| incrementer

round_decision

N&Iector /

| eb3 |

Figure 3.18: shift and round internal structure

rsht_zero: {11:0)
normalize
exp_zero

overflow_flag

inexact_flag

D—- ex_adj

47

= inter_result_1

Rounding Circuit

The output of the BCD adder "inter_result" is fed to this block in order to check
for the number of leading zeros and then check the intermediate exponent
(er_int) if it is equal to the is minimum of the exponents of the 2 operands then
no shift will be performed. Otherwise shift the whole result to the left and raise
the "exp_zero" signal and put the amount to be shifted in the "rslt_zero"

variable which is equal to the number of leading zeros.

In case we have the first 2 least digits are non-zero, we raise the

"inexact_flag" signal.

The "round_flag" is raised whenever the round digit is greater than "4" or

when the round digit is equal to "4" and the guard digit is greater than "4".

If the round digit is equal to 5 and the guard digit and the sticky bit are

equal to zero then the tie signal is raised.

The generation of the "carry out" signal from the BCD adder is fed into this
block which in case of effective addition will generate the "normalize" signal
indicating a shift to the right for the complete intermediate result will be

performed by one digit place.

In case we have the "max" signal raised, then accordingly, the
"overflow_flag" is raised which will raise the "inexact_flag" as reference to the

standard.

Round Decision

In this block we are adopting the following five rounding modes stated by the

standard.

48

Round towards zero

Round towards zero never increments the digit prior to a discarded fraction,
that is, truncates. This rounding mode never increases the magnitude of the

calculated value. Some references call it round down as shown in figure 3.19.

-00 3 -2 -1 0 1 2 3 +o00

Figure 3.19: round towards zero

Round towards positive infinity

Also is called round ceiling. If the decimal is positive, the output value is
incremented (it behaves as for round away from zero); if negative, the output
value is not incremented (it behaves as for round towards zero). This rounding

mode never decreases the calculated value as shown in figure 3.20.

v

y
y
y
v

+00

N]
w

-00 3 -2 -1 0 1

Figure 3.20: round towards positive infinity

Round towards negative infinity

Also is called round floor. If the decimal is positive, the output value is not
incremented (it behaves as for round towards zero); if negative, the output
value is incremented (it behaves as for round away from zero). This rounding

mode never increases the calculated value as shown in figure 3.21.

49

-00 3 -2 -1 0 1 2 3 +00

Figure 3.21: round towards negative infinity

Round to nearest, tie to even

Round towards the "nearest neighbor" unless both neighbors are equidistant, in
which case, round towards the even neighbor. If the digit to the left of the
discarded fraction is odd then, the output value is incremented (it behaves as for
round half up); if it is even, the output value is not incremented (it behaves as
for round half down). This is the rounding mode that minimizes cumulative
error when applied repeatedly over a sequence of calculations, and is

sometimes referred to as Banker's rounding as shown in figure 3.22.

[TR D P B ey >

-00 3 -2 -1 0 1 2 3 +00

Figure 3.22: round to nearest, tie to even

Round to nearest, away from zero

Round towards "nearest neighbor" unless both neighbors are equidistant, in
which case round up. , the output value is incremented (it behaves as for round
towards positive infinity) if the discarded fraction is greater than, or equal to,

0.5; otherwise, the output value is not incremented (it behaves as for round

50

towards negative infinity). This is the rounding mode that is typically taught in

schools as shown in figure 3.23.

-00 3 -2 -1 0 1 2 3 +00

Figure 3.23: round to nearest, away from zero

In addition to the previously mentioned rounding modes, following are two

other rounding modes proposed by IBM.

Round away from zero

The output always increments the digit prior to a nonzero discarded fraction.
This rounding mode never decreases the magnitude of the calculated value as

shown in figure 3.24.

-00 3 -2 -1 0 1 2 3 +00

Figure 3.24: round away from zero

Round half down

Round towards "nearest neighbor" unless both neighbors are equidistant, in
which case the output value is not incremented (it behaves as for round towards

negative infinity). If the discarded fraction is grater than 0.5 the output value is

51

incremented (it behaves as for round towards positive infinity) as shown in

figure 3.25.

|4' o=p e s = 0—>|<-I0 ->|4-|0 -><-|0 '>|
1

-00 3 -2 -1 0 1 2 3 +o0

Figure 3.25: round half down

Table 3.6 summarizes the 7 implemented rounding modes

Inputs Outputs

Round | Sticky | To | Toward |Toward To Away
Half Up | Half Down

flag bit 0 + - 00 Even | from0
0 0 0 0 0 0 0 0 0
t+ve |-ve |+ve | -ve
0 1 0 e 0 0 11 0 +1 0 0
Check = T=0
1 0 0] +1 0 0| +1 +1 +1 1
LSB 0 1
1 1 0 +1 0 0| +1 +1 +1 +1 0 +1

Table 3.11 rounding table

Table 3.7 shows some examples according to the different rounding modes

[10].

52

SLDILE Round | Round | Round | Round Round
Input away | yoward | toward | toward | ties to SLOTE half
number | from zero + o - w even half up down
zero
5.5 6 5 6 5 6 6 5
2.5 3 2 3 2 2 3 2
1.6 2 1 2 1 2 2 2
1.1 2 1 2 1 1 1 1
1.0 1 1 1 1 1 1 1
-1.0 -1 -1 -1 -1 -1 -1 -1
-1.1 -2 -1 -1 -2 -1 -1 -1
-1.6 -2 -1 -1 -2 -2 -2 -2
-2.5 -3 -2 -2 -3 -2 -3 -2
-5.5 -6 -5 -5 -6 -6 -6 -5

Table 3.12 rounding table

Table 3.8 shows the internal code corresponding for each rounding mode

Round
Code

mode
Round to Nearest ties to Even 000
Round away from zero 001
Round Toward Positive 010
Round Toward Negative 011
Round Toward Zero 100
Round-half-up 101
Round-half-down 110

Table 3.13 Rounding codes

53

Incrementer

This block increments the output of the rounding_circuit by one and generates

(if needed) a carry out flag which will be anded with the round signal in order

to generate the "ex_adj" signal.

The round signal selects whether the output of the rounding circuit will be

passed as is to the output "inter_result_1"or the incremented value instead.

DPF converter

operand_a
operand_b
inter_result_1

rounding_mode

er result
sign_r
gn_ invalid_flag
sign_in
eff_op
inexact_flag

aoverflow_flag

clk

rst

Figure 3.26: Densely Packed Format Converter

54

The last block in our architecture is shown in figure 3.26. This block is
responsible for adjusting the final result and put it in the "Densely Packed
Format" as well as raising the invalid flag.

The internal implementation of this block transforms the BCD input
"inter_result_1" into its corresponding DPF. There are several checks that

should be done before passing this value to the output.

1- The 2 input operands are fed to this block in order to check for if any of the 2
operands is a sSNalN at which case the output is as shown in table 3-9. Also,

the invalid flag is also raised.

Width 1 Bit 5 Bits 8 Bits 50 Bits

Combination | Following | Trailing signficand T
Field Sign S

G Exponent F | Containing J declets
Most/least
significant 0 11111 000...0 0000...0
bit

Table 3.14 output in case of sNaN

2- If any of the 2 operands is a gqNaN, we have the same output as the previous

case but without raising the invalid flag.

2- In case of having operand_a equals to infinity then I need to be sure that the
other operand is neither infinity nor sNaN, in that case the result is
operand_a and invalid flag is not raised. But if the other operand is infinity
then I need to check if the effective operation is addition then the final result
is again operand_a and the invalid flag is not raised. Otherwise (effective

subtraction) the result is qNaN and invalid flag is not raised.

55

The same procedure is followed in case of having operand_b equals to
infinity except that the sign of the result is equal to the XOR of the input

sign and the operand_b sign.

4- In case of overflow the final result is either zeros or the maximum value
depending on the rounding mode and the sign of the result.

In case of Rounding toward zero OR rounding toward + infinity with
effective subtraction OR rounding toward - infinity with effective addition

the result is the maximum as shown in table 3.10.

Width 1 Bit 5 Bits 8 Bits 50 Bits
Field Sien S Combinatio FE(;H(;VIEI;% Trailing signficand T
& n G P v Containing J declets
Most/least | Sien 0011111111001111111100
o gn_ 11110 111...1 | 1111111100111111110011
significant r 111111
bit
Table 3.15 output in case of infinity
Otherwise:
Width 1 Bit 5 Bits 8 Bits 50 Bits
Combination | Following Trailing signficand T
Field Sign S
G Exponent F Containing J declets
Most/least 11101
Sign_r 000...0 000...0
significant
bit

Table 3.16 output in case of infinity

5- In case of effective subtraction, exact result and the whole operand is

zero, a check to the rounding mode is mandatory. If we have rounding

56

toward negative then the sign of the result is negative and the rest is as
calculated by the combination field, the follow_expo_64 and

trailing_sig 64.

Chapter 4

57

4-Verification & Testing

Test plan

To test the design we are following the IBM test suite [8]. 3063 test cases were
applied to the design covering the five standard rounding modes:

- Round to nearest ties to even (000)
- Round away from zero (001)
- Round toward positive (010)
- Round toward negative (011)
- Round toward zero (100)
As well as the two following testing modes:
- Round half up (101): in which if the round digit is greater than 4 then
round up, otherwise keep the result as is.
- Round half down (110): in which if the round digit is greater than 5 then

round up, otherwise keep the result as is.

First, a test bench to test each case separately was implemented in order to

study each problem individually.

Second, a behavioral test bench has been implemented to read the input test
vectors from a file with the following format as shown in table 4.1.

- The sign in (one bit)

- The rounding mode (3 bits)

- The 2 operands (each 64 bits in DPF)

Finally, write the final result in another file.

Using special software, we compare the original output file from IBM with the

output from our design.

58

3031
3032
3033
3034
3035
3036
3037
3038
3038
3040
3041
3042
3043
3044
3045
3046
3047
3048
3048
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063

F R HRRRAERBRRRERBRRBRERRBRERBRERRERBHRRBRERBRRHRRBRBRERRH R
=

0100111111101111101111000000000011011100010101101010011011000110

0100001111111 110001110010111101111100000011111
110000111111 10101100111010101
01000011111111 10100001100101100100001
11000011111101: 110010
110000111111 1001110100111000100101

0101001111100001000100011000100011111010110111100000000000000000
0100001111101 1110000100100
1100001111110100000000000000000000111010110101111000001001100001
0100001111101 100111101 110011001001110001101001
1100001111101100000000000000000000100100011111100100110000011100
1100001111101100000101011111100111110000100110010000100100100001
0100011111111101100001011010001001010100000100000001100110010010
1100001111101 1101100100001100110110
1101111111110011010010101000010001001010011010101101101110111111
1100111111111001000101000100100010110010110011100111111101100111
0100001111110101101011101000010110000101001011011101110000011000
1101001111101110101100001010010101110011110111110001111111111000
1100001111101001110101100100010010011110101010011010111000011001
0100111111111110011100010110000100010001100111010100010001111000
1100001111110111001100110001101110001001000010001001110100010101
1100011111110101111000001100100111010001000111001111100010100010
110000111111 1010000010101100111011110001
0100001111111 1100111010111
1100111111101010110101001111001001100010011100011010110101011000
0100001111111 100011110101100001001110011
110000111111131 10

0100111111101111101111000001000000100001110100001010000001110100
1100001111111000000000000001001001101100000100110001101100101000

010000111111 1010010100010101
11000011111101. 110001010100011111100011010
01000011111101. 10
010000111111 100111110001001100101110101

1101011111111011010100000011011111011011101000100101110100100101
1100001111101 10iiiiioon
0100001111110100000000000000000011010011100111110010101111011100
1100001111101000000001010010000010000100011110010000100111100101
0100001111101100000000000000000000011101011010011011011101011101
0100001111101100000001000001011010010010101000100001111000000010
0100011111111101100000001110011010100100100111111010100011110100
0100001111101 10001000011100010000111
1101111111110011010010101001001000001001110100000110001110101101
1100111111111001000010001010101110000000010000101001001001011011
0101111111101100101000110111000110101001001001010110010111100100
1101001111101110101100001010010101010100110101011011010000100000
0100001111101000110010100100110001000011011011000000001111111100
0100111111111110011100010111010111110011100101110100101011010011
0100001111110100101101100101111011001000100011100111100001000011
1100011111110101110110011001010001000000001100000101110101101001
010000111111 1111101100010010011000010110
1100001111111 10001111110
1100111111101010110101001111001001100010011100011010110110100101
1100001111111 1000100010001010011000110
01000011111111 101100
1100001111110011110000000110000101111100000001001011111001001001
1101101111000100101010101010101011
0101111111110101110110110111011010101001010000111000101110110101

0100001111101 11011000
0100001111101 11101001 1100100001001
010000111111 110010

Table 4.17 Input test vector format

000 1101111111101110000000110001010111100000100001010110101001110011
000 0101111111101101001111000110100111011101110010010100000000101001
000 0101111311330101110110110111011010101001010000111000101110110100
000 1100001111101 100100
000 110000111110111 1000111001131111001110
000 110000111111 1010011
Problems:

During testing, we faced some problems which we had solved to fulfill the

required standard output. Following are some of these solved problems.

1-

In case of effective subtraction, I use to leave the

round and guard digits as they are and if a carry in (cin) is generated it was

fed to the LSD before the round, guard & sticky bit.

Sol: the sticky bit should be expanded as 4 bits in order to feed the cin to its

input so that any change in the intermediate adder result (either by adding a

carry at the input or taking the 9's complement of the result) will affect the

whole result not just a part of it

59

2- While specifying the larger operand I used to
depend only on the value of the exponent and in case of equal exponent I

assumed operand_a is the larger.

Sol: to specify the larger operand first I should calculate the number of leading
zeros in each operand then compare it with its exponent to calculate what so
called the effective exponent which is so far follow the following equation:

Effective exponent = the original exponent - Leading zero.

3- After specifying the larger exponent, if a shift
operation has to be performed then the larger operand shall be shifted left
and the small operand shall be shifted right (when needed). A problem
appeared when the small operand has originally larger exponent in which

case the result exponent should be that of the larger operand.

Sol: in this particular case a shift left to the small operand has to be performed
in order to adjust the final result.
Example: If operand_a = 0000 1456 2345 0023 with exponent = 10
operand_b = 0000 0000 2345 0023 with exponent = 12
Here:
The Effective exponent_ a=10-4=6
The Effective exponent_ b=12-8=4
So the larger operand (a in this case) should be shifted left 4 digits and the
small operand should also be shifted left 6 digits in order to have the same

exponent.

4- In case of having leading zero in the final result, I

use to shift left the result as much as the exponent allows.

Sol: I should take care of the minimum exponent of two input operands because

as stated in the standard section 5.4.1 Arithmetic operations [3]

60

The preferred exponent is min(Q(x), Q(y)).
So, I should not go beyond the minimum of the 2 exponent even if the exponent

and the number of leading zeros of the result allows this.

5- I use to calculate the maximum allowed exponent in
an incorrect way as emax+ ebias which is in case of 64 bits(Table 2-2a)
operands is:

384 + 398 = 782.

Sol: It shows that I should remove the number of digits of the precision (-1)
which in our case is 15 so the maximum exponent. After which overflow occurs

is emax + ebias — 15 = 782 -15 = 767.

6- The "inexact flag" was raised whenever only round

or guard or sticky are not equal to zero, this was an incomplete condition.

Sol: After checking the rounding mode and the rounding condition, in some
cases where the rounding condition is fulfilled I have to add "1" to the
intermediate which affects the final result and produce an inexact number. So, I

should also check the round, guard and sticky after rounding.

7- The overflow condition was depending only on the
exponent if it is 767 and there is carryout then raises the overflow flag.

But, it appeared that this is not the only condition, we should tie this condition

with the effective operation (when addition) and also whether a carry is

generated as a result from the BCD adder or the signal exp_adj is generated

from the shif& round block when a carry out is generated as result of rounding.

61

In case of overflow, I used to raise the overflow flag
only, but I realized that whenever there is an overflow the inexact flag is

raised.

In case of overflow the final result is either zeros or
the maximum value depending on the rounding mode and the sign of the
result.

In case of Rounding toward zero OR rounding toward + infinity with
effective subtraction OR rounding toward - infinity with effective addition
the result is the maximum value which is:

Combination ="11101"

follow_expo_64 ="11111111"

trailing_sig_64="00111111110011111111001111111100111111110011111111"

File Edit Cursor Zoom Compare Bookmark Format SWindow

EHSES +BR LK ko Q@ | 5 ELEIEE | (efele i

fhop

(01100 011
11171770071171110001171171
0071007110017 007110071001 100

Aop 1 Aresult
ap_ ik

EEEEEEEEEEEEEE TR

1400

62

Figure 4.27: Simulation result of overflow case

Otherwise the Combination ="11101", while the rest of the result is all

Zeros.

10- I use to handle the Quite NAN & Signaling NAN
in a same manner. For both I use to raise the invalid flag. But the invalid
flag is raised when any of the operands is a signaling NAN (SNAN) in
which for any operand bits from (62 downto 57) are all "1" So the result
should be in the form "011111" & 58_zeros with the invalid flag rose.
Which for the QNAN, the result is the same but without raising the invalid

File Edit Cursor Zoom Compare Bookmark Formab Window

SEHES ! $ R hRE e RS Q@B | EF ! ELEIERE | JefefesfoBn] @B

CEN [I

Figure 4.28: Simulation result in case one of the input is SNAN

63

11- In case of having operand_a equals to infinity then
I need to be sure that the other operand is neither infinity nor SNAN, in that
case the result is operand_a and invalid flag is not raised. But if the other
operand is infinity then I need to check if the effective operation is addition
then the final result is again operand_a and invalid flag is not raised.
Otherwise (effective subtraction) the result is QNAN and invalid flag is not
raised.

The same procedure is followed in case of having operand_b equals to
infinity except that the sign of the result is equal to the XOR of the input

sign and the operand_b sign.

12- In case of having both inputs equal to zero, I should
check their exponent and select the operand with the small exponent to be
the final result. In case of effective addition the sign of the result shall be
equal to sign operand A irrespective which operand will be delivered to the
output. In case of effective subtraction the sign of the result is +ve and the

O/P is either operand A or operand B depending on the minimum exponent.

13- In case of one of the exponent is zero and the other
is not. I need to check the other operand exponent and if it has the lower
exponent then the result is the other operand otherwise I should use the
calculated fields with the sign of the result is either the sign of the
operand_a (in case of effective addition) or not sign of operand_a (in case of

effective subtraction).

14- After calculating the intermediate final result, if
there is a carry out produced in case of effective addition so a shift right to
the complete final result should be performed with recalculation of the final

exponent, round, guard digits as well as the sticky bit.

64

15- The sign of the final result is always following the
sign of operand_a in case of effective addition. In case of effective
subtraction the sign of the result depends on the large operand,, the carry out

and the complement out signal.

65

L THig “@E [+ RN)

11 13" NOYIUAE- p9p-4d4dis 1380l juawnaop Awlig 11

0000 TOTOOOOOO000
0000 TOTOO000

~
— 0000 TO000T |0 — 0000 TOO00T |0
0000 000To00T |62 0000 000TO00T |62
0000 TO000|82 0000 TOO000|82
0000 0TTO00|4L2 0000 0TTO00|42
000T OTTOTTTOOTTOTOOOTTOOOTOOTOOTTTO00TOTTOTOOTTOTTTOTTITTIOOO00TTTOOT 92 000T OTTOTTTOOTTOTOOOTTO0OTOOTOOTTTO00TOTTOTOOTTIOTTTOTTTITOO0000OTTTO0T |92
O00T OTOOOTOOOTOTOTTITTITTITOTIOOTOTO00TOO00TOTTTTOO0TO00OTO00000TTTOOT |52 000T OTOOOTOOOTOTOTTTTTITTOTIOOTOTO00TOO00TOTTTTOOOTOO0OTO0000OTTTOOT|SE
O00T OTOOOTTOTTOO00TOOTOTOTTOOTOOTOOTTOTOO00TOOTO0OTTO00TOO00000TATOOT &2 000T OTOOOTTOTTOOOOTOOTOTOTTOOTOOTOOTTOTOOOTOOTOOOTTOOOTOO00000TOTOOT |FE
0000 TTO00TTTOOTTTOOTOTOTTOTITOOTOO0TTOTOOTO0000TOTTO0000000000TO000T |£2 0000 TTO0OTTTOOTTTOOTOTOTTOTTITOOTO00TTOTOOTOO000TOTTO0000000000TO000T |E2
0000 TOTTO0TOTO0OTOTOOTTITTTTITOTTTO000TTOO000TTOOTTTOOTOO000000000000T |22 0000 TOTTOOTOTOOOTOTOOTTITTTITITOTTITO000TIOO000TTOOTTTOOTOO00000000000T |22
0000 000TTTOTO000000TOOTOTTOTTOOTTTOO0TTOOTTTOTOTATOO000000000000000T|T2 0000 000TTTOTO000000TOOTOTTOTTOOTTTO00TTOOTTTOTOTATOO000000000000000T |T2
0000 OTOOTTTTOOTOTTTTITOTOOOTTIOTOOTOO0TOTTITOTOTOTOO000000000000000000T |02 0000 OTOOTTTTOOTOTTTTTOTOOOTTOTOOTOO0TOTTTOTOTOTOOO00000000000000000T |02
O00T O0TTTOTOOTOOTTOTTOO0000TO000TO0TTOTTTTOOTTTITIOTTIOOTTO00000TTO000|&6T 000T O0TTTOTOOTOOTTOTTOO000OTO000TO0TTOTTTITOOTTTITIOTTIOOTTO00000TTO000|6T
O00T TTO000TOTOTOTOTITOOOTTOTTOTTITOTTIOTTITOOOTOTTOTOOTOOTOO0000000TTO|28T 000T TTOOOOTOTOTOTOTTTOOOTTOTTOTTTITOTTIOTTTOOOTOTTOTOOTOOTOOO000000TTO|28T
0000 00TTO0TTOTOTOOTOTOO0TOOOTTTOOTOTTTITOTTITTOOTOTOTTTITOO00000TOTOO0|LT 0000 00TTOOTTOTOTOOTOTOOOTOOOTTTOOTOTTTTITOTTIITOOTOTOTTITTOO00000TOTOO00|LT
0000 00TOTTO00TTOOTOTTOO00TTTIOTOOOTOTTTTOTTOTTTOOTTOOTTOO000000TO0000|9T 0000 00TOTTOOOTTOOTOTTOO0OTTTOTO0OTOTTTIOTTOTTTOOTTOOTTOO000000TO0000|9T
0000 OTTOOTTOTTTITTITO0OTTIOTOOTOOTTOTOTOTTOOOTATTTITITOO0TOOO00000000000|5T 0000 OTTOOTTOTTTITTITO0OTIOTOOTOOTTOTOTOTTOOOTATTTITITOO0TOOO00000000000|5T
0000 OTTOTTTOTOO0OTTTTITTIO00OTTITOOTTITOTOOTOOTOOTTOO00TOO000000000000000 /T 0000 OTTOTTTOTOOOTTTTTTO00OTTITOOTTITOTOOTOOTOOTTOO0OTOO000000000000000|TT
0000 TTTOTOTTTTITITTITO00TTITOTOTTITOOTTOTOOTOO000000TO00000000000000000000|£T 0000 TTTOTOTTTTITTTITO0O0TITOTOTTITOOTTOTOOTOO00000TO00000000000000000000|£T
0000 TO000T0000T|2T 0000 TOO000T0000T (2T
0000 000000000000000000000000T0000000000000000000000000000T000000000T|TT 0000 000000000000000000000000T0000000000000000000000000000T000000000T|TT
o000 TTTITTTTTOOTTTITTIITIO0OT I TITTITOOTTITITITTIOOTTITTITTTTIOO00000000TOOTTT | 0T 0000 TTTITTTTTO0TTTITITI T T TOOT I TITTITITOOTTITITTITTIOOTTITTITTITIOON0000000TO0TTT 0T
0000 OTTTTITTTOOTTTITTITITTOOTTTTITTTTOATITITTITTOATTITITTITTO00000000000000T |4 0000 OTTTTITTTOOTTITITTTOOTTTITTITTOOTTITITTITITOATTITITTITITO00000000000000T |6
0000 TOOO000T00000|2 0000 TOQoo000T00000|2
0000 TO000(£, 0000 TOO000 /¢,
0000 TTTOTTTTIOTOTTIOTTOOTO0O0TTOOTOOTTTOTO0TOTOOT TOOTO0000TO00000000000|2 0000 TTTOTTTTIOTOTTIOTTOOTOOOTTOO0TOOTTTOTO0TOTOOT TOOTO0000TO00000000000|9
0000 OTTTTITTTOOTTTITTITITIOOTTITTITITTITOOTITITTITTOOTTITITTITTO000000000000000|% 0000 OTTTTTTTIOOTTITITTTOOTTITITTITITOOTTITITTITITOOTTITITTITITO000000000000000|5
0000 TO00T (% 0000 TOOo000T |%
0000 0TTO000T |£ 0000 0TTO000T |£
E 0000 TOOO000|2Z E 0000 TOQoo000|2
v 0000 TOTOO00|T A 0000 TOTOO00/|T
| ISEL30E0SL 449 Zppra4 AFTTLEDLLLE 8Frr0L [P35
EZ'9L800LSE E19F EprpogsuMn [EZ'9L800LSE E19F EppogsMun [
EFELI0EDSL BEESY s G| 0040 #OFOE0 S¥297 aRagopsuun @
E791L 8001SE <=pod> abengue (17 afenbue (T
6291800152 < dn > Ty
™] 25 |y M3 awey || 1eauapl a1e sapy pasedwo] aulep
LhBleduns By sapo sl welbal g a4 L BIEdUWnT Al SATA AN WeIBAI T a4 e
B £t -aD@ S5 4 . oy - .- ;

disH suopd) moYS S|00L malh YMESS IP3 HEW Sd

Figure 4.29: Output files comparison
66

Alternative design for subtraction units:

After solving all the problems of the original design and passing all the test
vectors from IBM, another design for the subtractor unit has been implemented.
Originally we tried the nines complement design for the BCD subtraction as

previously mentioned, now we are introducing the tens complement instead.

The internal design of the adder is as shown in fig.4.4 in which, in case of
subtraction the carry_in fed to the full adder and the complement blocks are
always 'l' since the tens complement is basically the same as the nines
complement except that after getting the nines complement we add '1'. Also
there's no need to adjust the carry since from the characteristics of the tens
complement the carry is automatically adjusted from the forward path and no

need to adjust it.

[
e

Figure 4.30: BCD adder with tens complement

67

Synthesis

Synthesizing the decimal adder with Xilinx FPGA for both designs to different

families and compare the area and delay reports.

First, we synthesized the design including the ripple carry adder for Spartan
IT family and we found that the "2s200fg456" chip is the most suitable for the

design regarding the number of I/Os and function generators.

Table 4.2 shows the comparison between the nine's and ten's complements
from the delay and area point of views. In which it is seen that the nine's

complements design runs at higher frequency (almost the double)

Spartan Il
2s200fg456
Area
£l 1/0 FG CLB DFF
Nines
Complemen | 6.7 MHz | 70.14% | 75.72% | 75.72% | 11.08%
t
Tens 3.4 MHz | 70.14% | 79.83% | 79.85% | 11.08%
complement

Table 4.18 Delay and area comparison for "2s200fg456"

Second, we synthesized the design for Vertix II family and we found that
the "2V500fg456" chip is the most suitable for the design regarding the number

of I/Os and function generators.

Table 4.3 shows the comparison between the nines and tens complement
from the delay and area point of views. In which it is seen that the nines
complement design runs at higher frequency as well as the area is less by a

small amount

68

Vertix Il
2V500fg456
Area
Ll 1/0 FG CLB DFF
Nines
Complemen |11.2 MHz | 76.52% | 57.37% | 57.39% | 8.90%
t
Tens 6.7 MHz | 76.52% | 60.51% | 60.51% | 8.90%
complement

Table 4.19 Delay and area comparison for "2V500{fg456"

Then, we tried the architecture shown in figure 3.13 in which we added a
second adder with interchanged operands and based on the ten's-complements
for subtraction. A multiplexer is used to select the output which will be fed to

the next block based on the complement_out signal.

Table 4.4 shows the comparison between the nine's and ten's complement in
the second architecture from the delay and area point of views for Spartan II
family and the "2s200fg456" chip. In which it is seen that the speed of the ten's-
complements design has increased by 70 % and its area is also increased by

7.6% by which we conclude that the nines complement design runs at higher

frequency as well as using smaller area.

69

Spartan Il
25200fg456
Area
b 1/0 FG CLB DFF
Nines
Complemen 6.7 MHz [70.14% | 75.72% | 75.72% | 11.08%
t
Tens 5.8 MHz | 70.14% | 85.91% | 85.93% | 11.10%
complement

Table 4.20 Delay and area comparison for "2s200fg456"

Table 4.5 shows the comparison between the nine's and ten's complement in
the second architecture from the delay and area point of views for Vertix II
family and the "2V500fg456" chip. In which it is seen that the speed of the
ten's-complements design has increased by 49.2 % and its area is also increased

by 7.6% by which we conclude that the nines complement design runs at higher

frequency as well as using smaller area.

Vertix Il
2V500fg456
Area
e I/O FG CLB DFF
Nines
Complemen |11.2 MHz | 76.52% | 57.37% | 57.39% | 8.90%
t
Tens 10 MHz |76.52%|65.15% | 65.17% | 8.91%
complement

70

Table 4.21 Delay and area comparison for "2V500fg456"

Finally, we conclude that using the nines complement for BCD subtraction

gives better results as regards the area and the delay.

So, now we try the nine's-complement with another adder architecture,
which is the carry look ahead one. We synthesized the design for both families
and table 4.6 shows the comparison between the ripple carry adder and the
carry look ahead adder for the Spartan II family and the "2s200fg456" chip. In
which it is seen that the speed of the carry look ahead design has increased by
56.7 % and its area is also increased by 7.9% by which we conclude that the

carry look ahead design runs at higher frequency and the increase in area is

negligible.
Spartan Il
25200fg456
Area
£l 1/0 FG CLB DFF
Ripple o . 0 .
carry 6.7 MHz | 70.14% | 75.72% | 75.72% | 11.08%
Carry look |10 5 myz|70.14%|81.68% | 81.68% | 11..08%
ahead

Table 4.22 Delay and area comparison for "2s200fg456" for two different BCD
adder architecture

Table 4.7 shows the comparison between the ripple carry adder and the
carry look ahead adder for the Vertix II family and the "2V500fg456" chip. In
which it is seen that the speed of the carry look ahead design has increased by

42 % and its area is also increased by 7.9% by which we conclude that the carry

71

look ahead design runs at higher frequency and the increase in area is

negligible.
Spartan Il
25200fg456
Area
CLK 1/0 FG CLB DFF
Ripple 11.2 MHz | 76.52% | 57.37% | 57.39% | 8.90%
carry
Carry look | 15 o wnz |70.14% |61.88% | 61.88% |8.90%
ahead

Table 4.23 Delay and area comparison for "2V500fg456" for two different BCD

adder architecture

So, finally it is seen that the carry look ahead adder with the nine's-

complements for subtraction gives better results on FPGA as regards the speed.

Chapter 5

5- Similar work Comparison

Preview

Since the IEEE 754r standard for binary and decimal floating point was finally
issued on August 2008. Few works have been done on its draft version. We are

going to compare our work with some of the work done.

A 64-Bit Decimal Floating-Point Adder

University of Wisconsin Madison

72

The University of Wisconsin Madison has introduced hardware designs for
decimal adder/ subtractor compliant with decimal floating point standard. The
first implementation of a 64-bit decimal floating-point adder that is compliant
with the draft revision of the IEEE-754 Standard was introduced on 2004 [9].
The design performs addition and subtraction on 64-bit operands with the

architecture shown in Fig. 5.1.

Operand A Cperand 8 Operabon Round

! l

Comrersicn from |EEE-75d bo BCD

ETELE!

Operand Exchange

af ml m
wml Pl F
Signricand Algnment _::f\-' g
fe] [+]
| Ciperation Unit I-q-
q
5
- L Etfacie
| nversion and Sdoky Expartion | Diparation
=
m &
P 3 B i
i
7o-be Binary Adcerand Flag |
Seneraton I
2 = l g
£ & g
- =
| Correctian Uni " - Signlini
%
!
_"| Ehift and Round [
1] m
= =
| Cameerson from eacess-Jto SR
IEEE-Tha -+

Eesuk

Figure 5.31: university of Wisconsin Madison Architecture

It can be seen from fig.5.1 that from the point of view of the architecture,
we are using the same single path technique in the adder implementation with
some differences in the internal design. One is that for the adder they are using

the excess-3 BCD encoding but we are using the conventional BCD encoding.

One main issue is that for BCD subtraction, nine’s complement logic is
needed before and after the adder to generate correct results. This approach is
used in the IBM S/390 machines. Which is the same as we found after
comparing the overall decimal adder as regards the ten's and nine's complement

for BCD subtraction.

73

They introduced some optimization on the design of the decimal adder
based on the architecture of fig. 5.1[9] with some modifications [15] as shown

in fig.5.2.

CA,

Operation REA
o T) :
t1']l' Operand SA i CA,
'“p.-*l Fnr'-;f.ilrd hhl .-'Il.lipnml.‘m LA‘H L::::Trl FH: Pre-Coarrection and
— -I”f”h.!_l EH, [.||':-ul:|||n.|| “IIH Shiliers Operand Placement Unie
Conversion TA and Swapping -
OB | i e Unit | ER,
v
Rounding =1
Muode
—
T = . SHI
—] Sign Unit
Chverflow overflow
Lnit
=8 : ' Result £
Ay o2 UCR] Pow =1 Shift amd |':|L_ Il;:t:l':i:d - . /
CB, Nc[\;:cnrk I*I {I.BI['IJLI‘;:IUII {-'“I Rli_l::lrll --CR:'- Convession | By I"u:tlc'-..zulu —
¥, ' Ui ni
— '

Figure 5.32: university of Wisconsin Madison Architecture

The optimizations include the internal use of the BCD encoding, instead of
the excess-3 encoding, which leads to simpler circuitry in the “Precorrection
and Operand Placement Unit” and a more efficient placement of the corrected
operands for addition and subtraction to simplify the design of the “Shift and

Round Unit.”

SilMind Company

74

Another design was proposed by SilMind Company which has the

architecture shown in fig.5.3.

Special Value Exponent Decoding |
Detection DPD2BCD
F‘a':,-'h:l-al:l Master
Comparator Contral
2 - .
E Sticky let Injectar || Shifters
P Generation
E Placer
Adder Core
Owverflow unit SIign

The proposed design is based on the kogge-Stone parallel prefix network

Qutput Formulation

Figure 5.33: SilMind adder design

for decimal significand addition and subtraction.

Two hardware implementations were introduced for decimal floating-point
adder that is compliant with IEEE 754-2008 standard; one for high speed and

the other for low Power/Area.

IBM Company

75

Stage 1

Stage 2

Stage 3

| Stage 4

Chapter 6

76

6- Conclusions and future work

6.1 Conclusions

In this thesis, a design and implementation of a 64-bit adder/ subtractor
compliant to the IEEE-2008 standard for floating point arithmetic has been

introduced.

The design performs addition and subtraction on 64-bit operands in a
single path adder with exception handling fulfilling the released standard and it
can easily be extended to also support operations on 128-bit decimal floating-

point numbers.

We introduced 2 different implementations for the BCD-subtractor
internal design. The tens complement and the nines complement. We found out
that in case we should complement the output the rippling of the carry in case
of tens-complement makes it much slower than the nines complement. So, we
tried another architecture in which we added another BCD-subtractor block for
which we interchanged the 2 operands so that in case we need to complement
the output all we have to do is -with the aid of an extra multiplexer- we select
either the first or second BCD-subtractor so we won't wait for the carry
rippling. This implementation enhanced the speed but on the other hand the
area is also increased. Regarding both the area and speed, we found out that the

nines complement is more suitable for our design for both area and speed

The internal design of the BCD-adder is the carry-ripple adder which is
known by its small area, we introduced another implementation for the BCD-
adder which is the carry look-ahead adder and we used the nine's complement
for subtraction. We found out that the speed is enhanced by 42% and the area is

increased but the design is still fitting in the same FPGA chip.

77

We compared the overall performance of the decimal adder from the
point of view of area and speed for the same FPGA families. We synthesized
the design for 2 families of Xilinx, Spartan II and Vertix II. And we got the

previously mentioned results.

A behavioral test bench has been implemented to test the design against
test vectors supplied by the IBM Corporation. Complete test and verification is
performed on all the design versions fulfilling 3063 test vectors and supporting
7 rounding modes (5 stated by the standard and 2 proposed by IBM) with

exception handling for overflow, inexact and invalid operations.

After testing the different design and passing all the test vectors, we
concluded that the carry look ahead adder with the nine's-complements for
subtraction gives better results on FPGA as regards the speed and fitting the
same FPGA chip.

6.2 Future work

Based on the work presented in this thesis and the results obtained, we

recommend the following items as the future work

The current design may be easily extended to include the 128 bits wide
operands as the second decimal format in the IEEE 754-2008 standard.

Using Parallel architecture technique instead of the single path one, this will
probably increase the speed.

The main block that introduces the large delay is the BCD adder, trying
other designs for it may speed up the design.

Design and implementation of a decimal ALU.

Multiplier.

78

References

[1] General Decimal Arithmetic website, http://speleotrove.com/decimal/

[2] A 64-Bit Decimal Floating-Point Adder John D. Thompson, Nandini
Karra, and Michael J. Schulte, Member, IEEE.

[3] IEEE, IEEE 754-2008 Standard for Floating-Point Arithmetic, 2008.

[4] http://www.stanford.edu/class/ee486/doc/hapl
[5] Decimal Arithmetic FAQ Part 1 — General Questions
http://speleotrove.com/decimal/decifaql.html#inexact

[6] Ovidiu Ghita, Digital Electronics, 2003, Page 83

[7] Hossam A.H.Fahmy, Shlomo Waser, Michael J. Flym "Computer
Arithmatic" to be published:
http://arith.stanford.edu/hfolmy/webpage/arith class/arith class/arith.pdf

[8] http://www.haifa.ibm.com/projects/verification/fpgen/ieeets.html

[9] J. Thompson, M.J. Schulte, and N. Karra, “A 64-Bit Decimal Floating-Point
Adder,” Proc. IEEE CS Ann. Symp. VLSI (ISVLSI ’04), pp. 297-298, Feb.
2004.

[10]http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r1m0/index.jsp?

topic=/com.ibm.etools.mft.doc/ak05380_.htm

[11] Liang-Kai Wang, Charles Tsen, Michael J. Schulte, and Divya
Jhalani

Benchmarks and Performance Analysis of Decimal Floating-Point
Applications, IEEE,2007

[12] Optimized Decimal 64/128 Floating-Point Fast Adders Conforming to IEEE 754-
2008, IEEE, 2009.

79

http://www.haifa.ibm.com/projects/verification/fpgen/ieeets.html
http://arith.stanford.edu/hfolmy/webpage/arith_class/arith_class/arith.pdf

[13] E. M. Schwarz, J. S. Kapernick and M. F. Cowlishaw
Decimal floatingpoint support on the IBM System z10 processor, IBM, 2009.

[14] Mark A.Erle, Michael J. Schulte and John M. Linebarger

Potential speedup using Decimal Floating-Point hardware

[15] Liang-Kai Wang, Michael J. Schulte, John D. Thompson, and Nandini
Jairam

Hardware Designs for Decimal Floating-Point Addition and Related Operations

80

	List of Tables
	List of Figures
	Introduction
	Background
	Problem description
	Related work
	Thesis outline

	Overview of the standard
	History
	Scope
	 Purpose
	Formats
	Basic Decimal Format Encodings
	Decoding Densely Packed Decimal
	Encoding Densely Packed Decimal
	Rounding
	Rounding Modes to Nearest
	Directed Rounding Modes
	Rounding Precision

	Architecture and Implementation
	 Background
	 Floating Point Number representation
	Motivation and Terminology
	 Properties of floating point Representation
	Lack of Unique Representation
	Range and Precision
	 Floating Point Addition and Subtraction
	 Problems in Floating Point Computations
	Loss of Significance

	 Design Specification
	 Unit Interface
	 Internal representation
	Decompose
	Exponent Difference
	Significand Alignment
	BCD Adder
	Adder cell
	Carry effect
	Nine's complement
	Correction unit
	Ten's complement
	Sign result
	Exp adjust
	Shift & Round
	Rounding Circuit
	Round Decision
	Round towards zero
	Round towards positive infinity
	Round towards negative infinity
	Round to nearest, tie to even
	Round to nearest, away from zero
	Round away from zero
	Round half down
	Incrementer
	DPF converter

	4-Verification &Testing
	Test plan
	 Problems:
	Alternative design for subtraction units:
	Synthesis

	5- Similar work Comparison
	Preview
	A 64-Bit Decimal Floating-Point Adder
	University of Wisconsin Madison
	SilMind Company
	IBM Company

	6- Conclusions and future work
	6.1 Conclusions
	6.2 Future work
	The current design may be easily extended to include the 128 bits wide operands as the second decimal format in the IEEE 754-2008 standard.
	Using Parallel architecture technique instead of the single path one, this will probably increase the speed.
	The main block that introduces the large delay is the BCD adder, trying other designs for it may speed up the design.
	Design and implementation of a decimal ALU.
	Multiplier.

