

Hardware implementation of the Front-end module

in Distributed Speech Recognition system

by

Ahmad Abdel Moniem Al Sallab

A Thesis submitted to the

 Faculty of Engineering at Cairo University

 in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS

FACTULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

April 2009

Hardware implementation of the Front-end module

in Distributed Speech Recognition system

by

Ahmad Abdel Moniem Al Sallab

A Thesis submitted to the

 Faculty of Engineering at Cairo University

 in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS

Under supervision of

Mohsen A. Rashwan Hossam A. Fahmy

 Professor Assistant Professor

 Elec. and Com. Dept. Elec. and Com. Dept.

FACTULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

April 2009

Hardware implementation of the Front-end module

in Distributed Speech Recognition system

by

Ahmad Abdel Moniem Al Sallab

A Thesis submitted to the

 Faculty of Engineering at Cairo University

 in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS

Approved by the

Examining Committee

Prof. Dr. Mohsen A. Rashwan, Thesis main supervisor

Prof. Dr. Mohamed Waleed Fakhr, Member

Prof. Dr. Ashraf M. El Farghaly, Member

FACTULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

April 2009

ii

Acknowledgments

First I would like to thank Allah for supporting me, guiding me, giving me

strength during hard times and all other endless favors he has done to me, with

which I live and survive. Then I would like to thank my parents for their love,

support and trust, which gives meaning to my life. I would like to thank also

my advisers, Prof. Dr. Mohsen and Dr. Hossam Fahmy for their valuable

advices which always guided me to the right way, they were very kind and

flexible with me.

iii

Abstract

From human prehistory to the new media of the future, speech

communication has been and will remain the dominant way of human social

bonding and information exchange. To understand speech, a human considers

not only the specific information conveyed to the ear, but also the context in

which the information is being discussed. For this reason, people can still

understand the spoken language even if the speech signal is corrupted by noise.

Hence, recognition and understanding the context of spontaneous speech

remains the goal of speech signal processing research for many years [1].

New system architectures have emerged for Automatic Speech

Recognition (ASR) systems to deploy speech recognizers in embedded and

hand held devices. Modern ASR systems can be structurally decomposed into

two main parts; the acoustic Front-end, where the process of the feature

extraction takes place and the Back-end, performing ASR search based on the

acoustic and language models. Since most of the portable devices use a

communication link, we can classify all the mobile ASR systems in terms of

employing wireless communication link and the location of the front-end and

back-end parts as; Embedded Speech Recognition Systems (ESR), Network

Speech Recognition (NSR) and Distributed Speech Recognition (DSR).

The European Telecommunications Standards Institute (ETSI) has formed the

STQ Aurora group to work on the standardization of the front end for DSR

applications. Four standards emerged for the front-end specifications. All of the

four standards use the Mel-Frequency Cepstral Coefficients (MFCC) as the

features extraction algorithm in the front-end.

The main point of this thesis is the hardware implementation of the basic

front end specified in the first Aurora standard (ETSI ES 201 108 V1.1.3) to be

deployed in mobile hand-held devices. To meet the tight constraints of an

embedded system, FPGA for prototyping and structured ASIC for mass-

production style is chosen as the hardware platform to implement the design.

iv

Taking into consideration the tight area usage constraint, some low-resources

usage algorithms are used in the design, like the COordinate Rotation DIgital

Computer (CORDIC) algorithm, which was used extensively to perform many

functions in the system. VHDL coding, synthesis and RTL simulations are

done to prove the concept of the design.

The results of this work are presented in two aspects; the first one is to

compare the design to other reference hardware designs presented by FPGA

manufacturers. Results show that the design presented here outperforms the

reference designs in terms of hardware resources usage, with a reduction

percentage of 8.9 % in some cases to 58 % in others. The second axis of

evaluation was the compliance to the Aurora standard. reference features

vectors of about 8 seconds of continuous speech were provided by the ETSI to

prove compliance to the specifications. Results show that the final system

output matches the reference vectors with average absolute error of 0.002 in

some configurations to 0.004 in others.

v

Contents
Acknowledgments..ii
Abstract .. iii
1 Introduction..1

1.1 Organization of the Thesis ...3
1.2 Speech Signal Representation and Modeling ..4
1.3 Automatic Speech Recognition (ASR) System ...14
1.4 Automatic Speech Recognition Systems for Mobile and Embedded Devices
 18

2 Design of VLSI Systems..34
2.1 VLSI Design Flow ...35
2.2 Hardware Design Styles for Digital Signal Processing Applications..........38

3 Comparative Study of VLSI Design Styles for Front End Speech Processor55
3.1 Design Time and Non- Recurring Expenditures Cost (NRE) Comparison .56
3.2 Re-Programmability Comparison ..57
3.3 Resources Comparison...57
3.4 Processing Time Requirements Comparison...60
3.5 Memory Requirements Comparison..60
3.6 Power Consumption Comparison ..61
3.7 Production Volume and Unit Cost Comparison ..63
3.8 Brief Overall Comparison..67
3.9 Conclusion ...68

4 System Design and Implementation ..70
4.1 Design Constraints ...70
4.2 System Architecture...72
4.3 Overall System Performance ...136
4.4 Effect of Run-time configurability of the chip ..144

5 Compliance to the Aurora Standard Test Vectors ...149
5.1 Test Bench Setup ...149
5.2 Performed Test Cases ..150
5.3 Environment and Tools..155
5.4 Testing and Simulation Results ...155

6 System Benchmarks...158
6.1 Individual Components Comparison ...159
6.2 Overall System Benchmark ...164

7 Conclusions..168
7.1 Contributions..169
7.2 Recommendations for Future Work...170

8 References..171
9 Appendix..174
Some useful algorithms and concepts..174
1 CORDIC Algorithm...174

1.1 Basic Theory of the Algorithm ..175
1.2 General Hardware Implementation of the CORDIC Processor:................184

2 The Fast Fourier Transform (FFT) ..185
2.1 Radix-2 FFT...186
2.2 Other FFT Algorithms ...190

3 Concept of Fixed and Floating Point Arithmetic...191
3.1 Floating Point...191

vi

3.2 Fixed Point ...193

vii

List of Figures
Figure 1: Human Vocal Tract [6]...4
Figure 2: Source-Filter model for speech signals ..6
Figure 3: Source-Filter model for Voiced and Unvoiced speech6
Figure 4: a) Rectangular Window b) Hamming Window...7
Figure 5: Hertz versus Mel Scales [6]..11
Figure 6: The Mel-Frequency Cepstral Coefficients Algorithm [8]............................12
Figure 7: Mel-Filter banks ...13
Figure 8: A source-channel model for a speech recognition system14
Figure 9: Basic Architecture of Automatic Speech Recognition (ASR) System.........15
Figure 10: Detailed ASR system..18
Figure 11: Client-based ASR system- Embedded Speech Recognition (ESR) [7]......22
Figure 12: Server-based ASR system - Network Speech Recognition (NSR) [7].......22
Figure 13: Client-server based ASR system- Distributed Speech Recognition (DSR)
 [7]...23
Figure 14: WER degradation in NSR using GSM EFR Coding vs. DSR system [9]..24
Figure 15: Aurora proposal for DSR system [10]..26
Figure 16: DSR system defined in the Basic front end standard, ETSI ES 201 108 [9]
..28
Figure 17: Block diagram of the Front end algorithm specified in the Basic standard,
ETSI ES 201 108 [2]..28
Figure 18: Block scheme of the proposed front-end in specification ETSI ES 202 050.
Figure (a) shows blocks implemented at the terminal side and (b) shows blocks
implemented at the server side [4] ...29
Figure 19: Block diagram of the front-end algorithm specified in specification ETSI
ES 202 211 [3] ...31
Figure 20: Block scheme of the proposed extended front-end in specification ETSI ES
202 212...33
Figure 21: Typical VLSI design flow in three domains (Y-chart representation) [12]35
Figure 22: A more simplified view of VLSI design flow [2]37
Figure 23: Hardware Design Styles for Signal Processing Applications38
Figure 24: DSP Design Flow [11] ...41
Figure 25: DSP simulation environment [11]..42
Figure 26: FPGA general internal structure...44
Figure 27: Symmetrical Array ...46
Figure 28: Row Based Architecture...46
Figure 29: Hierarichal PLD ...47
Figure 30: FPGA Design Flow [13]...48
Figure 31: Channeled Gate Array..50
Figure 32: Channel-less Gate Array ..51
Figure 33: Structured ASIC ...51
Figure 34: Customization increases the design time..57
Figure 35: Block diagram of the system [2] ..73
Figure 36: Static Architecture of the system..74
Figure 37: Dynamic Architecture of the system..75
Figure 38: Offset Compensation data flow graph..78
Figure 39: Summary of resources usage of Offset Compensation module81
Figure 40: Pre-emphasis data flow graph ..82
Figure 41: Summary of resources usage of Pre-emphasis module83

viii

Figure 42: Energy Measure data flow graph..85
Figure 43: Summary of resources usage of Energy Measure module87
Figure 44: Hamming Window data flow graph ...88
Figure 45: Constant calculation of Hamming Window Filter88
Figure 46: State machine of the Window component..89
Figure 47: Summary of resources usage of Window module......................................91
Figure 48: Internal Architecture of Buffer Manager..92
Figure 49: State machine of the Buffer Manager module..96
Figure 50: Summary of resources usage of Buffer Manager Module: N = 200, M=80
..99
Figure 51: Summary of resources usage of Buffer Manager Module: N=256, M=110
..100
Figure 52: Summary of resources usage of Buffer Manager Module: N=400, M=160
..100
Figure 53: FFT Internal architecture..103
Figure 54: FFT Internal architecture for LUT implementation104
Figure 55: State machine of the FFT component...105
Figure 56: Summary of resources usage of FFT module: FFTL = 256.....................106
Figure 57: Summary of resources usage of FFT module: FFTL = 512.....................107
Figure 58: Data flow graph of calculating the LOW_PART_CONST and the
HIGH_PART_CONST ..110
Figure 59: Data flow graph of CL(i) and CH(i)...111
Figure 60: Data flow graph of Mel-Filter ..112
Figure 61: State machine of the Low/ High part Mel-Filter117
Figure 62: Summary of resources usage of Mel-Filter module: FFTL = 256118
Figure 63: Summary of resources usage of Mel-Filter module: FFTL = 512119
Figure 64: Data flow graph of DCT component..120
Figure 65: Summary of resources usage of DCT module..124
Figure 66: Split Vector Quantization Features Pairings [2].......................................125
Figure 67: Summary of resources usage of the Split-Vector Quantization module ..129
Figure 68: Multiframe format [2] ..130
Figure 69: Header field format [2]...131
Figure 70: Header field definition [2]..131
Figure 71: Frame information for mth frame [2] ...132
Figure 72: CRC protected feature packet stream [2] ...133
Figure 73: Internal architecture of the Bit Stream Framing......................................134
Figure 74: State machine of the Bit stream framing component135
Figure 75: Summary of resources usage of Bit framing module136
Figure 76: Actual resources usage: Sampling Rate = 8 kHz, N=200, FFTL=256,
Cyclone III EP3C10U256C8 ...137
Figure 77: Actual resources usage: Sampling Rate = 11 kHz, N=256, FFTL=256,
Cyclone III EP3C10U256C8 ...137
Figure 78: Actual resources usage: Sampling Rate = 16 kHz, N=400, FFTL=512,
Cyclone III EP3C10U256C8 ...138
Figure 79: Modified Static Architecture for Run-time configurability144
Figure 80: Typical VHDL Test Bench [16]...150
Figure 81: Observed System Outputs ..150
Figure 82: Unquantized Features Error Test..152
Figure 83: Quantized Features Error Test..153

ix

Figure 84: Snap-Shot of the difference between decoded DUT and Reference Features
..154
Figure 85: Quantization Error Difference Test ..155
Figure 86: Resources versus throughput for Architectural options of FFT
implementation [20]...160
Figure 87: 8-point FFT Network..181
Figure 88: Iterative CORDIC Processor [15] ..185
Figure 89: the 8 point Decimation In Time (DIT) Radix-2 FFT algorithm...............187
Figure 90: Bit Reversal operation ..188
Figure 91: Basic Butter fly operation...189
Figure 92: Reordered Butter fly operation...189
Figure 93: Reordered radix-2 DIT In place FFT algorithm.......................................190
Figure 94: Fixed point representation of binary fractional numbers [11]..................194
Figure 95: A general binary fractional number..195

x

List of Tables
Table 1: Sample Digital Signal Processors and their features58
Table 2: Sample FPGAs and their features..59
Table 3: DSP Processors Prices ...63
Table 4: FPGA Unit Prices ..65
Table 5: FPGA/PLD to ASIC conversion cost [14]...66
Table 6: MPGA Cost [14]..66
Table 7: Brief overall comparison between the three design styles.............................68
Table 8: Supported Configurations Supported options [2] ..71
Table 9: Memory requirements of the Offset Compensation component....................80
Table 10: Memory requirements of the Pre-emphasis component83
Table 11: Energy Measure module configuration parameters.....................................85
Table 12: Memory requirements of the Energy Measure component86
Table 13: Hamming Window module configuration parameters89
Table 14: State transition of the Window state machine ...90
Table 15: Memory requirements of the Window component......................................90
Table 16: Configuration parameters of the Buffer Manager95
Table 17: State transition of the Buffer Manager state machine97
Table 18: Memory requirements of the Buffer Manager module................................99
Table 19: Memory requirements of the FFT component...104
Table 20: Memory requirements of the Mel-Filter module.......................................114
Table 21: Memory requirements of the Mel-Filter component118
Table 22: Memory requirements of the DCT component..121
Table 23: Memory requirements of the Vector Quantization component127
Table 24: Memory requirements of the Split-Vector Quantization module..............129
Table 25: Configuration table of the Bit framing module ...134
Table 26: State transition of the Bit stream framing state machine...........................135
Table 27: Frame processing time with different sampling frequencies.....................141
Table 28: Frame processing time as a percentage of the allowed time for 100 MHz
chip frequency..141
Table 29: Frame processing time with different sampling frequencies for LUT
implementation ..142
Table 30: Frame processing time as a percentage of the allowed time for 100 MHz
chip frequency for LUT implementation ...142
Table 31: Minimum Internal Chip Speed for different Sampling Frequencies143
Table 32: Minimum Internal Chip Speed in case of LUT implementation143
Table 33: Memory requirements of the System...144
Table 34: Update frequency of the configuration paramters of the Energy Measure
component..145
Table 35: Update frequency of the configuration paramters of the Windowing
component..145
Table 36: Update frequency of the configuration paramters of the buffer manager
component..146
Table 37: Update frequency of the configuration paramters of the FFT component 146
Table 38: Relation between sampling rate and other configuration parmaters148
Table 39: Testing and Simulation results...156
Table 40: Comparison of FFT on Cyclone III Devices- Burst Data Flow Architecture,
Single Output [19]..161

xi

Table 41: Comparison between Reference and Front End Designs for CORDIC
processor on Cyclone Devices [17] ...163
Table 42: Comparison between the Reference and Front End Designs for the hardware
divider [4]...164
Table 43: Front End Processor Performance on Cyclone III Devices- Frame length
configuration = 200 samples..165
Table 44: Front End Processor Performance on Cyclone III Devices- Frame length
configuration = 256 samples..165
Table 45: Front End Processor Performance on Cyclone III Devices- Frame length
configuration = 400 samples..166
Table 46: Front End Processor Performance on Stratix II Devices- Frame length
configuration = 200 samples..166
Table 47: Front End Processor Performance on Stratix II Devices- Frame length
configuration = 256 samples..166
Table 48: Front End Processor Performance on Stratix II Devices- Frame length
configuration = 400 samples..166
Table 49: Frame processing time with different sampling frequencies.....................167

1

Chapter 1

1 Introduction

Speech signal processing refers to the acquisition, manipulation, storage,

transfer and output of human utterances by a computer. The main goals are the

recognition, synthesis and compression of human speech. Here, we are

concerned with the speech recognition part, in addition to some concepts of

Speech compression that are mandatory to achieve efficient, lossless speech

communication, especially on wireless media.

Speech recognition (also known as automatic speech recognition or

computer speech recognition) converts spoken words to machine-readable

input (for example, to key presses, using the binary code for a string of

character codes). The term "voice recognition" may also be used to refer to

speech recognition, but can more precisely refer to speaker recognition, which

attempts to identify the person speaking, as opposed to what is being said.

In order to achieve the goal of the above definition, several models to

represent the speech signal exist, so that this model can be used as the base of

the computer algorithm that will handle speech recognition task. According to

the accuracy of the model to represent the real speech signal, the recognition

results are determined. Two main directions exist in this area; speech

production models, and speech perception models. There exist many ways to

analyze the speech system based on the way the speech signal is modeled,

among those are: Linear Predictive Coding (LPC) for Speech production

models and Mel-Frequency Cepstrum for Speech production models.

In theory, it should be possible to recognize speech directly from the

digitized waveform. However, because of the large variability of the speech

signal, it is a good idea to perform some form of feature extraction that would

reduce that variability. Speech recognition task is originally a pattern

recognition problem, where the input speech signal cannot be processed or

stored as its raw form in digital samples, because this would require a large

2

storage for those samples. For these reasons, features extraction must be

performed on the input speech signal before further processing.

There are many methods and directions in speech features extraction,

according to the way the speech signal is represented. Linear Predictive

Coefficients (LPC) is a way to perform speech features extraction that is more

suitable in the field of speech coding. For perceptually motivated speech

models, two famous speech features extraction methods are presented, which

are Mel-Frequency Cepstral Coefficients (MFCC) and Perceptual Linear

Prediction (PLP). Mel-Frequency Cepstral Coefficients (MFCC) is the most

popular method utilized nowadays in speech recognition systems.

New system architectures have emerged for Automatic Speech Recognition

(ASR) systems that are adapted to achieve today’s requirements of speech

technology applications, where the need arose to deploy speech recognizers in

embedded and hand held devices. The recognition task becomes divided

between client front-end part and server back-end part. This architecture has

many advantages in terms of reducing the processing load on embedded

devices and improving the recognition capabilities for speech recognition

applications performed over communication networks like GSM or 3G

networks. The main three architectures are presented here, which are

Embedded Speech Recognition (ESR), Network Speech Recognition (NSR) and

Distributed Speech Recognition (DSR).

The European Telecommunications Standards Institute (ETSI) has

deployed a new series of standards to standardize a set of features and

implementations guidelines for the main components of a Distributed Speech

Recognition (DSR) system. The STQ Aurora group works on the

standardization of a front end for DSR applications. Four standards emerged

for the front-end specifications, in addition to the features compression

algorithm and bit-stream framing algorithm. All of the four standards use the

MFCC as the features vector in the front-end. The first standard contains the

basic functionality of the Mel-Cepstrum front-end. The second standard works

on improving the speech recognition results in a noisy environment; this is

3

referred to as the Advanced front-end. The third one includes a modification to

enable speech reconstruction at the back-end and enhance the speech

recognition for some tonal languages like Mandarin and Thai; this is referred to

as the Extended front-end. The last standard is a merge between the second and

third ones, where recognition is noise robust and in the same time speech

reconstruction and tonal languages support are enabled; this is referred to as the

Extended Advanced front-end.

The main point of this thesis is the hardware implementation of the basic

front-end specified in the first Aurora standard (ETSI ES 201 108 V1.1.3

(2003-09) to be deployed in mobile hand-held devices.

1.1 Organization of the Thesis

The thesis is organized as follows:

CHAPTER 1 is an introduction to the Automatic Speech Recognition (ASR)

systems in general and Distributed Speech Recognition (DSR) systems in

particular. In addition, the four Aurora DSR Front-end standards are introduced

in brief.

CHAPTER 2 is an overview of the design of VLSI systems, where VLSI

design flow and VLSI design styles are introduced, with emphasis on three

styles of particular interest; which are Digital Signal Processors (DSP), Field

Programmable Gate Arrays (FPGA) and Application Specific Integrated

Circuits (ASIC).

CHAPTER 3 is a comparative study between the three VLSI design styles

introduced from the point of design time, cost, power consumption, flexibility,

re-programmability…etc. A conclusion is drawn at the end of the chapter to

choose the best style that suits our design goals.

CHAPTER 4 gives detailed discussion of the design and hardware

implementation of the front-end system in the Aurora specifications. First the

design constraints are introduced, and then the static and dynamic architectures

are discussed. Every module is explained in details. And finally, the overall

4

system time and hardware utilization of the system is presented. A quick study

is made of the effect of run-time configurability on the chip design.

CHAPTER 5 presents the testing and simulation results of the system versus

the reference Aurora system to prove standard compliance. Three tests were

performed at different levels of the system outputs, and their results are

presented.

CHAPTER 6 shows the system performance versus some reference designs

and benchmarks in the market.

Appendix A contains some basic information about essential algorithms and

concepts used in the thesis, like CORDIC algorithm, radix-2 FFT algorithm

and fixed and floating point notations.

1.2 Speech Signal Representation and Modeling

1.2.1 Speech production in human being

In general, speech is a sound wave created by vibration that is

propagated in the air. Speech is produced from human being when a source of

air flow at the vocal cords passes by the time-varying vocal tract. Manner of

articulation describes how the tongue, lips, and other speech organs are

involved in making a sound make contact.

Figure 1: Human Vocal Tract [6]

Acoustic theory analyzes the physical laws that govern the propagation

of sound in the vocal tract. Such a theory should consider the three-dimensional

5

wave propagation, the variation of the vocal tract shape with time, losses due to

heat conduction and viscous friction at the vocal tract walls, softness of the

tract walls, radiation of sound at the lips, nasal coupling, and excitation of

sound. While a detailed model that considers all the above is not yet available,

some models provide a good approximation in practice, [1] and [6].

1.2.2 Speech digitization

Before speech can be processed by a computer it must be digitally

sampled. First, the signal is captured by a microphone (or other transducer) and

converted into an electrical signal, where the amplitude of the signal

corresponds to the magnitude of the original pressure variation. Second, the

signal is sampled at some frequency, so that only a finite number of amplitudes

are recorded, stored, or transmitted, for a given period of time. Common

sampling rates include 8000 Hz(samples per second) for telephone speech and

44100Hz for compact disk recordings. Shannon's law provides that frequencies

up to half the sampling rate can be reconstructed from the sampled signal, so an

8000 Hz telephone signal can reconstruct frequencies up to 4000 Hz. Higher

frequencies are subject to aliasing, such that a frequency of 4010 Hz cannot be

distinguished from a frequency of 3990 Hz. (This same aliasing makes

spinning wheels on stagecoaches appear to spin backwards on old western

movies and television shows). To prevent this effect the signal is filtered to

remove high frequencies before sampling. Third, the signal is quantized into

one of a discrete number of levels so that only a finite number of bits is

required to represent each level. This is called Analog-to-Digital (A-to-D)

conversion. Thus, a telephone signal will typically carry 8000 speech samples

per second, each represented by an 8-bit number, for a total of 64000 bits per

second. In contrast, cellular telephone may only employ 4800 or 2400 bits per

second, by using Linear Predictive Coding (LPC) or other signal compression

techniques [1].

6

1.2.3 Speech Modeling

A very famous speech model is the Source-Filter model, where a speech

signal is decomposed into a excitation signal (e[n]) passing by a time varying

filter (h[n]) that represents the resonance of the vocal tract which changes over

time.

Figure 2: Source-Filter model for speech signals

Separation between the source and filter is one of the most difficult

challenges in speech processing. To estimate the filter there are many methods,

some of them are inspired by the speech production models (such as the Linear

Predictive Coding) and others are inspired by the speech perception models

(such as Mel-Frequency Cepstrum). Once the filter has been estimated, the

source can be obtained by passing the speech signal through the inverse filter.

Voice is divided into two main categories: Voiced sounds and Unvoiced

sounds. Voiced sounds refer to the articulatory process in which the vocal

cords vibrate, while unvoiced sounds describe the pronunciation of sounds

when the larynx does not vibrate. According to this classification, the above

model can be modified to model the excitation signal as the sum of Voiced

excitation and Unvoiced excitation as shown in the Figure 3.

Figure 3: Source-Filter model for Voiced and Unvoiced speech

7

Where the white noise models the Unvoiced speech, while the impulse

signal at the sampling frequency is the Voiced speech.

In general speech production models are more frequently encountered in

speech coding applications, while speech perception models are more utilized

in speech recognition applications. That is why Linear Prediction Coding

(LPC) is common in speech coding, while Mel-Frequency Cepstral

Coefficients (MFCC) is more dominant in speech recognition.

1.2.4 Short-term frame based spectral analysis

Due to high speech variability, continuous input speech utterance cannot

be processed directly. In addition, the frequency distribution over an entire

utterance does not help much more in speech recognition. Instead of processing

the speech signal as a whole, a certain time frame should be set, and in which

speech signal can be considered stationary.

For short-term analysis the signal must be zero outside of a defined

range. This is performed by multiplying the signal with a window. This time

window width is usually taken from 20 to 30 ms of speech, and the window

shift, which is the time between the start of one window and the next one, is

usually taken to be 10 ms. For this window, features can be extracted and

processed.

There are many window shapes that can be used, like Rectangular,

Hamming, Gauss, Hann and Blackmann window. The choice of certain one of

the others is driven by the application and the nature of the input speech signal.

Figure 4: a) Rectangular Window b) Hamming Window

8

Another reason for computing the short-term spectrum is that the

cochlea of the human ear performs a quasi-frequency analysis. The analysis in

the cochlea takes place on a nonlinear frequency scale (known as the Bark

scale or the Mel scale). This scale is approximately linear up to about 1000 Hz

and is approximately logarithmic thereafter. So, in the feature extraction, it is

very common to perform a frequency warping of the frequency axis after the

spectral computation, [1]. This will be discussed in details in the Mel-

Frequency Cepstral Coefficients features description.

1.2.5 Speech Features Extraction

Processing the digital samples of the speech signals is not a good idea,

due to many reasons. First, this would require a lot of storage area to store the

speech samples. Also, if this speech is to be transmitted over a network,

transmitting the whole signal would require a large bandwidth. Second,

because of the large variability of the speech signal, it is a good idea to extract

some features of the speech that characterizes it, which would reduce that

variability.

For the above reasons, some basic features of the speech signal are

extracted and stored, processed or transmitted, instead of dealing with the

whole speech signal.

Recall the source-filter speech production model discussed section 1.2.3,

the filter h[n] can be used to model the speech signal, hence, all what we have

to worry about are the coefficients of that filter, which completely model the

speech system. This is the main idea of features extraction, and speech

compression.

As mentioned before, two famous models exist, which are; speech

production models and speech perception models. According to the model

used, the filter type and coefficients are determined. For speech production

model, Linear Predictive Coding (LPC) coefficients are of the most famous

features. While for speech perception models, Mel-Frequency Cepstral

9

Coefficients (MFCCs) algorithm is the most popular features extraction

algorithm used for speech recognition nowadays.

1.2.5.1 Linear Predictive Coding (LPC)

Also know as Auto Regression Coefficients (AR) algorithm (refer to [1]

for more information about the algorithm, mathematical derivation and

equations presented in this section). The basic idea behind linear predictive

analysis is that a specific speech sample at the current time can be

approximated as a linear combination of past speech samples. Through

minimizing the sum of squared differences (over a finite interval) between the

actual speech samples and linear predicted values a unique set of parameters or

predictor coefficients can be determined. These coefficients form the basis for

linear predictive analysis of speech.

We can predict that the nth sample in a sequence of speech samples is

represented by the weighted sum of the p previous samples:

∑
=

−=
p

k
k knxanx

1

][][~

The number of samples (p) is referred to as the “order” of the LPC. As

p approaches infinity, we should be able to predict the nth sample exactly.

However, p is usually on the order of ten to twenty, where it can provide an

accurate enough representation with a limited cost of computation. The

weights on the previous samples ka are chosen in order to minimize the squared

error between the real sample and its predicted value. Thus, we want the error

signal e[n], which is sometimes referred to as the LPC residual, to be as small

as possible:

∑
=

−−=−=
p

k
k knxanxnxnxne

1

][][][~][][

We can take the z-transform of the above equation:

∑∑
=

−

=

− =−=−=
p

k

k
k

p

k

k
k zAzXzazXzzXazXzE

11

)()(]1)[()()()(

10

Thus, we can represent the error signal E(z) as the product of our

original speech signal S(z) and the transfer function A(z). A(z) represents an

all-zero digital filter, where theka coefficients correspond to the zeros in the

filter’s z-plane. Similarly, we can represent our original speech signal S(z) as

the product of the error signal E(z) and the transfer function 1 / A(z):

)(

)(
)(

zA

zE
zX =

Where:

)(

1
)(

zA
zH =

The transfer function H(z) represents an all-pole digital filter, where the

ka coefficients correspond to the poles in the filter’s z-plane. Note that the

roots of the A(z) polynomial must all lie within the unit circle to ensure

stability of this filter.

In reality the actual predictor coefficients are never used in recognition,

since they typical show high variance [1]. The predictor coefficients are

transformed to a more robust set of parameters known as Cepstral coefficients.

1.2.5.2 Mel-Frequency Cepstral Coefficients (MFCC)

1.2.5.2.1 The Mel Frequency Scale

There are many non-linear frequency scales that approximate the sensitivity

of the human ear. For example [6]:

• Constant Q: Q is the ratio of filter bandwidth over centre frequency;

hence this implies an exponential form.

• Equivalent Rectangular bandwidth (ERB): The bandwidths of the

auditory filters are measured

• Bark: Also derived from perception experiments

• Mel: The engineers solution

11

The Mel scale is a perceptual scale of pitches judged by listeners to be equal

in distance from one another. The reference point between this scale and

normal frequency measurement is defined by equating a 1000 Hz tone, 40 dB

above the listener's threshold, with a pitch of 1000 Mels. Above about 500 Hz,

larger and larger intervals are judged by listeners to produce equal pitch

increments. As a result, four octaves on the hertz scale above 500 Hz are

judged to comprise about two octaves on the Mel scale. The name Mel comes

from the word melody to indicate that the scale is based on pitch comparisons

 [6]

)700/1(log1125)(ffB e +=

Where B(f) is the frequency in Mels, while f is the frequency in Hz.

Figure 5: Hertz versus Mel Scales [6]

12

Experimentally, it was found that the human ear has a set of filter banks that

can be perfectly represented on the Mel scale.

1.2.5.2.2 The Cepstrum

The Cepstrum is the result of taking the Fourier transform (FT) of the decibel

spectrum as if it were a time signal. Its name was derived by reversing the first

four letters of "spectrum". There is a complex Cepstrum and a real Cepstrum.

1.2.5.2.3 The Mel-Frequency Cepstrum

The difference between the normal and Mel Cepstrum is that a non-linear scale

is used, which simulates the auditory system, which is the Mel-Frequency

scale. The block diagram of the MFCC algorithm is shown in Figure 6 [8]. For

more information about the algorithm and the underlying mathematics and

equations, please refer to [1] and [8].

Figure 6: The Mel-Frequency Cepstral Coefficients Algorithm [8]

First, take the DFT of the input speech frame signal:

10,][][
1

0

/2 −≤≤=∑
−

=

− NkenxkX
N

n

Nnkj
a

π

We define a filter bank with M filters (m=1,2,…M), where m is traiangular

filter given by:

13

−<

+≤≤
−+

−+

≤≤−
−−

−−
−<

=

]1[0

]1[][
])[]1[(

)]1[(

][]1[
])1[][(

])1[(

]1[0

][

mfk

mfkmf
mfmf

kmf

mfkmf
mfmf

mfk

mfk

kH m

Let’s define lf and hf as the lowest and highest frequencies of the filter bank

in Hz, Fs as the sampling frequency in Hz, M as the number of filters and N as

the size of the FFT. The boundary points f[m] are uniformly spaced in the Mel

scale:

+
−

+

= −

1

)()(
)(][1

M

fBfB
mfBB

F

N
mf lh

l
s

Where the Mel scale B is given by:

)700/1(log1125)(ffB e +=

And the inverse Mel equation is:

)1)1125/(exp(700)(1 −=− ffB

The filter banks are shown in the Figure 7.

Figure 7: Mel-Filter banks

Then, compute the log-energy at the output of each filter:

Mm0 ,][|][|ln][
21

0

≤<

= ∑

−

=

kHkXmS m

N

k
a

14

The Mel-Frequency Cepstrum is then the Discrete Cosine Transform (DCT) of

the M filter outputs:

LMmnmSnc
M

m

<≤−= ∑
−

=

n0 ,)/)2/)1(cos(][][
1

0

π

Where M varies for different implementations from 24 to 40. For speech

recognition, typically only the first 13 Cepstrum coefficients are used [1]

1.3 Automatic Speech Recognition (ASR) System

Till now, we have discussed the speech signal representation and models

used in speech processing in general. Now we should examine the speech

recognition area of speech signal processing in more details. Speech

recognition systems are commonly referred to as Automatic Speech

Recognition Systems (ASR).

Speech recognition is basically a pattern recognition problem. A source-

channel model is used to formulate speech recognition problems. As illustrated

Figure 8, the speaker’s mind decides the word sequence W that is delivered

through his/her test generator. The source is passed through a noisy

communication channel that consists of the speaker’s vocal apparatus to

produce the speech waveform and the speech signal processing component of

the speech recognizer. Finally the speech decoder aims to decode the acoustic

signal O into the word sequence W* , which is hopefully close to the original

word sequence W. O is the acoustic observations vector, or the features vector.

Figure 8: A source-channel model for a speech recognition system

15

Following the Bayesian approach applied to ASR, the best estimation for the

word sequence can be given by:

In order to generate an output the speech recognizer has basically to perform

the following operations:

• Extract acoustic observations (features) out of the spoken utterance.

• Estimate P(W) - the probability of individual word sequence to

happen, regardless acoustic observations.

• Estimate P(O|W) - the likelihood that the particular set of features

originates from a certain sequence of words.

• Find word sequence that delivers the maximum likelihood defined in

the equation above.

A typical automatic speech recognition system is shown in the Figure 9. The

basic components of the ASR system are the ones in the box.

A
p
p
lic
a
tio
n

A
c
o
u
s
tic
 M
o
d
e
ls

L
a
n
g
u
a
g
e
 M
o
d
e
ls

Figure 9: Basic Architecture of Automatic Speech Recognition (ASR) System

16

Application interface with the decoder to get the recognition results that

may be used again to adapt other components in the system through the

Adaptation component. Acoustic models include the representation of

knowledge about acoustics microphone and environment variability, gender

and dialect differences among speakers, etc.

Language models refer to a system’s knowledge of what constitutes a

possible word, what words are likely to co-occur, and in what sequence. The

semantics and functions related to an operation a user may wish to perform

may also be necessary for the language model. Many uncertainties exist in

these areas, associated with speaker characteristics, speech style and rate,

recognition of basic speech segments, possible words, likely words, unknown

words, grammatical variation, noise interference, nonnative accents, and

confidence scoring of results. A successful speech recognition system must

contend with all of these uncertainties. The acoustic uncertainties of different

accents and speaker styles of individual speakers are compounded by the

lexical and grammatical complexity and variations of the spoken language,

which are all represented in the language model.

The speech signal is processed in the Signal Processing module that

extracts salient feature vectors for the decoder. The decoder uses both acoustic

and language models to generate the word sequence that has the maximum

posterior probability for the input feature vectors. It can also provide

information needed for the adaptation component to modify either the acoustic

or language models so that improved performance can be obtained.

A more detailed representation of the ASR system is shown in Figure 10.

Where the function of each module is mentioned according to the maximum

likelihood probability equation mentioned earlier in this section. The term

P(W) is determined by the language model. It can be either rule based or of

statistical nature. In the later case the probability of the word sequence is

approximated through the occurrence frequencies of individual words (often

depending on the previous one or two words) in some predefined database. The

likelihoods P(O|W) are estimated on most state-of the- art recognizers using

17

HMM based acoustic models. Here every word wj is composed of a set of

acoustic units like phonemes, triphones or syllables, i.e. wj = (u1 ∪ u2…).

And every unit u k is modeled by a chain of states js with associated emission

probability density functions)|(jsxp . These densities are usually given by a

mixture of diagonal covariance Gaussians, i.e. ∑
=

Σ=
M

k
mjmjmjj xNbsxp

1

),,()|(µ .

The computation of the final likelihood P(O|W) is performed by combining the

state emission likelihoods)|(jt sop and state transition probabilities. The

parameters of acoustic models such as state transition probabilities, meansmjµ ,

variances mjΣ and weights mjb of Gaussian mixtures are estimated on the

training stage and also have to be stored. The total number of Gaussians to be

used depends on the design of the recognizer.

Finally, armed with both)|(jt sop and P(W), we need an effective

algorithm to explore all HMM states of all words over all word combinations.

Usually modified versions of the Viterbi algorithm are employed to determine

the best word sequence in the relevant lexical tree.

18

Figure 10: Detailed ASR system

1.4 Automatic Speech Recognition Systems for Mobile and Embedded

Devices

The past decade has witnessed an unprecedented developing of the

telecommunication industry. The today’s mobile technologies have far

overcome person-to-person communication to Wide Area Networks (WAN),

such as 3, 3.5, 3.75 and even 4G networks. Wireless Local Area Networks

(WLAN) based on the IEEE 802.11 specifications also known as Wi-Fi spots

became widely available. With its high data rates, Wi-Fi makes possible such

applications as Voice over IP (VoIP) or video conferencing. Alongside with

expansion of the network technologies, the client devices have been developing

at the same speed. Also PDAs are getting more and more popular.

Of course such a perfect infrastructure gave rise for the development of

many new data services for the handheld devices. However, the user interface,

which has definitely improved over the last years, still limits the usability of the

19

mobile devices. Typing is uncomfortable. In addition, in the case of car driving,

it becomes an issue of safety to use the keypad.

Users prefer to use their natural languages to issue an order to these

devices. The natural way to solve this problem consists in using speech

recognition technology. As a result, new speech recognition systems have been

developed. Desktop or PC applications of speech recognition are not suitable to

run on embedded devices, due to the highly variable acoustic environment in

the mobile domain and very limited resources available on the handheld

terminals.

Note that; for more information about this section, please refer to [7].

1.4.1 Main differences between Desktop Speech Recognition and Mobile

ASR

Mobile ASR faces the following problems:

• Limited storage and memory on-chip in embedded devices. Recall the

discussion of the generic ASR system in section 1.3, where P(W) is

somehow determined though the Language Models of the ASR system,

which could be either rule based or statistical model. The main

shortcoming of the statistical language models from the mobile ASR

viewpoint is the number of parameters to be stored, which may be as

gross as hundreds of megabytes for very Large Vocabulary (LV) tasks.

Also, the likelihoods P(O | W) are estimated using HMM based acoustic

models, where the states of the system js are associated with emission

probability density functions)|(jsxp which are usually given by a

mixture of diagonal covariance Gaussians,

∑
=

Σ=
M

k
mjmjmjj xNbsxp

1

),,()|(µ . The total number of Gaussians to be used

depends on the design of the recognizer. However, even for a digit

recognition task ending up with about one thousand 39-dimensional

mixtures is a common situation, which also embarrasses a compact

implementation of the ASR in a mobile device [7].

20

• Slow processors clock speeds.

• Limited fixed-point arithmetic, while floating point arithmetic is

frequently encountered in such applications.

• High power consumption of such algorithms.

1.4.2 Modern ASR Systems

Modern ASR systems can be structurally decomposed into two main parts [7]:

• The acoustic Front-end, where the process of the feature extraction

takes place and

• The Back-end, performing ASR search (using Viterbi or similar

algorithms) based on the acoustic and language models.

Since most of the portable devices use a communication link, we can classify

all the mobile ASR systems upon the location of the front-end and back-end.

This allows us to distinguish three principal system structures [7]:

• Client-based architecture or Embedded Speech Recognition (ESR),

where both front-end and back-end are implemented on the terminal.

• Server-based architecture or Network Speech Recognition (NSR),

where speech is transmitted over the communication channel and the

recognition is performed on the remote server.

• Client-server architecture or Distributed Speech Recognition (DSR),

where the features are calculated on the terminal, while the classification

is done on the server side.

Each approach has certain disadvantages. The implementation depends on the

application needs and the terminal capabilities. Small recognition tasks are

generally recommended to reside on terminals, while the large vocabulary

recognition systems take advantage of the server capacities. The following

sections present these architectures, the front-end role and the back-end role.

1.4.2.1 Front-end role

The task of the acoustic front-end is to extract characteristic features out

of the input speech. Usually it takes in a frame of the speech signal every 10 ms

21

with length from 20 to 30 ms and performs certain spectral analysis. The

features extraction algorithm in most speech recognition systems today is the

Mel-Frequency Cepstral Coefficients.

1.4.2.2 Back-end role

The main function of the back-end part of the ASR system is to perform

ASR search using the acoustic and language models as discussed in 1.3. We

have to notice that the feature extraction even if not optimized, takes just about

2% of all processing time in case of the medium vocabulary and even less in

large vocabulary recognition tasks [7]. The main computational burden relies in

the ASR search, which is governed by two operations: the computation of

Gaussians in the emission likelihoods)|(jt sop for a given frame and the token

propagation, i.e. the maintenance of the information about the survivors (best

paths) during the search through the lexical tree [7].

1.4.3 Embedded Speech Recognition System Architecture

In the case of client-based or embedded ASR the entire process of

speech recognition is performed on the terminal, or in other words, client side

(see Figure 11, refer to [7]). Embedded ASR is often the architecture of choice

for PDAs for the following reasons since they have higher capabilities

compared to mobile devices.

The main advantage of this architecture relies in the fact that no

communication between the server and the client is needed. Thus, the ASR

system is always ready for use and does not rely on the quality of the data

transmission. On the other hand, the main disadvantage is that the functionality

on the terminal needs to be kept to minimum requirements or small tasks due to

the limited resources of the client [7].

22

Figure 11: Client-based ASR system- Embedded Speech Recognition (ESR)

 [7]

1.4.4 Network Speech Recognition System Architecture

Practically all complications caused by the resource limitations of the

mobile devices can be avoided shifting both ASR front-end and back-end from

the terminal to the remote server. Such a server-based ASR architecture is

referred in the literature as Network Speech Recognition (NSR) (see Figure 12,

refer to [7]).

Figure 12: Server-based ASR system - Network Speech Recognition (NSR) [7]

The main advantage of NSR is its light weight terminals, of limited

capabilities in contrast to ESR clients. Also, different language recognizers can

be used without the need to install them on the client device.

Characteristic drawback of the NSR architecture is the performance

degradation of the recognizer caused by using low bit-rate codecs, which

23

becomes more severe in presence of data transmission errors and background

noise.

1.4.5 Distributed Speech Recognition System Architecture

Distributed speech recognition represents the client-server architecture,

where one part of ASR system, which is the primary feature extraction, resides

on the client, while the computation of temporal derivatives and the ASR

search are performed on the remote server (see Figure 13, refer to [7]).

Figure 13: Client-server based ASR system- Distributed Speech Recognition

(DSR) [7]

Even though both DSR and NSR make use of the server-based back-end,

there are substantial differences in these two schemes favoring DSR [7].

• First of all the speech codecs unlike the feature extraction algorithms are

optimized to deliver the best perceptual quality and not for providing the

lowest Word Error Rate (WER).

24

Figure 14: WER degradation in NSR using GSM EFR Coding vs. DSR system

 [9]

Figure 14 shows performance of a GSM coded speech recognition system

(NSR) against that of a DSR over GSM network [9]. The WER is highly

degraded as the signal strength becomes weaker in the GSM coded version,

while it keeps a reasonable level in DSR system. Note that; unlike NSR, the

encoded and transmitted signal are the speech features and not the encoded

speech signal itself.

• Second, DSR does not need the high quality speech, but rather some set

of characteristic parameters. Thus, it requires lower data rates - 4.8

kbit/s is a common rate for the features transmission.

• Third, since feature extraction is performed place on the client side, the

higher sampling rates covering full bandwidth of the speech signal are

possible.

• Finally, because in DSR we are not constrained to the error-mitigation

algorithm of the speech codec, better error-handling methods in terms of

WER can be developed.

The studies within the distributed recognition framework target three

aspects indicative for DSR, [7]:

• The development of noise robust and computationally effective feature

extraction algorithms.

25

• The investigation of procedures for feature vectors quantization,

permitting compression of the features without losses in recognition

quality.

• The elaboration of error mitigation methods.

The composite answer on these entire questions was given by the STQ-

Aurora DSR working group established within the European

Telecommunications Standards Institute (ETSI). The result of the four-year

cooperative work of Aurora group members, the world leading ASR

companies, has become the ETSI standard ES 201 108 operating at the 4.8

kbit/s data rate, then the ETSI standard ES 202 050 specifying the advanced

front-end (AFE) feature extraction, feature compression and back-end error-

mitigation algorithms . In 2004 this standard was enriched to the extended

advanced front-end (xAFE), allowing for the cost of additional 0.8 kbit/s

reconstruction of the intelligible speech signal out of features stream [7].

Overview of this set of standards is given in the next sections.

1.4.5.1 ETSI Aurora Proposal for Distributed Speech Recognition

Systems

In Distributed Speech Recognition (DSR) architecture the recogniser

front-end is located in the terminal and is connected over a data network to a

remote back-end recognition server. DSR provides particular benefits for

applications for mobile devices such as improved recognition performance

compared to using the voice channel with a guaranteed level of recognition

performance.

Because it uses the data channel, DSR facilitates the creation of an exciting

new set of applications combining voice and data. To enable all these benefits

in a wide market containing a variety of players including terminal

manufactures, operators, server providers and recognition vendors, a standard

for the front-end is needed to ensure compatibility between the terminal and the

remote recogniser. The STQ-Aurora DSR working group within ETSI has been

actively developing this standard and as a result of this work the first DSR

26

standard was first published by ETSI in February 2000, featuring the basic

front-end specifications. The Mel-Cepstrum was chosen for the first standard

because of its widespread use throughout the speech recognition industry.

Three next standards have evolved till January 2007.

• The first standard contains the basic functionality of the Mel-Cepstrum

front-

end, ETSI ES 201 108 V1.1.3 (2003-09).

• The second standard works on improving the speech recognition results

in a noisy environment; this is referred to as the Advanced Front End

(AFE), ETSI ES 202 050 V1.1.5 (2007-1).

• The third standard includes a modification to enable speech

reconstruction at the back end and enhance the speech recognition for

some tonal languages like Mandarin and Thai; this is referred to as the

Extended Front End (xFE), ES 202 211 V1.1.1 (2003-11).

• The last standard is a merge between the second and third ones, where

recognition is noise robust and in the same time speech reconstruction

and tonal languages support are enabled; this is referred to as the

Extended Advanced Front End (xAFE), ES 202 212 V1.1.2 (2005-11).

The Aurora proposal to DSR architecture is given in Figure 15, refer to [10].

Figure 15: Aurora proposal for DSR system [10]

27

Reference high level C-code implementations for the algorithms present

in the specifications are provided for the four standards, so that proprietary

implementations of the standards can compare their performance to that

obtained by the reference C-code.

The first standard (ETSI ES 201 108), featuring the basic Front end

specification, is the main issue of this thesis, where a hardware implementation

of this front-end is to be developed to be deployed in mobile hand-held devices.

In the following sections, a brief overview is given on each of the four

standards.

1.4.5.1.1 Basic Front End Specifications, ETSI ES 201 108

This standard specifies algorithms for front-end feature extraction and their

transmission which form part of a system for distributed speech recognition.

Also, it presents a standard for a front-end to ensure compatibility between the

terminal and the remote recognizer. The specification covers the following

components (more details about this section can be found in [2]):

• The algorithm for front-end feature extraction to create Mel-Cepstrum

parameters.

• The algorithm to compress these features to provide a lower data

transmission rate.

• The formatting of these features with error protection into a bitstream

for transmission

• The decoding of the bitstream to generate the front-end features at a

receiver together with the associated algorithms for channel error

mitigation.

The standard does not cover the "back-end" speech recognition algorithms

that make use of the received DSR front-end features.

28

Figure 16: DSR system defined in the Basic front end standard, ETSI ES 201

108 [9]

The specification covers the computation of feature vectors from speech

waveforms sampled at different rates (8 kHz, 11 kHz, and 16 kHz). The feature

vectors consist of 13 static Cepstral coefficients and a log-energy coefficient.

Figure 17: Block diagram of the Front end algorithm specified in the Basic

standard, ETSI ES 201 108 [2]

1.4.5.1.2 Advanced Front End Specifications, ETSI ES 202 050

This standard is for an advanced DSR front-end (AFE) that provides

substantially improved recognition performance in background noise.

29

Evaluation of the performance during the selection of this standard showed

an average of 53 % reduction in speech recognition error rates in noise

compared to ES 201 108. The specification covers the following

components (more details about this section can be found in [4]):

• The algorithm for advanced front-end feature extraction to create Mel-

Cepstrum parameters.

• The algorithm to compress these features to provide a lower data

transmission rate.

• The formatting of these features with error protection into a bit stream

for transmission.

• The decoding of the bit stream to generate the advanced front-end

features at a receiver together with the associated algorithms for channel

error mitigation.

The standard does not cover the "back-end" speech recognition algorithms

that make use of the received DSR advanced front-end features.

The advanced DSR standard is designed for use with discontinuous

transmission and to support the transmission of voice activity information. The

Voice Activity Detection (VAD) algorithm is presented in the specification [4],

however it is not mandatory for the implementer to use this one, instead he can

use any alternative algorithm.

Figure 18: Block scheme of the proposed front-end in specification ETSI ES

202 050. Figure (a) shows blocks implemented at the terminal side and (b)

shows blocks implemented at the server side [4]

30

In the features extraction part, noise reduction is performed first. Then,

waveform processing is applied to the de-noised signal and Cepstral features

are calculated. At the end, blind equalization is applied to the Cepstral features.

The features extraction part also contains an 11 and 16 kHz extension block for

handling these two sampling frequencies. Voice activity detection (VAD) for

the non-speech frame dropping is also implemented in features extraction.

At the server side (see Figure 18 b), bit-stream decoding, error

mitigation and decompression are applied. Before entering the back-end, an

additional server feature processing is performed.

1.4.5.1.3 Extended Front End Specifications, ETSI ES 202 211

This standard is for an extended DSR front-end (xFE). It specifies a

proposed standard for an extended front-end (XFE) that extends the Mel-

Cepstrum front-end with additional parameters, viz., fundamental frequency F0

and voicing class. It also specifies the back-end speech reconstruction

algorithm using the transmitted parameters. The specification covers the

following components (more details about this section can be found in [3]):

• The algorithm for front-end feature extraction to create Mel-Cepstrum

parameters.

• The algorithm for extraction of additional parameters, viz., fundamental

frequency F0 and voicing class.

• The algorithm to compress these features to provide a lower data

transmission rate.

• The formatting of these features with error protection into a bitstream

for transmission.

• The decoding of the bitstream to generate the front-end features at a

receiver together with the associated algorithms for channel error

mitigation.

• The algorithm for pitch tracking and smoothing at the back-end to

minimize pitch errors.

31

• The algorithm for speech reconstruction at the back-end to synthesize

intelligible speech.

For some applications, it may be necessary to reconstruct the speech

waveform at the back-end. Examples include, [3]:

• Interactive Voice Response (IVR) services based on the DSR of

"sensitive" information, such as banking and brokerage transactions.

DSR features may be stored for future human verification purposes or to

satisfy procedural requirements.

• Human verification of utterances in a speech database collected from a

deployed DSR system. This database can then be used to retrain and

tune models in order to improve system performance.

• Applications where machine and human recognition are mixed (e.g.

human assisted dictation).

In order to enable the reconstruction of speech waveform at the back-end,

additional parameters such as fundamental frequency (F0) and voicing class

need to be extracted at the front-end, compressed, and transmitted. The

availability of tonal parameters (F0 and voicing class) is also useful in

enhancing the recognition accuracy of tonal languages, e.g. Mandarin,

Cantonese, and Thai, [3].

Figure 19: Block diagram of the front-end algorithm specified in specification

ETSI ES 202 211 [3]

32

1.4.5.1.4 Extended Advanced Front End Specifications, ETSI ES 202 212

This standard is for an extended advanced DSR front-end (xAFE). This

standard simply comprises the advanced and extended front end features

together, where background noise enhancements are included (see 1.4.5.1.2) in

addition to tonal language and back-end reconstruction support (see 1.4.5.1.3).

The specification covers the following components (more details about this

section can be found in [5]):

• The algorithm for advanced front-end feature extraction to create Mel-

Cepstrum parameters.

• The algorithm for extraction of additional parameters, viz., fundamental

frequency F0 and voicing class.

• The algorithm to compress these features to provide a lower data

transmission rate.

• The formatting of these features with error protection into a bit stream

for transmission.

• The decoding of the bit stream to generate the advanced front-end

features at a receiver together with the associated algorithms for channel

error mitigation.

• The algorithm for pitch tracking and smoothing at the back-end to

minimize pitch errors.

33

Figure 20: Block scheme of the proposed extended front-end in specification

ETSI ES 202 212

(a) shows blocks implemented at the terminal side and

(b) shows blocks implemented at the server side [5]

34

Chapter 2

2 Design of VLSI Systems

In this chapter, the Very Large Scale Integration (VLSI) digital design

styles for Digital Signal Processing (DSP) applications are introduced. Digital

signal processing systems are required to perform intensive arithmetic

operations such as multiplication, division, trigonometric operations, non-linear

operations like natural logarithms calculations, error-protection and correction

calculations like Cyclic Redundancy Check (CRC), Fast Fourier Transform

(FFT),.. etc. These tasks may be implemented on general purpose processors or

custom integrated circuits. Also, DSP applications are required to be performed

in real-time, that is, it has a certain deadline to end before. Finally, DSP

applications are usually deployed nowadays in hand-held mobile and

embedded devices, so power consumption, cost and area usage efficiency

factors are essential to DSP applications. The selection of appropriate hardware

is determined by many factors, like the application domain, cost, power

consumption, or combination of all of these. This chapter introduces different

digital hardware implementations for DSP applications.

First, the general design flow and hierarchy of VLSI systems are

introduced. Then, different hardware options for DSP applications are

presented; which are:

• Digital Signal Processors (DSP)

• Field Programmable Gate Arrays (FPGA)

• Application Specific Integrated Circuit (ASIC)

For each design style of the above, its different types, different architectures

and classifications, design flow are presented.

35

2.1 VLSI Design Flow

The design process, at various levels, is usually evolutionary in nature. It

starts with a given set of requirements. Initial design is developed and tested

against the requirements. When requirements are not met, the design has to be

improved. If such improvement is either not possible or too costly, then the

revision of requirements and its impact analysis must be considered. The Y-

chart (first introduced by D. Gajski) shown in Figure 21 illustrates a design

flow for most logic chips [12], using design activities on three different axes

(domains) which resemble the letter Y.

Figure 21: Typical VLSI design flow in three domains (Y-chart representation)

 [12]

The Y-chart consists of three major domains [2], namely:

• Behavioural domain,

36

• Structural domain,

• Geometrical layout domain.

The design flow starts from the algorithm that describes the behaviour of

the system. The corresponding architecture of the processor is first defined. It is

mapped onto the chip surface by floor planning.

The next design evolution in the behavioural domain defines Finite State

Machines (FSM) which are structurally implemented with functional modules

such as registers and Arithmetic Logic Units (ALU). These modules are then

geometrically placed onto the chip surface using Computer Aided Design

(CAD) tools for automatic module placement followed by routing, with a goal

of minimizing the interconnect area and signal delays.

The third evolution starts with a behavioural module description. Individual

modules are then implemented with leaf cells or logic gates. At this stage the

chip is described in terms of logic gates (leaf cells), which can be placed and

interconnected by using a cell placement & routing program.

The last evolution involves a detailed boolean description of leaf cells

followed by a transistor level implementation of leaf cells and mask generation.

In standard-cell based design, leaf cells are already pre-designed and stored in a

library for logic design use [2].

37

Figure 22: A more simplified view of VLSI design flow [2]

Figure 22 provides a more simplified view of the VLSI design flow, taking into

account the various representations, or abstractions of design - behavioural,

logic, circuit and mask layout. Note that the verification of design plays a very

important role in every step during this process. The failure to properly verify a

design in its early phases typically causes significant and expensive re-design

at a later stage, which ultimately increases the time-to-market [2].

Although the design process has been described in linear fashion for

simplicity, in reality there are many iterations back and forth, especially

between any two neighbouring steps, and occasionally even remotely separated

pairs. The transition step from level to the lower is called Synthesis, and from

38

lower to higher is called Verification or Simulation. The transition from the

Algorithmic to the FSM level is called High Level Synthesis. The transition

from the Modular (usually called RTL) level to the gate level is called Logic

Synthesis. The later is now automated to be done by the modern synthesisers

for Hardware Descriptive Languages like VHDL or Verilog.

Although top-down design flow provides an excellent design process

control, in reality, there is no truly unidirectional top-down design flow. Both

top-down and bottom-up approaches have to be combined. For instance, if a

chip designer defined architecture without close estimation of the

corresponding chip area, then it is very likely that the resulting chip layout

exceeds the area limit of the available technology.

2.2 Hardware Design Styles for Digital Signal Processing Applications

Several design styles can be considered for chip implementation of

specified signal processing algorithm. The different design styles vary from

General Digital Signal Processor, Programmable Device, or Application

Specific Integrated Circuit. Each design style has its own merits and

shortcomings, and thus a proper choice has to be made by designers in order to

provide the functionality at low cost.

Figure 23: Hardware Design Styles for Signal Processing Applications

Hardware Design Styles
For Signal Processing

Applications

General Digital Signal
Processor

Application Specific
Integrated Circuit

Programmable
Devices

Structured
ASIC

Standard Cell/
Cell Based IC

Full Custom

FPGA

PLD

Digital
Signal

Processor

General

Purpose uC/
uP

39

The above design styles spans the spectrum from general purpose

platform (DSP), passing by Semi- Custom Platform (FPGA), to full custom

platform (full custom ASIC). In the following sections each style is presented.

In the following sections, the following design styles are discussed in more

details:

• Digital Signal Processors (DSP)

• Field Programmable Gate Arrays (FPGA)

• Application Specific Integrated Circuits (ASIC)

2.2.1 Digital Signal Processors

Digital signal processors differ from genera purpose processors in that

they are customized to certain application domain, which is digital signal

processing. Its architecture is very different from a general purpose Von

Neumann architecture to accommodate the demands of real-time signal

processing. When first developed in the beginning of the 80’s, the main

application was filtering. Since then, the architectures have evolved together

with the applications.

DSP processors were originally developed to implement traditional

signal processing functions, mainly filters, such as FIR’s and IIR’s. These

applications decided the main properties of the programmable DSP

architecture: the inclusion of a multiply- accumulate unit (MAC) as separate

data path unit and Harvard or modified Harvard memory architecture instead of

Von Neumann architecture as will be discussed later.

2.2.1.1 Classification of Digital Signal Processors Architectures

The fundamental property of a DSP processor is that it uses Harvard or

modified Harvard architecture instead of Von Neumann architecture. The main

operation in most DSP application is the multiply and accumulate (MAC)

operation done on the data and the coefficient of the filter. The different DSP

architectures try to reduce the time needed to finish this operation. The DSP

architectures according to the MAC unit time are:

40

• Harvard Architecture: uses different buses for program and data

memories, which reduces the MAC time.

• Modified Harvard Architecture (Conventional DSP): The “Fetch” phase

of the MAC instruction is kept in cache, which reduces the access to the

instruction memory, and gets the MAC time to only one cycle.

• Super Harvard Architecture (SHARC): uses two data buses. SHARC is

a trade name of Analog Devices.

• Enhanced DSP Architecture: it tries to reach two MAC operations in

one cycle. This can be accomplished in many ways; for example,

pipelining between the multiply and accumulate operations could

achieve one MAC at double speed, by performing the multiplication of

the current MAC in the same time of performing the addition of the next

one.

2.2.1.2 DSP Design Flow

A generalized DSP system design process is illustrated in Figure 24

(refer to [11]). For a given application, the theoretical aspects of DSP system

specifications such as system requirements, signal analysis, resource analysis,

and configuration analysis are first performed to define system requirements.

41

Figure 24: DSP Design Flow [11]

The DSP design flow starts with analysing the system requirements

specifications. Then the system is characterized by the embedded algorithm

derived from the system requirements analysis step, which specifies the

arithmetic operations to be performed. The algorithm for a given application is

initially described using difference equations or signal-flow block diagrams

with symbolic names for the inputs and outputs. In documenting an algorithm,

it is sometimes helpful to further clarify which inputs and outputs are involved

by means of a data-flow diagram which specifies the required steps in order to

derive the outputs. There are two methods of characterizing the sequence of

operations in a program: flowcharts or structured descriptions. High-level

languages DSP tools (such as MATLAB, Simulink, or C/C++) are used at the

algorithm level, since they are capable of algorithmic-level system simulations.

We then implement the algorithm using software, hardware, or both, depending

42

on specific needs. After the system components are ready they are integrated

and tested, then the whole system is validated to be released.

Figure 25: DSP simulation environment [11]

A DSP algorithm can be simulated using a general-purpose computer so

that its performance can be tested and analyzed. A block diagram of general-

purpose computer implementation is illustrated in Figure 25 (refer to [11]). The

test signals may be internally generated by signal generators or digitized from a

real environment based on the given application or received from other

computers via the networks. The simulation program uses the signal samples

stored in data file(s) as input(s) to produce output signals that will be saved in

data file(s) for further analysis [11].

Advantages of developing DSP algorithms using a general-purpose

computer are [11]:

1. Using high-level languages saves algorithm development time and

facilitates testing and debugging. In addition, the prototype C programs

used for algorithm evaluation can be ported to different DSP hardware

platforms.

2. Input/output operations based on disk files are simple to implement and

the behaviours of the system are easy to analyze.

3. Floating-point data format and arithmetic can be used for computer

simulations, thus easing development.

4. Further, fixed point simulation tool boxes exist in MATLAB or

Simulink.

43

2.2.2 Field Programmable Gate Arrays

A Programmable Logic Device (PLD) is digital circuit that performs

reconfigurable or programmable logic function. Unlike a logic gate, which has

a fixed function, a PLD has an undefined function at the time of manufacture.

Before the PLD can be used in a circuit it must be programmed or configured.

PLDs exist in many forms:

• ROM as PLD: where logic functions are stored in ROM.

• Programmable Array Logic (PAL): where logic functions are obtained

by “sum-of-product” fashion, with fixed-OR plane and programmable-

AND plane.

• Generic Array Logic (GAL): same as PAL, but can be reprogrammed

and erased.

• Complex Programmable Logic Device (CPLD): same as PAL and GAL

but with larger size (few hundreds logic gates).

• Field Programmable Gate Arrays (FPGA): they are two dimensional

arrays of logic blocks and flip-flops with electrically programmable

interconnections between logic blocks. The interconnections consist of

electrically programmable switches; which is why FPGA differs from

Custom ICs which have hard-wired interconnections which cannot be

re-programmed.

44

Figure 26: FPGA general internal structure

Routing in FPGAs consists of wire segments of varying lengths which

can be interconnected via electrically programmable switches. Density of logic

blocks used in an FPGA depends on length and number of wire segments used

for routing. Number of segments used for interconnection typically is a trade

off between density of logic blocks used and amount of area used up for

routing.

FPGAs were introduced as an alternative to custom ICs for

implementing entire system on one chip and to provide flexibility of re-

programmability to the user. It reduces the time to market and significantly

reduces the cost of production. Another advantage of FPGAs over Custom ICs

is that with the help of Computer Aided Design (CAD) tools circuits could be

implemented in a short amount of time (no physical layout process, no mask

making, no IC manufacturing).

45

2.2.2.1.1 Classification of FPGA

Field programmable gate arrays can be classified according to three

different criteria detailed in the next sections.

2.2.2.1.1.1 Main Logic Block Type Classification

This is the main building block that performs the logic functions. Logic

blocks of an FPGA can be implemented by any of the following:

o Transistor pairs

o Combinational gates like basic NAND gates or XOR gates

o N-input Lookup tables

o Multiplexers

o Wide fan-in AND-OR structure

Size of the block decides the density and utilization of the FPGA

resources (smaller size means higher density and better utilization).

2.2.2.1.1.2 FPGA Architecture Classification

Basic structure of an FPGA includes logic elements, programmable

interconnects and memory. Arrangement of these blocks is specific to

particular manufacturer. On the basis of internal arrangement of blocks FPGAs

can be divided into three classes:

2.2.2.1.1.2.1 Symmetrical Array

This architecture consists of logic elements (LE) arranged in rows and

columns of a matrix and interconnect laid out between them. This symmetrical

matrix is surrounded by I/O blocks which connect it to outside world.

Interconnects provide routing path. Direct interconnects between adjacent logic

elements have smaller delay compared to general purpose interconnect.

46

Figure 27: Symmetrical Array

2.2.2.1.1.2.2 Row Based Architecture

Row based architecture consists of alternating rows of logic modules

and programmable interconnect tracks. Input and output blocks are located in

the periphery of the rows. One row may be connected to adjacent rows via

vertical interconnect.

Figure 28: Row Based Architecture

47

2.2.2.1.1.2.3 Hierarchal PLD

This architecture is designed in hierarchical manner with top level

containing only logic blocks and interconnects. Each logic block contains

number of logic modules. Each logic module has combinatorial as well as

sequential functional elements. Communication between logic blocks is

achieved by programmable interconnects arrays. Input output blocks surround

this scheme of logic blocks and interconnects.

Figure 29: Hierarichal PLD

2.2.2.1.1.3 Programming Technology Classification

The first type of user-programmable switch developed was the fuse (still

used in some smaller devices). For higher density devices, where CMOS

dominates the IC industry, different approaches to implementing

programmable switches have been developed. Three major programming

technologies are used nowadays:

• Floating Gate Programming Technology

• SRAM Programming Technology

• Anti-Fuse Programming Technology

48

2.2.2.1.2 Design Flow of FPGA Systems

Figure 30 shows the general FPGA design flow.

Figure 30: FPGA Design Flow [13]

Generic design flow of an FPGA includes following steps:

• System Specification: in this step, the designer analyses the system

requirements and make the hardware-software distribution; that is, to

decide which parts of the system shall be done in hardware (FPGA) and

which shall be done in software. Having hardware part specified, the

system requirements for hardware should be clear to design the chip

according to those requirements.

• RTL/ HDL Description: at this step, the hardware is described, either

using schematic representation or Hardware Description Languages

(HDLs) like Verilog or VHDL.

• Logic Synthesis: this is to transfer to the gate-level from the Register

Transfer Language (RTL) level. In other words, to implement the design

on a given FPGA. CAD tools automate this step.

49

• Place and Route: Implementation includes partition, place and route.

The output of design implementation phase is bit-stream file. This step

is automated with CAD tools.

• Circuit Verification: Bit stream file is fed to a simulator which

simulates the design functionality and reports errors in desired behavior

of the design. Timing tools are used to determine maximum clock

frequency of the design. Now the design is loading onto the target

FPGA device and testing is done in real environment.

As appears from the above steps, following Logic Synthesis step, all steps

are automated, which is a major advantage of FPGA design flow, where

CAD tools are available to do most of the work, leaving the design burden

on the designer. This is not the case of Custom IC development.

2.2.3 Application Specific Integrated Circuits

An Application-Specific Integrated Circuit (ASIC) is an Integrated

Circuit (IC) customized for a certain target application, rather than intended for

general-purpose use. This definition includes FPGA too. To differentiate ASIC

from FPGA, most designers use ASIC only for non field programmable

devices. ASIC usually provides less cost, less power consumption than FPGA

and DSP, in addition to their high Intellectual Property (IP) design security,

where it is much harder to reverse-engineer ASIC design. This comes on the

cost of hard and long development cycle.

2.2.3.1 Classification of ASIC

2.2.3.1.1 Standard Cell/ Cell Based IC

Every ASIC manufacturer creates ready made functional blocks with

known electrical characteristics, which the designer can use directly. The RTL

code is mapped to these pre-defined standard cells defined by the manufacturer

at the Logic Synthesis step.

50

Standard cell design is the utilization of these functional blocks.

Standard cell design fits between gate array and full custom design in terms of

both its NRE (Non-Recurring Engineering) and recurring component cost.

2.2.3.1.2 Gate Array ASIC

In gate-array-based ASIC, transistors are predefined on the silicon wafer, where:

• Base cell is the smallest element that is replicated.

• Base array is the predefined pattern of transistors.

It is called Masked Gate Array (MGA) when only layers which define the

interconnect between transistors are defined by the designer using custom

masks. Designer chooses from a gate-array library pre designed and pre

characterized logic cells (often called macros). There are three types of this

style:

2.2.3.1.2.1 Channeled Gate Array

In this type, we leave space between the rows of transistors for wiring. Its

characteristics are as follows

• Only interconnect is customized

• The interconnect uses predefined spaces between rows

• Manufacturing lead time is between 2 days and 2 weeks

Figure 31: Channeled Gate Array

51

2.2.3.1.2.2 Channel less Gate Array

In this style, there are no predefined areas set aside for routing between

cells. We customize the contact layer that defines the connections between

metal1 and transistors. The characteristics of this style are:

• Only some (the top few) mask layers

are customized – the interconnect

• Manufacturing lead time is

between 2 days and 2 weeks

Figure 32: Channel-less Gate Array

2.2.3.1.2.3 Structured/Platform ASIC

Structured (also referred to as Platform) ASIC design is a relatively new

term in the industry. The motivation to this style is that other gate arrays have

only fixed gate-array base cell; which is difficult and inefficient

implementation, so we set aside some IC area and dedicate it to a specific

function (which can contain different cells, more suitable for building memory

cells, for example, or complete block, such as a microcontroller). This

technology is seen as bridging the gap between field-programmable gate arrays

and standard-cell ASIC design.

Figure 33: Structured ASIC

52

Structured ASIC design has the following advantages:

• Small non-recurring expenditures (NRE) due to less custom-produced

metal layers.

• Other gate arrays focus on lowering the turnaround time and mask set

cost by making predefined metal layers, in addition to that, structured

ASIC reduces the design time by having blocks of predefined

characteristics. For example, in a cell-based or gate-array design the user

often must design power, clock, and test structures themselves; these are

predefined in most structured/platform ASICs and therefore can save

time and expense for the designer compared to other gate-array

techniques.

• Structured ASIC encourages Intellectual Property (IP) cores re-use by

embedding them in the reserved wafer area. For example, a complete

ARM processor, USB driver,..etc can be embedded and reused with no

extra effort.

The Altera technique of producing a structured cell ASIC where the cells

are the same design as the FPGA, but the programmable routing is replaced

with fixed wire interconnect is called HardCopy. The Xilinx technique of

producing a customer specific FPGA, that is 30% - 70% less expensive than a

standard FPGA and where the cells are the same as the FPGA but the

programmable capability is removed, is called EasyPath [6]

Modern VLSI design flow consists of FPGA prototype and then automatic

migration (through EDA and CAD tools) to structured ASIC device that

corresponds to the FPGA device used in the prototype. Migration effort is often

small or negligible, since FPGA manufacturers provide free migration services

and physical verification of the final ASIC versus the prototype in case of large

production volume requested.

53

2.2.3.1.3 Full Custom IC

Full-custom ASIC design defines all the photo lithographic layers of the

device. The benefits of full-custom design usually include reduced area (and

therefore recurring component cost), performance improvements and also the

ability to integrate (include) analog components and other pre-designed (and

thus fully verified) components such as microprocessor cores that form a

System-On-Chip (SoC) [6].

The disadvantages of full-custom can include increased manufacturing

and design time, increased non-recurring engineering costs, more complexity in

the Computer Aided Design (CAD) system and a much higher skill

requirement on the part of the design team. However for digital only designs,

"standard-cell" cell libraries together with modern CAD systems can offer

considerable performance/cost benefits with low risk [6].

2.2.3.2 Cell libraries, IP-based design, hard and soft macros

Cell libraries of logical primitives are usually provided by the device

manufacturer as part of the service. Although they will incur no additional cost,

their release will be covered by the terms of a Non Disclosure Agreement

(NDA) and they will be regarded as intellectual property by the manufacturer.

Usually their physical design will be pre-defined as so they could be termed

hard macros [6].

But what most engineers understand as "intellectual property" are IP

cores, designs purchased from a third party as sub-components of a larger

ASIC. They may be provided as an HDL description (often termed a Soft

Macro), or as a fully routed design that could be printed directly onto an

ASIC’s mask (often termed a Hard Macro). Many organizations now sell such

pre-designed IP, and larger organizations may have an entire department or

division to produce such IP for the rest of the organization. For example, one

can purchase CPUs, Ethernet, USB or telephone interfaces. Soft Macros are

54

often process independent; i.e., they can be fabricated on a wide range of

manufacturing processes and indeed different manufacturers. Hard Macros are

process limited and usually further design effort must be invested to migrate

(port) to a different process or manufacturer [6].

2.2.3.3 Design Flow of ASIC

Broadly used ASIC design flow can be divided into following:

• System Requirements Analysis and Specification: This is the same as

in FPGA design flow.

• RTL Description: This is the same as in FPGA design flow.

• Functional Simulation/Verification: Here the RTL description is

tested for functional correctness.

• Logic Synthesis: This is the same as in FPGA design flow.

• Design Verification: Formal verification methods are used to test the

functional correctness of gate-level netlist. Testing functional

correctness involves testing an optimized design against a golden design

description.

• Layout: This phase involves floor planning. Placement of cells on the

chip area. Placement of Input/Output pads on the chip area. Clock tree

synthesis is performed in order to minimize space and power consumed

by clock signal. Placement and routing is carried out on this design.

55

Chapter 3

3 Comparative Study of VLSI Design Styles for

Front End Speech Processor

In this chapter, a comparative study is made between three suggested

hardware design styles for the speech front end processor, which are:

• Digital Signal Processors

• Field- Programmable Gate Arrays

• Application Specific Integrated Circuits.

The target of the comparison is to reach the best hardware platform for the

front end speech processor.

The points of comparison are as follows:

• The Non- Recurring Engineering (NRE) Cost is the cost paid once for

the first design to be accomplished. This is different from the production

cost, which is paid every time a unit is produced. A comparison is made

to target this important point.

• The re-programmability is ability to modify or add new features to the

design after it is being downloaded to hardware platform. The cost of

this modification varies form one style to another. This is an important

point to be addressed while choosing a certain hardware platform.

• The production cost in each style.

• The available hardware resources in each style and its suitability to the

required resources for the front end speech processor.

• The available hardware internal memory in each style and its suitability

to the required memory needs for the front end speech processor.

• The speed limits in each style and its suitability for the required

processing time for front end speech processor.

56

• The power consumption in each style is also an important point of

comparison, where it gives a good indication on the suitability of this

style to be used with hand–held or battery powered devices.

• Also, it is important to consider the required production volume while

choosing a platform; hence, a comparison is made from the required

production volume perspective between the suggested platforms.

The comparison is held on two dimensions. The first is between different

designs styles mentioned above. The second dimension is between different

models and manufacturers of each style alone, this is done only when there is

difference between various models concerning the corresponding point of

comparison. The comparison is supported with real figures from the available

platforms in the market today. At the end of the comparison, a brief

comparison table is made, and a conclusion is drawn about the best design style

for the front end processor.

3.1 Design Time and Non- Recurring Expenditures Cost (NRE)

Comparison

The Non- Recurring Expenditures (NRE) Cost is the cost paid once for

the first design to be accomplished. This is different from the production cost,

which is paid every time a unit is produced. To address this point of

comparison, the design flow of every style should be revisited, and compared

to the design flows of the other styles; this is done to be able to identify extra or

time consuming steps of each design style.

Digital signal processors offer the least design time and shortest design

flow. In general, moving to custom designs (like full-custom ASICs) will

increase the design performance, but on the other hand, it will increase the

design time and effort. This is shown in Figure 34, which makes FPGA better

in terms of shorter design Time than ASIC design. The gap between FPGA and

ASIC design times can be reduced by using FPGA for prototyping and then

migrating to structured ASIC in production, where migration requires less

effort and time than full-custom ASIC design.

57

Figure 34: Customization increases the design time

3.2 Re-Programmability Comparison

This feature is highly required for designs that are not stable, or subject to

modifications all the time. Also, upgrading a design, adding new features, or

embedding a design in a larger requires having high re programmability at the

lowest possible cost.

General purpose DSPs are the most flexible design style to modifications

and updates, since its development nature is software. FPGAs are more flexible

than ASICs. So, it is recommended that if the design is subject to

modifications, addition of features, or extension to higher versions, then use

DSPs or FPGAs rather than ASICs. In case of migration to structured ASIC,

the design must be highly stable in the FPGA prototype stage before put in

production.

3.3 Resources Comparison

In most DSP applications, the main operation is the Multiply- And –

Accumulate (MAC), hence, the main resource in the DSP processor is the MAC

unit. Other resources are also important, like barrel shifter, ALU…etc.

In case of FPGA or ASIC, we mean by resources the total number of

gates or logic elements, the available dedicated multipliers, the available

registers…etc.

58

The following sections will show some samples of the available platforms

in the market today, and their corresponding features.

3.3.1 Digital Signal Processor

Table 1 shows sample DSPs capabilities in the market, together with their

manufacturers:

Manufacturer Family Peak

MMACs

Total

RAM

(Program

+ Data

RAM)

ROM Frequency

Texas

Instruments

TMS320C54x 50 16 KB 8 KB 50 MHz

Texas

Instruments

TMS320C55x 320 32 KB 32 KB 300 MHz

Analog

Devices

SHARK 300 125 KB 375 KB 150 MHz

Analog

Devices

ADSP-218x NA 256 KB NA 80 MHz

Free Scale DSP56300 80 - 100 24 KB NA 80-100

MHz

Table 1: Sample Digital Signal Processors and their features

Study of porting the front end processor to DSP platform was done,

where only one available MAC unit was assumed with no pipelining between

stages. Conventional DSP was assumed (one MAC per clock cycle). From the

Table 1, it is very clear that any DSP processor contains more than one MAC

unit, which exceeds the needs of the front end processor. This enables addition

of new features or modules from a larger speech recognition system on the

same DSP processor.

59

3.3.2 Field Programmable Gate Arrays

Table 2 shows sample FPGAs and their corresponding capabilities:

Manufacturer Model Number

of

Gates/

Cells

Total RAM

(distributed

and Block)

Dedicated

Multipliers

Frequency

Xilinx Virtex-5 330,000

Cells

150 KB –

1 MB

32 to 640 *

(25 X 18

Multipliers)

550 MHz

Xilinx Virtex-E 58 K – 4

M Gates

1728-

73,000

Logic

Cell

10 KB –

800 KB

NA 130- 240

MHz

Xilinx SPARTAN-

3A

50K-

1400K

7 KB-

72 KB

3 to 32 *

(18 X 18

Multipliers)

5 – 250

MHz

Altera Stratix III 47,000-

338,000

Logic

Cells

330 KB-

2.8 MB

216 to 576

*

(18 X 18

Multipliers)

600 MHz

Altera Cyclone III 5,000-

119,000

Logic

Cells

52 KB-

486 KB

23 to 288 *

(18 X 18

Multipliers)

260 MHz

Table 2: Sample FPGAs and their features

Rough estimation of the required resources for the front end algorithm

showed that the total required resources can easily fit in a 10-20K gates FPGA

chip. From Table 1 and Table 2, it is clear that these requirements are met.

60

Some of the above FPGAs have much higher capabilities than required,

which can used to implement extra features or modules.

3.3.3 Application Specific Integrated Circuits

For full-custom and cell-based designs, the resources are customized by

the designer to the application needs. For structured ASICs, usually the

resources of the FPGA used in the prototype design will limit the final design

resources.

3.3.4 Conclusion

From the above results, it is clear that the required resources for the front

end processor can be met in the three design styles easily. However, some

styles capabilities might exceed the required resources, in which case adding

extra modules and extension to larger parts of speech recognition system done.

3.4 Processing Time Requirements Comparison

The timing requirements of the front end specified in the Aurora standard

are relaxed, where the effective frame rate is 9.16 ms as will be discussed later

in the System Design and Implementation chapter. Hence, this can be easily

achieved in any of the three design styles.

3.5 Memory Requirements Comparison

Table 1 and Table 2 show the available internal RAM and ROM for DSP and

FPGA styles. For ASIC style, it will be assumed to be the same as FPGA. From

Table 2, the total internal RAM in the shown FPGAs range from 16 to 256 KB

(including program and data memories). And for ROM, the range is from 8 to

375. From Table 1, the total internal RAM in the DSP processors shown range

from 7KB to 1 MB.

Initial estimation of the required RAM and ROM needs for the front end

processor showed that about 4 to 6 KB of RAM and 4 KB of ROM are needed.

It is clear that these requirements are met easily in any of the three design

61

styles, and extra memory is available for extension or addition of extra speech

recognition modules from a larger speech recognition system.

3.6 Power Consumption Comparison

The power consumption issue is very vital, especially when addressing

hand-held or battery powered devices. Types of power consumption are:

• Static power is the power consumed by a device when it is in its

quiescent condition with no input signals being exercised. It is also

referred to as steady-state or standby power. In today’s 90 nm

technology devices, leakage currents in the transistors are the biggest

contributors to static power. This is usually the key parameter of

concern to designers of portable equipment because of its effect on

battery life, especially for devices that spend large amounts of time in a

standby condition waiting for input from the outside world.

• Dynamic power is the power consumed during normal operation. It is

also referred to as operating power. Dynamic power is dependant on

operating signal frequency; interconnect capacitance, and operating

voltage. Because the voltage dependency is a square function, the

reduction in voltage when moving to 90 nm devices has substantially

reduced operating power in many devices. However, for large, high-

performance systems with high operating frequencies, dynamic power

is still a significant component of total system power.

• In-rush power is the power required at device power-up. It is also

referred to as power-up or start-up power, or power-on surge power (or

current). Some devices require many times more power to begin

operation than they do during normal operation, thereby placing

demands on system power supplies. In a consumer system with very

tightly controlled power supply size and cost, ensuring that in-rush

power is not more than normal operating power is a key design goal.

It is of no doubt that moving towards customization improves performance

and reduces power consumption, hence, full-custom ASICs will be at the top

62

most side of the spectrum, while general purpose DSP will lie at the other side

of the spectrum.

3.6.1 Digital Signal Processor

General purpose DSPs are in general consuming higher power than

FPGAs and ASICs. Hence, most of the applications that utilize DSP processors

use chargeable batteries, and suffer from less battery life. Power dissipation of

an FPGA design is typically about 20% of a microprocessor based design

working at the same sample rate.

3.6.2 Field Programmable Gate Arrays

The main sources of power consumption in FPGA are:

• Inrush - power-up consumption, which is very high for SRAM based

FPGAs. No Inrush power-up consumption for Anti-fuse.

• Standby – no switching activity but power is on. It is large for SRAM

FPGAs due to large number of SRAM cells.

• Dynamic – consumption during normal operation. It is proportional to

the frequency of charging and discharging of internal parasitic

capacitances.

3.6.3 Application Specific Integrated Circuits

One of the most important motivations towards customization is to

reduce power consumption. In full-custom ASIC design, the designer designs

his own cells, with the required power characteristics. In cell-based, the

standard cells with power characteristics that match the system power

consumption requirements are chosen carefully to achieve the minimum level

of power consumption.

Structured ASIC designs are estimated to lower the power consumption

by around 50 % compared to the FPGA that was used in prototyping.

63

3.6.4 Conclusion

It is of no doubt that moving towards customization improves

performance and reduces power consumption, hence, full-custom ASICs will

be at the top most side of the spectrum, while general purpose DSP will lie at

the other side of the spectrum.

3.7 Production Volume and Unit Cost Comparison

We mean here by production cost: the cost of one unit after design is stable

and finished. This cost varies from one design style to another, and in some

design styles, the cost of the design prototype is the same as the produced unit

cost, like FPGA and DSP styles. In the next sections, a sample of the unit cost

of the available units in each design style in the market today is presented. Two

important notes are to be considered:

• The prices given are restricted only to the date of writing this document.

• Only the units that meet the required needs for the speech front end

processor are given here.

Also, for ASIC style, the production volume is a main point while talking

about cost, so, a detailed comparison between the minimum business size (i.e.

production volume) and the corresponding cost in different ASIC

manufacturers is made.

3.7.1 Digital Signal Processor

Table 3 shows a sample of the prices of the available

DSP processors in the market today, together with their manufacturers:

Manufacturer Model Price

Texas Instruments TMS320C54x $4.00

Texas Instruments TMS320C55x $5.25

Analog Devices ADSP-218x $ 33.00

Analog Devices SHARK $7.22

Free Scale DSP56300 $45.00

Table 3: DSP Processors Prices

64

3.7.2 Field Programmable Gate Arrays

Table 4 shows a sample of the prices of the available FPGAs in the market

today, together with their manufacturers:

FPGA Model Manufacturer Supplier Price

Virtex-5 XC5VLX30

Xilinx Avnet Electronics

www.em.avnet.com

$250.000

Virtex-5 XC5VSX95T Xilinx Avnet Electronics

www.em.avnet.com

$2,735.000

Virtex-E XCV50E-6

Xilinx Avnet Electronics

www.em.avnet.com

$26.000

Virtex-E XCV200E Xilinx Avnet Electronics

www.em.avnet.com

$83.000

SPARTAN

3AN

XC3S50AN

Xilinx Avnet Electronics

www.em.avnet.com

$14.000

SPARTAN

3AN

XC3S1400AN

Xilinx Avnet Electronics

www.em.avnet.com

$91.000

SPARTAN

3AN

XC3S400AN Xilinx Avnet Electronics

www.em.avnet.com

$45.000

SPARTAN

3A

XC3S400A

Xilinx Avnet Electronics

www.em.avnet.com

$31.000

SPARTAN

3A

XC3S200A

Xilinx Avnet Electronics

www.em.avnet.com

$22.000

65

FPGA Model Manufacturer Supplier Price

SPARTAN

3A

XC3S50A

Xilinx Avnet Electronics

www.em.avnet.com

$12.000

SPARTAN-

3A DSP

XC3SD1800A Xilinx Avnet Electronics

www.em.avnet.com

$147.00

SPARTAN-

3A DSP

XC3SD3400A-

4CS484LI

Xilinx Avnet Electronics

www.em.avnet.com

$202.00

Stratix III EP3SL150 Altera Altera

www.altera.com

$2,184.000-

$3,352.000

Stratix II EP2S3 Altera Altera

www.altera.com

$258.000-

$339.000

Cyclone III EP3C5

Altera Altera

www.altera.com

$12.000-

$17.000

Table 4: FPGA Unit Prices

From Table 4, it is clear that Cyclone III from Altera, and SPARTAN

3A from Xilinx are the most cost effective FPGAs.

However, migration to ASIC using Hardcopy devices from Altera, or

EasyPath devices from Xilinx can reduce the unit cost by 10-90%.

3.7.3 Application Specific Integrated Circuits

Table 5 shows the details of production cost and volume when converting a

design from prototype FPGA/ PLD to structured ASIC:

Company Minimum

Business

Size

Estimated

per-unit

price

savings

over

FPGA/PLD

Time to

complete

conversion

Time to

first

prototype

Time to

production

units

Altera NA 10-90% NA NA NA

Xilinx NA 30-70% NA NA 8-12 weeks

66

Atmel

$250,000.000 50-80% 3-4 weeks 3-4 weeks 8 weeks

Orbit

Semiconductor

$40,000.000 $5- $50 1- 4 weeks 2-4 weeks 6-8 weeks

S-MOS

Systems Inc

10,000 units 2-3 weeks 20 days 8-12 weeks

Table 5: FPGA/PLD to ASIC conversion cost [14]

Table 6 shows the cost of Mask Programmable Gate Arrays (without FPGA

prototype):

Company Minimum

Business

Size

Estimated

per-unit

price

savings

over

FPGA/PLD

Time to

complete

conversion

Time to

first

prototype

Time to

production

units

Altera 10,000 units 50-75% 2 weeks 4-5 weeks 6-8 weeks

Xilinx 3000- 10,000

units

20-80% 2-6 weeks 3 weeks 4-8 weeks

Lucent

Technologies

$250,000.000 10-90% 4-2 weeks 2-6 weeks 0-6 weeks

AMI 25,000 units 25- 45 % 2 days 7 weeks 6 weeks

Table 6: MPGA Cost [14]

The minimum business size is the minimum number of units or the

minimum production cost. Altera device technique from FPGA to structured

ASIC is called HardCopy. In Xilinx a similar device is called EasyPath, while

in Atmel; the similar device is called ULC.

3.7.4 Conclusion

For DSP case, the unit cost is nearly the same as the production cost. While for

FPGA, the unit cost is nearly the same as production cost, only when we do not

67

consider migration to structured ASIC, in which case production unit cost

reduces by 10-90%.

3.8 Brief Overall Comparison

Table 7 gives a summary of the points of comparison between Digital Signal

Processors, Field Programmable Gate Array, Structured Application Specific

Integrated Circuit and full-custom Application Specific Integrated Circuit:

 Digital

Signal

Processor

Field

Programmable

Gate Array

Structured

-

Application

Specific

Integrated

Circuit

Full-

Custom

Application

Specific

Integrated

Circuit

Design Time and

NRE cost

Short time

and low

cost

Medium time

and cost

Medium

time and

cost

Long time

and high

cost

Re-

programmability

and flexibility

High Limited None None

Hardware

Resources

Met and

exceeding

Met Met Met

On-chip memory Met and

exceeding

Met Met Met

Processing Time Met and

exceeding

Met and

exceeding

Met and

exceeding

Met and

exceeding

Power

Consumption

Low-

Medium

Low-Medium Low Low

Suitability for

extension or

addition of new

modules

Suitable Suitable if high

capability

FPGA is used

Suitable if

high

capability

FPGA is

Not suitable

68

used

Production cost Medium Medium-High Low if high

production

volume

Low if high

production

volume

Production

volume

Can be

small

Can be small Required to

be high

Required to

be high

Table 7: Brief overall comparison between the three design styles

3.9 Conclusion

From the results obtained in the previous sections, two design approaches

are recommended for the front end processor system:

3.9.1 Using DSP Processor

This option has the following advantages:

• Short development time and less design effort.

• Flexibility to include extra modules on the same processor to utilize the

extra resources.

And it has the following disadvantages:

• High power consumption, which reduces the possibility of battery

powered solution, such that, the chip shall take its power from a

rechargeable battery (like the one in PDA or mobile device or even a

lap-top). In this case, it will not be possible to place the front end

processor in the microphone piece, as it will require high power source.

3.9.2 Migration from FPGA to Structured ASIC

This option has the following advantages:

• The same design steps as developing an FPGA prototype are done with

no extra effort for migration.

• FPGA prototyping gives extra design flexibility before migrating to

structured ASIC. Also, the RTL prototype can be used as an

69

independent IP core (soft macro) that can be included as an embedded

block (System on Chip - SoC) in a larger system if needed.

• Lower unit Cost (10-90 % reduction over FPGA).

• Lower power consumption (around 50% power reduction than the

corresponding FPGA).

• Higher design security features of Systems on chip (SoC).

And has the following disadvantages:

• Requires high production volume to be worth the cost of migration.

• Less design flexibility, especially after the migration step.

The decision to take this option will be limited with the required production

volume. However, this design style will be adopted in this thesis because it has

the lowest power consumption, cost, and reliability and design security. In

addition, no extra effort or risk is added to migrate to the ASIC solution of the

prototyped, well-tested design on the FPGA. And finally, migration

technologies are available at most of the FPGA manufacturers (like Altera

HardCopy and Xilinix EasyPath devices), so no matter the choice of the FPGA

platform, a corresponding migration technology is easily available.

70

Chapter 4

4 System Design and Implementation

In this chapter, the system design of the front end speech processor chip is

presented. First, the system limitations and constraints are listed, like time, cost

and power consumption constraints. The system static and dynamic

architectures are then presented, followed by the detailed design of each

module in the architecture, featuring the basic functionality of the module, the

internal architecture, the configuration parameters, signal widths justification

for the module internal signals, the module state machine, the memory

requirements of the module and finally the chip usage of that module.

Then the overall system performance is discussed, where the resources

utilization and memory requirements on different FPGA platforms are

presented. Also, the time and speed performance of the system is described.

Finally, a theoretical study of the effect of run-time configuration of

different parameters instead of the static configuration of those parameters on

the system is presented, with the modified architecture and the required

modifications in every component of the system.

Note that; this chapter contains information that depends on the system

specifications for the front end processor described earlier in the thesis and as

specified in [2].

4.1 Design Constraints

In this section the time, cost and power constraints on the design are

discussed in details.

4.1.1 Time Constraints

The number of samples per frame is N samples. The frame shift interval

(difference between the starting points of consecutive frames) is M samples.

71

The parameter M defines the number of frames per unit time. For more

information about this section, please see [2].

The specific values of N and M depend on the sampling rate according

to Table 8. The frame length is 25 ms for 8 and 16 kHz sampling rates, and

23,27 ms for 11 kHz.

Table 8: Supported Configurations Supported options [2]

The 3 supported options provide different shift samples (M), different

frame length in samples (N) and different frame interval. However, the frame

shift interval is constant in the three cases and equal 10 ms. For example, for

the 8 kHz case the sample duration will be:

SampleDuration =
hInSamplesFrameLengt

hInTimeFrameLengt
=)200(

25

N

ms

=0.125 ms = 1/(8 kHz)

ShiftInterval = M × SampleDuration = 80 × 0.125 ms =10 ms

The above formulae hold for 11 and 16 kHz sampling rates. Hence;

FrameRate =
valShiftInter

1
 = 100 Frame/Sec

The major constraint is on the processing time of each speech frame;

that is, it shall end in less than 9.16 ms, where the time between two frames is

10 ms (for the 3 supported sampling rates), however, for every 2 frames (88

bits) there is additional 4 bits of CRC, and every 24 frames (144 byte) we have

6 bytes of overhead (header and sync. sequence), which makes the effective

frame rate = 10 ms * (144 – 0.5 * 12 - 6)/144 = 9.16 ms. However, compared

to today’s chip frequencies, this constraint is very relaxed, hence, most

optimizations were directed towards hardware resources rather than processing

time optimization.

72

4.1.2 Memory Constraints

Memory usage should be optimized as much as possible, especially it is

not planned to use any external memories other than that on chip, since this

will degrade the performance of the system. This constraint implies that most

of the calculations will be done at run time whenever possible, and no pre

computed constants will be used, unless necessary (e.g. the quantization tables

should be stored and cannot be computed).

4.1.3 Power Consumption

The front end processor system is intended to be deployed in a stand

alone chip, for example, it could be placed in the microphone piece. This

means that the final system could be battery powered, which implies that the

power consumption should be hold at its minimum values as much as possible.

This constraint will affect the choice of the hardware platform to be used,

where FPGA or structured ASIC choices are preferred to Digital Signal

Processors.

4.1.4 Cost and Resources Constraints

Since the final system is meant to be placed in a separate chip that could

be part of the microphone, so the cost should be kept at its minimum. This

constraint makes the choice of the target hardware platform moves towards

FPGA or structured ASIC rather than DSP. Also, the hardware resources on

that chip are expected to be very limited. Hence, numerical algorithms (like

CORDIC, see Appendix A) were used to compute complicated DSP (like FFT,

see Appendix A) and trigonometric functions, which highly reduced the

resources usage with good accuracy. Also, reuse of resources between serial

operating components was used in the design.

4.2 System Architecture

This section describes the high level architecture of the front end

processor system. The block diagram of the system as described in the Aurora

standard in [2] is shown in Figure 35:

73

Figure 35: Block diagram of the system [2]

The following two sections show the static and dynamic architectures of

the system.

4.2.1 Static Architecture

This section describes the internal components of the front end

processor without specifying the interaction between them nor the inputs or

outputs of each block. The main component that manages the state machine of

the system is the Buffer Manager. The Buffer Interface component is the

interface between the ADC and the rest of the system, it could be implemented

as a shared memory, or direct link between the ADC and the system, in either

case the implementation of this component is outside the scope of the design.

74

Buffer Interface

Buffer Manager

Offset
Compensation

Windowing

FFT

Mel-Filtering

Pre-emphasis Energy Measure

Non-linear

transform
DCTQuantizerBit-Stream Framing

Figure 36: Static Architecture of the system

4.2.2 Dynamic Architecture

This section describes the dynamic behavior of the system. There are many

points that can be extracted from the dynamic architecture:

1. The communication between internal components.

2. The widths of the signals exchanged between components.

3. The sequence of events and flow of data in the system.

4. The dependence between the components, i.e. some components can be

running in parallel and others are dependent on each other.

It should be noted that: the names of the signals mentioned here are not

necessarily the same in the actual design. Also, only the main signals are

shown here, which means that more signals could exist in the actual design and

75

not mentioned here. And finally, some signals shown here could be exchanged

between components indirectly, for example, the bink coefficients coming out

of the FFT component to the Mel-Filter are not directly exchanged between

them in the actual design, actually, they are written by the FFT in a shared

memory, and then read by the Mel-filter form the same memory under the

control of the buffer manager.

Figure 37: Dynamic Architecture of the system

The system can be divided into three main parts:

76

1. The first part includes the following components: Offset Compensation,

Pre-emphasis, Energy Measure and Windowing. The components of

this part can run in parallel, however, since the rate of change of the

input samples (which is the sampling rate) is much slower than the time

needed to process the sample these modules will never run in parallel.

The processing in this part is done per sample, which means that,

whenever a new sample is present, processing is made on it, and the

result is stored in the data buffer under the control of the Buffer

Manager. So, these components are driven by the input samples

existence.

2. The second part consists of the rest of the system except the Buffer

Manager. The components of this part are dependent on each other, that

is; every component should wait the result of the previous component to

be ready to start its function. This operation is controlled by the Buffer

Manager, where a finished signal is generated by each component when

it finishes its job, and a start signal is generated by the buffer manager

to trigger every component to start working.

The state machine of the sequence of activating those components is

managed by the Buffer Manager as will be discussed in details in its

corresponding detailed design section.

Also, this part operation is done on a block of N samples, that means; in

the very beginning of the system operation, the first N samples (first

frame) should be stored in the buffer first to start the first operation of

that part. For the consecutive frames, every M samples, the Buffer

Manager will start the operation of this part again according to its state

machine sequence of operation.

The only exception to the serial operation of the components of this part

is the Non-Linear Transformation and the Mel-Filter, where the Log is

computed for every coefficient of the filter at the moment it is

generated, in parallel with the computation of the next coefficient.

77

Although the components of this part run serially, however, there is a

high degree of parallelism inside some of these components. For

example the magnitude of the final output of the FFT component will be

computed in parallel with the final stage computations of the FFT

algorithm.

A final note on the second part of the system is that, since the

components of this part should run in serial, so some components, like

CORDIC cores or multipliers can be reused among them.

3. The third part is the Buffer Manager component itself, which

coordinates the operation of the first and second part, in addition to

managing the state machine of the second part. Also, this component

will be responsible of managing the access to the memory shared

between the first and second parts, and also the memories shared

between the components of the second parts.

4.2.3 Modules Detailed Design

In this section the details of the internal design of each module are

presented. Every section contains the module basic functionality, the internal

architecture of the module, the configuration parameters to configure the

module, the signal widths justification, the state machines definition in the

module, the memory (RAM/ROM) requirements, the actual chip usage of the

available resources and finally the Processing time taken by the module to

finish its task. Some of these sections do not exist for some modules, in which

case they will be described as None.

4.2.3.1 Offset Compensation

4.2.3.1.1 Basic functionality

Prior to the framing, a notch filtering operation is applied to the digital

samples of the input speech signal Sin to remove their DC offset, producing the

offset-free input signal Sof. The main function of the module is to calculate the

following equation:

78

This calculation is done whenever a new sample Sin is present.

4.2.3.1.2 Internal Architecture

This section shows the data flow graph of the module. This graph is just

for design purpose and does not mean that the final synthesized hardware on

the chip will look like that, yet it should be very near to it. At the very

beginning of the system operation, Sin(n-1) and Sof(n-1) are zeros, this is done

by a MUX activated by the reset signal. Then with every new sample, the basic

equation is calculated in one clock, then the values of Sin and Sof are stored,

which will be used in the next time as Sin(n-1) and Sof(n-1).

Figure 38: Offset Compensation data flow graph

4.2.3.1.3 Configuration

None

79

4.2.3.1.4 Signal width justification

The input signal is 16 bits as generated by the A/D. This 16 bits input will

be treated as a fixed point number, such that the actual value of the input signal

is considered between 0 and 1. This is equivalent to dividing the number by

65536. This division will be compensated later in the system after the

calculation of the DCT, which can be done in one of two fashions:

• This division by 65536 will propagate through the whole system till the

output of the Mel-Filter, after that at the stage of the Non-Linear

transformation, the division will be converted to subtraction of

Ln(65536), which can be compensated by adding this constant to the

result, or waiting to the DCT stage, and adding similar constant to every

coefficient of the resulting 13 coefficients of the DCT, where every

compensation constant will be calculated as:

120)),5.0(
23

cos()65536()(
23

1

≤≤−×=∑
=

ij
i

LniConst
j

π

• The other way is to do this compensation in the quantization table values

once, and store the modified tables, i.e. store the tables after subtracting

the above calculated constants from the values of each coefficient

quantization table, and store the result.

Solution 2 will be adopted, since the tables are statically stored in ROM, so,

storing the adjusted tables saves the processing time and resources required to

compensate the division constant with every DCT coefficient.

 Note that: similar manipulation will be done on LogE feature, where the

following constant should be subtracted from its quantization table entry:

))65535(ln(_
1

2∑
=

=
N

i

ConstLogE

The rest of signals in that module are of width 20 bits, where:

• The 20th bit is the sign bit.

• The next 4 bits (19 to 16) represent the Integer part of the number.

• The rest of bits represent the fraction part.

80

The above widths were decided based on numerical tests on real frames of

speech, which showed that the dynamic range of the Integer part of the

resulting Sof requires 4 bits to avoid overflow at this early stage of the system.

The alternate solution to adding those 4 bits was to reduce the fraction part by 4

bits (shift right Sin 4 locations) to be just 12 bits; however this was not done

due to the following reasons:

o This would reduce the accuracy of the system at a very early

stage of processing.

o Since this filter depends on the previous output (IIR filter), hence,

any error due to fixed point calculation will propagate in all the

next frames and will be magnified, so it is highly recommended

to be as accurate as possible in this calculation.

o This part of the system (till the windowing component) operates

on a sample-by-sample basis, which means that it requires only a

storage of the previous sample only, so it will not be a big loss to

add 4 bits to single internal register that holds the previous

sample. This is unlike the modules that operate on the whole N

samples of the frame, in which case it requires to add these 4 bits

to the whole samples of the buffer, which would add 4*N bits to

the total memory requirement of the system.

4.2.3.1.5 State Machines

None

4.2.3.1.6 Memory requirements

Memory Size Description

sof_prev 20 bits To hold Sof(n-1)

sin_prev 20 bits To hold Sin(n-1)

Table 9: Memory requirements of the Offset Compensation component

81

4.2.3.1.7 Actual Chip Usage

The following is a summary of the chip usage as generated by the

Quartus II software:

Flow Status Successful - Wed Oct 01 08:52:49 2008
Quartus II Version 7.2 Build 203 02/05/2008 SP 2 SJ Web Edition
Revision Name source_tb
Top-level Entity Name Offset_Compensation_1
Family Cyclone III
Device EP3C10U256C8
Timing Models Preliminary
Met timing requirements N/A
Total logic elements 169 / 10,320 (2 %)
 Total combinational functions 167 / 10,320 (2 %)
 Dedicated logic registers 2 / 10,320 (< 1 %)
Total registers 2
Total pins 40 / 183 (22 %)
Total virtual pins 0
Total memory bits 0 / 423,936 (0 %)
Embedded Multiplier 9-bit elements 4 / 46 (9 %)
Total PLLs 0 / 2 (0 %)

Figure 39: Summary of resources usage of Offset Compensation module

4.2.3.1.8 Processing time

Let:

1. Number of clocks taken by adder = n = 1.

2. Number of clocks taken by multiplier = m = 1.

Therefore:

ProcessingTime = max(n, m) = 1

4.2.3.2 Pre-Emphasis filter

4.2.3.2.1 Basic functionality

A pre-emphasis filter is applied to the framed offset-free input signal:

Here Sof and Spe are the input and output of the pre-emphasis block,

respectively.

82

4.2.3.2.2 Internal Architecture

This section shows the data flow graph of the module. This graph is just

for design purpose and does not mean that the final synthesized hardware on

the chip will look like that, yet it should be very near to it. Every time the

module is enabled, the basic calculation is performed on the input Sof(n), then

the result is stored as Sin(n-1) to be used in the next time.

Figure 40: Pre-emphasis data flow graph

4.2.3.2.3 Configuration

None.

4.2.3.2.4 Signal width justification

The 20 bits width choice follows the same justification as that of the

Offset Compensation component.

4.2.3.2.5 State Machines

None.

83

4.2.3.2.6 Memory requirements

Memory Size Description

sof_prev 20 bits To hold Sof(n-1)

Table 10: Memory requirements of the Pre-emphasis component

4.2.3.2.7 Actual Chip Usage

The following is a summary of the chip usage as generated by the

Quartus II software:

Flow Status Successful - Wed Oct 01 09:04:30 2008
Quartus II Version 7.2 Build 203 02/05/2008 SP 2 SJ Web Edition
Revision Name source_tb
Top-level Entity Name Pre_Emphasis
Family Cyclone III
Device EP3C10U256C8
Timing Models Preliminary
Met timing requirements N/A
Total logic elements 152 / 10,320 (1 %)
 Total combinational functions 150 / 10,320 (1 %)
 Dedicated logic registers 2 / 10,320 (< 1 %)
Total registers 2
Total pins 44 / 183 (24 %)
Total virtual pins 0
Total memory bits 0 / 423,936 (0 %)
Embedded Multiplier 9-bit elements 4 / 46 (9 %)
Total PLLs 0 / 2 (0 %)

Figure 41: Summary of resources usage of Pre-emphasis module

4.2.3.2.8 Processing time

Let:

1. Number of clocks taken by adder = n = 1.

2. Number of clocks taken by multiplier = m = 1.

Therefore:

ProcessingTime = max(n, m) = 1

84

4.2.3.3 Energy Measure

4.2.3.3.1 Basic functionality

The logarithmic frame energy measure (logE) is computed after the

offset compensation filtering and framing for each frame:

Here N is the frame length and Sof is the offset-free input signal.

4.2.3.3.2 Internal Architecture

This section shows the data flow graph of the module. This graph is just

for design purpose and does not mean that the final synthesized hardware on

the chip will look like that, yet it should be very near to it. First Sof(i)2 is

calculated, then accumulated to the old energy measure. After the N samples

are accumulated, the resulting energy is placed as an input to a CORDIC core

that is configured to calculate the Logarithm function,(for more information

about CORDIC algorithm, please see Appendix A). Note that, the CORDIC

core is only enabled after the Nth sample is accumulated, and the final energy

is ready.

85

Figure 42: Energy Measure data flow graph

4.2.3.3.3 Configuration

Configuration

Parameter

Possible values Default value Description

N 200/256/400 (for

SamplingRate =

8/11/16)

200 The frame

length in

samples.

Table 11: Energy Measure module configuration parameters

4.2.3.3.4 Signal width justification

The accumulated energy signal width is 20 bits, with 10 bits as the

integer part and 10 bits as the fraction part in case of 8/11 kHz sampling rate,

86

and 11 bits as the integer part and 9 bits as the fraction part in case of 16 kHz

sampling rate. This is because analysis of the quantization tables used to

quantize the LogE feature shows that the maximum energy value can be put in

9 bits for 8/11 kHz and 10 bits for 16 kHz, so that the dynamic range of the

energy feature can be hold in 9/10 bits; however 10 bits for 8/11 kHz and 11

bits for 16 kHz were taken for safety measures. Also, the minimum distance

between two entries in the quantization table show that the minimum resolution

required to quantize the LogE feature only requires 7 bits, that is the fraction

part should not be hold in less than 7 bits, otherwise the quantization resolution

will not be maintained, leading to wrong quantization, hence 10 bits for the

fraction part are enough.

4.2.3.3.5 State Machines

None

4.2.3.3.6 Memory requirements

Memory Size Description

Energy 20 bits To hold accumulated

energy of the current

frame.

Table 12: Memory requirements of the Energy Measure component

4.2.3.3.7 Actual Chip Usage

The following is a summary of the chip usage as generated by the Quartus II

software:

Flow Status Successful - Wed Oct 01 09:21:49 2008
Quartus II Version 7.2 Build 203 02/05/2008 SP 2 SJ Web Edition
Revision Name source_tb
Top-level Entity Name Energy_Measure
Family Cyclone III
Device EP3C10U256C8
Timing Models Preliminary
Met timing requirements N/A
Total logic elements 739 / 10,320 (7 %)
 Total combinational functions 736 / 10,320 (7 %)

87

 Dedicated logic registers 168 / 10,320 (2 %)
Total registers 168
Total pins 40 / 183 (22 %)
Total virtual pins 0
Total memory bits 0 / 423,936 (0 %)
Embedded Multiplier 9-bit elements 6 / 46 (13 %)
Total PLLs 0 / 2 (0 %)

Figure 43: Summary of resources usage of Energy Measure module

4.2.3.3.8 Processing time

Let:

1. Number of clocks taken by multiplier = m = 1.

2. Number of clocks taken by adder = n = 1.

3. Number of clocks taken by Log calculator circuit = M = 16.

Therefore,

ProcessingTime = max(m , n) * N * M + M = (N + 1)*16

Assuming that the minimum time between two samples is M clocks.

4.2.3.4 Hamming Window

4.2.3.4.1 Basic functionality

A Hamming window of length N is applied to the output of the pre-

emphasis block:

Here N is the frame length and Spe and Sw are the input and output of

the windowing block, respectively.

4.2.3.4.2 Internal Architecture

The module is enabled by the Pre-emphasis module every new sample,

accordingly, the following constant is calculated as shown in Figure 44. Then,

the result is multiplied by the input Spe(n). The constant circuit uses CORDIC

core similar to the one in Appendix A. The cosine argument depends on the

88

sample number, so, a modulo-9 bits counter is used to indicate the sample

number (n) in case of N=512, or modulo-8 in case of N=256. This counter is

not kept internally in the module, however, it is kept in the Buffer Manager,

and the sample count is provided as an input to the Window component.

Figure 44: Hamming Window data flow graph

Figure 45: Constant calculation of Hamming Window Filter

89

4.2.3.4.2.1 Look-up table implementation

The basic Hamming window filtering described in 4.2.3.4.1 could be

implemented in one of two ways; a) to calculate the Hamming window factor,

using CORDIC core for example, or b) storing the Hamming window factors in

a Look-up table (LUT). The first method was already described in 4.2.3.4.2. In

the LUT method, only half of the window factors are stored in a ROM of

length equals N/2, where N is the frame length in number of samples, and the

width of the stored factors is chosen to be 20 bits.

4.2.3.4.3 Configuration

Configuration

Parameter

Possible values Default value Description

N 200/256/400 (for

SamplingRate =

8/11/16)

200 The frame

length in

samples.

Table 13: Hamming Window module configuration parameters

4.2.3.4.4 Signal width justification

The 20 bits width choice follows the same justification as that of the

Offset Compensation component.

4.2.3.4.5 State Machines

The module has an internal state machine to follow the CORDIC

calculation state as shown in Figure 46:

Figure 46: State machine of the Window component

90

Source State Destination State Condition

Idle idle (!ENABLE)

Idle cordic_enabled (ENABLE)

cordic_enabled cordic_enabled (!cordic_done)

cordic_enabled cordic_finished (cordic_done)

cordic_finished idle (!ENABLE)

cordic_finished cordic_enabled (ENABLE)

Table 14: State transition of the Window state machine

In general, the module is initially in the IDLE state unless enabled.

When enabled, it goes to the CORDIC_ENABLED state, at which the

CORDIC module is enabled to calculate the cosine part of the constant. The

module will remain in this state till the cordic_done signal is raised by the

CORDIC processor. When the CORDIC is finished, the module goes to the

CORDIC_FINISHED state, where the final constant is calculated and

multiplied by Spe to get the final Sw.

4.2.3.4.6 Memory requirements

Memory Size Description

Sample Counter 9 bits To hold the current

sample index. The size is

calculated on the

maximum needed

number of samples

(N=512).

Table 15: Memory requirements of the Window component

In case of LUT implementation, extra ROM of size equals (N/2 X 20)

bits is needed.

4.2.3.4.7 Actual Chip Usage

The following is a summary of the chip usage as generated by the

Quartus II software, it is based on the CORDIC implementation:

91

Flow Status Successful - Wed Oct 01 09:37:00 2008
Quartus II Version 7.2 Build 203 02/05/2008 SP 2 SJ Web Edition
Revision Name source_tb
Top-level Entity Name window_1
Family Cyclone III
Device EP3C10U256C8
Timing Models Preliminary
Total logic elements 781 / 10,320 (8 %)
 Total combinational functions 778 / 10,320 (8 %)
 Dedicated logic registers 71 / 10,320 (< 1 %)
Total registers 71
Total pins 53 / 183 (29 %)
Total virtual pins 0
Total memory bits 0 / 423,936 (0 %)
Embedded Multiplier 9-bit elements 14 / 46 (30 %)

Figure 47: Summary of resources usage of Window module

4.2.3.4.8 Processing time

Let:

• Number of clocks taken by multiplier = m =1.

• Number of clocks taken by adder = n = 1.

• Number of clocks taken by cosine calculator circuit = M = 12.

Therefore:

ProcessingTime = min(m,n) + M = M + 1 = 13

This is the processing time to apply hamming window filter to one

sample only.

In case of LUT implementation mentioned in 4.2.3.4.2.1, only min(m,n)

clocks are needed.

4.2.3.5 Buffer Manager

4.2.3.5.1 Basic functionality

This module is responsible of:

• Managing the state machine of the second part of the system, which

includes

o FFT

o Mel-Filter

92

o Non-Linear Transformation

o DCT

o Vector Quantization

o Bit-Framing

This is done by activating these modules in sequence, such that each

module is not activated unless the previous one has finished.

• Padding zeros to the frame length before activating the FFT module.

• Managing the frame overlapping of samples, where it controls the read

and write addresses from the 2N RAM, and provides them to the FFT to

operate on them. This is done by managing the access to the 2N RAM as

a circular buffer.

• Managing the access to the memory shared between the components.

4.2.3.5.2 Internal Architecture

Figure 48: Internal Architecture of Buffer Manager

The module contains three memories:

93

• 2N RAM: this stores every sample after being processed by the Window

module. The accesses to this memory is managed by the Buffer Manager

itself, where it provides the read/ write signals, and manages the read/

write addresses. This memory is managed as a circular buffer, where a

write address is advanced till it reaches the end of the buffer, and then it

rolls over to the start of the buffer again. Write to this memory is

triggered with every new sample after it is process with Window

component.

The read address from this memory is advanced with M samples every

new frame. The read signal is generated every new sample, and the read

data is input to the Pre-Emphasis filter, then the result is passed by the

Hamming Window filter, and at the end the final result is stored in the I

RAM buffer in a bit reversed order, till N samples are accumulated and

then the next stages of the FFT operation can start. Alternatively, the

read data is passed to the Energy Measure module to be accumulated to

calculate the LogE feature of the frame. In this way, frame overlapping

specified in the standard is managed.

• I RAM and Q RAM: these are used as real and imaginary memories to

serve as the in-place buffer that is used in the FFT algorithm. At the end

of the FFT operation, the I RAM should contain the magnitude of the

real and imaginary FFT coefficients, and the Q RAM is free.

The two RAMs are then reused with the Mel-Filter and DCT modules,

where one of the two memories is used as the input buffer to the

module, and the other one is used as the output buffer, then these roles

are exchanged, where the memory that was acting as input buffer in the

previous module will act as output buffer with the next module, and so

on.

The access to I and Q RAMs is given to the module that is currently

active according to the state machine mentioned in 4.2.3.5.5. This state

machine is managed by the State Machine Manager block shown in the

Figure 48, and the control signals are generated in accordance to the

94

current state. The control signals are mainly divided into the following

groups:

o Memory read and writes signals.

o Activation and deactivation signals to the modules in the second

part of the system defined in 4.2.2.

Note that: the FFT module needs a two entries access simultaneously

to the I RAM and Q RAM in the butter fly operation, this is why two

read/ write signals, data and addresses are provided to the FFT module.

Before a new frame can be processed, the I RAM and Q RAM must be

reset, in this way zero padding before FFT is accomplished.

4.2.3.5.3 Configuration

Parameter Possible

values

Default value Description

N 200/256/400

(for

SamplingRate

= 8/11/16)

200 The frame length

in samples.

M 80/110/160

(for N =

200/256/400)

80 The frame shift in

samples.

Awidth 8/9 (for

FFTL=

256/512)

8 The address width

of the I,Q

memories. The 2N

RAM address

width is 1 bit more

than that width.

FFTL 256 (for

N=200/256)/

512 (for

N=400)

256 The FFT frame

length in samples

after padding.

95

Parameter Possible

values

Default value Description

N_MEL 23 23 The number of

Mel-Filter banks.

N_CEPSTRAL 13 13 The number of

Cepstral

coefficients.

Dwidth 16 16 The data width of

the I and Q

RAM’s memory.

This width will be

the fixed width in

the FFT, Mel-

Filter, DCT,

Vector Quantizer

modules.

Parameter Size Size Description

Iwidth 8/9 (for

FFTL=

256/512)

8 The FFT Integer

part width used in

fixed point

calculations

Fwidth 7/6 (for

FFTL=

256/512)

7 The FFT Fraction

part width used in

fixed point

calculations.

Table 16: Configuration parameters of the Buffer Manager

4.2.3.5.4 Signal width justification

The input to the Buffer Manager is 20 bits width. After the window

component this width will be fixed to 16 bits, by truncating the 4 least

significant bits from the fraction part, and keeping the integer part as it is.

96

The 16 bits of data in this part of the system is divided as follows:

• In case of FFTL=256

o 16th bit as the sign bit.

o 8 bits (15th to 8th bits) as Integer part.

o 7 bits (7th to 0th bits) as Fraction part.

• In case of FFTL=512

o 16th bit as the sign bit.

o 9 bits (15th to 7th bits) as Integer part.

o 6 bits (6th to 0th bits) as Fraction part.

4.2.3.5.5 State Machines

Figure 49: State machine of the Buffer Manager module

Source State Destination

State

Condition

idle idle (!start)

idle empty_buffer (start)

empty_buffer empty_buffer (buffer_empty)

97

empty_buffer activate_window (!buffer_empty)

activate_window fft_bit_reverse

fft_bit_reverse empty_buffer (!fft_busy_1).(window_1:window)

fft_bit_reverse fft_bit_reverse (!window_1:window)

fft_bit_reverse fft_busy_state (fft_busy_1).(window_1:window)

fft_busy_state fft_busy_state (!fft_done)

fft_busy_state mel_busy (fft_done)

mel_busy mel_busy (!mel_finished)

mel_busy dct_busy (mel_finished)

dct_busy dct_busy (!dct_finished)

dct_busy dump_debug (dct_finished)

dump_debug dump_debug debug_counter < N_CEPSTRAL

dump_debug finished_debug debug_counter = N_CEPSTRAL

finished_debug reset_i_q None

reset_i_q empty_buffer reset_I_Q_counter < FFTL

reset_i_q reset_i_q reset_I_Q_counter = FFTL

Table 17: State transition of the Buffer Manager state machine

The description of these states is as follows:

• IDLE: the module remains in this state until a start signal is triggered.

• EMPTY_BUFFER: the module remains in this state as long as the 2N

RAM is empty.

• ACTIVATE_WINDOW: in this state the read sample form the 2N RAM

is input to the Pre-Emphasis filter then to the Hamming Window filter,

and the result is fixed to 16 bits and stored in the I RAM in a bit-

reversed order.

• FFT_BIT_REVERSE: in this state the samples are fed to the FFT

module. Also, the read address of the 2N RAM is advanced by M

samples in this state, because this state indicates the start of a new

frame.

98

• FFT_BUSY: the FFT module is running, the module remains in this

state until the FFT module finishes. The access to I RAM and Q RAM is

given to the FFT module in this state. At the end of this state the I RAM

contains the magnitude of the FFT coefficients and the Q RAM is free.

• MEL_BUSY: the Mel-Filter is activated, and the module remains in this

state until the Mel-Filter finishes processing. In this state the Non-

Linear Transformation module is running in parallel with the Mel-

Filter. The I RAM is the input buffer to the Mel-Filter, and the output

coefficients are placed in the Q RAM.

• DCT_BUSY: the DCT module is activated, and the module remains in

this state till DCT finishes. The Q RAM is the input buffer. The output

Cepstral coefficients are supplied directly to the Vector Quantization

module to be quantized.

• DUMP_DEBUG: this state is used for testing and debugging purposes,

where the memory is dumped to provide its contents as outputs.

• FINISHED_DEBUG: this is a transient state to reset internal variables

after debugging is finished.

• RESET_I_Q: this state is where the I RAM and Q RAM are reset by

writing N*Dwidth zeros in the two memories during N clocks. This

state is important, where in this way padding from N to FFTL length is

done in the I and Q RAM before activating the FFT component, where

the samples are stored in the I RAM in a bit-reversed order in N

locations, the remaining locations (FFTL - N) are zeros due to the reset

operation, so zero padding is accomplished.

4.2.3.5.6 Memory requirements

Memory Size Description

2N RAM 2*N*20 =

8000 for N= 200

10240 for N= 256

16000 for N= 400

The input samples

memory.

99

I RAM 2*FFTL*Dwidth =

4096 for N=256, Dwidth

=16

8192 for N=256, Dwidth

=16

The real coefficients for

FFT module. Used

alternatively as input or

output buffer for the

next modules.

Q RAM 2*FFTL*Dwidth =

4096 for N=256, Dwidth

=16

8192 for N=256, Dwidth

=16

The imaginary

coefficients for FFT

module. Used

alternatively as input or

output buffer for the

next modules.

Table 18: Memory requirements of the Buffer Manager module

4.2.3.5.7 Actual Chip Usage

The following is a summary of the chip usage as generated by the Quartus II

software:

Flow Status Successful - Wed Oct 01 09:52:11 2008
Quartus II Version 7.2 Build 203 02/05/2008 SP 2 SJ Web Edition
Revision Name source_tb
Top-level Entity Name Buffer_Manager_2
Family Cyclone III
Device EP3C40F780C8
Timing Models Preliminary
Met timing requirements N/A
Total logic elements 2,415 / 39,600 (6 %)
 Total combinational functions 2,386 / 39,600 (6 %)
 Dedicated logic registers 257 / 39,600 (< 1 %)
Total registers 257
Total pins 309 / 536 (58 %)
Total virtual pins 0
Total memory bits 16,192 / 1,161,216 (1 %)
Embedded Multiplier 9-bit elements 18 / 252 (7 %)
Total PLLs 0 / 4 (0 %)
Figure 50: Summary of resources usage of Buffer Manager Module: N = 200,

M=80

100

Flow Status Successful - Thu Oct 02 10:44:52 2008
Quartus II Version 7.2 Build 203 02/05/2008 SP 2 SJ Web Edition
Revision Name source_tb
Top-level Entity Name Buffer_Manager_2
Family Cyclone III
Device EP3C40F780C8
Timing Models Preliminary
Met timing requirements N/A
Total logic elements 2,072 / 39,600 (5 %)
 Total combinational functions 2,057 / 39,600 (5 %)
 Dedicated logic registers 211 / 39,600 (< 1 %)
Total registers 211
Total pins 309 / 536 (58 %)
Total virtual pins 0
Total memory bits 18,432 / 1,161,216 (2 %)
Embedded Multiplier 9-bit elements 18 / 252 (7 %)
Total PLLs 0 / 4 (0 %)

Figure 51: Summary of resources usage of Buffer Manager Module: N=256,

M=110

Flow Status Successful - Thu Oct 02 10:53:06 2008
Quartus II Version 7.2 Build 203 02/05/2008 SP 2 SJ Web Edition
Revision Name source_tb
Top-level Entity Name Buffer_Manager_2
Family Cyclone III
Device EP3C40F780C8
Timing Models Preliminary
Met timing requirements N/A
Total logic elements 2,406 / 39,600 (6 %)
 Total combinational functions 2,382 / 39,600 (6 %)
 Dedicated logic registers 258 / 39,600 (< 1 %)
Total registers 258
Total pins 316 / 536 (59 %)
Total virtual pins 0
Total memory bits 32,384 / 1,161,216 (3 %)
Embedded Multiplier 9-bit elements 18 / 252 (7 %)
Total PLLs 0 / 4 (0 %)

Figure 52: Summary of resources usage of Buffer Manager Module: N=400,

M=160

101

4.2.3.6 FFT

4.2.3.6.1 Basic functionality

Each frame of N samples is zero padded to form an extended frame of

256 samples for 8 and 11 kHz sampling rate, and 512 samples for 16 kHz. An

FFT of length 256 or 512, respectively, is applied to compute the magnitude

spectrum of the signal.

Here Sw(n) is the input to the FFT block, FFTL is the block length (256

or 512 samples), and bink is the absolute value of the resulting complex vector.

Radix-2 algorithm is used in the design to calculate the FFT. For more

information about Radix-2 algorithm please see Appendix A.

The twiddle factor calculation is translated into vector rotation with the

same angle. Hence, CORDIC algorithm was used to do the twiddle factor

operation. For information about CORDIC algorithm please refer to Appendix

A

4.2.3.6.2 Internal Architecture

First the Sw(n) is input to the Bit Reversal module, where the bit-

reversed index is calculated, and the sample is stored back in the I RAM in the

bit-reversed index.

When FFTL (256/512) samples are complete after bit reversal, the

Butterfly is enabled, which enables the Address Generator.

For the consecutive FFT stages, the Butterfly reads the two input

samples (each with real and imaginary parts) from the I RAM and Q RAM

according to the addresses generated by the Address Generator. Thanks to the

dual-port RAM implementation, reading and writing is done in single clock

cycle for the whole butterfly operation.

102

After the two samples are read, the Twiddle factor calculator is enabled,

which uses a CORDIC processor to calculate the rotated vector (see Appendix

A). When the calculation finishes (after 16 clocks), the Butterfly calculates the

two output samples, and stores them in the I RAM and Q RAM. These two

operations (Twiddle factor calculation and Butterfly operation) are repeated for

the FFTL (256/512) samples of the input buffer.

The above operation (after bit reversal) is repeated in every stage of the

algorithm. The algorithm needs log2N stages to finish. In the last stage, the

magnitude of the result of the Butterfly is calculated, and stored in the I RAM,

while the Q RAM is free.

CORDIC algorithm is also used to compute the magnitude of the last

stage of the algorithm, for more details about the usage of CORDIC in

magnitude calculation refer to Appendix A. Note that; the magnitude

calculation in the last stage is done in parallel with the butterfly operations of

the last stage, which enhances the time performance.

The read/ write signals and addresses are controlled by the Butterfly in

all the stages except the last one. In the last stage only, these signals are under

control of the Magnitude Calculator. It is the role of the RAM Manager to

control the access to these memories.

Note that; Bit reversal storage is actually performed in the context of

Buffer Manager module before starting the FFT Butter fly.

103

Figure 53: FFT Internal architecture

Note that: the Butterfly operation requires read/ write operation to two

entries in the I and Q RAMs, so, the corresponding RAMs are dual-port to read

or write in two locations simultaneously in one clock cycle, which reduces the

required time for performing the butterfly by 50%.

4.2.3.6.2.1 Look-up table implementation

The implementation described in 4.2.3.6.1 relies on calculating the

twiddle factors using a CORDIC core, another implementation can be done by

storing the cosine values in a LUT, and use them to deduce the sine values. In

addition, only ¼ of the cosine wave need to be stored, and the rest of the wave

can be obtained from this first quadrant. Note that; the LUT is dual-port, such

that, reading the factors for the whole butterfly operation (two multiplications)

is performed in single cycle.

104

 Figure 54: FFT Internal architecture for LUT implementation

4.2.3.6.3 Configuration

Parameter Possible values Default value Description

depth 256/ 512 for

FFTL = 256/512

256 The frame length in

samples

Dwidth 16 16 The data width of

the I and Q data.

Iwidth 8 8 The integer part of

the data

Fwidth 7 7 The fraction part of

the data

Awidth 8/9 bits for

FFTL = 256/512

8 The address width

of the I,Q

memories. The 2N

RAM address

width is 1 bit more

than that width.

Table 19: Memory requirements of the FFT component

105

4.2.3.6.4 Signal width justification

The data width is 16 bits. The Integer part width is 8 for FFTL = 256

and 9 for FFTL = 512. The Fraction part width is 7 for FFTL = 256 and 6 for

FFTL = 512. This choice was based on run time results of real test vectors to

obtain the dynamic range of the signals, so that overflow or underflow is

completely avoided in any stage of the calculation. This analysis was done at

the algorithm level, using high level code of the algorithm, were the fixed point

behavior was tested to obtain the right signal widths.

Note that; limiting the signal widths to 16 bits optimizes the number of

multipliers required for the butterfly operation, since the available embedded

multipliers on the FPGA are 18x18 multipliers, which makes t possible to use

the on-chip multipliers instead of implementing them.

4.2.3.6.5 State Machines

Figure 55: State machine of the FFT component

The description of these states is as follows:

• IDLE: the module remains in this state until a start signal is triggered.

• TWIDDLE_FACTOR_CALC: this is a transient state to calculate the

angle of rotation of the current vector to be used as an input to the

CORDIC module.

• WAIT_CORDIC: the module remains in this state until the CODIC

finishes the vector rotation operation.

• BUTTERFLY_CALC: in this state the final Butterfly calculation is

done, and the result is written back in the I and Q RAMs, except for the

106

last stage, where the magnitude of the real and imaginary parts of the

result is written back to the I RAM. If this is not the last magnitude

calculation of the algorithm, the next state will be

TWIDDLE_FACTOR_CALC, otherwise it will be

WAIT_LAST_WRITE.

• WAIT_LAST_WRITE: during the last stage of the algorithm, the

magnitude of the result of the Butterfly is calculated in parallel with the

next Butterfly operation. However, for the last magnitude calculation,

there is no next Butterfly operation; so, we should wait till the

magnitude is calculated to announce the end of the whole algorithm and

to write the last magnitude result.

4.2.3.6.6 Memory requirements

The memory required for I RAM and Q RAM is kept in the Buffer

Manager component, as described in section 4.2.3.5.6, so no memory is

required for the FFT component itself.

In case of Look-up table (LUT) implementation mentioned in 4.2.3.6.2.1, an

extra ROM of length FFTL/4 is needed.

4.2.3.6.7 Actual Chip Usage

The following is a summary of the chip usage as generated by the

Quartus II software based on CORDIC implementation:

Flow Status Successful - Thu Oct 02 10:59:23 2008
Quartus II Version 7.2 Build 203 02/05/2008 SP 2 SJ Web Edition
Revision Name source_tb
Top-level Entity NameFFT_6
Family Cyclone III
Device EP3C40F780C8
Total logic elements 2,314 / 39,600 (6 %)
 Total combinational functions 2,313 / 39,600 (6 %)
 Dedicated logic registers 271 / 39,600 (< 1 %)
Total registers 271
Total pins 169 / 536 (32 %)
Total virtual pins 0
Total memory bits 0 / 1,161,216 (0 %)
Embedded Multiplier 9-bit elements 12 / 252 (5 %)

Figure 56: Summary of resources usage of FFT module: FFTL = 256

107

Flow Status Successful - Thu Oct 02 11:27:18 2008
Quartus II Version 7.2 Build 203 02/05/2008 SP 2 SJ Web Edition
Revision Name source_tb
Top-level Entity NameFFT_6
Family Cyclone III
Device EP3C40F780C8
Total logic elements 2,252 / 39,600 (6 %)
 Total combinational functions 2,248 / 39,600 (6 %)
 Dedicated logic registers 271 / 39,600 (< 1 %)
Total registers 271
Total pins 173 / 536 (32 %)
Total virtual pins 0
Total memory bits 0 / 1,161,216 (0 %)
Embedded Multiplier 9-bit elements 12 / 252 (5 %)

Figure 57: Summary of resources usage of FFT module: FFTL = 512

4.2.3.6.8 Processing time

Let:

• Number of clocks taken by CORDIC calculator circuit = C = 12.

• Number of clocks taken for Magnitude calculator = L = 11.

Magnitude Calculation is performed in the last stage only, in parallel

with the Butterfly operation, so the last calculation only should be added

to the total required time.

• The number of times that the Twiddle factor is changed is dependent on

the current stage of the algorithm, where we have log2FFTL stages. Let

the stage order be i, where 1≤i≤ log2FFTL-1, then the number of times

the Twiddle factor changes during this stage is 2i.

Hence;

The total number of times the Twiddle factor changes = ∑
=

=

1-FFTLlog

1

2

2
i

i

i

Every time the Twiddle factor changes, this requires a new CORDIC

operation, so;

The number of clocks for CORDIC operations = C × ∑
=

=

1-FFTLlog

1

2

2
i

i

i

The above calculation should be added to the total number of clocks

required by the algorithm which is FFTL /2 * log2 FFTL.

108

Therefore:

Processing time = FFTL /2 × log2 FFTL + C × ∑
=

=

1-FFTLlog

1

2

2
i

i

i + L =

= 4095 for FFTL = 256

= 8447 for FFTL = 512.

In case of LUT implementation, the processing time will be:

Processing time = FFTL /2 × L + FFTL =

= 1664 for FFTL = 256

= 3328 for FFTL = 512.

4.2.3.7 Mel-Filter

4.2.3.7.1 Basic functionality

This module is responsible of calculating the 23 Mel coefficients. The

centre frequencies of the channels in terms of FFT bin indices (cbini for the ith

channel) are calculated as follows:

109

The 25 cbin coefficients are pre-computed and stored. Those stored

values are dependent on the FFTL configuration.

The output of the mel filter is the weighted sum of the FFT magnitude

spectrum values (bini) in each band. Triangular, half-overlapped windowing is

used as follows:

Where k = 1... 23.

Following to this step, the Non-linear transformation is calculated:

4.2.3.7.2 Internal Architecture

This section shows the data flow graph of the module. This graph is just

for design purpose and does not mean that the final synthesized hardware on

the chip will look like that, yet it should be very near to it. Define:

LOW_PART_CONST(k) = cbin(k) – cbin(k-1) + 1

HIGH_PART_CONST(k) = cbin(k+1) – cbin(k) + 1

The data flow graph of calculating these constants is shown in Figure 58:

110

-

16 bits16 bits

+

16 bits

Cbin(k+1) Cbin(k-1)

LOW_PART_CONST(k)

OR

HIGHT_PART_CONST(k)

Cbin(k) Cbin(k)

1

Figure 58: Data flow graph of calculating the LOW_PART_CONST and the

HIGH_PART_CONST

The above circuit is used to calculate both constants according to a

configuration parameter, which act as the select of the MUX’s shown in the

figure. These constants are then used to calculate the following:

CL(i) = (i+1)/(LOW_PART_CONST(k))

CH(i) = (HIGHT_PART_CONST(k) - i)/(HIGHT_PART_CONST(k))

Where i = cbin(k-1)…cbin(k), for the low frequency part calculation and

 = cbin(k) + 1…cbin(k+1), for the high frequency part calculation.

Figure 59 shows the data flow graph of the above equation.

111

+/-

16 bits

i

16 bits

/

16 bits

1 OR HIGH_PART_CONST(k)

CL(i) OR CH(i)

LOW_PART_CONST(k)

OR

HIGH_PART_CONST(k)

Modulo 8/9 bits

counter

Figure 59: Data flow graph of CL(i) and CH(i)

The division operation is done using a CORDIC processor (please refer

to Appendix A). The division operation takes 11 clock cycles.

The final step to calculate fbank(k) is to multiply the above calculated

constants by the corresponding bin(i) coefficients of the FFT, and accumulate

the result, for i in the range

cbin(k-1) ≤ i ≤ cbin(k), for the low frequency calculation, then

cbin(k) + 1 ≤ i ≤ cbin(k+1), for the high frequency calculation.

First, fbank_low(k) is calculated, then fbank_high(k) is calculated next,

and finally the two results are added to get fbank(k). The calculation of

fbank_low(k) or fbank_high(k) is done in a core circuit that can be configured

to calculate either of them. The data flow graph of this calculation is shown in

Figure 60:

112

Figure 60: Data flow graph of Mel-Filter

The data flow graph in Figure 60 is to calculate one fbank(k) coefficient.

The whole operation is repeated 23 times to get fbank(1) to fbank(23).

Every time a coefficient fbank(k) is generated, its natural logarithm is

calculated. The natural logarithm is calculated using a CORDIC processor,

please refer to Appendix A. The calculation of the natural logarithm is done in

parallel with calculating the next fbank(k). The natural logarithm calculation

takes 16 clock cycles.

4.2.3.7.3 Configuration

Parameter Possible

values

Default value Description

N_MEL 23 23 Number of mel-filter

coefficients

Dwidth 16 16 The data width of

113

Parameter Possible

values

Default value Description

the I and Q data.

Iwidth 8 for FFTL =

256

9 for FFTL =

512

8 The integer part of

the input data

Fwidth 7 for FFTL =

256

6 for FFTL =

512

7 The fraction part of

the input data

Awidth 8 for FFTL =

256

9 for FFTL =

512

8 The address width of

the I,Q memories.

Shift 3 for FFTL =

256 and 512

3

The Iwidth and

Fwidth of the input

data is different than

those of the internal

signals, so the Shift

parameter defines

the number of bits

needed to adapt the

input to the internal

signals fixed point

widths. This

parameter is used to

shift the input signal

right with this

number of bits, so

114

Parameter Possible

values

Default value Description

that the Iwidth of the

internal signals

(Iwidth_internal) is

Iwidth of the input +

Shift

Shift_output 16 for FFTL =

256

15 for FFTL =

512

16 The accumulated

signal Fwidth is

made wider to obtain

more accurate result,

and at the end, the

result need to be

fixed to the external

world width, so this

parameter defines

the number of bits to

fix from the Fwidth

part of the

accumulated signal

before connecting it

to the external

fbank(k) output. So,

the Fwidth of the

internal signals will

be Fwidth of the

input + (Shift_output

- Shift)

Table 20: Memory requirements of the Mel-Filter module

The values of cbin(k) are stored in ROM based on the FFTL configuration.

115

4.2.3.7.4 Signal width justification

The input and output data widths are Dwidth (=16) bits. The internal

signal widths are Dwidth + Shift_output = 32 bits.

The integer part width Iwidth of the internal signals is increased by the

Shift parameter to accommodate the accumulated fbank(k) to be 8 bits in case

of FFTL = 256, and 9 bits in case of FFTL = 512. The final fbank(k) after

taking the natural logarithm has a dynamic range that needs only 3 bits for

integer part, hence the Iwidth of the final fbank(k) is fixed to only 3 bits after

the natural logarithm is calculated using the CORDIC module.

Also, the fraction part width Fwidth of the internal signals is increased

by Shift_output – Shift, to be 23 in case of FFT L = 256 and 22 in case of

FFTL = 512. This is to increase the accuracy of the accumulated signal before

it is fixed in both cases to Fwidth = 12 when connected to the final fbank(k)

after the natural logarithm is taken using the CORDIC module.

The above choice of signal widths was based on run time results of real

test vectors to obtain the dynamic range of the signals, so that overflow or

underflow is completely avoided in any stage of the calculation. This analysis

was done at the algorithm level, using high level code of the algorithm, were

the fixed point behavior was tested to obtain the right signal widths.

4.2.3.7.5 State Machines

4.2.3.7.5.1 Mel-Filter

This part defines the general state machine that controls the low and

high part sub-filters. The low part sub-filter is applied first, then the high part.

 After the low and high part are calculated the results are added to get

fbank(k) as follows:

116

The outer state machine defined here controls the operation of the core sub-

filter that calculates the low and high parts filtering. The following is the

definition of the states:

• IDLE: the module remains in this state till a start signal comes, and then

it goes to ACTIVATE_MEL_LOW state.

• ACTIVATE_MEL: this is a transitional state, the module remains in it for

one clock to activate the low part sub-filter, and then it goes to the state

WAIT_MEL_LOW.

• WAIT_MEL_LOW: in this state, the module waits the low part sub-filter

or finish operation, then it goes to ACTIVATE_MEL_HIGH state.

• ACTIVATE_MEL_HIGH: this is a transitional state, the module remains

in it for one clock to activate the high part sub-filter, and then it goes to

the state WAIT_MEL_HIGH.

• WAIT_MEL_HIGH: in this state, the module waits the high part sub-

filter or finish operation, then it goes to INCREMENT_COUNTER state.

• INCREMENT_COUNTER: if all Mel coefficients (N_MEL = 23) were

calculated, the module goes to WAIT_LOG_CORDIC, otherwise it goes

to ACTIVATE_MEL_LOW state to start calculating the next Mel

coefficient.

• WAIT_LOG_CORDIC: in this state the module waits for the natural

logarithm of the last coefficient to be calculated by the CORDIC module

to announce that all coefficients have been calculated. This waiting is

done only in the last coefficient, since the natural logarithm of the rest of

the coefficients was calculated in parallel with the calculation of the

next one, however for the last one, there no next calculation, so we

should for the CORDIC module to finish calculating the natural

logarithm of the last coefficient.

• MEL_FINISHED_ALL: reaching this state means that all 23 Mel

coefficients were calculated.

117

4.2.3.7.5.2 Low/ High Frequency part

mel_idle activate_cordic wait_cordic multiply_accumilate mel_finished
reset

Figure 61: State machine of the Low/ High part Mel-Filter

This is the state machine of the core subfilter. This sub-filter is

responsible of calculating the multiply-accumilate operation of the low or high

parts of the filter. The low part operation is as follows:

And the high part operation is:

The module start in MEL_IDLE state. With the start signal it goes to the

ACTIVATE_CORDIC state, in which the CORDIC divider is activated, then it

goes to the WAIT_CORDIC state, till the CORDIC finishes. When the

CORDIC finishes, the module goes to MULTIPLY_ACCUMILATE state, where

the bini coefficient is multiplied by the result of the CORDIC divider and

accumilated. If the accumilation counter reached its limit, the module goes to

MEL_FINISHED, otherwise it goes to ACTIVATE_CODIC state.

4.2.3.7.6 Memory requirements

The input values of bin(i) of the magnitude of the final FFT coefficients

are stored in the I RAM managed by the Buffer Manager. The resulting Mel-

118

Filtered coefficients are stored in the Q RAM. These memories are managed in

the Buffer Manager component.

The cbin(k) coefficients are stored in ROM.

Memory Size Description

cbink_rom 25 * 16 Pre-computed center

frequencies of the bands

of the Mel-Filter. These

are stored in ROM.

Table 21: Memory requirements of the Mel-Filter component

4.2.3.7.7 Actual Chip Usage

The following is a summary of the chip usage as generated by the Quartus II

software:

Flow Status Successful - Fri Oct 03 13:53:51 2008
Quartus II Version 7.2 Build 203 02/05/2008 SP 2 SJ Web Edition
Revision Name source_tb
Top-level Entity NameMel_Filter
Family Cyclone III
Device EP3C10U256C8
Timing Models Preliminary
Total logic elements 2,076 / 10,320 (20 %)
 Total combinational functions 2,043 / 10,320 (20 %)
 Dedicated logic registers 275 / 10,320 (3 %)
Total registers 275
Total pins 54 / 183 (30 %)
Total virtual pins 0
Total memory bits 0 / 423,936 (0 %)
Embedded Multiplier 9-bit elements 8 / 46 (17 %)

Figure 62: Summary of resources usage of Mel-Filter module: FFTL = 256

Flow Status Successful - Fri Oct 03 13:54:45 2008
Quartus II Version 7.2 Build 203 02/05/2008 SP 2 SJ Web Edition
Revision Name source_tb
Top-level Entity NameMel_Filter
Family Cyclone III
Device EP3C10U256I7
Timing Models Preliminary
Total logic elements 2,157 / 10,320 (21 %)
 Total combinational functions 2,116 / 10,320 (21 %)
 Dedicated logic registers 269 / 10,320 (3 %)
Total registers 269
Total pins 56 / 183 (31 %)

119

Total virtual pins 0
Total memory bits 0 / 423,936 (0 %)
Embedded Multiplier 9-bit elements 8 / 46 (17 %)

Figure 63: Summary of resources usage of Mel-Filter module: FFTL = 512

4.2.3.7.8 Processing time

Let:

• Number of clocks taken by the divider = D = 11.

• Number of clocks taken by natural logarithm CORDIC = NL = 16

• Largest difference between any two center frequencies cbin(k-1) and

cbin(k+1) = K =

o 21 in case of sampling frequency 8 kHz ,and

o 23 in case of 11 kHz, and

o 51 in case of 16 kHz.

Therefore:

Processing time = N_MEL × K × D + NL

• 5560 clocks for sampling frequency = 8 kHz

• 6088 clocks for sampling frequency = 11 kHz

• 13480 clocks for sampling frequency = 16 kHz

4.2.3.8 DCT

4.2.3.8.1 Basic functionality

13 cepstral coefficients are calculated from the output of the Non-linear

Transformation block.

4.2.3.8.2 Internal Architecture

This section shows the data flow graph of the module. This graph is just

for design purpose and does not mean that the final synthesized hardware on

the chip will look like that, yet it should be very near to it.

120

Figure 64: Data flow graph of DCT component

Const(i,j) is as shown below:

This can be calculated with the CORDIC Core like the one described in

Appendix A.

The data flow graph in Figure 64 is to calculate one Ci coefficient. The

whole operation is repeated 13 times to get C0 to C12.

4.2.3.8.3 Configuration

Parameter Possible

values

Default values Description

N_MEL_COEFF 23 23 Number of mel-

filter coefficients

121

Parameter Possible

values

Default values Description

N_CEPSTRAL 13 13 Number of cepstral

coefficients

Dwidth 16 16 The data width of

the I and Q data.

Iwidth 7 7 The integer part of

the data

Fwidth 8 8 The fraction part of

the data

Awidth 8 bits for

FFTL = 256

9 bits for

FFTL = 512

8 The address width

of the I,Q

memories. The 2N

RAM address width

is 1 bit more than

that width.

Shift_sum 4 bits 4 bits The internal

accumulated signal

is made wider than

the input and output

signals bu

Shift_sum bits to

increase the

accuracy of

accumulation. The

final result is

eventually fixed to

the Dwidth of the

input signal.

Table 22: Memory requirements of the DCT component

122

4.2.3.8.3.1 Look-up table implementation

The argument of the cosine factor in the basic DCT equation has a

resolution of 0.5, which means that, 46 values are required to be stored to

represent the whole cosine wave. Having those factors stored in a LUT, there is

no need for the CORDIC core, which reduces the processing time. On the other

hand, extra ROM of 24 entries is needed.

4.2.3.8.4 Signal width justification

The input and output data signals widths are 16 bits. However, the

accumulator signal used internally is wider by Shift_sum bits to increase the

accuracy of accumulation, then the final result is fixed again to Dwidth.

The above choice of signal widths was based on run time results of real

test vectors to obtain the dynamic range of the signals, so that overflow or

underflow is completely avoided in any stage of the calculation. This analysis

was done at the algorithm level, using high level code of the algorithm, were

the fixed point behavior was tested to obtain the right signal widths.

4.2.3.8.5 State Machines

The module is divided into two parts; the first part (inner state machine)

is responsible of calculating the inner multiply accumulate operation to

calculate every Cepstal coefficient. The multiply accumulate operation of this

state machine is as shown:

The second part (outer state machine) is responsible of managing the

overall state machine of the DCT, where it controls the trigger of the inner state

machine to calculate next coefficient, until all 13 coefficients are calculated.

The definition of the states of the outer state machine is as follows:

123

• IDLE : if start signal is raised, the DCT operation is triggered, and the

module goes to the state ACTIVATE_DCT to start calculating the

cepstral coefficients.

• ACTIVATE_DCT : in this state the inner state machine is activated to

calculate the next cepstral coefficient. The module then goes to the

WAIT_DCT state.

• DCT_ACTIVATED: this is a transient state to reset internal signals and

activate the inner state machine. The module unconditionally goes to

WAIT_DCT state.

• WAIT_DCT : the module remains in this state until the inner state

machine finishes calculating the current cepstral coefficients.

• INCREMENT_COUNTER : in this state a counter is incremented, if it

reached 13, which means that all coefficients were calculated, the

module goes to DCT_FINISHED_ALL, otherwise it goes to the

ACTIVATE_DCT.

• DCT_FINISHED_ALL: the finished signal is generated in this state

indicating the end of DCT filtering.

The definition of the states of the inner state machine is as follows:

• DCT_IDLE: the system remains in this state until the inner state

machine is activated, then the system goes to the ACTIVATE_CORDIC

state.

• ACTIVATE_CORDIC: the CORDIC processor that calculates the

following constant is activated in this state, and then the system goes to

the WAIT_CORDIC state:

• WAIT_CORDIC: the system remains in this state till the CORDIC

finishes, then it goes to the MULTIPLY_ACCUMILATE state

• MULTIPLY_ACCUMILATE: in this state the following multiplication is

performed and the result is accumulated.

124

A counter is incremented till it reaches 23, then the system goes to the

DCT_FINISHED state, otherwise it goes to the ACTIVATE_CORDIC

again.

• DCT_FINISHED: reaching this state means that the Ci DCT coefficient

was successfully calculated.

4.2.3.8.6 Memory requirements

The memory required for I RAM and Q RAM is kept in the Buffer

Manager component, as described in section 4.2.3.5.6, so no memory is

required for the DCT component itself. In case of LUT implementation, extra

ROM is required to store the 24 DCT factors.

4.2.3.8.7 Actual Chip Usage

The following is a summary of the chip usage as generated by the Quartus II

software based on CORDIC implementation:

Flow Status Successful - Fri Oct 03 14:29:35 2008
Quartus II Version 7.2 Build 203 02/05/2008 SP 2 SJ Web Edition
Revision Name source_tb
Top-level Entity NameDCT_1
Family Cyclone III
Device EP3C10U256C8
Timing Models Preliminary
Met timing requirements N/A
Total logic elements 1,153 / 10,320 (11 %)
 Total combinational functions 1,153 / 10,320 (11 %)
 Dedicated logic registers 87 / 10,320 (< 1 %)
Total registers 87
Total pins 46 / 183 (25 %)
Total virtual pins 0
Total memory bits 0 / 423,936 (0 %)
Embedded Multiplier 9-bit elements 2 / 46 (4 %)
Total PLLs 0 / 2 (0 %)

Figure 65: Summary of resources usage of DCT module

125

4.2.3.8.8 Processing time

Let the number of clocks taken by cosine calculator circuit = C = 12.

Therefore:

Processing time = C * N_MEL * N_CEPSTRAL = 3744.

In case of LUT implementation:

Processing time = N_MEL * N_CEPSTRAL = 299

4.2.3.9 Split-Vector Quantization

4.2.3.9.1 Basic functionality

The feature vector y(m) is directly quantized with a split vector

quantizer. Coefficients are grouped into pairs, and each pair is quantized using

its own VQ codebook. The resulting set of index values is then used to

represent the speech frame. Coefficient pairings (by front-end parameter) are

shown in table 5.1, along with the codebook size used for each pair.

Figure 66: Split Vector Quantization Features Pairings [2]

Two sets of VQ codebooks are defined; one is used for speech sampled

at 8 kHz or 11 kHz while the other for speech sampled at 16 kHz. The weights

used (to one decimal place of numeric accuracy) are:

126

The closest VQ centroid is found using a weighted Euclidean distance to

determine the index:

Where 1, +ii
jq denotes the jth code vector in the codebook1, +iiQ , 1, +iiN is

the size of the codebook, 1, +iiW is the (possibly identity) weight matrix to be

applied for the codebook 1, +iiQ , and)(1, midx ii + denotes the codebook index

chosen to represent the vector T
ii mymy)](),([1+ . The indices are then retained

for transmission to the back-end.

4.2.3.9.2 Internal Architecture

The code books centroids are calculated and stored in the ROM,

according to the configuration of the chip, where the there are different tables

for 8 kHz, 11 kHz and 16 kHz. These values are stored in 7 tables., hence we

need 7 ROMs to store the tables. Every pair of input features (ci, ci+1) are

quantized using the proper quantization table. The distance between the input

vector and each entry in the proper table is calculated as follows:

(Dist)2 = (Ci – Q(i,j))2 + (Ci+1 – Q(i+1,j))2

Then the index (j) of min(Dist 2) is chosen, and put in the output frame

as a 6/ 8 bits value. Note that: the operation of this module is triggered when

every new feature (LogE, C0… C13) becomes ready, so, quantization is done

in parallel with the DCT module. Every time two features are ready, they are

input to the Vector Quantizer module to be quantized. According to the current

features being quantized, the access is given to the core Quantizer to the proper

ROM that contains the proper quantization table.

127

4.2.3.9.3 Configuration

Parameter Possible values Default values Description

Awidth 8 bits for FFTL

= 256

9 bits for FFTL

= 512

8 The address width

of the I,Q

memories.

Dwidth 16 16 The data width of

the features

Iwidth 7 7 The integer width

Fwidth 8 8 The fraction part

Shift_energy 4 4 The Iwidth of the

LogE feature is 3

bits, while the

Iwidth of the

internal signals is 7

bits, so the LogE

feature needs to be

fixed by shifting it

right by 4 bits.

Table 23: Memory requirements of the Vector Quantization component

4.2.3.9.4 Signal width justification

The width of the input features is 16 bits, with the same width as the

output of the previous module. This choice of signal widths was based on run

time results of real test vectors to obtain the dynamic range of the signals, so

that overflow or underflow is completely avoided in any stage of the

calculation. This analysis was done at the algorithm level, using high level code

of the algorithm, were the fixed point behavior was tested to obtain the right

signal widths.

128

4.2.3.9.5 State Machines

The module starts in the IDLE state, until the start signal comes (which

indicates that the LogE feature is ready), so the module goes to the wait_C0

state. Every time a store signal is triggered the module goes to the next state.

When a feature pair is ready (like LogE-C0, C1-C2, C3-C4,…C11-C12), the

core Quantizer is activated, and the access of the ROM is given to the proper

quantization table ROM.

4.2.3.9.6 Memory requirements

Memory Size Description

Q_0 64 * 16 Quantization table of

feature C0

Q_1 64 * 16 Quantization table of

feature C1

Q_2 64 * 16 Quantization table of

feature C2

Q_3 64 * 16 Quantization table of

feature C3

Q_4 64 * 16 Quantization table of

feature C4

Q_5 64 * 16 Quantization table of

feature C5

Q_6 64 * 16 Quantization table of

feature C6

Q_7 64 * 16 Quantization table of

feature C7

Q_8 64 * 16 Quantization table of

feature C8

Q_9 64 * 16 Quantization table of

feature C9

Q_10 64 * 16 Quantization table of

129

Memory Size Description

feature C10

Q_11 64 * 16 Quantization table of

feature C11

Q_12 256 * 16 Quantization table of

feature C12

Q_13 256 * 16 Quantization table of

feature LogE

Table 24: Memory requirements of the Split-Vector Quantization module

4.2.3.9.7 Actual Chip Usage

The following is a summary of the chip usage as generated by the

Quartus II software:

Flow Status Successful - Fri Oct 03 15:53:55 2008
Quartus II Version 7.2 Build 203 02/05/2008 SP 2 SJ Web Edition
Revision Name source_tb
Top-level Entity Name Vector_Quantization
Family Cyclone III
Device EP3C10U256C8
Timing Models Preliminary
Met timing requirements N/A
Total logic elements 729 / 10,320 (7 %)
 Total combinational functions 675 / 10,320 (7 %)
 Dedicated logic registers 132 / 10,320 (1 %)
Total registers 132
Total pins 89 / 183 (49 %)
Total virtual pins 0
Total memory bits 20,480 / 423,936 (5 %)
Embedded Multiplier 9-bit elements 4 / 46 (9 %)

Figure 67: Summary of resources usage of the Split-Vector Quantization

module

4.2.3.9.8 Processing time

This module runs in parallel with the DCT, where every coefficient is

quantized once it is produced by the DCT. Hence, the processing time is taken

as the maximum quantization time of the 14 features, which is 256 clock cycles

130

needed to search for the minimum distance in the quantization tables of C0 and

LogE.

In case of LUT implementation of DCT, the Vector Quantization will

take longer time than DCT, and hence will not be masked by the DCT time, in

this case the Vector Quantization processing time will be:

Processing time = 256+64*6 = 640 clocks

4.2.3.10 Bit Stream Framing

4.2.3.10.1 Basic functionality

This module forms the bitstream used to transmit the compressed feature

vectors, using the defined frame structure and the error protection mechanism

defined in the standard.

In order to reduce the transmission overhead, each multiframe message

packages speech features from multiple short-time analysis frames. A

multiframe, as shown in Figure 68, consists of a synchronization sequence, a

header field, and a stream of frame packets.

Figure 68: Multiframe format [2]

In order to improve the error robustness of the protocol, the multiframe

has a fixed length (144 octets). A multiframe represents 240 ms of speech,

resulting in a data rate of 4 800 bits/s.

According to the standard, octets are transmitted in ascending numerical

order; inside an octet, bit 1 is the first bit to be transmitted. When a field is

contained within a single octet, the lowest-numbered bit of the field represents

the lowest-order value (or the least significant bit). When a field spans more

than one octet, the lowest-numbered bit in the first octet represents the lowest-

order value (LSB), and the highest-numbered bit in the last octet represents the

highest-order value (MSB). An exception to this field mapping convention is

131

made for the cyclic redundancy code (CRC) fields. For these fields, the lowest

numbered bit of the octet is the highest order term of the polynomial

representing the field. In simple stream formatting diagrams, fields are

transmitted left to right.

Each multiframe begins with the 16-bit synchronization sequence 0 ×

87B2. Following the synchronization sequence, a header field is transmitted.

Ordering of the message data and parity bits is shown in Figure 69, and

definition of the fields appears in Figure 70. The 4 bit multiframe counter gives

each multiframe a modulo-16 index. The counter value for the first multiframe

is "0001". The multiframe counter is incremented by one for each successive

multiframe until the final multiframe. The final multiframe is indicated by

zeros in the frame packet stream

Figure 69: Header field format [2]

Figure 70: Header field definition [2]

The generator polynomial used to generate P1-P16 is:

The parity bits of the codeword are generated using the calculation:

132

Each 10 ms frame from the front-end is represented by the codebook

indices. The indices for a single frame are formatted for a frame according to

Figure 71. The exact alignment with octet boundaries will vary from frame to

frame.

Figure 71: Frame information for mth frame [2]

Two frames worth of indices, or 88 bits, are then grouped together as a

pair. A 4-bit CRC with generator polynomial

133

It is calculated on the frame pair and immediately follows it, resulting in

a combined frame pair packet of 11,5 octets. Twelve of these frame pair

packets are combined to fill the 138 octet feature stream. Figure 72 illustrates

the format of the protected feature packet stream. When the feature stream is

combined with the overhead of the synchronization sequence and the header,

the resulting format requires a data rate of 4800 bits/s.

Figure 72: CRC protected feature packet stream [2]

4.2.3.10.2 Internal Architecture

The module functionality is handled through a 4-state State machine. A

CRC engine is used to generate the header CRC, and another one is used to

generate the frame pair CRC’s, both are controlled and activated according to

the state machine. Another core module is used to form the frame and assign

the frame length according to the current state of the state machine.

134

Figure 73: Internal architecture of the Bit Stream Framing

4.2.3.10.3 Configuration

Parameter Possible

values

Default value Description

Sampling_Rate “00” “00” : for 8 kHz

“01” : for 11

kHz

“11” : for 16

kHz

The configured

sampling

frequency. This

will be included in

the header field of

the Multi-frame.

Table 25: Configuration table of the Bit framing module

4.2.3.10.4 Signal width justification

None

135

4.2.3.10.5 State Machines

first_frame_multi_frame second_frame_crc first_frame
reset

idle

Figure 74: State machine of the Bit stream framing component

Source State Destination State Condition

idle first_frame_multi_frame
first_frame_multi_frame first_frame_multi_frame (!send_frame)

first_frame_multi_frame second_frame_crc (send_frame)

first_frame first_frame (!send_frame)

first_frame second_frame_crc (send_frame)

second_frame_crc first_frame_multi_frame frame_counter = 24

second_frame_crc first_frame frame_counter < 24

Table 26: State transition of the Bit stream framing state machine

The description of the states in Table 26 is as follows:

• IDLE: this transitional state just to reset the internal counters of the

component.

• FIRST_FRAME_MULTI_FRAME: being in this state indicates that this

is the first frame in the current multi frame. The module remains in this

state until a send_frame command is triggered, and then it goes to

SECOND_FRAME_CRC state. In this state the header field is formed

and appended before the data frame.

• FIRST_FRAME: this state indicates that the frame is the first of a frame

pair, but not the first of a multi frame, so no header or CRC fields are

added to the frame. The module will go to the SECOND_FRAME_CRC

when a send_frame command is triggered, otherwise is remains in its

state.

136

• SECOND_FRAME_CRC: this state indicates that this is the second

frame of a frame pair, which means that 4 bits frame CRC should be

calculated and appended to the formatted frame. If 24 frames were sent,

then this multi frame is terminated, so the module goes to

FIRST_FRAME_MULTI_FRAME state, otherwise it goes to

FIRST_FRAME state.

4.2.3.10.6 Memory requirements

None.

4.2.3.10.7 Actual Chip Usage

The following is a summary of the chip usage as generated by the Quartus II

software:

Flow Status Successful - Fri Oct 03 17:11:07 2008
Quartus II Version 7.2 Build 203 02/05/2008 SP 2 SJ Web Edition
Revision Name source_tb
Top-level Entity Name Bit_Framing
Family Cyclone III
Device EP3C10U256C8
Timing Models Preliminary
Met timing requirements N/A
Total logic elements 474 / 10,320 (5 %)
 Total combinational functions 474 / 10,320 (5 %)
 Dedicated logic registers 4 / 10,320 (< 1 %)
Total registers 4
Total pins 147 / 183 (80 %)
Total virtual pins 0
Total memory bits 0 / 423,936 (0 %)
Embedded Multiplier 9-bit elements 0 / 46 (0 %)
Total PLLs 0 / 2 (0 %)

Figure 75: Summary of resources usage of Bit framing module

4.3 Overall System Performance

4.3.1 Actual Resources Utilization

The overall usage for the whole chip based on the configuration of the

frame length is shown below for the FPGA device Cyclone III

137

EP3C10U256C8. Note that, the following results are based on LUT table

implementation of Hamming Window, FFT and DCT.

Flow Status Successful - Fri Mar 13 06:39:21 2009
Quartus II Version 7.2 Build 203 02/05/2008 SP 2 SJ Web Edition
Revision Name source_tb
Top-level Entity Name Front_End_Processor
Family Cyclone III
Device EP3C10U256C8
Timing Models Preliminary
Met timing requirements No
Total logic elements 7,844 / 10,320 (76 %)
 Total combinational functions 7,724 / 10,320 (75 %)
 Dedicated logic registers 1,179 / 10,320 (11 %)
Total registers 1179
Total pins 138 / 183 (75 %)
Total virtual pins 0
Total memory bits 39,712 / 423,936 (9 %)
Embedded Multiplier 9-bit elements 46 / 46 (100 %)
Total PLLs 0 / 2 (0 %)

Figure 76: Actual resources usage: Sampling Rate = 8 kHz, N=200,

FFTL=256, Cyclone III EP3C10U256C8

Flow Status Successful - Fri Mar 13 06:39:21 2009
Quartus II Version 7.2 Build 203 02/05/2008 SP 2 SJ Web Edition
Revision Name source_tb
Top-level Entity Name Front_End_Processor
Family Cyclone III
Device EP3C10U256C8
Timing Models Preliminary
Met timing requirements No
Total logic elements 7,844 / 10,320 (76 %)
 Total combinational functions 7,724 / 10,320 (75 %)
 Dedicated logic registers 1,179 / 10,320 (11 %)
Total registers 1179
Total pins 138 / 183 (75 %)
Total virtual pins 0
Total memory bits 42,512 / 423,936 (10 %)
Embedded Multiplier 9-bit elements 46 / 46 (100 %)
Total PLLs 0 / 2 (0 %)

Figure 77: Actual resources usage: Sampling Rate = 11 kHz, N=256,

FFTL=256, Cyclone III EP3C10U256C8

138

Flow Status Successful - Fri Mar 13 06:08:27 2009
Quartus II Version 7.2 Build 203 02/05/2008 SP 2 SJ Web Edition
Revision Name source_tb
Top-level Entity Name Front_End_Processor
Family Cyclone III
Device EP3C10U256C8
Timing Models Preliminary
Met timing requirements N/A
Total logic elements 8,575 / 10,320 (83 %)
 Total combinational functions 8,447 / 10,320 (82 %)
 Dedicated logic registers 1,186 / 10,320 (11 %)
Total registers 1186
Total pins 138 / 183 (75 %)
Total virtual pins 0
Total memory bits 58,928 / 423,936 (14 %)
Embedded Multiplier 9-bit elements 46 / 46 (100 %)
Total PLLs 0 / 2 (0 %)

Figure 78: Actual resources usage: Sampling Rate = 16 kHz, N=400,

FFTL=512, Cyclone III EP3C10U256C8

4.3.2 Processing time and Speed limitations

The processing time performance discussed here is the time taken to perform:

• MFCC Features Extraction Algorithm,

• Split-Vector Features Quantization and Compression,

• And Bit-Stream Frame Formatting.

The calculations mentioned here assume that the speech frame (N-samples)

is already buffered and ready. In other words, the pipelining delay till the frame

is buffered is not considered, since it depends on the input sampling rate and

not on the system performance. In general, this pipelining time is calculated as

(in clock cycles):

)(clocks
yipFrequencInternalCh

equencySamplingFr
N ×

Where N is the number of samples in a speech frame, which depends on

the configured sampling frequency as in Table 8. The sampling frequency can

be 8, 11 or 16 kHz. The internal chip frequency depends on the hardware

platform used.

139

4.3.2.1 Frame Processing Time

The Frame Processing Time is the summation of the time required by

the Offset Compensation, Pre-emphasis, Hamming Window, FFT, Mel-Filter,

DCT, Vector Quantization and Bit-Stream Framing modules to process a

speech frame of N-samples, from the instant they are ready in the input samples

buffer till the output frame bit-stream is ready at the output ports. In other

words, it is the time between the rising of the input signal “store” to the time of

the rising of the output signal “frame_ready”.

After the whole frame is processed, the I RAM and Q RAM should be

reset again, which requires FFTL (FFT length) clocks (256/512). This is done

in parallel with the last feature quantization, which requires 64 clocks, so it is

less than the memory reset time, hence it is not considered in the total time. In

general, the Vector Quantization module runs in parallel with the DCT module,

so its time is masked by the DCT processing time, and hence not included in

the total time calculation.

For the very first frame, the input samples buffer is empty, so the FFT

and the consecutive modules should wait till N-samples are ready. Hence, for

the very first frame the Offset Compensation, Pre-Emphasis and Hamming

Window times will be added to the Total time.

First Frame Processing Time =

Offset Compensation Time + Pre-Emphasis Time + Hamming Window Time +

FFT Time + Mel-Filter Time + DCT Time + Memory Reset Time + Bit-Stream

Framing Time =

N + N + (C + 1) × N + FFTL /2 × log2 FFTL + C × ∑
=

=

FFTLlog

1

2

2
i

i

i + L + N_MEL

×K × D + NL + C × N_MEL × N_CEPSTRAL + FFTL

However, for consecutive frames, the operation of the Offset

Compensation, Pre-Emphasis and Hamming Window modules will be done in

parallel with the operation of the FFT and consecutive modules, so the

processing times of the first three modules is not considered.

140

Next Frames Processing Time =

FFT Time + Mel-Filter Time + DCT Time + Memory Reset Time + Bit-Stream

Framing Time =

FFTL /2 × log2 FFTL + C × ∑
=

=

1-FFTLlog

1

2

2
i

i

i + L + N_MEL × K × D + NL + C ×

N_MEL × N_CEPSTRAL +FFTL

Where:

• The number of samples per frame = N = 200/256/400.

• The FFT length = FFTL = 256/512.

• The number of Mel-Filter Banks = N_MEL = 23.

• The number of Cepstral Coefficients = N_CPESTRAL = 13.

• Time taken by the CORDIC Sine/Cosine Calculator = C = 12.

• Time taken by the CORDIC Magnitude Calculator = L = 11.

• Time taken by the CORDIC Divider Calculator = D = 11.

• Time taken by the CORDIC Natural Logarithm Calculator = NL = 16.

• Largest difference between any two center frequencies cbin(k-1) and

cbin(k+1) = K =

o 21 in case of sampling frequency 8 kHz ,and

o 23 in case of 11 kHz, and

o 51 in case of 16 kHz.

The Energy Measure operation is always performed in parallel with

other modules operation, so its processing time is always masked and hence not

considered in the total time calculation.The configuration of these parameters is

show in Table 8 and Table 38.

The numerical value of the processing time will be different according

to the configured sampling rate and the corresponding configuration parameters

that follow it. The following table shows the different processing times with the

sampling rate:

141

 Fs = 8 kHz Fs = 11 kHz Fs = 16 kHz

First Frame 15124 clock

cycles

16492 clock

cycles

29644 clock

cycles

Next Frames 12124 clock

cycles

12652 clock

cycles

23644 clock

cycles

Table 27: Frame processing time with different sampling frequencies

The maximum allowed processing time for each frame is 9.16 ms as

discussed in 4.1.1. Now, we wish to get the ratio (in %) between the allowed

and actual consumed time, which will follow the following equation:

%100
sinPr

/sinPr ×
gtimeocesowedMaximumAll

yipFrequencInternalChcksgTimeInCloocesFrame

The following table shows this percentage for Internal Chip Frequency

of 100 MHz:

 Fs = 8 kHz Fs = 11 kHz Fs = 16 kHz

First Frame 1.7284% 1.8847% 3.3878%

Next Frames 1.3856% 1.4459% 2.7021%

Table 28: Frame processing time as a percentage of the allowed time for 100

MHz chip frequency

4.3.2.1.1 Look-up table implementation

In case of Look-up table implementation of Hamming Window, FFT

and DCT mentioned in 4.2.3.4.2.1, 4.2.3.6.2.1 4.2.3.8.3.1, the frame processing

time will be:

First Frame Processing Time =

Offset Compensation Time + Pre-Emphasis Time + Hamming Window Time +

FFT Time + Mel-Filter Time + Vector Quantization time + Bit-Stream

Framing Time =

N + N + (C + 1) × N + FFTL /2 × L + FFTL + L + N_MEL ×K × D + NL +

640

142

Next Frames Processing Time =

FFT Time + Mel-Filter Time + Vector Quantization time + Bit-Stream

Framing Time =

FFTL /2 × L + FFTL + L + N_MEL × K × D + NL + 640

Note that; in case of LUT implementation, the Vector Quantization time

is larger than the DCT time; hence, the DCT time is masked.

 Fs = 8 kHz Fs = 11 kHz Fs = 16 kHz

First Frame 10633 clock

cycles

11979 clock

cycles

22887 clock

cycles

Next Frames 7633 clock cycles 8139 clock cycles 16887 clock

cycles

Table 29: Frame processing time with different sampling frequencies for LUT

implementation

 Fs = 8 kHz Fs = 11 kHz Fs = 16 kHz

First Frame 1.1608 % 1.3078 % 2.4986 %

Next Frames 0.8333 % 0.8885 % 1.8436 %

Table 30: Frame processing time as a percentage of the allowed time for 100

MHz chip frequency for LUT implementation

4.3.2.2 Minimum Internal Chip Frequency

The internal chip speed is limited by the input frame rate, where the

internal chip processing should be faster than this rate, otherwise some input

samples will be missed, and the input samples buffer will overflow. The frame

processing time was calculated in the previous section, hence, this time (in

seconds) should be less than or equal to the input frame rate. In this calculation

we will consider the next frames processing time and not the first frame, since

the first frame time only occurs in the very beginning of the system operation.

The minimum internal chip frequency can be deduced from the following

equation:

ms
equencySamplingFr

SamplesIntervalInFrameShiftM

requencyernalChipFMinimumInt

simeInClockNextFrameT
10

)(==

143

For this equality, the percentage of the maximum allowed frame

processing time consumed by the system is 100%.

The frame shift interval (M) configuration is shown in Table 8. The following

table shows the minimum internal chip speed for different sampling

frequencies:

 Fs = 8 kHz Fs = 11 kHz Fs = 16 kHz

Minimum

Internal Chip

Frequency

(MHz)

1.2124 1.2652 2.3644

Table 31: Minimum Internal Chip Speed for different Sampling Frequencies

In case of Look-up table implementation the results will be:

 Fs = 8 kHz Fs = 11 kHz Fs = 16 kHz

Minimum

Internal Chip

Frequency

(MHz)

0.7633 0.8139 1.6887

Table 32: Minimum Internal Chip Speed in case of LUT implementation

4.3.3 Memory

The only RAM memory required is in the Buffer Manager module

mentioned in 4.2.3.5 0 0. The ROM memory exists in Mel-Filter and Split-

Vector Quantization module 4.1.7 and 4.1.9.

The overall memory requirements are shown in the following table:

SamplingFrequency Size in

bits

Type

16192 RAM 8 kHz

20880 ROM

18432 RAM 11 kHz

20880 ROM

16 kHz 32384 RAM

144

20880 ROM

Table 33: Memory requirements of the System

4.4 Effect of Run-time configurability of the chip

The configurations mentioned in the modules detailed are done statically,

which means that; once the chip is manufactured these configurations cannot

be modified anymore. This section discusses the required modifications to the

system to enable making this configuration process at run-time, such that

modifications can be done dynamically during the operation of chip. To enable

this modification, the architecture of the system is modified, such that a new

module is added to manage different configurations, which is the Configuration

Manager.

Figure 79: Modified Static Architecture for Run-time configurability

145

This will certainly affect many modules of the system in different ways;

this effect will be mentioned for each module- if affected- independently in the

next sections.

4.4.1 Energy Measure

This module has a configuration parameter N as mentioned in 4.2.3.3.3.

This configuration parameter will be declared as an input variable that is

modified by the Configuration Manager. This reading frequency of this

variable will be every frame, such that it will be ineffective to change it during

the processing of the current frame.

Parameter Update frequency

N Every frame

Table 34: Update frequency of the configuration paramters of the Energy

Measure component

The Configuration Manager will be in charge of reading this variable

from the RAM area dedicated for chip run-time configuration.

4.4.2 Windowing

This module has a configuration parameter N as mentioned in section

 4.2.3.4.3. This configuration parameter will be declared as an input variable

that is modified by the Configuration Manager. This reading frequency of this

variable will be every frame, such that it will be ineffective to change it during

the processing of the current frame.

Parameter Update frequency

N Every frame

Table 35: Update frequency of the configuration paramters of the Windowing

component

The Configuration Manager will be in charge of reading this variable

from the RAM area dedicated for chip run-time configuration.

146

4.4.3 Buffer Manager

This is the most affected component of the system, where the memories

managed by this component shall be declared to their maximum, assuming 512

FFT points, however, the actual used portion of these memories will be

controlled by the configuration parameters managed by the Configuration

Manager.

This module has the configuration parameters mentioned in section

 4.2.3.5.3. The run-time configurable parameters are mentioned in the following

table. These configuration parameters will be declared as input variables that

are modified by the Configuration Manager. The update frequency of these

parameters is shown in the following table.

 Parameter Update frequency

N Every frame

FFTL Every frame

M Every frame

Table 36: Update frequency of the configuration paramters of the buffer

manager component

The Configuration Manager will be in charge of reading these variables

from the RAM area dedicated for chip run-time configuration.

4.4.4 FFT

This module has the configuration parameters mentioned in section

 4.2.3.6.3. The run-time configurable parameters are mentioned in the following

table. These configuration parameters will be declared as input variables that

are modified by the Configuration Manager. The update frequency of these

parameters is shown in the following table.

Parameter Update frequency

depth Ever frame

Table 37: Update frequency of the configuration paramters of the FFT

component

147

The Configuration Manager will be in charge of reading these variables

from the RAM area dedicated for chip run-time configuration.

4.4.5 Mel-Filter

The cbink coefficients will be stored in two groups in ROM, one for

FFTL of 256 and the other for FFTL of 512. The proper group will be used

according to the current configuration. Using a different group than the current

one is not allowed during the processing of the current frame. Apparently, this

will double the needed ROM space to 50 × 16 bits for the cbink coefficients.

The Configuration Manager will be in charge of indicating which group

to be used according to the required configuration.

4.4.6 Split-Vector Quantization

This module is affected in the quantization tables that it uses, where

every sampling frequency will use different quantization table. In case of

compile-time configuration, the proper quantization table was loaded in ROM

according to the sampling frequency configured, which cannot be the case for

run-time configuration of the sampling frequency.

One solution to this problem is to load the three tables (for 8, 11 and 16

kHz sampling rates) in ROM and using the proper one according to the

required rate. However this solution would require triple the ROM area used

before, which is about 7.5 Kbytes.

The other solution is to put the three tables in an External ROM, and

load the proper one to the On-chip ROM based on the required rate. The

disadvantage of this solution is that it requires long copying time from External

to On-chip ROM. However, it is not expected that the rate of changing the

sampling rate configuration to be high, so this long copy operation will be

performed rarely during system operation.

4.4.7 Configuration Manager

This is the new component added to manage run-time configurability. A

dedicated RAM area will be declared for run-time configurations, which will

148

be accessible by the external entity (the user) for writing, and by the

Configuration Manager for reading, this will be referred as the Configuration

RAM area. The only configurable parameter by the external entity is the

sampling rate. The correspondence between the sampling rate and other

configurations parameters is mentioned in Table 38:

Sampling rate

(kHz)

N(Frame length) M(Frame shift) FFTL (FFT

length)

8 200 80 256

11 256 110 256

16 400 160 512

Table 38: Relation between sampling rate and other configuration parmaters

The responsibilities of this module are as follows:

• Read the sampling rate configuration from the Configuration RAM and

communicate the proper configuration parameters to the modules that

need them, like Mel-Filter for example.

• Copy the proper quantization tables from external ROM to the on-chip

ROM whenever the sampling rate configuration is modified.

149

Chapter 5

5 Compliance to the Aurora Standard Test Vectors

Hardware testing is usually a hard task. This is because hardware

debugging is hard, and locating the problem takes longer time that testing a

Software program. Also, fixed point errors need to be tested carefully to ensure

that the hardware implementation of a reference software algorithm is not

deviating away to give results that are far from being correct. In modern

HDL’s, test benches facilitates the task of hardware testing to some extent,

together with modern simulation and validation tools that are integrated with

the development tools and synthesizers to form an integrated development and

testing environment.

In order to test the validity of the design, the fixed point results of

simulating the system using ModelSim software is validated against standard

results of floating point implementation provided by the ETSI with the Aurora

standard, so that compliance to the standard is proved.

In this chapter we will present the test bench setup used to test and validate

the front end hardware. The types of test cases performed will be clearly

explained. All kinds of tools used to develop, simulate or test the system will

be mentioned and explained in details. And finally, the simulation and testing

results of the test cases mentioned will be presented.

5.1 Test Bench Setup

When writing a design, it is important to verify its functionality. The most

common method of doing this is to create a test bench, i.e., instantiating a

 Device Under Test (DUT), generate test vectors (a set of inputs), and monitor

the output, as shown in Figure 80. Common test bench tasks are to generate

clock and reset signals, and read/write information to a file. Writing the output

values to a file makes it possible to verify the result using test scripts written in

high level language like C-language.

150

Figure 80: Typical VHDL Test Bench [16]

5.2 Performed Test Cases

The front end system was tested and validated against the reference result

vectors generated by the high level C-code provided by ETSI with the Aurora

standard ETSI ES 201 108. The same input stimulus vector of samples that is

used with the reference C-code was applied to the front end system designed in

hardware and coded in VHDL. The VHDL code will be referred from now on

as the Device Under Test (DUT). The outputs of both systems (the reference C-

code and the DUT) are then compared to detect the DUT performance against

the reference high level code.

Front End

Algorithm

Features

Compression

Algorithm

Bit-Stream

Framing

Algorithm

Input Stimulus

Unquantized

Features
Quantized

Features

Indices

Bit-Stream

Frames

Figure 81: Observed System Outputs

Here we are interested in two observed outputs from both systems, shown

in Figure 81:

151

• The Unquantized Features Vector: consists of the 13 Cepstral

Coefficents resulting after the DCT operation, plus the natural logarithm

of the frame energy.

• The Quantized Features Indices: consists of 7 indices representing the

quantized features.

Using the above observations from reference and DUT systems, the

following tests can be performed:

5.2.1 Unquantized Features Error Test- Test 1

Output features before quantization and after the DCT operation of both

the reference and DUT systems are compared to each others. The Average

Absolute Error is the result of this test, and is defined by the following

equation:

srOfFeatureTotalNumbe

tureferenceFeaDUTFeature

oluteErrorAverageAbs resramesFeatuAllTestedF
∑ −

=
|Re|

The above number is simply the deviation between the DUT and

reference features. In other words, the correct features are in the range the DUT

features ± The Average Absolute Error.

152

Figure 82: Unquantized Features Error Test

5.2.2 Quantized Features Error Test- Test 2

In this test, the two output quantized features indices are considered,

decoded to get the corresponding features, then the two decoded features of the

DUT and the reference systems are compared to get two results:

1. The Average Absolute Error: calculated exactly as in 5.2.1.

2. The Error Rate: calculated as follows:

ndicesrOfTestedITotalNumbe

icescorrectIndNumberOfIn
ErrorRate=

Again, the correct features are in the range the DUT features ± The

Average Absolute Error.

153

Figure 83: Quantized Features Error Test

The Error Rate represents the number of times by which the DUT

quantized indices deviates from the reference ones through the whole tested

features of all the tested frames. Normally, this rate should be low, as the DUT

quantized indices are usually the same as the reference ones, except for very

few features that the fixed point error (represented in the Average Absolute

Error) makes the Quantiser mis-classify the features pair to a wrong index. The

following figure is a snap-shot of the results file of the difference between the

DUT and reference decoded features from the quantized indices using the

quantization tables. It is clear that most of the resulting difference is”0”, which

means the DUT and reference indices are exactly the same.

154

Figure 84: Snap-Shot of the difference between decoded DUT and Reference

Features

5.2.3 Quantization Error Test- Test 3

Since the last stage of the front end system is the Split-Vector

Quantization, a quantization error must exist for both reference and DUT

systems. This test aims at observing the difference in the Average Quantization

Error between the DUT and reference systems. The Average Quantization

Error for both DUT and reference systems is defined as:

resramesFeaturOfTestedFTotalNumbe

dFeatureUnquantizeeatureQuantizedF
rrorntizationEAverageQua srameIndiceAllTestedF

∑ −
=

||

The Quantized Features are the decoded features from the result

quantized indices using the quantization tables. The output of this test is the

Difference In Quantization Error, which is the difference between the DUT

and reference quantization errors. The number should be small.

155

Figure 85: Quantization Error Difference Test

5.3 Environment and Tools

Quartus II 7.2 IDE is used for development, synthesis, module simulation,

FPGA programming bitmap generation and net list writing. ModelSim PE

Student Edition 6.4 a tool is used to perform full simulation and module

integration tests. Finally, Visual Studio 6.0 IDE was used to develop, compile

and link the test scripts used with the test batch files to perform the required

test cases.

5.4 Testing and Simulation Results

Two configurations of the front end were tested, which are:

• Configuration A: sampling frequency = 8 kHz, frame length = 200

sample.

• Configuration B: sampling frequency = 16 kHz, frame length = 400

sample.

156

The tests explained in 5.2 were executed on the two chip configurations

above, and the results are summarized in the following tables. The FPGA chip

used is Cyclone III EP3C10U256C8. For more information about the

performed test see 5.2.

Test 1 Test 2 Test 3

Average

Absolute

Error

Average

Absolute

Error

Error

Rate

DUT

Quantisation

Error

Reference

Quantisation

Error

Quantisation

Error

Difference

Configuration

A

0.033725 0.041925 0.052188 1.902172 1.899551 0.002621

Configuration

B

0.049192 0.210935 0.082411 1.670316 1.665433 0.004883

Table 39: Testing and Simulation results

The following observations can be drawn from the results in Table 39:

• For Test 1: the Average Absolute Error seems to increase slightly for

Configuration B than Configuration A.

• For Test 2: the Average Absolute Error increases notably for

Configuration B than Configuration A. However, the Error Rate

experiences a slight increase in Configuration B than Configuration A.

• For Test 3: the Quantisation Error seems to remain unaffected in the

DUT than the reference system in both configurations. However, the

difference in Configuration B is nearly double that of Configuration A.

The general conclusion that can be drawn from these results is that:

1. As appears from Test 3 results, the DUT do not add significant

error to the already existing quantization error in the reference

system, which means that the performance of the whole

Distributed Speech Recognition system will remain unaffected by

the fixed point approximations done in the hardware

implementation of the front end part. Even in Test 1 and 2 results,

the Average Absolute Error remains small. This error-as

mentioned before- means that the correct features are in the range

157

the DUT features ± The Average Absolute Error, hence, the

DUT is correct to 2 decimal places in most cases, and to 1

decimal place in only one case.

2. As the frame length increases, which means more iterations and

steps in summations, this increases the fixed point errors

significantly (nearly the double in most cases), though remains

reasonable even for the longest frame length in Configuration B.

158

Chapter 6

6 System Benchmarks

In this chapter, we try to find a way to evaluate the front end processor

hardware design presented in this thesis by comparing it to other

implementations and reference designs.

Benchmarking is a way to measure performance of a computer system.

More specifically, benchmark is a reference algorithm or program used to

quantitatively evaluate computer hardware and software resources. To get a

better picture of a computer system, engineers define benchmark suites - sets of

benchmarks. By choosing a suitable benchmark for a system it is possible to

test if it behaves the way we expect.

The above definition of a benchmark is more suitable to software programs

and algorithms, however, we will try to alter it a little to suite the hardware

custom designs like-in our case- the front end speech processor. Following the

above definition of a benchmark, we consider the Front end processing together

with the vector quantization algorithms defined in the Aurora standard as the

reference algorithm that is used to evaluate a certain design. The reference

hardware platform will be Altera FPGAs (Cyclone III, Stratix II... etc).

Evaluation is to be done based on the FPGA resources utilization and

processing time.

Since the system is custom in its nature, there are no available complete

hardware designs for the front end processor to be referred to as a benchmark.

So, comparing the whole system to another reference one will not be possible.

However, some of the main components constituting the system have reference

hardware designs provided by the FPGA manufacturer itself (like Altera,

Xilinix… etc), which are optimized for their target FPGAs. These components

are:

159

• The Fast Fourier Transform (FFT) processor.

• The CORDIC processor.

• The hardware divider.

The above mentioned components are the most expensive resources usage

and area consuming components in the system, like FFT. Also, the CORDIC

processor, is used extensively in many parts of the system to do many

functions, like Sine and Cosine calculations, Magnitude calculation, Logarithm

calculation,… etc. So, comparing those main components individually to their

reference designs provided by the FPGA manufacturer shall give a good

indication of how optimized is the design presented compared to already

existing related hardware designs in the area of digital signal processing.

In brief, the benchmark here will be based on the above components. What

to be compared to reference designs will be FPGA resource utilization and

processing time required. In addition, the whole system can be considered as a

new benchmark for the front end speech processor designs in future related

works. In the following sections, this comparison will be held, with their results

clarified in tables.

6.1 Individual Components Comparison

In this section, individual comparison will be made between some chosen

components of the front end processor, and their corresponding reference

designs provided by the FPGA manufacturer. Throughout this study, Altera

FPGA’s reference designs will be referred to. Comparison is done based on

more than one FPGA family, like Cyclone III, Stratix II,…etc.

6.1.1 Fast Fourier Transform Processor (FFT)

All the information in this section on the reference design features is extracted

from [19] and [20].

As mentioned before, our design is area optimized rather than time

optimized.

160

Figure 86: Resources versus throughput for Architectural options of FFT

implementation [20]

Figure 86 (refer to [20]) illustrates the trade-off of throughput versus resource

usage for four architectures

• Radix-2 lite Burst I/O

• Radix-2 Burst I/O

• Radix-4 Burst I/O

• Streaming architecture

For more information about the above architectures, see [19] and [20].

As a rule of thumb, each architecture offers at least a factor of “2” difference in

resource from the next architecture. The most suitable architecture to compare

our FFT to it is the radix-2 lite Burst I/O, since it is the resource optimized

architecture among the four mentioned architectures. Next, comparison will be

held for Radix-2 lite Burst I/O architecture versus the FFT presented in this

thesis. Radix-2 lite Burst I/O architecture will be referred to as Burst Data Flow

architecture with single-output, for more information about the details of this

architecture type [20].

Table 40 shows a comparison between the front end FFT design and the Altera

reference FFT design with Burst Data Flow architecture, Single output, 16 bits

161

signal width. For more information about the reference design architectures see

 [20].

Table 40: Comparison of FFT on Cyclone III Devices- Burst Data Flow

Architecture, Single Output [19]

(1) The Reference Design Architecture Type.

(2) Difference (in %) between the Front End Design figure and the Reference Design figure of the

corresponding feature. Where

Difference = (Reference Designs figure - Front End Design figure)/

Reference Designs figure

If this percentage is positive, then it means that the Front End Design outperformed the

reference design in the corresponding feature, and vice versa. This number will represent the

reduction (if positive) or increase (if negative) in resources introduced by the Front End

Design over the Reference Design.

(3) The ratio between the times taken by the reference design to the time taken by the front end

design.

Note that; the reference design does not provide the magnitude of the FFT

output; hence, the resources utilization and time performance shown in the

results do not take in consideration the magnitude calculation of the final FFT

output.

 Device Point Points Combina

tional

LUTs

Logic

Registers

Mem

ory

(M9K

)

Memory

(Bits)

Multipl

iers

Clock

Cycle

Count

Reference

Design-

Burst

Data

Flow(1)

EP3C10F256C6

Fixed 256 1,463 1,476 3 9,472 4

(18x18)

1628

Front

End

Design

EP3C10F256C6

Fixed 256 1,212 235 3 9,232 4

(18x18)

256

Result 17.1%(2) 84% (2) 0 %(2) 2.5%(2) 0 %(2) 6.3 (3)

162

The above presented comparisons show that the front end design of FFT in

general outperformed the reference design in the FPGA resources utilization

and time performance.

6.1.1.1 Analysis of the FFT benchmarking results

The detailed design aspects of the reference FFT design is not publicly

available, since it is an IP core of Altera, however the improved performance of

the local design over the reference one can be referred to the following reasons:

• In terms of time performance, the bit reversal operation of the local

design is performed on the fly with every new input sample, where the

bit reversed address is calculated immediately after every new sample is

stored in the input buffer, this saves the time to re-order the samples

after they are completely buffered, in addition this implicitly performs

the zero padding operation.

• Using dual port memories (ROM and RAM) makes it possible to read

and write two butterfly inputs or outputs in one clock cycle, which

reduces the butterfly time by 50%.

• In terms of hardware utilization, making use of the embedded

multipliers saves the need to implement them.

• Thanks to the fixed point width of 16 bits of all internal signals, it is

possible to use the 18x18 on-chip embedded multipliers.

• In terms of memory resources, the LUT implementation is highly

optimized by the memory algorithm used to store the sine/cosine values

of the twiddle factors, where only ¼ the cosine wave is stored and the

rest of the values are deduced from it.

6.1.2 CORDIC Processor

All the information in this section on the reference design features is

extracted from [17].

163

Table 41 shows a comparison between reference and front end designs for

CORDIC processor on Cyclone devices.

 Clocks Logic Elements

Reference Design 16 963

Front End Design 16 399

Difference (%)(1) 0 58.5%

Table 41: Comparison between Reference and Front End Designs for CORDIC

processor on Cyclone Devices [17]

(1) Difference (in %) between the Front End Design figure and the Reference Design figure of the

corresponding feature. Where

Difference = (Reference Designs figure - Front End Design figure)/

 Reference Designs figure

If this percentage is positive, then it means that the Front End Design outperformed the

reference design in the corresponding feature, and vice versa. This number will represent the

reduction (if positive) or increase (if negative) in resources introduced by the Front End

Design over the Reference Design.

The results show that the time required for both designs is the same.

However, the front end design offers 58.5 % reduction in resources utilization

over the reference design.

6.1.3 Hardware divider

All the information in this section on the reference design features is

extracted from [18]. Table 42 shows a comparison between the reference and

front end designs for the hardware divider.

164

 FLEX ® EP10K100E APEXTM EP20K100E ACEX® EP1K100

Reference

Design

3,338 3,428 3,338

Front

End

Design

244 248 244

Difference

(%) (1)

92.6 % 92.7% 92.6%

Table 42: Comparison between the Reference and Front End Designs for the

hardware divider [4]

(1) Difference (in %) between the Front End Design figure and the Reference Design figure of the

corresponding feature. Where

Difference = (Reference Designs figure - Front End Design figure)/

 Reference Designs figure

If this percentage is positive, then it means that the Front End Design outperformed the

reference design in the corresponding feature, and vice versa. This number will represent the

reduction (if positive) or increase (if negative) in resources introduced by the Front End

Design over the Reference Design.

From the Table 42, it is clear that the front end design offers more than

92 % reduction in resources utilization over the reference design.

The time required for the reference design of a hardware divider to

finish is 15 clocks, while it is only 11 clocks for the front end design.

6.1.3.1 Analysis of the hardware divider benchmarking results

The local implemented hardware divider is enhanced by the use of

CORDIC core in its linear version, which highly reduced the hardware

resources. Also, thanks to the fast convergence of the CORDIC algorithm, 4

cycles saving in time performance is achieved.

6.2 Overall System Benchmark

As mentioned in the introduction of this chapter, since the front end

processor system is custom by nature, so no overall benchmark exist for the

165

whole system to compare the design to it. Hence, the current design will be

considered a reference for future works to compare to it. In the following, the

system features (FPGA resources utilization and processing time) will be

presented for all system configurations.

6.2.1 System performance on Cyclone III FPGA Family

In this section the front end design performance is presented when

Cyclone III FPGA family devices are used.

 Total Logic

Elements

Total

Registers

Total

memory

bits

Total

multipliers

EP3C10U256C8 7,844 (76 %) 1,179 (11 %

)

39,712 (9%) 46(100%)

EP3C55F780C8 7,871 (14%) 1,179 (2%) 39,712 (2%) 46 (15%)

Table 43: Front End Processor Performance on Cyclone III Devices- Frame

length configuration = 200 samples

 Total Logic

Elements

Total

Registers

Total

memory

bits

Total

multipliers

EP3C10U256C8 7,844 (76 %) 1,179 (11 %

)

42,512 (9%) 46(100%)

EP3C55F780C8 7,871 (14%) 1,179 (2%) 42,512 (2%) 46 (15%)

Table 44: Front End Processor Performance on Cyclone III Devices- Frame

length configuration = 256 samples

166

 Total Logic

Elements

Total

Registers

Total

memory

bits

Total

multipliers

EP3C10U256C8 8,575 (83%) 1,186 (12%) 58,928

(14%)

46(100%)

EP3C55F256C8 8,603 (15%) 1,186 (2%) 58,928 (2%) 46 (15%)

Table 45: Front End Processor Performance on Cyclone III Devices- Frame

length configuration = 400 samples

6.2.2 System performance on Stratix II FPGA Family

In this section the front end design performance is presented when

Stratix II FPGA family devices are used.

 Total Logic

Elements

Total

Registers

Total

memory bits

Total

multipliers

EP2S15F484C3 6,395 (51%) 1,169(9%) 40,096(10%) 54(56%)

Table 46: Front End Processor Performance on Stratix II Devices- Frame

length configuration = 200 samples

 Total Logic

Elements

Total

Registers

Total

memory bits

Total

multipliers

EP2S15F484C3 6,395 (51%) 1,169(9%) 42,896(9%) 54(56%)

Table 47: Front End Processor Performance on Stratix II Devices- Frame

length configuration = 256 samples

 Total Logic

Elements

Total

Registers

Total

memory bits

Total

multipliers

EP2S15F484C3 6,414 (51%) 1,176 (9%) 59,312(14%) 54(56%)

Table 48: Front End Processor Performance on Stratix II Devices- Frame

length configuration = 400 samples

6.2.3 System time performance

Table 49 shows the frame processing time with different sampling frequencies

167

 Fs = 8 kHz Fs = 11 kHz Fs = 16 kHz

First Frame

(clock cycles)

10633 11979 22887

Next Frames

(clock cycles)

7633 8139 16887

Table 49: Frame processing time with different sampling frequencies

168

Chapter 7

7 Conclusions

In this thesis, the front-end part of the Distributed Speech Recognition

system specified in the Aurora standard (ETSI ES 201 108 V1.1.3) is

implemented in hardware. The VLSI design cycle and styles were presented,

and a brief comparison was made between three of them to choose the proper

one to implement the system. Based on this comparison, FPGA was chosen for

prototyping the design, with consideration of migration to structured ASIC

design fashion in case of mass production.

The constraints on the design were presented. Time constraint (10 ms

frame processing time) is relatively relaxed compared to nowadays chip

frequencies. On the other hand, area constraint and limited hardware resources

are the major constraints, hence, the design criteria was directed towards

hardware optimization.

Based on the above constraints, the system static and dynamic architecture

were designed, where hardware optimized algorithm like CORDIC was used to

implement non-linear computationally intensive operations in the system, like

natural logarithm, magnitude, trigonometric function,...etc. Also, in some

cases, two options of implementation were available; memory optimized

solution and time optimized solution, like in case of Hamming window, FFT

and DCT components. CORDIC algorithm was used in the memory optimized

solution, and look-up tables were used in the time optimized solution.

The proposed design was synthesized and tested on 10 K gates low-cost

Cyclone III FPGA. Finally, performance was evaluated based on compliance of

the system output to the reference test vectors provided by ETSI. Also, some

system components, like FFT, CORDIC and hardware divider were compared

to reference designs provided by Altera.

169

7.1 Contributions

The first contribution of this thesis is the complete VLSI implementation

of the front-end client of the DSR system in VHDL using FPGA design style,

in contrast to software implementations, which were intended merely for the

sake of DSR system simulation. The design presented was tested to the RTL

simulation level, and benchmarked against Altera reference designs.

The second contribution made in this thesis is the optimization of the

hardware implementation of the front-end system, and respecting the time

constraint as well, such that, the complete system fits in 10 K gates FPGA

utilizing 83% of its resources based on maximum system configuration. Using

hardware optimized algorithm like CORDIC reduced the resources utilization

of the numerous non-linear operation in the system, especially in non-linear

transformations like natural logarithms in many points in the system, the

magnitude calculation of the FFT output, and the trigonometric functions in

many parts of the system. Also, the re-use of many components in the system

optimized the hardware resources utilization. Using single computational core

and iterating on it (like the cases of FFT, DCT, Mel-filter, and Vector

Quantization), improved the hardware usage, keeping in mind the relaxed time

constraint on the design.

Fixed point implementation constrained the signal widths in most of the

system parts to be less than 18 bits; this was done to make use of the on-chip

embedded multipliers and DSP MAC units (18 bits wide) instead of

implementing them.

Memory resources usage was highly optimized in the design. For

example, in case of FFT twiddle factors storage, only ¼ the cosine wave was

stored in a ROM, which saved about 82.5% of the memory resources required

for FFT twiddle factors. The same concept was repeated in Hamming window

factors and DCT factors in case of LUT implementation. Also, RAM buffers

were re-used between components, like FFT, Mel-filter and DCT, to exploit the

serial nature of their operation.

170

Finally, time performance was also improved by using the inherent

feature of the on-chip memories, which is the dual-port memory operation,

which reduce the access time by 50% in case of FFT butterflies. Also, time was

improved by parallel operation of some modules, like the FFT last stage and

the magnitude calculation of the FFT output, and the operation of the Mel-filter

the non-linear (LOG) operation following it, and finally the DCT operation and

the Vector Quantizer. This time optimization makes the time taken by the

front-end algorithm between 0.8 to 1.8% of the allowed frame processing time,

leaving the rest of the time to the remaining back-end recognition task.

7.2 Recommendations for Future Work

The next versions of the Aurora standard can be implemented. These

versions use the same basic core implemented here, so implementing any of

these version will be a feature addition to the current design. It is highly

recommended to implement the noise robust feature in the Advanced Front-end

(AFE) system, and test its performance in noisy environments; this is because

the DSR system is intended to be deployed in mobile devices, which are

operated in noisy environments.

The design presented was verified to the RTL level only, which can be

extended to be tested to the gate level, and downloaded to real FPGA chip.

Also, the design could be ported to other styles, like DSP processors for

example to compare the performance on both platforms. Migration to ASIC

style is highly recommended for future implementations to reduce cost and

power consumption.

Power consumption measurement and optimization is still needed to be

completed for the current design.

171

8 References

[1] Xudding Huang, Alex Acero, Hsiao-Wuen Hon, " Spoken Language

Processing, A guide to Theory, Algorithm, and System Development ",

Prentice Hall, 2001.

[2] European Telecommunications Standard Institute, ETSI, " Speech

Processing, Transmission and Quality Aspects (STQ); Distributed speech

recognition; Front-end feature extraction algorithm; Compression

algorithms ", Aurora Standard, ETSI ES 201 108 V1.1.3 (2003-09).

[3] European Telecommunications Standard Institute, ETSI, " Speech

Processing, Transmission and Quality Aspects (STQ); Distributed speech

recognition; Extended Front-end feature extraction algorithm; Compression

algorithms; Back-end speech reconstruction algorithm ", Aurora Standard,

ETSI ES 202 211 V1.1.1 (2003-11).

[4] European Telecommunications Standard Institute, ETSI, “Speech

Processing, Transmission and Quality Aspects (STQ); Distributed speech

recognition; Advanced front-end feature extraction algorithm; Compression

algorithms”, Aurora Standard, ETSI ES 202 050 V1.1.5 (2007-1).

[5] European Telecommunications Standard Institute, ETSI, “Speech

Processing, Transmission and Quality Aspects (STQ); Distributed speech

recognition; Extended advanced front-end feature extraction algorithm;

Compression algorithms; Back-end speech reconstruction algorithm”,

Aurora Standard, ETSI ES 202 212 V1.1.2 (2005-11).

[6] www.wikipedia.org, 12/31/2008 9:29 PM.

[7] Dmitry Zaykovskiy, " Survey of the Speech Recognition Techniques for

Mobile Devices '', in Proc. SPECOM 2006, 11-th International Conference

on Speech and Computer, St. Petersburg, Russia, 25-29 June 2006.

[8] Md. Rashidul Hasan, Mustafa Jamil, Md. Golam Rabbani Md. Saifur

Rahman, “Speaker Identification using Mel-Frequency Cepstral

Coefficients”, Proceedings of the Third international Conference on

Electrical and Computer Engineering, ICECE 2004, Dhaka, Bangladesh,

December, 2004.

172

[9] David Pearce, " Enabling New Speech Driven Services for Mobile

Devices: An overview of the ETSI standards activities for Distributed

Speech Recognition Front-ends ", in Proc. AVIOS 2000, The Speech

Applications Conference, San Jose, CA, USA, May 22-24, 2000.

[10] European Telecommunications Standard Institute, ETSI, “New Aurora

Activity for Standardization of a Front-End Extension for Tonal Language

Recognition and Speech Reconstruction”, ETSI DSR Applications and

Protocols Working Group Notes, June 2001,

http://portal.etsi.org/stq/kta/DSR/Au33501_DSR_reconstruction.pdf,

4/20/2009 2:24:53 PM.

[11] Sen M Kuo, Bob H Lee and Wenshun Tian, " Real-Time Digital Signal

Processing, Implementations and Applications ", Second Edition, John

Wiley and Sons, 2001.

[12] Signal Processing Laboratory of Swiss Federal Institute of Technology,

“Design of VLSI Systems”, webcourse;

http://lsiwww.epfl.ch/LSI2001/teaching/webcourse/toc.html (12/28/2008

8:14 PM).

[13] Namballa, R.; Ranganathan, N.; Ejnioui, A, “Control and Data Flow

Graph Extraction for High-Level Synthesis”, Proceedings. IEEE Computer

society Annual Symposium on VLSI, 2004, 19-20 Feb. 2004.

[14] Brian Dipert, “Moving beyond programmable logic: if, when, how?”,

EDN Access Magazine, November 20, 1997,

http://www.edn.com/archives/1997/112097/24df_02.htm, (4/20/2009 2:29

PM).

[15] Dmitry Zaykovskiy, " Survey of the Speech Recognition Techniques for

Mobile Devices '', in Proc. SPECOM 2006, 11-th International Conference

on Speech and Computer, St. Petersburg, Russia, 25-29 June 2006.

[16] Teemu Pitkänen, “VHDL Test Benches”, Tampere University of

Technology, Institute of Digital and Computer Systems.

[17] Altera, " CORDIC reference design ", Altera Application Note, AN:

263, www.altera.com/products/ip/dsp/ipm-index.jsp, June 2005

173

[18] Altera, “DFPDIV Floating-Point Pipelined Divider Unit”, Application

Note, www.altera.com/products/ip/dsp/ipm-index.jsp, 01/01/2009 16:37

[19] Altera, " FFT MegaCore function User Guide ", Altera MegaCore

documentation and user guides, UG-FFT-7.0,

www.altera.com/products/ip/dsp/ipm-index.jsp, November 2008

[20] Xilinx, “Fast Fourier Transform v5.0”, Xilinx application notes, Digital

Signal Processing, Xilinx product specification, DS260 October 10, 2007,

www.xilinx.com 01/01/2009 17:16.

[21] Shousheng He and Mats Torkelson, “A New Approach to Pipeline FFT

Processor”, Parallel Processing Symposium, 1996., Proceedings of IPPS

'96, The 10th International, 15-19 April 1996.

174

9 Appendix

Some useful algorithms and concepts

In this Appendix, some useful algorithms and concepts that were used in

the design, like CORDIC algorithm, Radix-2 FFT and Fixed and Floating point

concepts and notations.

1 CORDIC Algorithm

It is an efficient hardware algorithm based on iterative numerical method to

compute a wide range of functions including certain trigonometric, hyperbolic,

linear and logarithmic functions. For more information about CORDIC

algorithm, mathematical derivations, equations mentioned in this section,

please refer to [15].

The trigonometric functions are based on vector rotations, while other

functions such as square root are implemented using an incremental expression

of the desired function. The trigonometric algorithm is called CORDIC;

CORDIC is an acronym of COordinate Rotation DIgital Computer. The

incremental functions are performed with a very simple extension to the

hardware architecture, and while not CORDIC in the strict sense, are often

included because of the close similarity.

The CORDIC algorithm generally produces one additional bit of accuracy

for each iteration. The main advantage of the algorithm is that it permits to

compute those functions, that are widely used in DSP application through a set

of shift-add operations, which permits to implement them only using shift

registers, adders and Look-up tables (LUT), which highly reduces the hardware

complexity of the implementation.

The trigonometric CORDIC algorithms were originally developed as a

digital solution for real-time navigation problems. The original work is credited

to Jack Volder. Extensions to the CORDIC theory based on work by John

175

Walther and others provide solutions to a broader class of functions. The

CORDIC algorithm has found its way into diverse applications including the

8087 math coprocessor, the HP-35 calculator, radar signal processors and

robotics. CORDIC rotation has also been proposed for computing Discrete

Fourier, Discrete Cosine, Discrete Hartley and Chirp-Z transforms, filtering,

Singular Value Decomposition, and solving linear systems [15].

1.1 Basic Theory of the Algorithm

All of the trigonometric functions can be computed or derived from

functions using vector rotations, as will be discussed in the following sections.

Vector rotation can also be used for polar to rectangular and rectangular to

polar conversions, for vector magnitude, and as a building block in certain

transforms such as the DFT and DCT. The CORDIC algorithm provides an

iterative method of performing vector rotations by arbitrary angles using only

shifts and adds. The algorithm, credited to Volder [15], is derived from the

general rotation transform:

Which rotates a vector in a Cartesian plane by the angle Φ. These can be

rearranged so that:

So far, nothing is simplified. However, if the rotation angles are

restricted so that tan(f)=±2 –i , the multiplication by the tangent term is reduced

to simple shift operation. Arbitrary angles of rotation are obtainable by

performing a series of successively smaller elementary rotations. If the decision

at each iteration, i, is which direction to rotate rather than whether or not to

176

rotate, then the cos(δi) term becomes a constant (because cos(δi) = cos(-δi)).

The iterative rotation can now be expressed as:

Where:

Removing the scale constant from the iterative equations yields a shift-

add algorithm for vector rotation. The product of the Ki’s can be applied

elsewhere in the system or treated as part of a system processing gain. That

product approaches 0.6073 as the number of iterations goes to infinity.

Therefore, the rotation algorithm has a gain, An, of approximately 1.647. The

exact gain depends on the number of iterations, and obeys the relation

The angle of a composite rotation is uniquely defined by the sequence of

the directions of the elementary rotations. That sequence can be represented by

a decision vector. The set of all possible decision vectors is an angular

measurement system based on binary arctangents. Conversions between this

angular system and any other can be accomplished using a look-up. A better

conversion method uses an additional adder-subtractor that accumulates the

elementary rotation angles at each iteration. The elementary angles can be

expressed in any convenient angular unit. Those angular values are supplied by

a small lookup table (one entry per iteration) or are hardwired, depending on

the implementation. The angle accumulator adds a third difference equation to

the CORDIC algorithm:

177

The CORDIC rotator is normally operated in one of two modes. The

first, called rotation rotates the input vector by a specified angle (given as an

argument). The second mode, called vectoring, rotates the input vector to the x-

axis while recording the angle required making that rotation.

1.1.1 Rotation mode

In rotation mode, the angle accumulator is initialized with the desired

rotation angle. The rotation decision at each iteration is made to diminish the

magnitude of the residual angle in the angle accumulator. The decision at each

iteration is therefore based on the sign of the residual angle after each step.

Naturally, if the input angle is already expressed in the binary arctangent base,

the angle accumulator may be eliminated. For rotation mode, the CORDIC

equations are:

Where:

This provides the following result:

178

1.1.2 Vectoring mode

In the vectoring mode, the CORDIC rotator rotates the input vector

through whatever angle is necessary to align the result vector with the x axis.

The result of the vectoring operation is a rotation angle and the scaled

magnitude of the original vector (the x component of the result). The vectoring

function works by seeking to minimize the y component of the residual vector

at each rotation. The sign of the residual y component is used to determine

which direction to rotate next. If the angle accumulator is initialized with zero,

it will contain the traversed angle at the end of the iterations. In vectoring

mode, the CORDIC equations are:

Where:

Then:

179

The CORDIC rotation and vectoring algorithms as stated are limited to

rotation angles between -pi/2 and pi/2. This limitation is due to the use of 2^0

for the tangent in the first iteration. For composite rotation angles larger than

pi/2, an additional rotation is required. Volder describes an initial rotation

±pi/2. This gives the correction iteration:

Where:

There is no growth for this initial rotation. Alternatively, an initial

rotation of either pi or 0 can be made, avoiding the reassignment of the x and y

components to the rotator elements. Again, there is no growth due to the initial

rotation:

The CORDIC rotator described is usable to compute several

trigonometric functions directly and others indirectly. Judicious choice of

initial values and modes permits direct computation of sine, cosine, arctangent,

vector magnitude and transformations between polar and Cartesian coordinates.

The following sections present some of these functions that are utilized in the

design.

180

1.1.2.1 Sine and Cosine

The rotational mode CORDIC operation can simultaneously compute

the sine and cosine of the input angle. Setting the y component of the input

vector to zero reduces the rotation mode result to:

By setting x0 equal to 1/An, the rotation produces the unscaled sine and

cosine of the angle argument, z0.

1.1.2.2 The Fast Fourier Transform (FFT)

A DFT with N input values s can be described as the matrix vector

multiplication

By exploiting the properties of V the operations can be greatly reduced,

and the well known Fast Fourier Transformation (FFT) is derived. An eight

point FFT leads to the network shown in Figure 1. The twiddle factors are

derived as:

181

Figure 87: 8-point FFT Network

The multiplication by the twiddle factor is equivalent to rotation by the

angle (2*pi*x/y). This can be easily implemented using the CORDIC algorithm

in its basic vector rotation mode.

1.1.2.3 Vector magnitude

The vectoring mode CORDIC rotator produces the magnitude of the

input vector as a byproduct of computing the arctangent. After the vectoring

mode rotation, the vector is aligned with the x-axis. The magnitude of the

vector is therefore the same as the x-component of the rotated vector. This

result is apparent in the result equations for the vector mode rotator:

The magnitude result is scaled by the processor gain, which needs to be

accounted for elsewhere in the system. This implementation of vector

magnitude has a hardware complexity of roughly one multiplier of the same

width. The accuracy of the magnitude result improves by 2 bits for each

iteration performed. The same vectoring can be directly used to get the

Cartesian to Polar transformation of a vector, where final xn is the magnitude

of the vector multiplied by An, and zn is the angle between x0 and y0, such that

tan(zn) = y0/x0.

182

1.1.3 Extension to Linear functions- Multipliers and Dividers:

A simple modification to the CORDIC equation permits the

computation of linear functions:

For rotation mode (di= -1 if zi < 0, +1 otherwise) the linear rotation produces:

This operation is similar to the shift-add implementation of a multiplier, and as

multipliers go is not an optimal solution. The multiplication is handy in

applications where a CORDIC structure is already available.

The vectoring mode (di= +1 if yi < 0, -1 otherwise) is more interesting,

as it provides a method for evaluating ratios (CORDIC Divider):

The rotations in the linear coordinate system have a unity gain, so no

scaling corrections are required.

1.1.4 Extension to Hyperbolic functions- Natural Logarithm:

The close relationship between the trigonometric and hyperbolic

functions suggests the same architecture can be used to compute the hyperbolic

functions. While, there is early mention of using the CORDIC structure for

hyperbolic coordinate transforms, the first description of the algorithm is that

by Walther [15]. The CORDIC equations for hyperbolic rotations are derived

183

using the same manipulations as those used to derive the rotation in the circular

coordinate system. For rotation mode these are:

Where:

Then:

In vectoring mode (di= +1 if yi < 0, -1 otherwise) the rotation produces:

The elemental rotations in the hyperbolic coordinate system do not

converge. However, it can be shown that convergence is achieved if certain

iterations (I=4, 13, 40... k, 3k+1...) are repeated.

The hyperbolic equivalents of all the functions discussed for the circular

coordinate system can be computed in a similar fashion. Additionally, as

184

Walther points out, the following functions can be derived from the CORDIC

functions:

This will be useful when calculating the Natural Logarithm (Ln), which is

encountered twice in the system, the first time, is calculating the Log of the

Energy. The second time is when calculating the Natural logarithm of the

output of the Mel-Filter.

1.2 General Hardware Implementation of the CORDIC Processor:

Figure 88 shows general hardware architecture of the CORDIC processor

in its basic form:

185

Figure 88: Iterative CORDIC Processor [15]

2 The Fast Fourier Transform (FFT)

There is a family of fast algorithms to compute the Discrete Fourier

Transform (DFT), which is called Fast Fourier Transform (FFT). Direct

computation of DFT follows the equation:

∑
−

=
−= 1

0

/2][][
N

n

NnkjenxkX π
 Nk ≤≤0

Which requires N2 operations, assuming that the trigonometric functions

have been pre-computed. The FFT algorithm only requires N log2N operations,

so it is widely used for speech recognition tasks.

186

2.1 Radix-2 FFT

There are many algorithms to compute the Fast Fourier Transform. In our

design, we adopted the Radix-2 FFT algorithm, due to its simplicity and

suitability to the timing and resources requirements of the design. For more

information about the algorithm, mathematical derivations, equations

mentioned in this section, please refer to [1].

2.1.1 Mathematical derivation

Let’s express the discrete Fourier transform of x[n] as:

∑∑
−

=

−

=
− == 1

0

1

0

/2][][][
N

n

nk
N

N

n

Nnkj WnxenxkX π
 Nk ≤≤0

Where we have defined the Twiddle Factor k
NW as:

Nkjk
N eW /2π−=

Let’s suppose that N is even, and let f[n] = x[2n] represent the even-indexed

samples of x[n], and g[n] = x[2n+1] the odd-indexed samples of x[n], so:

][][][][][
1

0 2/

1

0 2/ kGWkFWngWWnfkX k
N

N

n

nk
N

N

n

k
N

nk
N ∑∑

−

=

−

=
+=+=

Where F[k] and G[k] are the N/2 point DFTs of f[n] and g[n],

respectively. Since both F[k] and G[k] are defined for 2/0 Nk ≤≤ , we need to

also evaluate them for NkN ≤≤2/ ,which is straight forward, using the

periodicity and symmetric properties of the DFT:

F[k + N/2] = F[k]

G[k + N/2] = G[k]

If N/2 is also even, then both f[n] and g[n] can be decomposed into

sequences of even and odd indexed samples and therefore its DFT can be

computed using the same process. Furthermore, if N is an integer power of 2,

this process can be iterated and it can be shown that the number of multiplies

and adds is N log2N, which is a significant saving from N2 . This is called

decimation in time. A dual algorithm called decimation in frequency can be

derived by decomposing the signal into its first N/2 and last N/2 samples.

187

2.1.2 Algorithm Implementation

A graphical representation of the radix-2 algorithm is shown in Figure

89. This algorithm optimizes the memory usage by using only one buffer of

depth equal N in all the steps of the algorithm, where calculations are done and

restored in their places again in the buffer. At the end of the N log2N operations

of the algorithm, the same input buffer that contained the input samples will

have the result samples. This is why the algorithm is called in-place radix-2

algorithm.

The algorithm is composed of log2N stages, with N operations taking

place at each stage, as shown in Figure 89.

Figure 89: the 8 point Decimation In Time (DIT) Radix-2 FFT algorithm

188

There are three four basic operations that take place in the algorithm:

1. Bit reversal

2. Butter fly

3. Twiddle factor calculation

This will be presented in the following sections

2.1.2.1 Bit Reversal

The first step of the algorithm is to order the samples in the buffer in a

certain order called bit-reversed order, where the destination index of the input

sample in the buffer is the result of reversing the binary equivalent

representation of the source index. The following figure illustrates this

operation:

Figure 90: Bit Reversal operation

2.1.2.2 Butterfly

This operation is repeated N/2 times in every iteration of the log2N

stages of the algorithm. The basic butter fly operation is shown in Figure 91,

where it takes 2 samples as an input, and produces 2 new result samples to be

placed in the same location of the input samples in the buffer. The addresses of

the input samples are generated according to a given pattern that depends on

which stage the algorithm is in, as illustrated in Figure 90. The twiddle factors

189

(i
NW) used in the butter fly operation depend on the addresses of the input

samples and the stage of the algorithm.

Figure 91: Basic Butter fly operation

The above operation can be reordered as:

Figure 92: Reordered Butter fly operation

Which enables the usage of basic 2-points FFT, after multiplying H(i) by the

proper twiddle factor as shown. Hence, the new shape of the algorithm will be:

190

Figure 93: Reordered radix-2 DIT In place FFT algorithm

2.1.2.3 Twiddle factor calculation

The twiddle factor k
NW is defined as:

Nkjk
N eW /2π−=

Which is equivalent to vector rotation with angle Nk /2π , which enables

to use the CORDIC algorithm in its rotation mode as described earlier in this

Appendix.

2.2 Other FFT Algorithms

Although radix-2 FFT is the best known algorithm, there are other

variants. Among those are the radix-4, radix-8, split-radix and prime factor

algorithm. Next information is obtained from [1].

The same process used in the derivation of the radix-2 decimation in time

algorithm applies if we decompose the sequences into four sequences: f1[n] =

x[4n], f2[n] = x[4n+1], f3[n] = x[4n+2], and f4[n] = x[4n+3]. This is the radix-

4 algorithm, which can be applied when N is a power of 4.

191

Similarly, there are radix-8 and radix-16 algorithms for N being powers

of 8 and 16 respectively. These algorithms use fewer adders and multiplies then

the famous radix-2 algorithm, however, they add extra constraints and

additional control logic, which makes them not necessarily faster than the

radix-2 equivalent, and need to be customized to a given processor.

Some values of N cannot use radix-4, radix-8 or radix-16. A combination

of radix-2 and radix-4 is called split-radix can be applied to N being a power of

2.

Finally, another possible decomposition is N=p1p2…pl with pi being

prime numbers. This leads to the prime-factor algorithm. While this family of

algorithms offers a similar number of operations as the algorithms above, it

offers more flexibility in the choice of N.

3 Concept of Fixed and Floating Point Arithmetic

The basic element in digital hardware is the binary device that contains one

bit of information. A register (or memory unit) containing B bits of information

is called a B-bit word. There are several different methods for representing

numbers and carrying out arithmetic operations. The most famous among those

ways are the fixed and floating point representations. Both representations are

given in the following sections, with more emphasis on the fixed point

notation. Information in this section is obtained from [6]

3.1 Floating Point

The term floating point refers to the fact that the radix point (decimal

point, or, more commonly in computers, binary point) can "float": that is, it can

be placed anywhere relative to the significant digits of the number. This

position is indicated separately in the internal representation, and floating-point

representation can thus be thought of as a computer realization of scientific

notation.

In scientific notation, the given number is scaled by a power of 10 so that it

lies within a certain range – typically between 1 and 10, with the radix point

192

appearing immediately after the first digit. The scaling factor, as a power of

ten, is then indicated separately at the end of the number. For example, the

revolution period of Jupiter's moon is 152853.5047 seconds. This is

represented in standard-form scientific notation as 1.528535047×105 seconds.

oating-point representation is similar in concept to scientific notation.

Logically, a floating-point number consists of:

1. A signed digit string of a given length in a given base (or radix). This is

known as the significand, or sometimes the mantissa or coefficient. The

radix point is not explicitly included, but is implicitly assumed to always lie

in a certain position within the significand – often just after or just before

the most significant digit. The length of the significand determines the

precision to which numbers can be represented.

2. A signed integer exponent, also referred to as the characteristic or scale,

which indicates the actual magnitude of the number.

The significand is multiplied by the base raised to the power of the

exponent, equivalent to shifting the radix point from its implied position by a

number of places equal to the value of the exponent — to the right if the

exponent is positive or to the left if the exponent is negative. Using base-10

(the familiar decimal notation) as an example, the number 152853.5047, with

ten decimal digits of precision, is represented as the significand 1528535047

together with an exponent of 5. To recover the actual value, a decimal point is

placed after the first digit of the significand and the result is multiplied by 105

to give 1.528535047 × 105, or 152853.5047.

Symbolically, this final value is

Where s is the value of the significand (after taking into account the implied

radix point), b is the base, and e is the exponent. Equivalently, this is:

193

Where s here means the integer value of the entire significand, and p is the

precision: the number of digits in the significand. The significand always stores

the most significant digits in the number: the first non-zero digits. When the

significand is adjusted in this way so that its leftmost digit is nonzero, it is said

to be normalized, and its value obeys 1 ≤ s < b, given that the radix point is

assumed to follow the first digit. Zero is a special case and is normally

represented as s = 0, e = 0. (Subnormal numbers and certain other cases also

need special treatment; see dealing with exceptional cases.)

Floating point arithmetic has always been very costly in terms of resources

needed to implement or processing time required, specially when dealing with

hardware implementations, despite the simplicity of developing applications

using this type of mathematical representation. This leads to the fixed point

notation.

3.2 Fixed Point

The most commonly used fixed-point representation of a fractional

number x is illustrated in Figure 94. The word length is B(= M + 1) bits, i.e., M

magnitude bits and one sign bit. The most significant bit (MSB) is the sign bit,

which represents the sign of the number as follows:

In the following figure, the fixed point number representation is illustrated.

194

Figure 94: Fixed point representation of binary fractional numbers [11]

The remaining M bits give the magnitude of the number. The rightmost

bit bM is called the least significant bit (LSB), which represents precision of

the number.

As shown in the following figure, the decimal value of a positive (b0 = 0)

binary fractional number x can be expressed as:

In general, the decimal value of a B-bit binary fractional number can be

calculated as:

In general, according to the dynamic range of the number, there can be

more than one bit (b0) to represent the non-fractional part of the number in

addition to the sign bit, this will be pointed to as the Integer part of the number

195

through out this thesis, and the bits after the decimal point (b1 to bM in the

above example) will be noted as the fractional part.

mn bbbbbbbx 21210=

Figure 95: A general binary fractional number

In this case, the conversion to decimal equation should be modified such

that the final number is the sum of the decimal equivalent of the integer part

and the fraction part, where the integer part bits will be multiplied by 2 raised

to positive powers according to the index of the bit, while the fraction part bits

will be multiplied by 2 raised to negative powers according to their index too.

In general, conversion can be easily done by dividing the decimal

equivalent of the binary number by the maximum of the fraction part. For

example, if the fraction part is 10 bits, then its maximum value is 1024, then

the decimal equivalent is obtained by dividing the fixed point number in

decimal by 1024, which will give the original number.

