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Abstract

From human prehistory to the new media of the &jtuspeech
communication has been and will remain the dominveay of human social
bonding and information exchange. To understaneédpea human considers
not only the specific information conveyed to tha,dut also the context in
which the information is being discussed. For tteason, people can still
understand the spoken language even if the spégtdl & corrupted by noise.
Hence, recognition and understanding the contextsmdntaneous speech
remains the goal of speech signal processing reséar many yeargl].

New system architectures have emerged fautomatic Speech

Recognition(ASR) systems to deploy speech recognizers in dddze and
hand held devices. Modern ASR systems can be staligt decomposed into
two main parts; the acousti€Eront-end where the process of the feature
extraction takes place and tBack-end performing ASR search based on the
acoustic and language models. Since most of théalger devices use a
communication link, we can classify all the mobd8R systems in terms of
employing wireless communication link and the lomatof the front-end and
back-end parts aEmbedded Speech RecognitiSgstems (ESR)Network
Speech RecognitidiNSR) andDistributed Speech RecognitigpSR).
The European Telecommunications Standards Insti(&ESI) has formed the
STQ Aurora group to work on the standardizatiortha front end for DSR
applications. Four standards emerged for the fematspecifications. All of the
four standards use thdel-Frequency Cepstral CoefficientMFCC) as the
features extraction algorithm in the front-end.

The main point of this thesis is the hardware imp@atation of the basic
front end specified in the first Aurora standard SEES 201 108 V1.1.3) to be
deployed in mobile hand-held devices. To meet tght tconstraints of an
embedded system, FPGA for prototyping and strudtud&IC for mass-

production style is chosen as the hardware platfmrnmplement the design.



Taking into consideration the tight area usage ttam, some low-resources
usage algorithms are used in the design, like tBer@inate Rotation Digital
Computer (CORDIC) algorithm, which was used extegigito perform many
functions in the system. VHDL coding, synthesis &L simulations are
done to prove the concept of the design.

The results of this work are presented in two aspeloe first one is to
compare the design to other reference hardwarg@mesiresented by FPGA
manufacturers. Results show that the design preddmere outperforms the
reference designs in terms of hardware resourcageuswith a reduction
percentage of 8.9 % in some cases to 58 % in oth&re second axis of
evaluation was the compliance to the Aurora stahdegference features
vectors of about 8 seconds of continuous speech prewided by the ETSI to
prove compliance to the specifications. Resultswshioat the final system
output matches the reference vectors with averagelate error of 0.002 in

some configurations to 0.004 in others.
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Chapter 1

1 Introduction

Speech signal processing refers to the acquisititamipulation, storage,
transfer and output of human utterances by a caanptlihe main goals are the
recognition, synthesis and compression of humaredpeHere, we are
concerned with the speech recognition part, in tamdito some concepts of
Speech compression that are mandatory to achidigept, lossless speech
communication, especially on wireless media.

Speech recognition (also known as automatic speeclgnition or
computer speech recognition) converts spoken waoodsnachine-readable
input (for example, to key presses, using the pinavde for a string of
character codes). The term "voice recognition” ratsp be used to refer to
speech recognition, but can more precisely refapeaker recognition, which
attempts to identify the person speaking, as ogptiserhat is being said.

In order to achieve the goal of the above definitiseveral models to
represent the speech signal exist, so that thisshwath be used as the base of
the computer algorithm that will handle speech gadton task. According to
the accuracy of the model to represent the reacdpsignal, the recognition
results are determined. Two main directions existthis area; speech
production models, and speech perception modelsteTaxist many ways to
analyze the speech system based on the way thehsgegal is modeled,
among those are: Linear Predictive Coding (LPC) $peech production
models and Mel-Frequency Cepstrum for Speech ptmstumodels.

In theory, it should be possible to recognize speditectly from the
digitized waveform. However, because of the largeability of the speech
signal, it is a good idea to perform some formedtéire extraction that would
reduce that variability. Speech recognition task oigginally a pattern
recognition problem, where the input speech sigi@@not be processed or

stored as its raw form in digital samples, becahse would require a large



storage for those samples. For these reasons,rdea@xtraction must be
performed on the input speech signal before furphecessing.

There are many methods and directions in speecturésa extraction,
according to the way the speech signal is repredentinear Predictive
Coefficients (LPC) is a way to perform speech fesgiextraction that is more
suitable in the field of speech coding. For percally motivated speech
models, two famous speech features extraction rdsthoe presented, which
are Mel-Frequency Cepstral CoefficientdMFCC) and Perceptual Linear
Prediction (PLP)Mel-Frequency Cepstral CoefficienMFCC) is the most
popular method utilized nowadays in speech recmgngystems.

New system architectures have emergeddisiomatic Speech Recognition
(ASR) systems that are adapted to achieve todagsirements of speech
technology applications, where the need arose ptogespeech recognizers in
embedded and hand held devices. The recognitiok bh@somes divided
between client front-end part and server back-emd. Fhis architecture has
many advantages in terms of reducing the proceskiag on embedded
devices and improving the recognition capabilities speech recognition
applications performed over communication netwolke® GSM or 3G
networks. The main three architectures are predemiere, which are
Embedded Speech Recognit{&BR),Network Speech RecognitidSR) and
Distributed Speech RecognitiopSR).

The European Telecommunications Standards Instite€rSl) has
deployed a new series of standards to standardizetaof features and
implementations guidelines for the main compone@fta Distributed Speech
Recognition (DSR) system. The STQ Aurora group works on the
standardization of a front end for DSR applicatiofRsur standards emerged
for the front-end specifications, in addition toetleatures compression
algorithm and bit-stream framing algorithm. All thfe four standards use the
MFCC as the features vector in the front-end. Tiret $tandard contains the
basic functionality of the Mel-Cepstrum front-efithe second standard works

on improving the speech recognition results in &sy@nvironment; this is



referred to as thAdvanced front-endlhe third one includes a modification to
enable speech reconstruction at the back-end ardhnea the speech
recognition for some tonal languages like Mandand Thai; this is referred to
as theExtended front-endl'he last standard is a merge between the secuwhd a
third ones, where recognition is noise robust amdhe same time speech
reconstruction and tonal languages support arelehahis is referred to as the
Extended Advanced front-end

The main point of this thesis is the hardware im@atation of the basic
front-end specified in the first Aurora standardT@& ES 201 108 V1.1.3
(2003-09) to be deployed in mobile hand-held deszice

1.1 Organization of the Thesis

The thesis is organized as follows:

CHAPTER 1 is an introduction to th&utomatic Speech RecognitigASR)
systems in general anDistributed Speech RecognitigfpSR) systems in
particular. In addition, the four Aurora DSR Frarte standards are introduced
in brief.

CHAPTER 2 is an overview of the design of VLSI systems, veh®iLSI
design flow and VLSI design styles are introducetth emphasis on three
styles of particular interest; which are Digitab®al Processors (DSP), Field
Programmable Gate Arrays (FPGA) and Application c8me Integrated
Circuits (ASIC).

CHAPTER 3 is a comparative study between the three VLSI desiyles
introduced from the point of design time, cost, powonsumption, flexibility,
re-programmability...etc. A conclusion is drawn a¢ tbnd of the chapter to
choose the best style that suits our design goals.

CHAPTER 4 gives detailed discussion of the design and harelwar
implementation of the front-end system in the Aarspecifications. First the
design constraints are introduced, and then thie stad dynamic architectures

are discussed. Every module is explained in detaitsl finally, the overall



system time and hardware utilization of the sysigeipresented. A quick study
is made of the effect of run-time configurability the chip design.

CHAPTER 5 presents the testing and simulation results ofsirstem versus
the reference Aurora system to prove standard dangd. Three tests were
performed at different levels of the system outpwasd their results are
presented.

CHAPTER 6 shows the system performance versus some refecsigns
and benchmarks in the market.

Appendix A contains some basic information about essentiairittgns and
concepts used in the thesis, like CORDIC algorithadix-2 FFT algorithm

and fixed and floating point notations.

1.2 Speech Signal Representation and Modeling

1.2.1 Speech production in human being

In general, speech is a sound wave created by tambrahat is
propagated in the air. Speech is produced from hupeeng when a source of
air flow at the vocal cords passes by the timeingryocal tract. Manner of
articulation describes how the tongue, lips, andeotspeech organs are

involved in making a sound make contact.
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Figure 1: Human Vocal Tra¢b]

Acoustic theory analyzes the physical laws thategovhe propagation

of sound in the vocal tract. Such a theory shooltswer the three-dimensional



wave propagation, the variation of the vocal tsd@pe with time, losses due to
heat conduction and viscous friction at the vocattt walls, softness of the
tract walls, radiation of sound at the lips, nasalipling, and excitation of

sound. While a detailed model that considers allabove is not yet available,

some models provide a good approximation in pradtig and[6].

1.2.2 Speech digitization

Before speech can be processed by a computer it bausligitally
sampled. First, the signal is captured by a micooeh(or other transducer) and
converted into an electrical signal, where the &k of the signal
corresponds to the magnitude of the original pmessariation. Second, the
signal is sampled at some frequency, so that ofilyita number of amplitudes
are recorded, stored, or transmitted, for a givenod of time. Common
sampling rates include 8000 Hz(samples per sedondglephone speech and
44100Hz for compact disk recordings. Shannon'spewides that frequencies
up to half the sampling rate can be reconstructamad the sampled signal, so an
8000 Hz telephone signal can reconstruct frequenggeto 4000 Hz. Higher
frequencies are subject to aliasing, such tha¢guigncy of 4010 Hz cannot be
distinguished from a frequency of 3990 Hz. (Thigmeaaliasing makes
spinning wheels on stagecoaches appear to spirwbad& on old western
movies and television shows). To prevent this ¢ftee signal is filtered to
remove high frequencies before sampling. Third, dlgmal is quantized into
one of a discrete number of levels so that onlyingef number of bits is
required to represent each level. This is calledilégr-to-Digital (A-to-D)
conversion. Thus, a telephone signal will typicallrry 8000 speech samples
per second, each represented by an 8-bit numhresa fotal of 64000 bits per
second. In contrast, cellular telephone may onlpleyn4800 or 2400 bits per
second, by using Linear Predictive Coding (LPCpthrer signal compression

techniqueg1].



1.2.3 Speech Modeling

A very famous speech model is tBeurce-Filtermodel, where a speech
signal is decomposed into a excitation signal {efalssing by a time varying
filter (h[n]) that represents the resonance ofvbeal tract which changes over

time.

eln] ~ h[n] =~ x[n]

Figure 2: Source-Filter model for speech signals

Separation between the source and filter is onéhefmost difficult
challenges in speech processing. To estimate ltbe thhere are many methods,
some of them are inspired by the speech produatiotels (such as the Linear
Predictive Coding) and others are inspired by theesh perception models
(such as Mel-Frequency Cepstrum). Once the filtes heen estimated, the
source can be obtained by passing the speech sigoabgh the inverse filter.

Voice is divided into two main categoriegoiced soundandUnvoiced
sounds Voiced sounds refer to the articulatory processwvhich the vocal
cords vibrate, while unvoiced sounds describe trenynmciation of sounds
when the larynx does not vibrate. According to ttisssification, the above
model can be modified to model the excitation digmathe sum oWoiced

excitationandUnvoiced excitatioms shown in the Figure 3.
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Figure 3: Source-Filter model for Voiced and Uneaispeech



Where the white noise models thiavoicedspeech, while the impulse
signal at the sampling frequency is ¥aicedspeech.

In general speech production models are more fretyuencountered in
speech coding applications, while speech perceptiodels are more utilized
in speech recognition applications. That is whydan Prediction Coding
(LPC) is common in speech coding, whilslel-Frequency Cepstral

CoefficientyMFCC) is more dominant in speech recognition.

1.2.4 Short-term frame based spectral analysis

Due to high speech variability, continuous inputesgh utterance cannot
be processed directly. In addition, the frequensgridution over an entire
utterance does not help much more in speech reomgninstead of processing
the speech signal as a whole, a certain time freimeld be set, and in which
speech signal can be considered stationary.

For short-term analysis the signal must be zersidetof a defined
range. This is performed by multiplying the sigmath a window. This time
window width is usually taken from 20 to 30 ms gksech, and the window
shift, which is the time between the start of oniedew and the next one, is
usually taken to be 10 ms. For this window, feaucan be extracted and
processed.

There are many window shapes that can be used,Réaangular,
Hamming, Gauss, Hann and Blackmann window. Thecehof certain one of

the others is driven by the application and thereadf the input speech signal.

W,=1 W, = 0.54-0.46 cos(2nn / (N-1))

- ~

Figure 4: a) Rectangular Window b) Hamming Window



Another reason for computing the short-term spectns that the
cochlea of the human ear performs a quasi-frequanajysis. The analysis in
the cochlea takes place on a nonlinear frequenale §&nown as the Bark
scale or the Mel scale). This scale is approximgdteear up to about 1000 Hz
and is approximately logarithmic thereafter. Sothe feature extraction, it is
very common to perform a frequency warping of treqgfiency axis after the
spectral computation[1]. This will be discussed in details in the Mel-

Frequency Cepstral Coefficients features descnptio

1.2.5 Speech Features Extraction

Processing the digital samples of the speech sigaalot a good idea,
due to many reasons. First, this would requiret @istorage area to store the
speech samples. Also, if this speech is to be nnatesi over a network,
transmitting the whole signal would require a largandwidth. Second,
because of the large variability of the speechaighis a good idea to extract
some features of the speech that characterizashith would reduce that
variability.

For the above reasons, some basic features ofpibecls signal are
extracted and stored, processed or transmittedeadsof dealing with the
whole speech signal.

Recall the source-filter speech production modstussed sectich2.3,
the filter h[n] can be used to model the speechajdence, all what we have
to worry about are the coefficients of that filterhich completely model the
speech system. This is the main idea of featurdsaaion, and speech
compression.

As mentioned before, two famous models exist, whach; speech
production models and speech perception modelsordloty to the model
used, the filter type and coefficients are deteedinFor speech production
model, Linear Predictive Coding (LPC) coefficiersie of the most famous

features. While for speech perception models, Melkency Cepstral



Coefficients (MFCCs) algorithm is the most popul@atures extraction

algorithm used for speech recognition nowadays.

1.25.1 Linear Predictive Coding (LPC)
Also know as Auto Regression Coefficients (AR) aition (refer to[1]

for more information about the algorithm, mathew®lti derivation and
equations presented in this section). The basia lahind linear predictive
analysis is that a specific speech sample at theemu time can be
approximated as a linear combination of past spesmmples. Through
minimizing the sum of squared differences (oveinéd interval) between the
actual speech samples and linear predicted valuegjae set of parameters or
predictor coefficients can be determined. Thesdficants form the basis for
linear predictive analysis of speech.

We can predict that the nth sample in a sequenspedch samples is

represented by the weighted sum of the p previaogptes:

X[n] = Zp:akx[n -K]

The number of samples (p) is referred to as thdeidrof the LPC. As
p approaches infinity, we should be able to prethet nth sample exactly.
However, p is usually on the order of ten to twemthere it can provide an

accurate enough representation with a limited adsttomputation. The

weights on the previous sampl@sare chosen in order to minimize the squared
error between the real sample and its predictedgevall hus, we want the error
signal e[n], which is sometimes referred to astRE residual, to be as small

as possible:

el = ] - X = il - Y- a0 =]

We can take the z-transform of the above equation:

E(2) = X(2) —Zp:akX(z)z"‘ :X(z)[l—zp:akz"‘] = X(2)A(2)




Thus, we can represent the error signal E(z) asptibeuct of our

original speech signal S(z) and the transfer fanci\(z). A(z) represents an

all-zero digital filter, where th& coefficients correspond to the zeros in the
filter's z-plane. Similarly, we can represent auiginal speech signal S(z) as

the product of the error signal E(z) and the tranginction 1 / A(z):

X(Z = @
A(2)
Where:
1
)

The transfer function H(z) represents an all-padgtal filter, where the

% coefficients correspond to the poles in the fiker-plane. Note that the
roots of the A(z) polynomial must all lie within ghunit circle to ensure
stability of this filter.

In reality the actual predictor coefficients arev@eused in recognition,
since they typical show high variang¢g]. The predictor coefficients are

transformed to a more robust set of parameters krasrCepstral coefficients.
1.252 Mel-Frequency Cepstral Coefficients (MFCC)

1.2.5.2.1 The M€ Frequency Scale

There are many non-linear frequency scales thabappate the sensitivity

of the human ear. For examptg:

Constant Q: Q is the ratio of filter bandwidth ogentre frequency;
hence this implies an exponential form.

Equivalent Rectangular bandwidth (ERB): The bandwgaf the
auditory filters are measured

Bark: Also derived from perception experiments

Mel: The engineers solution

10



The Mel scale is a perceptual scale of pitchesgddyy listeners to be equal
in distance from one another. The reference poetivéen this scale and
normal frequency measurement is defined by equatia00 Hz tone, 40 dB
above the listener's threshold, with a pitch of(L&kels. Above about 500 Hz,
larger and larger intervals are judged by listenersproduce equal pitch
increments. As a result, four octaves on the hecele above 500 Hz are
judged to comprise about two octaves on the Mdesddne name Mel comes

from the word melody to indicate that the scalbased on pitch comparisons

[6]

B(f) =1125l0g, (L+ f /700)

WhereB(f) is the frequency in Mels, while f is the frequemtyHz.
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Figure 5: Hertz versus Mel Scalég
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Experimentally, it was found that the human ear &&=t of filter banks that

can be perfectly represented on the Mel scale.

1.2.5.2.2 The Cepstrum

The Cepstrumis the result of taking the Fourier transform (Fof)the decibel
spectrum as if it were a time signal. Its name dexsved by reversing the first

four letters of "spectrum®”. There is a complex Geps and a real Cepstrum.

1.2.5.2.3 The Me-Frequency Cepstrum

The difference between the normal and Mel Cepstauthhat a non-linear scale
is used, which simulates the auditory system, whghihe Mel-Frequency
scale. The block diagram of the MFCC algorithmhewen inFigure 6[8]. For

more information about the algorithm and the undeg mathematics and

equations, please refer[th and|8].

Continuous | Frame Windowing FFT
513,.3—.3,311_" Blocking ™ Rt
mel Cepstrum Mel-frequency
“Cepstum | Wrapping
Sk

Figure 6: The Mel-Frequency Cepstral Coefficienkgohkithm [8]
First, take the DFT of the input speech frame digna

N-:

1
X [k => xnle”’?™N 0<k<N-1
n=0

We define a filter bank with M filters (m=1,2,...Myvhere m is traiangular

filter given by:

12



0 k< f[m-1]
(k- f[m-1]) flm-1] <k< f[m]

M [k = (flm] - f[m-1])
(f[m+1] - k) f[m] <ks f[m+1]

(f[m+1] - f[m])
0 k< f[m-1]

Let's define f, and f, as the lowest and highest frequencies of the filtenk

in Hz, Fs as the sampling frequency in H4,as the number of filters aridlas

the size of the FFT. The boundary poifjte] are uniformly spaced in the Mel
scale:

f[m] = (FﬁjB*(B(f, ) +m—B(f*|‘3|_ 8% )j

S +1

Where the Mel scale B is given by:

B(f) =1125l0g, (L+ f /700)

And the inverse Mel equation is:

B™(f)=700exp(f /1125 -1)
The filter banks are shown in the Figure 7.
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Figure 7: Mel-Filter banks
Then, compute the log-energy at the output of é&ételn:

gm = In{fl X, [K]| Hm[k]}, 0<ms<M
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The Mel-Frequency Cepstrum is then the Discretar@osransform (DCT) of
the M filter outputs:

c[n]=MZ_:lS[m]cosQn(m—1)/2)/M), O<n<L

Where M varies for different implementations from 24 to 4€or speech

recognition, typically only the first 13 Cepstrumedficientsare used1]

1.3 Automatic Speech Recognition (ASR) System

Till now, we have discussed the speech signal septation and models
used in speech processing in general. Now we shexdomine the speech
recognition area of speech signal processing in emdetails. Speech
recognition systems are commonly referred to Astomatic Speech
Recognition SystenfASR).

Speech recognition is basically a pattern recagmiproblem. A source-
channel model is used to formulate speech recogngroblems. As illustrated
Figure 8 the speaker’'s mind decides the word sequéfkicthat is delivered
through his/her test generator. The source is pagskeough a noisy
communication channel that consists of the speskedcal apparatus to
produce the speech waveform and the speech sigme¢gsing component of
the speech recognizer. Finally the speech decodey t# decode the acoustic
signal O into the word sequend&/*, which is hopefully close to the original

word sequenc®/ . O is the acoustic observations vector, or the featueetor.

Communication Channel

. (o] I W*
Signal Speech I
Processing Decoder |
|

Speech

——»| Text Generator
Generator

Figure 8: A source-channel model for a speech m@tiog system
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Following the Bayesian approach applied to ASR,libst estimation for the

word sequence can be given by:

» , P(O[W)P(W)
T;[ = ar ax _P ( T:[ ﬂ 1' = ﬁ a.x - . - -
ar gﬁ,ﬂl% (W]0) = ar _&}1% 5(0)

In order to generate an output the speech recaghas basically to perform
the following operations:
» Extract acoustic observations (features) out osffaken utterance.
» Estimate P(W) - the probability of individual word sequence to
happen, regardless acoustic observations.
» EstimateP(O|W) - the likelihood that the particular set of feair
originates from a certain sequence of words.
* Find word sequence that delivers the maximum hicgd defined in
the equation above.
A typical automatic speech recognition system iswshin theFigure 9 The
basic components of the ASR system are the onée ibox.

4 N

Voice Signal Processing

>

3
Decoder S =
> o= O
S o 3
] =
Q o )
5 A
S v | =z
Adaptation %
)

\ i
‘. Automatic Speech Recognition (ASR) Basic Components

Figure 9: Basic Architecture of Automatic Speecltdmition (ASR) System
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Application interface with the decoder to get teeagnition results that
may be used again to adapt other components insysem through the
Adaptation component. Acoustic modelsinclude the representation of
knowledge about acoustics microphone and envirohnaanability, gender
and dialect differences among speakers, etc.

Language modelsefer to a system’s knowledge of what constitutes a
possible word, what words are likely to co-occurgd an what sequence. The
semantics and functions related to an operatiosea may wish to perform
may also be necessary for the language model. Mawcgrtainties exist in
these areas, associated with speaker characterisppeech style and rate,
recognition of basic speech segments, possible sydifatly words, unknown
words, grammatical variation, noise interferencenmative accents, and
confidence scoring of results. A successful spaedognition system must
contend with all of these uncertainties. The adoustcertainties of different
accents and speaker styles of individual speakexscampounded by the
lexical and grammatical complexity and variatiorfstite spoken language,
which are all represented in the language model.

The speech signal is processed in 8ignal Processingnodule that
extracts salient feature vectors for the decodee. decoder uses both acoustic
and language models to generate the word sequeatehas the maximum
posterior probability for the input feature vectors can also provide
information needed for the adaptation componemadify either the acoustic
or language models so that improved performancéearbtained.

A more detailed representation of the ASR systesih@wvn inFigure 10
Where the function of each module is mentioned @ling to the maximum
likelihood probability equation mentioned earlier this section. The term
P(W) is determined by the language model. It can beeeitule based or of
statistical nature. In the later case the probgbf the word sequence is
approximated through the occurrence frequenciemadi/idual words (often
depending on the previous one or two words) in spredefined database. The

likelihoods P(O|W) are estimated on most state-of the- art recogsiasing
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HMM based acoustic models. Here every wadis composed of a set of
acoustic units like phonemes, triphones or syl@bie.wj = (ul O u2...)

And every unitu, is modeled by a chain of stateswith associated emission

probability density functionp(x|s;). These densities are usually given by a
- - - - - M
mixture of diagonal covariance Gaussians, pex|sj):2bij(x,ymj,zmj).
k=1

The computation of the final likelihodé(O|W)is performed by combining the

state emission likelihoodsp(o, |s;)and state transition probabilities. The
parameters of acoustic models such as state tangitobabilities, means,,
variances > ;and weights b ;of Gaussian mixtures are estimated on the

training stage and also have to be stored. Thénataber of Gaussians to be
used depends on the design of the recognizer.

Finally, armed with bothp(o, |s;) and P(W), we need an effective

algorithm to explore all HMM states of all wordsesvall word combinations.
Usually modified versions of the Viterbi algorithane employed to determine

the best word sequence in the relevant lexical tree
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Figure 10: Detailed ASR system

1.4 Automatic Speech Recognition Systems for Mobile and Embedded
Devices

The past decade has witnessed an unprecedentetbpmirgeof the
telecommunication industry. The today’s mobile tealbgies have far
overcome person-to-person communicationMae Area NetworkgWAN),
such as 3, 3.5, 3.75 and even 4G networkgireless Local Area Networks
(WLAN) based on the IEEE 802.11 specifications &sown as Wi-Fi spots
became widely available. With its high data rai&s,Fi makes possible such
applications as/oice over IP(VolP) or video conferencing. Alongside with
expansion of the network technologies, the cli@vices have been developing
at the same speed. Also PDAs are getting more ame popular.

Of course such a perfect infrastructure gave msetlfe development of
many new data services for the handheld devicesieMer, the user interface,

which has definitely improved over the last yeatd|, limits the usability of the
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mobile devices. Typing is uncomfortable. In addition the case of car driving,
it becomes an issue of safety to use the keypad.

Users prefer to use their natural languages toeissu order to these
devices. The natural way to solve this problem @t&sin using speech
recognition technology. As a result, new speecbgsition systems have been
developed. Desktop or PC applications of speeabgration are not suitable to
run on embedded devices, due to the highly variabtaistic environment in
the mobile domain and very limited resources ablaon the handheld
terminals.

Note that; for more information about this sectiplease refer tfr].

1.4.1 Main differences between Desktop Speech Recognitiamd Mobile
ASR

Mobile ASR faces the following problems:

» Limited storage and memory on-chip in embeddedadsviRecall the
discussion of the generic ASR system in sectid®, whereP(W) is
somehow determined though thenguage Modelsof the ASR system,
which could be either rule based or statistical elodrhe main
shortcoming of the statistical language models fritid mobile ASR
viewpoint is the number of parameters to be stovddch may be as
gross as hundreds of megabytes for \earge VocabularfLV) tasks.
Also, the likelihood¥?(O | W) are estimated using HMM basadoustic

models where the states of the systesnare associated with emission
probability density functionsp(x|s,;)which are usually given by a

mixture of diagonal covariance Gaussians,

M
p(x|s;) :mejN(x,,umj,zmj). The total number of Gaussians to be used
k=1

depends on the design of the recognizer. Howewan dor a digit
recognition task ending up with about one thous&Aedimensional
mixtures is a common situation, which also embagssa compact

implementation of the ASR in a mobile dev[@é
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» Slow processors clock speeds.
* Limited fixed-point arithmetic, while floating pdinarithmetic is
frequently encountered in such applications.

* High power consumption of such algorithms.

1.4.2 Modern ASR Systems

Modern ASR systems can be structurally decompagedivo main part§/]:

» The acousticFront-end where the process of the feature extraction
takes place and

 The Back-end performing ASR search (using Viterbi or similar
algorithms) based on tleousticandlanguagemodels

Since most of the portable devices use a commuarcéhk, we can classify
all the mobile ASR systems upon the location of ftlbat-end and back-end
This allows us to distinguish three principal syst&ructure$7]:

* Client-based architecture orEmbedded Speech Recognition (ESR),
where botHront-endandback-endare implemented on the terminal.

» Server-based architecture orNetwork Speech Recognition (NSR),
where speech is transmitted over the communicatitannel and the
recognition is performed on the remote server.

* Client-server architecture omDistributed Speech Recognition (DSR),
where the features are calculated on the termiviale the classification
is done on the server side.

Each approach has certain disadvantages. The iraptatron depends on the
application needs and the terminal capabilitiesalbmecognition tasks are
generally recommended to reside on terminals, wthike large vocabulary
recognition systems take advantage of the servpactizes. The following

sections present these architectures, the front@adnd the back-end role.

1.4.2.1 Front-end role

The task of the acoustic front-end is to extraetrabteristic features out

of the input speech. Usually it takes in a framéhefspeech signal every 10 ms
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with length from 20 to 30 ms and performs certgmecdral analysis. The
features extraction algorithm in most speech retiognsystems today is the

Mel-Frequency Cepstral Coefficients

1.4.2.2 Back-end role

The main function of thback-endpart of the ASR system is to perform
ASR search using thacousticand language modelss discussed i4.3. We
have to notice that the feature extraction everifoptimized, takes just about
2% of all processing time in case of the mediumabatary and even less in
large vocabulary recognition tagks The main computational burden relies in
the ASR search, which is governed by two operatitihe computation of

Gaussians in the emission likelihood, |s;) for a given frame and the token

propagation, i.e. the maintenance of the inforrmatibout the survivors (best
paths) during the search through the lexical frée

1.4.3 Embedded Speech Recognition System Architecture

In the case of client-based or embedded ASR thi&eeptocess of
speech recognition is performed on the terminalnather words, client side
(see Figure 11, refer {@]). Embedded ASR is often the architecture oficho
for PDAs for the following reasons since they hawgher capabilities
compared to mobile devices.

The main advantage of this architecture relies ha fact that no
communication between the server and the cliemtesded. Thus, the ASR
system is always ready for use and does not relyhenquality of the data
transmission. On the other hand, the main disadgenis that the functionality
on the terminal needs to be kept to minimum requémats or small tasks due to

the limited resources of the cligff.
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Figure 11: Client-based ASR system- Embedded Speechgnition (ESR)
[7]

1.4.4 Network Speech Recognition System Architecture

Practically all complications caused by the reseumitations of the
mobile devices can be avoided shifting both ASRithend and back-end from
the terminal to the remote server. Suclseaver-basedASR architecture is
referred in the literature ddetwork Speech RecognitigNSR) (sedrigure 12
refer to[7]).
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Figure 12: Server-based ASR system - Network SpBeciognition (NSR)7]
The main advantage of NSR is its light weight terahs, of limited
capabilities in contrast to ESR clients. Also, eliint language recognizers can
be used without the need to install them on thentldevice.
Characteristic drawback of the NSR architecturghis performance

degradation of the recognizer caused by using lawabke codecs, which
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becomes more severe in presence of data transmisgiors and background

noise.

1.4.5 Distributed Speech Recognition System Architecture

Distributed speech recognition represents the teerver architecture,
where one part of ASR system, which is the prinfaature extraction, resides
on the client, while the computation of temporalikives and the ASR

search are performed on the remote serverHigees 13 refer to[7]).
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Figure 13: Client-server based ASR system- DistetdiBpeech Recognition
(DSR)[7]
Even though both DSR and NSR make use of the sbasad back-end,
there are substantial differences in these tworaekdavoring DSRY7].
» First of all the speech codecs unlike the featutsaetion algorithms are
optimized to deliver the best perceptual qualitgl ant for providing the
lowestWord Error Rat WER).
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Figure 14: WER degradation in NSR using GSM EFRi@ggas. DSR system
[9]
Figure 14 shows performance of a GSM coded speech recogngystem
(NSR) against that of a DSR over GSM netw@@k The WER is highly
degraded as the signal strength becomes weakéeiGGEM coded version,
while it keeps a reasonable level in DSR systenteNloat; unlike NSR, the
encoded and transmitted signal are the speechrésatind not the encoded
speech signal itself.
» Second, DSR does not need the high quality sp&etchather some set
of characteristic parameters. Thus, it requireselowata rates - 4.8
kbit/s is a common rate for the features transiomssi
» Third, since feature extraction is performed planethe client side, the
higher sampling rates covering full bandwidth o $peech signal are
possible.
* Finally, because in DSR we are not constrained¢oerror-mitigation
algorithm of the speech codec, better error-hagdinethods in terms of
WER can be developed.
The studies within the distributed recognition feamork target three
aspects indicative for DSIR7]:
* The development of noise robust and computatioreffigctive feature

extraction algorithms.
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* The investigation of procedures for feature vectgugantization,
permitting compression of the features without éss$n recognition
guality.

* The elaboration of error mitigation methods.

The composite answer on these entire questionsgives by the STQ-
Aurora DSR working group established within theEuropean
Telecommunications Standards Instityi€TSI). The result of the four-year
cooperative work of Aurora group members, the wolhding ASR
companies, has become the ETSI standard ES 20lod®&ting at the 4.8
kbit/s data rate, then the ETSI standard ES 202 9pe@ifying the advanced
front-end (AFE) feature extraction, feature compi@s and back-end error-
mitigation algorithms . In 2004 this standard wasiahed to the extended
advanced front-end (XAFE), allowing for the cost additional 0.8 kbit/s
reconstruction of the intelligible speech signalt @il features streanj7].

Overview of this set of standards is given in te&trsections.

1451 ETSI Aurora Proposal for Distributed Speech Recogriion
Systems

In Distributed Speech RecognitigQipSR) architecture the recogniser
front-end is located in the terminal and is conedatver a data network to a
remote back-end recognition server. DSR providediqodar benefits for
applications for mobile devices such as improvecbgeition performance
compared to using the voice channel with a guaeghtevel of recognition
performance.

Because it uses the data channel, DSR facilithesreation of an exciting
new set of applications combining voice and dataemable all these benefits
in a wide market containing a variety of playerscluling terminal
manufactures, operators, server providers and néimg vendors, a standard
for the front-end is needed to ensure compatibliégween the terminal and the
remote recogniser. The STQ-Aurora DSR working greithin ETSI has been

actively developing this standard and as a reduthis work the first DSR
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standard was first published by ETSI in Februarg@COfeaturing the basic

front-end specifications. The Mel-Cepstrum was ehofr the first standard

because of its widespread use throughout the spemzdgnition industry.

Three next standards have evolved till January 2007

The first standard contains the basic functionaditghe Mel-Cepstrum
front-

end, ETSI ES 201 108 V1.1.3 (2003-09).

The second standard works on improving the spesmbgnition results
in a noisy environment; this is referred to as Muvanced Front End
(AFE), ETSI ES 202 050 V1.1.5 (2007-1).

The third standard includes a modification to eealdpeech
reconstruction at the back end and enhance theclspeeognition for
some tonal languages like Mandarin and Thai; thiseferred to as the
Extended Front En¢kFE), ES 202 211 V1.1.1 (2003-11).

The last standard is a merge between the seconthaddones, where
recognition is noise robust and in the same timeesp reconstruction
and tonal languages support are enabled; this fexred to as the
Extended Advanced Front EQAAFE), ES 202 212 V1.1.2 (2005-11).

The Aurora proposal to DSR architecture is giveRigure 15, refer t¢10].
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Figure 15: Aurora proposal for DSR syst§if]
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Reference high level C-code implementations foralgerithms present
in the specifications are provided for the fournsi@ds, so that proprietary
implementations of the standards can compare tperformance to that
obtained by the reference C-code.

The first standard (ETSI ES 201 108), featuring llasic Front end
specification, is the main issue of this thesisereha hardware implementation
of this front-end is to be developed to be deplayeahobile hand-held devices.
In the following sections, a brief overview is giveon each of the four

standards.

1.4.5.1.1 Basic Front End Specifications, ETSI ES 201 108

This standard specifies algorithms for front-enaltdiee extraction and their
transmission which form part of a system for dmited speech recognition.
Also, it presents a standard for a front-end tausngsompatibility between the
terminal and the remote recognizer. The specificatovers the following
components (more details about this section cdoural in[2]):

* The algorithm for front-end feature extraction teate Mel-Cepstrum

parameters.

* The algorithm to compress these features to proad®wer data

transmission rate.

* The formatting of these features with error pratectnto a bitstream

for transmission

* The decoding of the bitstream to generate the feodt features at a

receiver together with the associated algorithms dbannel error
mitigation.

The standard does not cover the "back-end" spesmdgnition algorithms

that make use of the received DSR front-end feature
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Figure 16: DSR system defined in the Basic front standard, ETSI ES 201
108[9]
The specification covers the computation of featigetors from speech
waveforms sampled at different rates (8 kHz, 11,kkted 16 kHz). The feature

vectors consist of 13 static Cepstral coefficiemtd a log-energy coefficient.

Input

speech

— ADC |—» Offcom [—» FramfngT PE —> W —> FFT |—| MF — LOG —| DCT

logE
Abhbreviations:
h 4 A 4
ADC analog-to-digital conversion ,
Offcom offs ethco mpgnsation Feature Compression
PE pre-emphasis
logE energy measure computation v
A windowing - .
FFT fast Fourier transform (only magnitude components) Bit Stream FFJf’ matting
MF mel-filtering Framing
LOG nonlmear transformation l
DCT discrete cosine transform
MECC mel-frequency cepstral coefficient To transmission channel

Figure 17: Block diagram of the Front end algoritbpecified in the Basic
standard, ETSI ES 201 1(3

1.4.5.1.2 Advanced Front End Specifications, ETSI ES 202 050
This standard is for an advanced DSR front-end (AEEAt provides

substantially improved recognition performance iackground noise.
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Evaluation of the performance during the selectbthis standard showed
an average of 53 % reduction in speech recognigimar rates in noise
compared to ES 201 108. The specification covers tbllowing
components (more details about this section cdoured in[4]):

* The algorithm for advanced front-end feature exibacto create Mel-

Cepstrum parameters.

* The algorithm to compress these features to proad®wer data

transmission rate.

* The formatting of these features with error praotecinto a bit stream

for transmission.

 The decoding of the bit stream to generate the ramhdh front-end

features at a receiver together with the assoceltgatithms for channel
error mitigation.

The standard does not cover the "back-end" spesadygnition algorithms
that make use of the received DSR advanced frashfeatures.

The advanced DSR standard is designed for use digbontinuous
transmission and to support the transmission afevaictivity information. The
Voice Activity DetectioifVAD) algorithm is presented in the specificati@h,
however it is not mandatory for the implementeuse this one, instead he can
use any alternative algorithm.

,,,,,,, I ——

| Terminal Front-End
|

! | Feature Extraction
H

11 and 16 kHz VAD
Extension
Framing,

! !
i Feature Bit-Stream
Moise Waveform Cepstrum Blind i Compression Formattn Channel
S v Ps |- g. L -
Reduction Processing Calculation Equalization || Error Protection !
i
- R i

i Server Front-End

From

Channel Bit-Stream Decoding Feature Server Feature |
- L e - T Back-End
1 Error Mitgation Decompression Processing 1

®

Figure 18: Block scheme of the proposed front-@nspiecification ETSI ES
202 050. Figure (a) shows blocks implemented atetrainal side and (b)

shows blocks implemented at the server §ide
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In the features extraction part, noise reductiopagormed first. Then,
waveform processing is applied to the de-noisedasignd Cepstral features
are calculated. At the end, blind equalizationgpled to the Cepstral features.
The features extraction part also contains an #11&nkHz extension block for
handling these two sampling frequencies. Voicevigtdetection (VAD) for
the non-speech frame dropping is also implememtdeatures extraction.

At the server side (see Figure 18 b), bit-streancodig, error
mitigation and decompression are applied. Beforereng the back-end, an

additional server feature processing is performed.

1.4.5.1.3 Extended Front End Specifications, ETSI ES 202 211

This standard is for an extended DSR front-end JxHE specifies a
proposed standard for an extended front-end (XFE} extends the Mel-
Cepstrum front-end with additional parameters,, yimdamental frequency FO
and voicing class. It also specifies the back-ep&esh reconstruction
algorithm using the transmitted parameters. Thecifipation covers the
following components (more details about this sectan be found if8]):

* The algorithm for front-end feature extraction reate Mel-Cepstrum

parameters.

* The algorithm for extraction of additional paramsieviz., fundamental
frequency FO and voicing class.

* The algorithm to compress these features to proddmwer data
transmission rate.

* The formatting of these features with error pratectnto a bitstream
for transmission.

* The decoding of the bitstream to generate the feont features at a
receiver together with the associated algorithms dbannel error
mitigation.

» The algorithm for pitch tracking and smoothing he tback-end to

minimize pitch errors.
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» The algorithm for speech reconstruction at the kawk to synthesize
intelligible speech.

For some applications, it may be necessary to stnamt the speech

waveform at the back-end. Examples incly8é,

* Interactive Voice Respons@VR) services based on the DSR of
"sensitive" information, such as banking and brager transactions.
DSR features may be stored for future human vetibo purposes or to
satisfy procedural requirements.

* Human verification of utterances in a speech damlzallected from a
deployed DSR system. This database can then betasedrain and
tune models in order to improve system performance.

» Applications where machine and human recognition @ixed (e.g.
human assisted dictation).

In order to enable the reconstruction of speechefmn at the back-end,
additional parameters such as fundamental frequéiR@y and voicing class
need to be extracted at the front-end, compresaad, transmitted. The
availability of tonal parameters (FO and voicingasd) is also useful in
enhancing the recognition accuracy of tonal langsage.g. Mandarin,
Cantonese, and Th48].

Input

speech ) -
—>{ ADCHOﬁcom } Framing PE H W H FFE MF }»*{ LOGH DCT‘

r
o
E
5
B
MECC

‘ Feature Compression

)

Bit Stream Formaltting
Framing

v
To transmission channel

Figure 19: Block diagram of the front-end algoritspecified in specification
ETSI ES 202 2113]
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1.4.5.1.4 Extended Advanced Front End Specifications, ETSI ES 202 212
This standard is for an extended advanced DSR-&odt(XAFE). This

standard simply comprises the advanced and extefided end features
together, where background noise enhancementsceled (sed.4.5.1.2) in
addition to tonal language and back-end reconstruciupport (seé.4.5.1.3).
The specification covers the following componentoie details about this
section can be found [B]):
* The algorithm for advanced front-end feature exibacto create Mel-
Cepstrum parameters.
* The algorithm for extraction of additional paramsteviz., fundamental
frequency FO and voicing class.
* The algorithm to compress these features to prodd®wer data
transmission rate.
* The formatting of these features with error pratecinto a bit stream
for transmission.
 The decoding of the bit stream to generate the rambah front-end
features at a receiver together with the assoceltgatithms for channel
error mitigation.
* The algorithm for pitch tracking and smoothing he tback-end to

minimize pitch errors.
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Chapter 2
2 Design of VLSI Systems

In this chapter, the Very Large Scale Integratidil) digital design
styles forDigital Signal ProcessingDSP) applications are introduced. Digital
signal processing systems are required to perfontensive arithmetic
operations such as multiplication, division, trigametric operations, non-linear
operations like natural logarithms calculationgpeprotection and correction
calculations likeCyclic Redundancy ChediCRC), Fast Fourier Transform
(FFT),.. etc. These tasks may be implemented osrgépurpose processors or
custom integrated circuits. Also, DSP applicatiars required to be performed
in real-time, that is, it has a certain deadlineetad before. Finally, DSP
applications are usually deployed nowadays in Hald- mobile and
embedded devices, so power consumption, cost amal @sage efficiency
factors are essential to DSP applications. Thecseteof appropriate hardware
Is determined by many factors, like the applicatdomain, cost, power
consumption, or combination of all of these. Thiguter introduces different

digital hardware implementations for DSP applicasio

First, the general design flow and hierarchy of VLS/stems are
introduced. Then, different hardware options for PD@&pplications are
presented; which are:

Digital Signal ProcessoréDSP)
Field Programmable Gate Array$PGA)
Application Specific Integrated CircuiASIC)
For each design style of the above, its differgpes, different architectures

and classifications, design flow are presented.
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2.1 VLS| Design Flow

The design process, at various levels, is usuathjugionary in nature. It
starts with a given set of requirements. Initiasida is developed and tested
against the requirements. When requirements arenagtthe design has to be
improved. If such improvement is either not possibl too costly, then the
revision of requirements and its impact analysisthe considered. The Y-
chart (first introduced by D. Gajski) shown in Figw2l illustrates a design
flow for most logic chipq12], using design activities on three differeneax

(domains) which resemble the letter Y.

Behavioral
Domain

Structural
Domain

Processor Algorithm

Leaf Cell

Flacemant

bodule
Placameant

Geometrical Layout
Domain

Figure 21: Typical VLSI design flow in three domsifY-chart representation)
[12]

The Y-chart consists of three major domains [2ineky:

- Behavioural domain,
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Structural domain,

Geometrical layout domain.

The design flow starts from the algorithm that déss the behaviour of
the system. The corresponding architecture of thegssor is first defined. It is

mapped onto the chip surface by floor planning.

The next design evolution in the behavioural dona@efinesFinite State
Machines(FSM) which are structurally implemented with funaial modules
such as registers amgtithmetic Logic Units(ALU). These modules are then
geometrically placed onto the chip surface us@gmputer Aided Design
(CAD) tools for automatic module placement followag routing, with a goal

of minimizing the interconnect area and signal gela

The third evolution starts with a behavioural ma&ddéscription. Individual
modules are then implemented with leaf cells ordagtes. At this stage the
chip is described in terms of logic gates (leats}ewhich can be placed and

interconnected by using a cell placement & roupnggram.

The last evolution involves a detailed boolean dpson of leaf cells
followed by a transistor level implementation adfieells and mask generation.
In standard-cell based design, leaf cells are @yrgae-designed and stored in a

library for logic design use [2].
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Figure 22: A more simplified view of VLSI desigrofl/ [2]

Figure 22 provides a more simplified view of theMLdesign flow, taking into
account the various representations, or abstractandesign - behavioural,
logic, circuit and mask layout. Note that the viedafion of design plays a very
important role in every step during this procedse Tailure to properly verify a
design in its early phases typically causes siganfi and expensive re-design

at a later stage, which ultimately increases time-io-market [2].

Although the design process has been describethearl fashion for
simplicity, in reality there are many iterationsckaand forth, especially
between any two neighbouring steps, and occasioaaén remotely separated

pairs. The transition step from level to the lowgecalledSynthesisand from
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lower to higher is called/erification or Simulation The transition from the
Algorithmic to the FSM level is calletligh Level SynthesisThe transition
from the Modular (usually called RTL) level to thate level is called.ogic

SynthesisThe later is now automated to be done by the mmodgnthesisers

for Hardware Descriptive Languagdéike VHDL or Verilog.

Although top-down design flow provides an excell@gsign process
control, in reality, there is no truly unidirect@ntop-down design flow. Both
top-down and bottom-up approaches have to be cadbiRor instance, if a
chip designer defined architecture without closetinedgion of the
corresponding chip area, then it is very likelyttktze resulting chip layout

exceeds the area limit of the available technology.

2.2 Hardware Design Styles for Digital Signal Processing Applications

Several design styles can be considered for chipleimentation of
specified signal processing algorithm. The différdasign styles vary from
General Digital Signal Processor, Programmable &vior Application
Specific Integrated Circuit. Each design style hts own merits and
shortcomings, and thus a proper choice has to loke oy designers in order to

provide the functionality at low cost.

Hardware Design Styles
For Signal Processing

Applications
General Digital Signal Application Specific Programmable
Processor Integrated Circuit Devices
Standard Cell/ Structured
General Digital Full Custom Cell Based IC ASIC FPGA PLD
Purpose uC/ Signal
ubP Processor

Figure 23: Hardware Design Styles for Signal PrsicgsApplications
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The above design styles spans the spectrum fronerglempurpose
platform (DSP), passing by Semi- Custom PlatforrRGR), to full custom
platform (full custom ASIC). In the following seohs each style is presented.

In the following sections, the following design sty are discussed in more
details:

» Digital Signal ProcessoréDSP)

* Field Programmable Gate Array§PGA)

» Application Specific Integrated Circui&SIC)

2.2.1 Digital Signal Processors

Digital signal processors differ from genera pug@socessors in that
they are customized to certain application domarhjch is digital signal
processing. Its architecture is very different frangeneral purpose Von
Neumann architecture to accommodate the demandsealftime signal
processing. When first developed in the beginnirigthe 80’s, the main
application was filtering. Since then, the archiiees have evolved together
with the applications.

DSP processors were originally developed to implgmeaditional
signal processing functions, mainly filters, such EIR’s and IIR’s. These
applications decided the main properties of the gmmmable DSP
architecture: the inclusion of a multiply- accumalainit (MAC) as separate
data path unit and Harvard or modified Harvard menaochitecture instead of

Von Neumann architecture as will be discussed.later

2.21.1 Classification of Digital Signal Processors Architetures

The fundamental property of a DSP processor is ithases Harvard or
modified Harvard architecture instead of Von Neumarchitecture. The main
operation in most DSP application is the multiplydaaccumulate (MAC)
operation done on the data and the coefficienheffilter. The different DSP
architectures try to reduce the time needed talirhis operation. The DSP

architectures according to the MAC unit time are:
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» Harvard Architecture: uses different buses for program and data
memories, which reduces the MAC time.

* Modified Harvard Architecture (Conventional DSHhe “Fetch” phase
of the MAC instruction is kept in cache, which reds the access to the
instruction memory, and gets the MAC time to onhga@ycle.

e Super Harvard Architecture (SHARQG)ses two data buses. SHARC is
a trade name of Analog Devices.

 Enhanced DSP Architecturét tries to reach two MAC operations in
one cycle. This can be accomplished in many wags; eikample,
pipelining between the multiply and accumulate apens could
achieveone MAC at double speelly performing the multiplication of
the current MAC in the same time of performing #uklition of the next

one.

2212 DSP Design Flow

A generalized DSP system design process is illigstran Figure 24
(refer to[11]). For a given application, the theoretical s of DSP system
specifications such as system requirements, s@mallysis, resource analysis,

and configuration analysis are first performededirte system requirements.
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Figure 24: DSP Design Flojg1]

The DSP design flow starts with analysing the systequirements
specifications. Then the system is characterizedhieyembedded algorithm
derived from the system requirements analysis stepch specifies the
arithmetic operations to be performed. The algarifor a given application is
initially described using difference equations aynal-flow block diagrams
with symbolic names for the inputs and outputsddeumenting an algorithm,
it is sometimes helpful to further clarify whichputs and outputs are involved
by means of a data-flow diagram which specifiesrdwiired steps in order to
derive the outputs. There are two methods of chenamg the sequence of
operations in a program: flowcharts or structuresbadiptions. High-level
languages DSP tools (such as MATLAB, Simulink, é€C€+) are used at the
algorithm level, since they are capable of algaomititlevel system simulations.

We then implement the algorithm using softwaredhare, or both, depending
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on specific needs. After the system componentgeady they are integrated

and tested, then the whole system is validate@ teleased.

DSP

algorithms

MATLAB or C/C++

ADC r DAC
" Data . DSP | Data [
files software files ,
Other T | l Other
cmnputers Co]"nputers
Signal generators Analysis

Figure 25: DSP simulation environmei ]

A DSP algorithm can be simulated using a genergbgse computer so
that its performance can be tested and analyzdulogk diagram of general-
purpose computer implementation is illustratedigufe 25 (refer t¢11]). The
test signals may be internally generated by sigeakrators or digitized from a
real environment based on the given applicationremeived from other
computers via the networks. The simulation progteses the signal samples
stored in data file(s) as input(s) to produce ougpgnals that will be saved in
data file(s) for further analysj41].

Advantages of developing DSP algorithms using aeg@fpurpose

computer ar¢ll]:

1. Using high-level languages saves algorithm devetpntime and
facilitates testing and debugging. In addition, pnetotype C programs
used for algorithm evaluation can be ported toedéght DSP hardware
platforms.

2. Input/output operations based on disk files argpknmo implement and
the behaviours of the system are easy to analyze.

3. Floating-point data format and arithmetic can bedusor computer
simulations, thus easing development.

4. Further, fixed point simulation tool boxes exist MATLAB or

Simulink.

42



2.2.2 Field Programmable Gate Arrays

A Programmable Logic DevicéPLD) is digital circuit that performs

reconfigurable or programmable logic function. Walia logic gate, which has

a fixed function, a PLD has an undefined functionha time of manufacture.

Before the PLD can be used in a circuit it musphbmgrammed or configured.

PLDs exist in many forms:

ROM as PLDwhere logic functions are stored in ROM.
Programmable Array Logic (PALwhere logic functions are obtained
by “sum-of-product” fashion, with fixed-OR plane daprogrammable-
AND plane.

Generic Array Logic (GAL)same as PAL, but can be reprogrammed
and erased.

Complex Programmable Logic Device (CPLB&me as PAL and GAL
but with larger size (few hundreds logic gates).

Field Programmable Gate Arrays (FPGAthey are two dimensional
arrays of logic blocks and flip-flops with electlty programmable
interconnections between logic blocks. The intenemtions consist of
electrically programmable switches; which is whyGZP differs from
Custom ICs which have hard-wired interconnectiorsciv cannot be

re-programmed.
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Figure 26: FPGA general internal structure

Routing in FPGAs consists of wire segments of vagyengths which
can be interconnected via electrically programmabligches. Density of logic
blocks used in an FPGA depends on length and nuaflere segments used
for routing. Number of segments used for intercatine typically is a trade
off between density of logic blocks used and amadigirea used up for

routing.

FPGAs were introduced as an alternative to custdds Ifor
implementing entire system on one chip and to pl@vilexibility of re-
programmability to the user. It reduces the timartarket and significantly
reduces the cost of production. Another advantddgeP&@As over Custom ICs
is that with the help o€omputer Aided DesigCAD) tools circuits could be
implemented in a short amount of time (no physiagbut process, no mask

making, no IC manufacturing).
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2.2.2.1.1 Classification of FPGA

Field programmable gate arrays can be classifierdog to three

different criteria detailed in the next sections.

2.2.2.1.1.Main Logic Block Type Classification

This is the main building block that performs thgit functions. Logic

blocks of an FPGA can be implemented by any ofdhHewing:
o Transistor pairs

Combinational gates like basic NAND gates or XORega
N-input Lookup tables
Multiplexers
Wide fan-in AND-OR structure
Size of the block decides the density and utilaatof the FPGA

© O o o

resources (smaller size means higher density attel logilization).

2.2.2.1.1.FPGA Architecture Classification

Basic structure of an FPGA includes logic elemepi®grammable
interconnects and memory. Arrangement of these kblos specific to
particular manufacturer. On the basis of intermedragement of blocks FPGAs

can be divided into three classes:

2.2.2.1.1.2.1Symmetrical Array

This architecture consists of logic elements (LEamged in rows and
columns of a matrix and interconnect laid out betvéhem. This symmetrical
matrix is surrounded by I/O blocks which connecttat outside world.
Interconnects provide routing path. Direct intemects between adjacent logic

elements have smaller delay compared to generpbparinterconnect.
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Figure 27: Symmetrical Array

2.2.2.1.1.2.2Row Based Architecture

Row based architecture consists of alternating rofvibgic modules
and programmable interconnect tracks. Input anguiutlocks are located in
the periphery of the rows. One row may be connetteddjacent rows via
vertical interconnect.

. W Bk ] Fouling
Chenravade
N R [

1O ook

Li g4 0§ F 1L % 00 8 § 1 0 99 8 F 1§ FJ |

| II'II:III!IIiFIIIIIiIllllfb\'_-

C W0 Bk ]

Legio
Rlench gy

Figure 28: Row Based Architecture
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2.2.2.1.1.2.3Hierarchal PLD

This architecture is designed in hierarchical manweh top level
containing only logic blocks and interconnects. ledogic block contains
number of logic modules. Each logic module has doatbrial as well as
sequential functional elements. Communication betwdogic blocks is
achieved by programmable interconnects arrays.tlaptput blocks surround

this scheme of logic blocks and interconnects.
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Figure 29: Hierarichal PLD

2.2.2.1.1.3rogramming Technology Classification

The first type of user-programmable switch devetbpeas thefuse (still
used in some smaller devices). For higher densg@lyices, where CMOS
dominates the IC industry, different approaches implementing
programmable switches have been developed. Thrger npaogramming
technologies are used nowadays:

* Floating Gate Programming Technology

* SRAM Programming Technology

» Anti-Fuse Programming Technology
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2.2.2.1.2 Design Flow of FPGA Systems
Figure 30 shows the general FPGA design flow.

System Specification

System-Level Design
]
Behavioral Description

High-Level Synthesis
1[
ETL Description

Logic Svnthesis

r

Gate Level Description

Lavout Synthesis

I

Physical Layout

Figure 30: FPGA Design Floji.3]

Generic design flow of an FPGA includes followirtgyss:
System Specification:in this step, the designer analyses the system
requirements and make the hardware-software disioly; that is, to
decide which parts of the system shall be doneamware (FPGA) and
which shall be done in software. Having hardwarg ppecified, the
system requirements for hardware should be cleategign the chip
according to those requirements.
RTL/ HDL Description: at this step, the hardware is described, either
using schematic representation or Hardware Desamiptanguages
(HDLSs) like Verilog or VHDL.
Logic Synthesis:this is to transfer to the gate-level from tRegister
Transfer LanguagéRTL) level. In other words, to implement the dgsi

on a given FPGA. CAD tools automate this step.
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Place and Route:Implementation includes partition, place and route
The output of design implementation phase is Ibgash file. This step
Is automated with CAD tools.
Circuit Verification: Bit stream file is fed to a simulator which
simulates the design functionality and reportsrsrio desired behavior
of the design. Timing tools are used to determireximum clock
frequency of the design. Now the design is loadimjo the target
FPGA device and testing is done in real environment
As appears from the above steps, followirggic Synthesistep, all steps
are automated, which is a major advantage of FP&#gd flow, where
CAD tools are available to do most of the workylag the design burden

on the designer. This is not the case of CustomieN&lopment.

2.2.3 Application Specific Integrated Circuits
An Application-Specific Integrated Circuit (ASICk ian Integrated

Circuit (IC) customized for a certain target apation, rather than intended for
general-purpose use. This definition includes FRGA To differentiate ASIC
from FPGA, most designers use ASIC only for nondfiprogrammable
devices. ASIC usually provides less cost, less pawsasumption than FPGA
and DSP, in addition to their high Intellectual pedy (IP) design security,
where it is much harder to reverse-engineer ASI€lgie This comes on the

cost of hard and long development cycle.
2.23.1 Classification of ASIC

2.2.3.1.1 Standard Cell/ Cell Based IC

Every ASIC manufacturer creates ready made funatitmocks with
known electrical characteristics, which the desigra use directly. The RTL
code is mapped to these pre-defined standardaefilsed by the manufacturer

at the Logic Synthesis step.
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Standard cell design is the utilization of thesenctional blocks.
Standard cell design fits between gate array aladistom design in terms of

both its NRE (Non-Recurring Engineering) and reicigricomponent cost.
2.2.3.1.2 Gate Array ASIC
In gate-array-based ASIC, transistors are predefamethe silicon wafer, where:

» Base cell is the smallest element that is replicate

* Base array is the predefined pattern of transistors

It is calledMasked Gate ArrayMGA) when only layers which define the
interconnect between transistors are defined bydésigner using custom
masks. Designer chooses from a gate-array libragy gesigned and pre
characterized logic cells (often called macros)eréhare three types of this

style:

2.2.3.1.2.Channeled Gate Array
In this type, we leave space between the rows asfststors for wiring. Its
characteristics are as follows

* Only interconnect is customized

* The interconnect uses predefined spaces between row

* Manufacturing lead time is between 2 days and Xwee

O OO0 00000000000000

OO0 0000000000000

100 0000 0000000000000C:

Figure 31: Channeled Gate Array
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2.2.3.1.2.Zhannel less Gate Array

In this style, there are no predefined areas sdedsr routing between
cells. We customize the contact layer that defitines connections between
metall and transistors. The characteristics ofdtyie are:

* Only some (the top few) mask layers

are customized — the interconnect
* Manufacturing lead time is

between 2 days and 2 weeks

0O OO0 00000000000000

base cell

fiaree
1]

s

aray of
baze cell
{nat all
shawn)

1000000 00000000 000000

000000 0000000000000

O000000000000000000

Figure 32: Channel-less Gate Array

2.2.3.1.2.3tructured/Platform ASIC

Structured (also referred to as Platform) ASIC giess a relatively new
term in the industry. The motivation to this stidethat other gate arrays have
only fixed gate-array base cell; which is difficuland inefficient
implementation, so we set aside some IC area aditate it to a specific
function (which can contain different cells, moretable for building memory
cells, for example, or complete block, such as aracontroller). This
technology is seen as bridging the gap betweed-fimdgrammable gate arrays
and standard-cell ASIC design.

O OO0 000000000000 00

embeddead
block

array of
base cell=
{rot all
shown)

100 000000000000000000

10000000000 0000000 00

OO0 0000 0000000000000

Figure 33: Structured ASIC
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Structured ASIC design has the following advantages

Small non-recurring expenditures (NRE) due to tesgtom-produced
metal layers.

Other gate arrays focus on lowering the turnardimd and mask set
cost by making predefined metal layers, in additmthat, structured
ASIC reduces the design time by having blocks etlpfined
characteristics. For example, in a cell-based ta-garay design the user
often must design power, clock, and test structtiresiselves; these are
predefined in most structured/platform ASICs aretéifiore can save
time and expense for the designer compared to gdéterarray
techniques.

Structured ASIC encourages Intellectual PropeRy ¢lores re-use by
embedding them in the reserved wafer area. For pbeam complete
ARM processor, USB driver,..etc can be embedded@msked with no

extra effort.

The Altera technique of producing a structured &8IC where the cells

are the same design as the FPGA, but the progralamaiiting is replaced

with fixed wire interconnect is called HardCopy. eTtXilinx technique of

producing a customer specific FPGA, that is 30%%7ess expensive than a
standard FPGA and where the cells are the saméaeadPGA but the

programmable capability is removed, is called Easly[8]

Modern VLSI design flow consists of FPGA prototyped then automatic
migration (through EDA and CAD tools) to structuréd®&IC device that

corresponds to the FPGA device used in the progotyfgration effort is often

small or negligible, since FPGA manufacturers pileviree migration services

and physical verification of the final ASIC verdihe prototype in case of large

production volume requested.
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2.2.3.1.3 Full Custom IC

Full-custom ASIC design defines all the photo Ighaphic layers of the
device. The benefits of full-custom design usualiglude reduced area (and
therefore recurring component cost), performanceravements and also the
ability to integrate (include) analog componentsl ather pre-designed (and
thus fully verified) components such as micropreoescores that form a
System-On-Chip (Sod¥].

The disadvantages of full-custom can include insedamanufacturing
and design time, increased non-recurring engingeasts, more complexity in
the Computer Aided Design (CAD) system and a mudghdr skill
requirement on the part of the design team. Howéwedigital only designs,
"standard-cell* cell libraries together with mode@AD systems can offer

considerable performance/cost benefits with lok{6
2.232 Cell libraries, IP-based design, hard and soft maas

Cell libraries of logical primitives are usually gided by the device
manufacturer as part of the service. Although télyincur no additional cost,
their release will be covered by the terms of a Nsclosure Agreement
(NDA) and they will be regarded as intellectual gedy by the manufacturer.
Usually their physical design will be pre-definesl o they could be termed

hard macro$6].

But what most engineers understand as “intellegwaperty" are IP
cores, designs purchased from a third party asceuiponents of a larger
ASIC. They may be provided as an HDL descriptioftefo termed a Soft
Macro), or as a fully routed design that could b@ntpd directly onto an
ASIC’s mask (often termed a Hard Macro). Many oigations now sell such
pre-designed IP, and larger organizations may faventire department or
division to produce such IP for the rest of theamigation. For example, one

can purchase CPUs, Ethernet, USB or telephonefants. Soft Macros are
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often process independent; i.e., they can be fafadlc on a wide range of
manufacturing processes and indeed different matwis. Hard Macros are
process limited and usually further design efforsinbe invested to migrate

(port) to a different process or manufactyggr
2.233 Design Flow of ASIC
Broadly used ASIC design flow can be divided irdtdwing:

System Requirements Analysis and Specificatiofhis is the same as
in FPGA design flow.

RTL Description: This is the same as in FPGA design flow.
Functional Simulation/Verification: Here the RTL description is
tested for functional correctness.

Logic Synthesis:This is the same as in FPGA design flow.

Design Verification: Formal verification methods are used to test the
functional correctness of gate-level netlist. Tregfiunctional
correctness involves testing an optimized desigmnaga golden design
description.

Layout: This phase involves floor planning. Placement ¢isaan the
chip area. Placement of Input/Output pads on thgatea. Clock tree
synthesis is performed in order to minimize spawk@ower consumed

by clock signal. Placement and routing is carriatlam this design.
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Chapter 3

3 Comparative Study of VLSI Design Styles for

Front End Speech Processor

In this chapter, a comparative study is made betwieee suggested

hardware design styles for the speech front endgssor, which are:

» Digital Signal Processors

* Field- Programmable Gate Arrays

» Application Specific Integrated Circuits.

The target of the comparison is to reach the bastvare platform for the

front end speech processor.

The points of comparison are as follows:

* The Non- Recurring Engineering\NRE) Cost is the cost paid once for
the first design to be accomplished. This is déferfrom the production
cost, which is paid every time a unit is producgd:omparison is made
to target this important point.

* The re-programmability is ability to modify or adew features to the
design after it is being downloaded to hardwardf@ien. The cost of
this modification varies form one style to anothEhnis is an important
point to be addressed while choosing a certainvireel platform.

* The production cost in each style.

* The available hardware resources in each styletargiitability to the
required resources for the front end speech process

* The available hardware internal memory in eachestyid its suitability
to the required memory needs for the front end @ppeocessor.

» The speed limits in each style and its suitabilioy the required

processing time for front end speech processor.
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 The power consumption in each style is also an rapbd point of
comparison, where it gives a good indication on gheability of this
style to be used with hand—held or battery poweradces.

» Also, it is important to consider the required proton volume while
choosing a platform; hence, a comparison is madm fthe required
production volume perspective between the sugggsétebrms.

The comparison is held on two dimensions. The fgdbetween different
designs styles mentioned above. The second dimensibetween different
models and manufacturers of each style alone,ighi®ne only when there is
difference between various models concerning theesponding point of
comparison. The comparison is supported with ngalrés from the available
platforms in the market today. At the end of themparison, a brief
comparison table is made, and a conclusion is debvanit the best design style

for the front end processor.

3.1 Design Time and Non- Recurring Expenditures Cost (NRE)
Comparison

The Non- Recurring Expenditure@NRE) Cost is the cost paid once for
the first design to be accomplished. This is dé@fgrfrom the production cost,
which is paid every time a unit is produced. To radd this point of
comparison, the design flow of every style showdrévisited, and compared
to the design flows of the other styles; this is€lto be able to identify extra or
time consuming steps of each design style.

Digital signal processors offer the least desigmetiand shortest design
flow. In general, moving to custom designs (likdl-twstom ASICs) will
increase the design performance, but on the othed,hit will increase the
design time and effort. This is shown in Figure &4jch makes FPGA better
in terms of shorter design Time than ASIC desidme §ap between FPGA and
ASIC design times can be reduced by using FPGApfototyping and then
migrating to structured ASIC in production, wheregration requires less

effort and time than full-custom ASIC design.
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Figure 34: Customization increases the design time

3.2 Re-Programmability Comparison

This feature is highly required for designs tha& aot stable, or subject to
modifications all the time. Also, upgrading a desigdding new features, or
embedding a design in a larger requires having hregbrogrammability at the
lowest possible cost.

General purpose DSPs are the most flexible desydm ® modifications
and updates, since its development nature is stvir®® GAs are more flexible
than ASICs. So, it is recommended that if the desig subject to
modifications, addition of features, or extensionhigher versions, then use
DSPs or FPGAs rather than ASICs. In case of mignato structured ASIC,
the design must be highly stable in the FPGA pypiwtstage before put in

production.

3.3 Resources Comparison

In most DSP applications, the main operation is Mhdtiply- And —
Accumulatg MAC), hence, the main resource in the DSP pramasshe MAC
unit. Other resources are also important, likeddahifter, ALU...etc.

In case of FPGA or ASIC, we mean by resources tted humber of
gates or logic elements, the available dedicatedtiphers, the available

registers...etc.

57



The following sections will show some samples @ #évailable platforms
in the market today, and their corresponding fesstur

3.3.1 Digital Signal Processor

Table 1 shows sample DSPs capabilities in the matkgether with their

manufacturers:
Manufacturer | Family Peak Total ROM Frequency
MMACs | RAM

(Program

+ Data

RAM)
Texas TMS320C54x| 50 16 KB 8 KB 50 MHz
Instruments
Texas TMS320C55x| 320 32 KB 32 KB | 300 MHz
Instruments
Analog SHARK 300 125 KB 375 KBl 150 MHz
Devices
Analog ADSP-218x NA 256 KB NA 80 MHz
Devices
Free Scale DSP56300 80-100 24KB NA 80-100

MHz

Table 1: Sample Digital Signal Processors and feaiures

Study of porting the front end processor to DSRf@ien was done,
where onlyone available MAC unit was assumed with no pipelinbegween
stages. Conventional DSP was assumed (one MACIpek cycle). From the
Table 1, it is very clear that any DSP processataias more than one MAC
unit, which exceeds the needs of the front endgs®ar. This enables addition
of new features or modules from a larger speechgmton system on the
same DSP processor.
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3.3.2 Field Programmable Gate Arrays

Table 2 shows sample FPGAs and their corresporadipgbilities:

Manufacturer | Model Number | Total RAM | Dedicated | Frequency
of (distributed | Multipliers
Gates/ | and Block)
Cells

Xilinx Virtex-5 330,000 | 150 KB - | 32to 640 * | 550 MHz
Cells 1 MB (25X 18

Multipliers)

Xilinx Virtex-E 58 K—4|10 KB — NA 130- 240
M Gates| 800 KB MHz
1728-
73,000
Logic
Cell

Xilinx SPARTAN- | 50K- 7 KB- 3to32* 5-250

3A 1400K |72 KB (18 X 18 MHz
Multipliers)

Altera Stratix Il | 47,000- | 330 KB- 216 to 576 | 600 MHz
338,000 | 2.8 MB *
Logic (18 X 18
Cells Multipliers)

Altera Cyclone lll | 5,000- |52 KB- 23 t0 288 * | 260 MHz
119,000 | 486 KB (18 X 18
Logic Multipliers)
Cells

Table 2: Sample FPGAs and their features

Rough estimation of the required resources forftbet end algorithm

showed that the total required resources can efiisitya 10-20K gates FPGA

chip. From Table 1 and Table 2, it is clear thasthrequirements are met.
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Some of the above FPGAs have much higher capabilitian required,

which can used to implement extra features or nesdul

3.3.3 Application Specific Integrated Circuits

For full-custom and cell-based designs, the resgsuate customized by
the designer to the application needs. For stradtuASICs, usually the
resources of the FPGA used in the prototype desitinimit the final design

resources.

3.3.4 Conclusion

From the above results, it is clear that the resglinesources for the front
end processor can be met in the three design stdsdy. However, some
styles capabilities might exceed the required regs) in which case adding

extra modules and extension to larger parts ofdpescognition system done.

3.4 Processing Time Requirements Comparison

The timing requirements of the front end specifiethe Aurora standard
are relaxed, where the effective frame rate is #n$€s will be discussed later
in the System Design and Implementation chaptencegethis can be easily

achieved in any of the three design styles.

3.5 Memory Requirements Comparison

Table 1 and Table 2 show the available internal R&M ROM for DSP and
FPGA styles. For ASIC style, it will be assumed&the same as FPGA. From
Table 2, the total internal RAM in the shown FPGAsge from 16 to 256 KB
(including program and data memories). And for RQM range is from 8 to
375. From Table 1, the total internal RAM in the®frocessors shown range
from 7KB to 1 MB.

Initial estimation of the required RAM and ROM neddr the front end
processor showed that about 4 to 6 KB of RAM aB4of ROM are needed.

It is clear that these requirements are met easilgny of the three design
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styles, and extra memory is available for extensioaddition of extra speech

recognition modules from a larger speech recogniigstem.

3.6 Power Consumption Comparison

The power consumption issue is very vital, espBciahen addressing

hand-held or battery powered devices. Types ofgp@onsumption are:

« Static power is the power consumed by a device whes in its
quiescent condition with no input signals beingredsed. It is also
referred to as steady-state or standby power. baytls 90 nm
technology devices, leakage currents in the treorsisare the biggest
contributors to static power. This is usually theykparameter of
concern to designers of portable equipment becafises effect on
battery life, especially for devices that spenddéaamounts of time in a
standby condition waiting for input from the outsigorld.

« Dynamic power is the power consumed during nornperation. It is
also referred to as operating power. Dynamic powetependant on
operating signal frequency; interconnect capacéarand operating
voltage. Because the voltage dependency is a sduaction, the
reduction in voltage when moving to 90 nm devicas kubstantially
reduced operating power in many devices. Howe\ar |drge, high-
performance systems with high operating frequenadgeamic power
is still a significant component of total systenwgo.

* In-rush power is the power required at device pewgerlt is also
referred to as power-up or start-up power, or pesvesurge power (or
current). Some devices require many times more pawebegin
operation than they do during normal operation,rehg placing
demands on system power supplies. In a consumé&nsywith very
tightly controlled power supply size and cost, eimgu that in-rush
power is not more than normal operating powerkeydesign goal.

It is of no doubt that moving towards customizatimproves performance

and reduces power consumption, hence, full-cust@iCA will be at the top
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most side of the spectrum, while general purpose @8 lie at the other side

of the spectrum.

3.6.1 Digital Signal Processor

General purpose DSPs are in general consuming rigbwer than
FPGAs and ASICs. Hence, most of the applicatioas ukilize DSP processors
use chargeable batteries, and suffer from leserydite. Power dissipation of
an FPGA design is typically about 20% of a micragssor based design

working at the same sample rate.

3.6.2 Field Programmable Gate Arrays

The main sources of power consumption in FPGA are:
e Inrush - power-up consumption, which is very higin SRAM based
FPGAs. No Inrush power-up consumption for Anti-fuse
« Standby — no switching activity but power is onisliarge for SRAM
FPGAs due to large number of SRAM cells.
« Dynamic — consumption during normal operationslproportional to
the frequency of charging and discharging of irgérmparasitic

capacitances.

3.6.3 Application Specific Integrated Circuits

One of the most important motivations towards cmgtation is to
reduce power consumption. In full-custom ASIC desitpe designer designs
his own cells, with the required power charactmsstIn cell-based, the
standard cells with power characteristics that mathe system power
consumption requirements are chosen carefully koege the minimum level
of power consumption.

Structured ASIC designs are estimated to lowerptheer consumption

by around 50 % compared to the FPGA that was usptbtotyping.
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3.6.4 Conclusion

It is of no doubt that moving towards customizatiomproves
performance and reduces power consumption, henllegustom ASICs will
be at the top most side of the spectrum, while gérmirpose DSP will lie at

the other side of the spectrum.

3.7 Production Volume and Unit Cost Comparison

We mean here by production cost: the cost of onteafter design is stable
and finished. This cost varies from one designestgl another, and in some
design styles, the cost of the design prototygbassame as the produced unit
cost, like FPGA and DSP styles. In the next sesti@nsample of the unit cost
of the available units in each design style inrttegket today is presented. Two
important notes are to be considered:

* The prices given are restricted only to the daterr@ing this document.

* Only the units that meet the required needs forgbeech front end

processor are given here.

Also, for ASIC style, the production volume is aimaoint while talking
about cost, so, a detailed comparison between thenoim business size (i.e.
production volume) and the corresponding cost irffedint ASIC

manufacturers is made.

3.7.1 Digital Signal Processor

Table 3 shows a sample of the prices of the availab

DSP processors in the market today, together Wwéir thanufacturers:

Manufacturer Model Price
Texas Instruments TMS320C54x $4.00
Texas Instruments TMS320C55x $5.25
Analog Devices ADSP-218x $ 33.00
Analog Devices SHARK $7.22
Free Scale DSP56300 $45.00

Table 3: DSP Processors Prices
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3.7.2 Field Programmable Gate Arrays

Table 4 shows a sample of the prices of the aVaill&BPGAs in the market

today, together with their manufacturers:

FPGA Model Manufacturer | Supplier Price
Virtex-5 XC5VLX30 Xilinx Avnet Electronics | $250.000
www.em.avnet.com
Virtex-5 XC5VSX95T | Xilinx Avnet Electronics | $2,735.000
www.em.avnet.com
Virtex-E XCV50E-6 Xilinx Avnet Electronics | $26.000
www.em.avnet.com
Virtex-E XCV200E Xilinx Avnet Electronics | $83.000
www.em.avnet.com
SPARTAN | XC3S50AN Xilinx Avnet Electronics | $14.000
3AN www.em.avnet.com
SPARTAN | XC3S1400AN | Xilinx Avnet Electronics | $91.000
3AN www.em.avnet.com
SPARTAN | XC3S400AN | Xilinx Avnet Electronics | $45.000
3AN www.em.avnet.com
SPARTAN | XC3S400A Xilinx Avnet Electronics | $31.000
3A www.em.avnet.com
SPARTAN | XC3S200A Xilinx Avnet Electronics | $22.000
3A www.em.avnet.com
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FPGA Model Manufacturer | Supplier Price
SPARTAN | XC3S50A Xilinx Avnet Electronics | $12.000
3A www.em.avnet.com
SPARTAN-| XC3SD1800A | Xilinx Avnet Electronics | $147.00
3A DSP www.em.avnet.com
SPARTAN-| XC3SD3400A-| Xilinx Avnet Electronics | $202.00
3A DSP 4CS484LI www.em.avnet.com
Stratix Il EP3SL150 Altera Altera $2,184.000+
www.altera.com | $3,352.000
Stratix Il EP2S3 Altera Altera $258.000-
www.altera.com | $339.000
Cyclone Ill | EP3C5 Altera Altera $12.000-
www.altera.com | $17.000

Table 4: FPGA Unit Prices
From Table 4, it is clear that Cyclone IIl from é&ta, and SPARTAN

3A from Xilinx are the most cost effective FPGAs.

However, migration to ASIC using Hardcopy devicesnf Altera, or
EasyPath devices from Xilinx can reduce the urst ty 10-90%.

3.7.3 Application Specific Integrated Circuits

Table 5 shows the details of production cost andme when converting a
design from prototype FPGA/ PLD to structured ASIC:

Company Minimum Estimated | Time to Timeto |Timeto
Business per-unit complete | first production
Size price conversion| prototype | units
savings
over
FPGA/PLD
Altera NA 10-90% NA NA NA
Xilinx NA 30-70% NA NA 8-12 weeks
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$250,000.000 50-80% 3-4 weeks| 3-4 weeks weeks
Atmel
Orbit $40,000.000 | $5- $50 1- 4 weeks 2-4 weeBs8 weeks
Semiconductor
S-MOS 10,000 units 2-3 weeks | 20 days 8-12 weeks
Systems Inc

Table 5: FPGA/PLD to ASIC conversion cos4]

Table 6 shows the cost of Mask Programmable GatayAr(without FPGA

prototype):
Company Minimum Estimated | Time to Timeto | Time to
Business per-unit complete | first production
Size price conversion| prototype | units
savings
over
FPGA/PLD
Altera 10,000 units | 50-75% 2 weeks 4-5 weeks8 weeks
Xilinx 3000- 10,000| 20-80% 2-6 weeks| 3 weeks| 4-8 weeks
units
Lucent $250,000.000 10-90% 4-2 weeks| 2-6 week®-6 weeks
Technologieg
AMI 25,000 units | 25-45 % 2 days 7 weeks 6 weekg

Table 6: MPGA Cosfl4]

The minimum business size is the minimum numbeumfs orthe

minimum production cost. Altera device techniquenirFPGA to structured

ASIC is called HardCopy. In Xilinx a similar device called EasyPath, while

in Atmel; the similar device is called ULC.

3.7.4 Conclusion

For DSP case, the unit cost is nearly the samieagroduction cost. While for

FPGA, the unit cost is nearly the same as produciost, only when we do not
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consider migration to structured ASIC, in which egsroduction unit cost
reduces by 10-90%.

3.8 Brief Overall Comparison

Table 7 gives a summary of the points of comparisenween Digital Signal

Processors, Field Programmable Gate Array, Stredtdypplication Specific

Integrated Circuit and full-custom Application Sgecintegrated Circuit:

Short time | Medium time | Medium Long time
and low and cost time and and high
cost cost cost
High Limited None None
Metand | Met Met Met
exceeding
Metand | Met Met Met
exceeding
Metand | Met and Met and Met and
exceeding | exceeding exceeding | exceeding
Low- Low-Medium Low Low
Medium
Suitable Suitable if high Suitable if | Not suitable

capability high

FPGA is used | capability

FPGA is
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used

Production cost | Medium Medium-High | Low if high | Low if high
production | production

volume volume
Production Can be Can be small Required to Required to
volume small be high be high

Table 7: Brief overall comparison between the titegign styles

3.9 Conclusion

From the results obtained in the previous sectitwms,design approaches

are recommended for the front end processor system:

3.9.1 Using DSP Processor

This option has the following advantages:
» Short development time and less design effort.
* Flexibility to include extra modules on the samegassor to utilize the
extra resources.

And it has the following disadvantages:

* High power consumption, which reduces the possgibibf battery
powered solution, such that, the chip shall tale gobwer from a
rechargeable battery (like the one in PDA or moblig¥ice or even a
lap-top). In this case, it will not be possible ptace the front end

processor in the microphone piece, as it will regjtigh power source.

3.9.2 Migration from FPGA to Structured ASIC
This option has the following advantages:
* The same design steps as developing an FPGA ppeteine done with
no extra effort for migration.
 FPGA prototyping gives extra design flexibility bed¢ migrating to
structured ASIC. Also, the RTL prototype can be dusas an
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independent IP core (soft macro) that can be ireduals an embedded
block (System on Chip - SoC) in a larger systenegded.

» Lower unit Cost (10-90 % reduction over FPGA).

* Lower power consumption (around 50% power reductiban the
corresponding FPGA).

» Higher design security features of Systems on (Bgc).

And has the following disadvantages:
* Requires high production volume to be worth the cbsnigration.

* Less design flexibility, especially after the miyoa step.

The decision to take this option will be limitedtlwihe required production
volume. However, this design style will be adoptethis thesis because it has
the lowest power consumption, cost, and reliabitityd design security. In
addition, no extra effort or risk is added to migréo the ASIC solution of the
prototyped, well-tested design on the FPGA. Andalfip migration
technologies are available at most of the FPGA rfaaturers (like Altera
HardCopy and Xilinix EasyPath devices), so no mdtte choice of the FPGA

platform, a corresponding migration technologyasiky available.
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Chapter 4

4 System Design and Implementation

In this chapter, the system design of the front gpelech processor chip is
presented. First, the system limitations and camgs are listed, like time, cost
and power consumption constraints. The system cstamd dynamic
architectures are then presented, followed by tbmileéd design of each
module in the architecture, featuring the basicfwmality of the module, the
internal architecture, the configuration parametsignal widths justification
for the module internal signals, the module stataclime, the memory
requirements of the module and finally the chipgesaf that module.

Then the overall system performance is discussdwravthe resources
utilization and memory requirements on different GAP platforms are
presented. Also, the time and speed performantieedystem is described.

Finally, a theoretical study of the effect of rumé& configuration of
different parameters instead of the static conéigan of those parameters on
the system is presented, with the modified architec and the required
modifications in every component of the system.

Note that; this chapter contains information th&pehds on the system
specifications for the front end processor desdrigarlier in the thesis and as

specified in[2].

4.1 Design Constraints

In this section the time, cost and power constsaomn the design are

discussed in details.

4.1.1 Time Constraints

The number of samples per frame is N samples. idme shift interval

(difference between the starting points of conseeurames) is M samples.
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The parameter M defines the number of frames per ime. For more
information about this section, please e

The specific values of N and M depend on the sargplate according
to Table 8. The frame length is 25 ms for 8 andkl& sampling rates, and
23,27 ms for 11 kHz.

Sampling rate (kHz) foq =16 fop = 11 fg1=8
Frame length N (samples) 400 256 200
Shift interval M (samples) 160 110 80

Table 8: Supported Configurations Supported optj@hs
The 3 supported options provide different shift pas (M), different
frame length in samples (N) and different framesiwal. However, the frame
shift interval is constant in the three cases ajqubhkel10 ms. For example, for

the 8 kHz case the sample duration will be:

25ms

FrameLengtinTime _ mzo,lzs ms = 1/(8 kHz)
FrameLengdtinSamples

SampleDuration =

Shiftinterval = M* SampleDuration = 8¢ 0.125 ms =10 ms

The above formulae hold for 11 and 16 kHz samplatgs. Hence;

FrameRate :; = 100 Frame/Sec

Shiftintewval

The major constraint is on the processing time athespeech frame;
that is, it shall end in less than 9.16 ms, whheetime between two frames is
10 ms (for the 3 supported sampling rates), howeweerevery 2 frames (88
bits) there is additional 4 bits of CRC, and evafyframes (144 byte) we have
6 bytes of overhead (header and sync. sequenc&h whakes the effective
frame rate = 10 ms * (144 — 0.5 * 12 - 6)/144 =@rhs. However, compared
to today’'s chip frequencies, this constraint isyveelaxed, hence, most
optimizations were directed towards hardware resgsirather than processing

time optimization.
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4.1.2 Memory Constraints

Memory usage should be optimized as much as pess&bpecially it is
not planned to use any external memories other thanon chip, since this
will degrade the performance of the system. Thisst@aint implies that most
of the calculations will be done at run time whesrepossible, and no pre
computed constants will be used, unless necessayythie quantization tables

should be stored and cannot be computed).

4.1.3 Power Consumption

The front end processor system is intended to Ipdogled in a stand
alone chip, for example, it could be placed in therophone piece. This
means that the final system could be battery padyesbich implies that the
power consumption should be hold at its minimunugalas much as possible.
This constraint will affect the choice of the haate platform to be used,
where FPGA or structured ASIC choices are prefetiedDigital Signal

Processors.

4.1.4 Cost and Resources Constraints

Since the final system is meant to be placed iapate chip that could
be part of the microphone, so the cost should lpg &k its minimum. This
constraint makes the choice of the target hardwéadorm moves towards
FPGA or structured ASIC rather than DSP. Also, hlaedware resources on
that chip are expected to be very limited. Henaenerical algorithms (like
CORDIC, see Appendix A) were used to compute carafed DSP (like FFT,
see Appendix A) and trigonometric functions, whibighly reduced the
resources usage with good accuracy. Also, reusesmfurces between serial

operating components was used in the design.

4.2 System Architecture

This section describes the high level architectafethe front end
processor system. The block diagram of the systeneacribed in the Aurora

standard irfj2] is shown in Figure 35:
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Input

speech
— ADC |

h 4

FFT

MF — LOG —{ DCT

Offcom |—» FramfngT PE —» W —>

logE

Abbreviations:

ADC analog-to-digital conversion

Offcom offset compensation

PE pre-emphasis

logE energy measure computation

W windowing

FFT fast Fourier transform (only magnitude components)

MF mel-filtering

LOG nonlinear transformation

DCT discrete cosine transform

MEFCC mel-frequency cepstral coefficient

Figure 35: Block diagram of the syst¢#)

A 4 h

Feature Compression

¥

Bit Stream Formatting
Framing

!

To transmission channel

The following two sections show the static and dgitaarchitectures of

the system.

4.2.1 Static Architecture

This section describes the internal components h& front end

processor without specifying the interaction betwvélgem nor the inputs or

outputs of each block. The main component that igesidéhe state machine of

the system is the Buffer Manager. The Buffer Irdeef component is the

interface between the ADC and the rest of the systiecould be implemented

as a shared memory, or direct link between the ADQ the system, in either

case the implementation of this component is oattieé scope of the design.
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Buffer Interface Com?aifzggtion Pre-emphasis Energy Measure
Windowing
Buffer Manager FFT
Mel-Filtering
Bit-Stream Framing Quantizer DCT ';‘g;ls'lfg‘:fnr

Figure 36: Static Architecture of the system

4.2.2 Dynamic Architecture

This section describes the dynamic behavior ofsifggem. There are many

points that can be extracted from the dynamic &chire:

1.

The communication between internal components.

2. The widths of the signals exchanged between compisne
3.
4

The sequence of events and flow of data in theegyst

. The dependence between the components, i.e. sompooents can be

running in parallel and others are dependent oh etwer.

It should be noted that: the names of the signastioned here are not

necessarily the same in the actual design. Alsty tre main signals are

shown here, which means that more signals coukt axthe actual design and
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not mentioned here. And finally, some signals shinere could be exchanged

between components indirectly, for example, the lmoefficients coming out

of the FFT component to the Mel-Filter are not dile exchanged between

them in the actual design, actually, they are wmitby the FFT in a shared

memory, and then read by the Mel-filter form theneamemory under the

control of the buffer manager.

Sof[N], 20 bits

4 %
Sin[N], i
Sample 16 bits Spe[N] , 20 bits logE, 16 bits
—>»——  Buffer Interface E> 0 Offset Compensation y > Pre-emphasis Energy Measure >
n
Analog «
clk
2
a energy_accumilat
x 2 x @ o @ x e
[$] re) [8] 9 (\I— Q_I [$]
] 2 z| 2
z £ g| ¢
g a2 7.
«» Windowing D
clk
enable_w
A
buffer_store BwN], 16 bits
Data Path Signal
— fft_start
Read_Enable
Clock Signal Buffer Manager ——<+—— FFT .
I — clk clk
fft_finished
Control Signal bink[FFTL, 16 bits
mel_start
Mel-Filtering e
mel_finished ok
dct_start .
dct_finished Yfbank[23], 16 bits
ldx_n_m
0<n<12 C[13], fi[23],
Frame Bits 1<m<13 16 bits 16 bits
——<—— Bit-Stream Framing < Quantizer < DCT < Non-linear transform —«—
VQ_start clk

clk
e

clk

acnd_framc + Y

logE, 16 bits

clk
L,

clk

<

energy_done

Figure 37: Dynamic Architecture of the system

The system can be divided into three main parts:
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1. The first part includes the following component$ts®ét Compensation,
Pre-emphasis, Energy Measure and Windowing. Thepoaents of
this part can run in parallel, however, since tat rof change of the
input samples (which is the sampling rate) is mslolwver than the time
needed to process the sample these modules wilrmem in parallel.
The processing in this part is done per samplechvimeans that,
whenever a new sample is present, processing i® roadt, and the
result is stored in the data buffer under the @dntf the Buffer
Manager. So, these components are driven by that ispmples
existence.

2. The second part consists of the rest of the syseoept the Buffer
Manager. The components of this part are deperaeaach other, that
Is; every component should wait the result of tte/pus component to
be ready to start its function. This operationastcolled by the Buffer
Manager, where fainishedsignal is generated by each component when
it finishes its job, and atart signal is generated by the buffer manager
to trigger every component to start working.

The state machine of the sequence of activatingetiiomponents is
managed by the Buffer Manager as will be discusseétails in its
corresponding detailed design section.

Also, this part operation is done on a block ofaxhples, that means; in
the very beginning of the system operation, th&t fir samples (first
frame) should be stored in the buffer first to tstiae first operation of
that part. For the consecutive frames, every M $asngphe Buffer
Manager will start the operation of this part agaiording to its state
machine sequence of operation.

The only exception to the serial operation of thmponents of this part
is the Non-Linear Transformation and the Mel-Filtghere the Log is
computed for every coefficient of the filter at im@ment it is

generated, in parallel with the computation ofrile&t coefficient.
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Although the components of this part run seridiigwever, there is a
high degree of parallelism inside some of thesepmrants. For
example the magnitude of the final output of thd EBmponent will be
computed in parallel with the final stage compuwtagi of the FFT
algorithm.
A final note on the second part of the systemas, thince the
components of this part should run in serial, Snesecomponents, like
CORDIC cores or multipliers can be reused amonmthe

3. The third part is the Buffer Manager component lfitsevhich
coordinates the operation of the first and secoad, pn addition to
managing the state machine of the second part., Als® component
will be responsible of managing the access to tlemary shared
between the first and second parts, and also themomes shared

between the components of the second parts.

4.2.3 Modules Detailed Design

In this section the details of the internal desa@jneach module are
presented. Every section contains the module Hasictionality, the internal
architecture of the module, the configuration pagters to configure the
module, the signal widths justification, the stat@chines definition in the
module, the memory (RAM/ROM) requirements, the aktthip usage of the
available resources and finally the Processing tiak®n by the module to
finish its task. Some of these sections do nottégissome modules, in which

case they will be described Hsne.
4231 Offset Compensation

4.2.3.1.1 Basic functionality

Prior to the framing, a notch filtering operatiaapplied to the digital
samples of the input speech sigBaito remove their DC offset, producing the
offset-free input signabof. The main function of the module is to calculate th

following equation:
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Sor (1) = 55 (M) = 5, (M = 1) + 0,999 X5, (n — 1)

in

This calculation is done whenever a new sar§hes present.

4.2.3.1.2 Internal Architecture

This section shows the data flow graph of the medthis graph is just
for design purpose and does not mean that the $yrahesized hardware on
the chip will look like that, yet it should be vemnear to it. At the very
beginning of the system operation, Sin(n-1) andrsaj are zeros, this is done
by a MUX activated by the reset signal. Then witbrg new sample, the basic
equation is calculated in one clock, then the \aloeSin and Sof are stored,

which will be used in the next time as Sin(n-1) &ud(n-1).

0.999

i Sin(n-1) * Sof(n-1)
Sin(n) 16 bits R1 20 bits R2 4

20 bits ﬂ i
I e
20 bits

20 bits

20 bits Y 20 bits

0 bits

R4 >

!

Sof(n)

Figure 38: Offset Compensation data flow graph

4.2.3.1.3 Configuration

None
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4.2.3.1.4 Signal width justification
The input signal is 16 bits as generated by the. Afids 16 bits input will

be treated as a fixed point number, such that¢hebvalue of the input signal
Is considered between 0 and 1. This is equivalerditiding the number by
65536. This division will be compensated later e tsystem after the
calculation of the DCT, which can be done in onénaf fashions:
This division by 65536 will propagate through thiole system till the
output of the Mel-Filter, after that at the stagk tbe Non-Linear
transformation, the division will be converted tabsaction of
Ln(65536), which can be compensated by adding dbisstant to the
result, or waiting to the DCT stage, and addinglasintonstant to every
coefficient of the resulting 13 coefficients of tleCT, where every

compensation constant will be calculated as:

23 H
Consti) = Ln(65539 cos%(j ~05)),0<i<12
=1

The other way is to do this compensation in thengmation table values
once, and store the modified tables, i.e. storagdhkes after subtracting
the above calculated constants from the values aoh ecoefficient
guantization table, and store the result.

Solution 2 will be adopted, since the tables aaticstlly stored in ROM, so,
storing the adjusted tables saves the processmgdnd resources required to
compensate the division constant with every DCTifcnent.

Note that: similar manipulation will be done oadE feature, where the

following constant should be subtracted from itamfization table entry:

N
LogE_Const=In()_(65535?)

i=1

The rest of signals in that module are of widthb6, where:
« The 2d" bit is the sign bit.
* The next 4 bits (19 to 16) represent the Integergfahe number.

» The rest of bits represent the fraction part.
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The above widths were decided based on numeristd o real frames of

speech, which showed that the dynamic range of Itieger part of the

resultingSofrequires 4 bits to avoid overflow at this earlggs of the system.

The alternate solution to adding those 4 bits wagsduce the fraction part by 4

bits (shift rightSin 4 locations) to be just 12 bits; however this was done

due to the following reasons:

o This would reduce the accuracy of the system aery early

stage of processing.

Since this filter depends on the previous outpiiR filter), hence,

any error due to fixed point calculation will pragzde in all the
next frames and will be magnified, so it is highicommended
to be as accurate as possible in this calculation.

This part of the system (till the windowing compaotjeoperates
on a sample-by-sample basis, which means thadjutines only a
storage of the previous sample only, so it will beta big loss to
add 4 bits to single internal register that holte fprevious
sample. This is unlike the modules that operatéhenwhole N

samples of the frame, in which case it requirezd these 4 bits
to the whole samples of the buffer, which would 44N bits to

the total memory requirement of the system.

4.2.3.1.5 State Machines

None

4.2.3.1.6 Memory requirements

Memory Size Description
sof_prev 20 bits To hold Sof(n-1)
sin_prev 20 bits To hold Sin(n-1)

Table 9: Memory requirements of the Offset Compgosaomponent
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4.2.3.1.7 Actual Chip Usage

The following is a summary of the chip usage asegatied by the

Quartus Il software:

Flow Status Successful - Wed Oct 01 08:52:49 2008
Quartus Il Version 7.2 Build 203 02/05/2008 SP 2\&b Edition
Revision Name source_tb
Top-level Entity Name Offset_Compensation_1
Family Cyclone llI
Device EP3C10U256C8
Timing Models Preliminary
Met timing requirements  N/A
Total logic elements 169 /10,320 (2 %)
Total combinational functions 167 / 10,320%2
Dedicated logic registers 2/10,320 (<1 %)
Total registers 2
Total pins 40/183 (22 %)
Total virtual pins 0
Total memory bits 0/423,936 (0 %)
Embedded Multiplier 9-bit elements 4146 (9 %)
Total PLLs 0/2 (0 %)

Figure 39: Summary of resources usage of Offsetgemsation module

4.2.3.1.8 Processing time

Let:
1. Number of clocks taken by adder = n = 1.
2. Number of clocks taken by multiplier = m = 1.

Therefore:

ProcessingTime = max(n, m) =1

4232 Pre-Emphasis filter

4.2.3.2.1 Basic functionality

A pre-emphasis filter is applied to the framed etfBee input signal:

S pe (1) = 8,0 (1) = 0,97 X 5,0 (1 = 1)

Here Sof and Spe are the input and output of the pre-emphasis block

respectively.
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4.2.3.2.2 Internal Architecture

This section shows the data flow graph of the medihis graph is just
for design purpose and does not mean that the $yrathesized hardware on
the chip will look like that, yet it should be venear to it. Every time the
module is enabled, the basic calculation is peréatron the input Sof(n), then

the result is stored as Sin(n-1) to be used im#x time.

Sof(n) Sof(n-1)
20 bits R1 » 20 bits R2
\
Sof(n-1)
20 bits
0.97
* v
Y »
i 20 bits
R3
20 bits
20 bits }
, v
Spe(n)

20 bits

Figure 40: Pre-emphasis data flow graph

4.2.3.2.3 Configuration

None.

4.2.3.2.4 Signal width justification

The 20 bits width choice follows the same justifica as that of the

Offset Compensation component.

4.2.3.2.5 State Machines

None.
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4.2.3.2.6 Memory requirements

Memory Size Description

sof _prev 20 bits To hold Sof(n-1)

Table 10: Memory requirements of the Pre-emphamsisponent

4.2.3.2.7 Actual Chip Usage

The following is a summary of the chip usage asegaied by the

Quartus Il software:

Flow Status Successful - Wed Oct 01 09:04:30 2008
Quartus Il Version 7.2 Build 203 02/05/2008 SP 2A&Db Edition
Revision Name source_tb
Top-level Entity Name Pre_Emphasis
Family Cyclone llI
Device EP3C10U256C8
Timing Models Preliminary
Met timing requirements  N/A
Total logic elements 152 /10,320 (1 %)
Total combinational functions 150 /10,320%1)
Dedicated logic registers 2/10,320 (<1 %)
Total registers 2
Total pins  44/183 (24 %)
Total virtual pins 0
Total memory bits 0/423,936 (0 %)
Embedded Multiplier 9-bit elements 4146 (9 %)
Total PLLs 0/2(0%)

Figure 41. Summary of resources usage of Pre-engpimasiule

4.2.3.2.8 Processing time
Let:
1. Number of clocks taken by adder = n = 1.
2. Number of clocks taken by multiplier = m = 1.

Therefore:

ProcessingTime = max(n, m) =1
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4233 Energy Measure

4.2.3.3.1 Basic functionality

The logarithmic frame energy measure (logE) is coieqh after the

offset compensation filtering and framing for ef@me:

| i%r“f':w

b=l A

logE =1n

Here N is the frame length agafis the offset-free input signal.

4.2.3.3.2 Internal Architecture

This section shows the data flow graph of the medihis graph is just
for design purpose and does not mean that the $yrahesized hardware on
the chip will look like that, yet it should be venear to it. First Sof(}) is
calculated, then accumulated to the old energy ureag\fter the N samples
are accumulated, the resulting energy is placeahasput to a CORDIC core
that is configured to calculate the Logarithm fumecf(for more information
about CORDIC algorithm, please see Appendix A).eNibiat, the CORDIC
core is only enabled after the Nth sample is acdat®ed, and the final energy

Is ready.
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Sof
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CORDIC
Core
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Figure 42: Energy Measure data flow graph

4.2.3.3.3 Configuration

Configuration Possible values | Default value Description

Parameter

N 200/256/400 (for | 200 The frame
SamplingRate = length in
8/11/16) samples.

Table 11: Energy Measure module configuration patans

4.2.3.3.4 Signal width justification

The accumulated energy signal width is 20 bitshwiD bits as the
integer part and 10 bits as the fraction part isecaf 8/11 kHz sampling rate,
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and 11 bits as the integer part and 9 bits asrtwidn part in case of 16 kHz
sampling rate. This is because analysis of the tquaion tables used to
guantize the LogE feature shows that the maximuenggnvalue can be put in
9 bits for 8/11 kHz and 10 bits for 16 kHz, so tha dynamic range of the
energy feature can be hold in 9/10 bits; howevebit® for 8/11 kHz and 11
bits for 16 kHz were taken for safety measuresoAtee minimum distance
between two entries in the quantization table sti@at'the minimum resolution
required to quantize the LogE feature only requifdsts, that is the fraction
part should not be hold in less than 7 bits, otliewhe quantization resolution
will not be maintained, leading to wrong quantiaati hence 10 bits for the

fraction part are enough.

4.2.3.3.5 State Machines

None

4.2.3.3.6 Memory requirements

Memory Size Description

Energy 20 bits To hold accumulated
energy of the current

frame.

Table 12: Memory requirements of the Energy Measaoreponent

4.2.3.3.7 Actual Chip Usage

The following is a summary of the chip usage asegated by the Quartus Il

software:

Flow Status Successful - Wed Oct 01 09:21:49 2008
Quartus Il Version 7.2 Build 203 02/05/2008 SP 2\&b Edition
Revision Name source_tb
Top-level Entity Name Energy_Measure
Family Cyclone llI
Device EP3C10U256C8
Timing Models Preliminary
Met timing requirements  N/A
Total logic elements 739 /10,320 (7 %)
Total combinational functions 736 /10,320%7)
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Dedicated logic registers 168 /10,320 (2 %)
Total registers 168
Total pins  40/183 (22 %)
Total virtual pins 0
Total memory bits 0/423,936 (0 %)
Embedded Multiplier 9-bit elements 6/46 (13 %)
Total PLLs 0/2(0%)

Figure 43. Summary of resources usage of Energysivteanodule

4.2.3.3.8 Processing time

Let:
1. Number of clocks taken by multiplier = m = 1.
2. Number of clocks taken by adder = n = 1.
3. Number of clocks taken by Log calculator circui/= 16.

Therefore,

ProcessingTime = max(m,n)*N*M+ M = (N + 1)81

Assuming that the minimum time between two samisiés clocks.
4234 Hamming Window

4.2.3.4.1 Basic functionality
A Hamming window of length N is applied to the auttf the pre-

emphasis block:

(27(n— 1'})
L O N-—-1

-~

s, (1) = { 0,54 —-0.46 X cos

}x S 1=sn<N

Here N is the frame length aif8peandSware the input and output of

the windowing block, respectively.

4.2.3.4.2 Internal Architecture

The module is enabled by the Pre-emphasis mod@ey enew sample,
accordingly, the following constant is calculatedskhown in Figure 44. Then,
the result is multiplied by the inp&pe(n) The constant circuit uses CORDIC

core similar to the one in Appendix A. The cosimguanent depends on the
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sample number, so, a modulo-9 bits counter is useimdicate the sample
number (n) in case of N=512, or modulo-8 in cas®&a256. This counter is
not kept internally in the module, however, it ispk in the Buffer Manager,

and the sample count is provided as an input t&\timelow component.

{0.54 0,46 cosrwj}

Y .'.n'l'r - ].
Constant Const(n) Spe(n)
Calculator 20 bits . 20 bits
A
9 bits
A A
Mod-9 *
Counter
Sw(n)
20 bits

Figure 44: Hamming Window data flow graph

n
i 9 bits

CORDIC
Cos 20 bits

20 bits

= «——— 0.54

R2
(Constant)

Figure 45: Constant calculation of Hamming Windaontelr
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4.2.3.4.2.1.00k-up table implementation

The basic Hamming window filtering described 4r2.3.4.1 could be
implemented in one of two ways; a) to calculate Haanming window factor,
using CORDIC core for example, or b) storing thertd@ng window factors in
aLook-up tablg(LUT). The first method was already described i2.3.4.2. In
the LUT method, only half of the window factors at®red in a ROM of
length equals N/2, where N is the frame lengthumber of samples, and the

width of the stored factors is chosen to be 2Q bits

4.2.3.4.3 Configuration

Configuration Possible values | Default value Description

Parameter

N 200/256/400 (for | 200 The frame
SamplingRate = length in
8/11/16) samples.

Table 13: Hamming Window module configuration pagtens

4.2.3.4.4 Signal width justification

The 20 bits width choice follows the same justifica as that of the

Offset Compensation component.

4.2.3.45 State Machines

The module has an internal state machine to foltbe CORDIC

calculation state as shownhigure 46

cordic_finis hed

Figure 46: State machine of the Window component
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Source State

Destination State

Condition

Idle

idle

(IENABLE)

Idle

cordic_enabled

(ENABLE)

cordic_enabled

cordic_enabled

(‘cordic_done)

cordic_enabled

cordic_finished

(cordic_done)

cordic_finished

idle

(IENABLE)

cordic_finished

cordic_enabled

(ENABLE)

Table 14: State transition of the Window state nraeh

In general, the module is initially in the IDLE saunless enabled.

When enabled, it goes to the CORDIC_ENABLED stag, which the

CORDIC module is enabled to calculate the cosint giathe constant. The

module will remain in this state till the cordic rao signal is raised by the
CORDIC processor. When the CORDIC is finished, tedule goes to the
CORDIC_FINISHED state, where the final constant dalculated and
multiplied by Speto get the finabw.

4.2.3.4.6 Memory requirements

Memory

Size

Description

Sample Counter

9 bits

To hold the current
sample index. The size
calculated on the
maximum needed
number of samples
(N=512).

IS

Table 15: Memory requirements of the Window comprine

In case of LUT implementation, extra ROM of sizeualg (N/2 X 20)

bits is needed.

4.2.3.4.7 Actual Chip Usage

The following is a summary of the chip usage asegaied by the
Quartus Il software, it is based on the CORDIC enpéntation:
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Flow Status Successful - Wed Oct 01 09:37:00 2008
Quartus Il Version 7.2 Build 203 02/05/2008 SP 2\&b Edition
Revision Name source_tb

Top-level Entity Name window_1

Family Cyclone llI
Device EP3C10U256C8
Timing Models Preliminary

Total logic elements 781 /10,320 (8 %)
Total combinational functions 778 /10,320%8
Dedicated logic registers 71/10,320 (<1 %)

Total registers 71

Total pins  53/183 (29 %)

Total virtual pins 0

Total memory bits 0/423,936 (0 %)

Embedded Multiplier 9-bit elements 14746 (30 %)

Figure 47: Summary of resources usage of Windowuieod

4.2.3.4.8 Processing time
Let:
* Number of clocks taken by multiplier = m =1.
* Number of clocks taken by adder = n = 1.
* Number of clocks taken by cosine calculator cireu = 12.

Therefore:

ProcessingTime = min(m,n) + M =M+ 1 =13

This is the processing time to apply hamming windilter to one
sample only.
In case of LUT implementation mentioned4ir?2.3.4.2.1, onlynin(m,n)

clocks are needed.
4235 Buffer Manager

4.2.3.5.1 Basic functionality

This module is responsible of:
* Managing the state machine of the second part ®fsistem, which
includes
o FFT
o0 Mel-Filter
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(o)
(0]
(o)

o

Non-Linear Transformation
DCT
Vector Quantization

Bit-Framing

This is done by activating these modules in seqeiesuch that each

module is not activated unless the previous @finished.

» Padding zeros to the frame length before activatieg=FT module.

* Managing the frame overlapping of samples, whepiitrols the read

and write addresses from the 2N RAM, and provitiesitto the FFT to

operate on them. This is done by managing the adoabe 2N RAM as

a circular buffer.

* Managing the access to the memory shared betweearothponents.

4.2.3.5.2 Internal Architecture

RAM
2N x 20

Q_RAM
FFTL x 16

I_RAM
State Machine Manager FFTLx 16

Control Signals

Figure 48: Internal Architecture of Buffer Manager

The module contains three memories:
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* 2N RAM:this stores every sample after being processetddWindow
module.The accesses to this memory is managed by the Butiaager
itself, where it provides the read/ write signaled manages the read/
write addressesThis memory is managed as a circular buffer, wlzere
write address is advanced till it reaches the drtlebuffer, and then it
rolls over to the start of the buffer again. Write this memory is
triggered with every new sample after it is procesth Window
component.

The read address from this memory is advanced Migamples every
new frame. The read signal is generated every aenpke, and the read
data is input to the Pre-Emphasis filter, thenrgmult is passed by the
Hamming Window filter, and at the end the finalukess stored in thé
RAM buffer in a bit reversed order, till N samples aceumulated and
then the next stages of the FFT operation can. sidtdrnatively, the
read data is passed to the Energy Measure modble &zcumulated to
calculate the LogE feature of the frame. In thiyweame overlapping
specified in the standard is managed.

* | RAM and Q RAMthese are used as real and imaginary memories to
serve as the in-place buffer that is used in the &gorithm. At the end
of the FFT operation, theRAM should contain the magnitude of the
real and imaginary FFT coefficients, and @Q&AMis free.

The two RAMs are then reused with the Mel-Filted @CT modules,
where one of the two memories is used as the ilyodier to the
module, and the other one is used as the outpierbilien these roles
are exchanged, where the memory that was actimgpas buffer in the
previous module will act as output buffer with thext module, and so
on.

The access to | and Q RAMs is given to the mocdhde is currently
active according to the state machine mentioneti2r8.5.5. This state
machine is managed by the State Machine Managek Isloown in the

Figure 48, and the control signals are generatedcoordance to the
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current state. The control signals are mainly @didnto the following
groups:

o0 Memory read and writes signals.

o Activation and deactivation signals to the modutethe second

part of the system defined #2.2.

Note that: the FFT module needs a two entries acasultaneously
to thel RAM andQ RAM in the butter fly operation, this is why two
read/ write signals, data and addresses are pibtadine FFT module.

Before a new frame can be processed] RAM andQ RAMmust be

reset, in this way zero padding before FFT is agusmed.

4.2.3.5.3 Configuration

Parameter Possible Default value Description
values
N 200/256/400 | 200 The frame length
(for in samples.
SamplingRate
= 8/11/16)
M 80/110/160 |80 The frame shift in
(for N = samples.
200/256/400)
Awidth 8/9 (for 8 The address width
FFTL= of the 1,Q
256/512) memories. The 2N
RAM address
width is 1 bit more
than that width.
FFTL 256 (for 256 The FFT frame
N=200/256)/ length in samples
512 (for after padding.
N=400)
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Parameter Possible Default value Description
values
N_MEL 23 23 The number of
Mel-Filter banks.
N_CEPSTRAL 13 13 The number of
Cepstral
coefficients.
Dwidth 16 16 The data width of
the l and Q
RAM’s memory.
This width will be
the fixed width in
the FFT, Mel-
Filter, DCT,
Vector Quantizer
modules.
Parameter Size Size Description
Iwidth 8/9 (for 8 The FFT Integer
FFTL= part width used in
256/512) fixed point
calculations
Fwidth 716 (for 7 The FFT Fraction
FFTL= part width used in
256/512) fixed point
calculations.

Table 16: Configuration parameters of the Buffemisiger

4.2.3.5.4 Signal width justification

The input to the Buffer Manager is 20 bits widthftek the window

component this width will be fixed to 16 bits, byuncating the 4 least

significant bits from the fraction part, and keapthe integer part as it is.
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The 16 bits of data in this part of the systemiveded as follows:
* In case of FFTL=256
o 16" bit as the sign bit.

o 8 bits (1%' to 8" bits) as Integer part.

o 7 bits (7"to 0" bits) as Fraction part.
* Incase of FFTL=512
o 16" bit as the sign bit.

o 9 bits (18" to 7" bits) as Integer part.

o 6 bits (6"to d" bits) as Fraction part.

4.2.3.5.5 State Machines

Figure 49: State machine of the Buffer Manager nedu

Source State Destination Condition
State

idle idle ('start)

idle empty_buffer (start)

empty_buffer

empty_buffer

(buffer_empty)
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empty_buffer

activate_window(!buffer_empty)

activate_window

fft_bit_reverse

fft_bit_reverse

empty_buffer

('fft_busy_1).(windotvwindow)

fft_bit_reverse

fft_bit_reverse

('window_1:window)

fft_bit_reverse

fft_busy state

(fft_busy_1).(winddimwindow)

AL

A

fft_busy_state fft_busy_state ('fft_done)

fft_busy state mel_busy (fft_done)

mel_busy mel_busy ('mel_finished)

mel_busy dct_busy (mel_finished)

dct_busy dct_busy ('dct_finished)

dct_busy dump_debug (dct_finished)

dump_debug dump_debug debug_counter < N_CEPSTR
dump_debug finished_debug debug counter =N_CEP&TR
finished_debug | reset i g None

reset i q

empty_buffer

reset | Q_counter < FFTL

reset i q

reset i q

reset | Q_counter = FFTL

Table 17: State transition of the Buffer Managatestnachine

The description of these states is as follows:

* IDLE: the module remains in this state until a stamaligs triggered.

« EMPTY_BUFFERthe module remains in this state as long as2tie

RAMis empty.
* ACTIVATE_WINDOWIn this state the read sample form #iié RAM
is input to the Pre-Emphasis filter then to the Hang Window filter,
and the result is fixed to 16 bits and stored ie tHRAM in a bit-

reversed order.
» FFT_BIT_REVERSEIn this state the samples are fed to the FFT
module. Also, the read address of B RAMis advanced by M

samples in this state, because this state indidhtestart of a new

frame.
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» FFT_BUSY:the FFT module is running, the module remainshis t
state until the FFT module finishes. The accesRAMandQ RAMis
given to the FFT module in this state. At the ehth state thé RAM
contains the magnitude of the FFT coefficients tued) RAMis free.

« MEL_BUSYthe Mel-Filter is activated, and the module remamthis
state until the Mel-Filter finishes processing. this state the Non-
Linear Transformation module is running in paraleith the Mel-
Filter. Thel RAM s the input buffer to the Mel-Filter, and the auip
coefficients are placed in tlig@ RAM.

e DCT _BUSYithe DCT module is activated, and the module remains
this state till DCT finishes. Th® RAMis the input buffer. The output
Cepstral coefficients are supplied directly to ¥ector Quantization
module to be quantized.

« DUMP_DEBUG:this state is used for testing and debugging p@gos
where the memory is dumped to provide its contastsutputs.

* FINISHED_DEBUG:this is a transient state to reset internal vaggbl
after debugging is finished.

» RESET_| Qthis state is where theRAM and Q RAM are reset by
writing N*Dwidth zeros in the two memories during ®ocks. This
state is important, where in this way padding fidrto FFTL length is
done in the | and Q RAM before activating the FFemponent, where
the samples are stored in the | RAM in a bit-resdrerder in N
locations, the remaining locations (FFTL - N) aeeas due to the reset

operation, so zero padding is accomplished.

4.2.3.5.6 Memory requirements

Memory Size Description
2N RAM 2*N*20 = The input samples
8000 for N= 200 memory.

10240 for N= 256
16000 for N= 400
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| RAM 2*FFTL*Dwidth = The real coefficients for
4096 for N=256, Dwidth FFT module. Used
=16 alternatively as input or
8192 for N=256, Dwidth| output buffer for the
=16 next modules.

Q RAM 2*FFTL*Dwidth = The imaginary
4096 for N=256, Dwidth coefficients for FFT
=16 module. Used
8192 for N=256, Dwidth| alternatively as input or
=16 output buffer for the

next modules.

Table 18: Memory requirements of the Buffer Managedule

4.2.3.5.7 Actual Chip Usage

The following is a summary of the chip usage asegated by the Quartus I

software:

Flow Status Successful - Wed Oct 01 09:52:11 2008
Quartus Il Version 7.2 Build 203 02/05/2008 SP 2\&b Edition
Revision Name source_tb

Top-level Entity Name Buffer_Manager_2

Family Cyclone llI
Device EP3C40F780C8
Timing Models Preliminary

Met timing requirements  N/A
Total logic elements 2,415/ 39,600 (6 %)
Total combinational functions 2,386 / 39,6(0% )
Dedicated logic registers 257 /39,600 (<)%
Total registers 257
Total pins 309 /536 (58 %)
Total virtual pins 0
Total memory bits 16,192 /1,161,216 (1 %)
Embedded Multiplier 9-bit elements 18/252 (7 %)
Total PLLs 0/4(0%)

Figure 50: Summary of resources usage of Bufferadan Module: N = 200,
M=80
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Flow Status Successful - Thu Oct 02 10:44:52 2008

Quartus Il Version 7.2 Build 203 02/05/2008 SP 2\&b Edition
Revision Name source_tb

Top-level Entity Name Buffer_Manager_2

Family Cyclone llI
Device EP3C40F780C8
Timing Models Preliminary

Met timing requirements  N/A
Total logic elements 2,072 / 39,600 (5 %)
Total combinational functions 2,057 / 39,6(®% )
Dedicated logic registers 211/39,600 (<)%
Total registers 211
Total pins 309 /536 (58 %)
Total virtual pins 0
Total memory bits 18,432/1,161,216 (2 %)
Embedded Multiplier 9-bit elements 18/252 (7 %)
Total PLLs 0/4(0%)

Figure 51:. Summary of resources usage of Bufferddan Module: N=256,
M=110

Flow Status Successful - Thu Oct 02 10:53:06 2008

Quartus Il Version 7.2 Build 203 02/05/2008 SP 2A&%Db Edition
Revision Name source_tb

Top-level Entity Name Buffer_Manager_2

Family Cyclone llI
Device EP3C40F780C8
Timing Models Preliminary

Met timing requirements  N/A
Total logic elements 2,406 / 39,600 (6 % )
Total combinational functions 2,382/ 39,6(0% )
Dedicated logic registers 258/39,600 (<)%
Total registers 258
Total pins  316/536 (59 %)
Total virtual pins 0
Total memory bits 32,384 /1,161,216 (3 %)
Embedded Multiplier 9-bit elements 187252 (7 %)
Total PLLs 0/4(0%)

Figure 52: Summary of resources usage of Bufferdadan Module: N=400,
M=160
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4236 FFT

4.2.3.6.1 Basic functionality

Each frame of N samples is zero padded to formxéended frame of
256 samples for 8 and 11 kHz sampling rate, andsahples for 16 kHz. An
FFT of length 256 or 512, respectively, is appliedcompute the magnitude

spectrum of the signal.

HereSw(n)is the input to the FFT block, FFTL is the blockdgh (256
or 512 samples), artink is the absolute value of the resulting complex »ect
Radix-2 algorithm is used in the design to calaulg#te FFT. For more
information about Radix-2 algorithm please see ApipeA.

The twiddle factor calculation is translated intector rotation with the
same angle. Hence, CORDIC algorithm was used tdhdotwiddle factor
operation. For information about CORDIC algorithtegse refer to Appendix
A

4.2.3.6.2 Internal Architecture

First the Sw(n)is input to the Bit Reversal module, where the bit-
reversed index is calculated, and the sample redtoack in thé RAM in the
bit-reversed index.

When FFTL (256/512) samples are complete afterréiersal, the
Butterfly is enabled, which enables the AddresseEaor.

For the consecutive FFT stages, the Butterfly retds two input
samples (each with real and imaginary parts) fromItRAM and Q RAM
according to the addresses generated by the AdGessrator. Thanks to the
dual-port RAM implementation, reading and writirgy done in single clock

cycle for the whole butterfly operation.
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After the two samples are read, the Twiddle facadculator is enabled,
which uses a CORDIC processor to calculate thaedtaector (see Appendix
A). When the calculation finishes (after 16 clockbe Butterfly calculates the
two output samples, and stores them in ItHRAM and Q RAM These two
operations (Twiddle factor calculation and Buttgdperation) are repeated for
the FFTL (256/512) samples of the input buffer.

The above operation (after bit reversal) is repkateevery stage of the
algorithm. The algorithm needs ld¢ stages to finish. In the last stage, the
magnitude of the result of the Butterfly is caldath and stored in tHeRAM,
while theQ RAMis free.

CORDIC algorithm is also used to compute the magieitof the last
stage of the algorithm, for more details about tlsage of CORDIC in
magnitude calculation refer to Appendix A. Note tthaghe magnitude
calculation in the last stage is done in parallghwhe butterfly operations of
the last stage, which enhances the time performance

The read/ write signals and addresses are cortirbifethe Butterfly in
all the stages except the last one. In the lagestaly, these signals are under
control of the Magnitude Calculator. It is the raé the RAM Manager to
control the access to these memories.

Note that; Bit reversal storage is actually perfedmn the context of
Buffer Manager module before starting the FFT Butie
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Sw(n)

Bit Reversal | : Real FFT Coefficient
Q: Imaginary FFT Coefficient

| Start .
Compute_Address ¥
GAddress Addresses Butter Fly
enerator
Start/ Result f Read/ write control |
|
State Machi . Magnitude
Twiddle Factor b Magnitude |~
Manager Cordic core
Start Result Read/ write control
Read/ write signals
I and Q RAM
Cordic core ¥——» RAM Manager |~ *

Figure 53: FFT Internal architecture
Note that: the Butterfly operation requires readitevoperation to two
entries in thd andQ RAMSs so, the corresponding RAMs are dual-port to read
or write in two locations simultaneously in onealacycle, which reduces the

required time for performing the butterfly by 50%.

4.2.3.6.2.1.00k-up table implementation

The implementation described #.2.3.6.1 relies on calculating the
twiddle factors using a CORDIC core, another immeamtion can be done by
storing the cosine values in a LUT, and use thewhettuce the sine values. In
addition, only ¥4 of the cosine wave need to beestoand the rest of the wave
can be obtained from this first quadrant. Note;tha LUT is dual-port, such
that, reading the factors for the whole butterfheration (two multiplications)

Is performed in single cycle.
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Sw(n)

Bit Reversal

| : Real FFT Coefficient
Q: Imaginary FFT Coefficient

Start .
Compute_Address
,Address Addresses Butter Fly
ator
Start/ Result l Read/ write control |
|
. . Magnitude
Twiddle Factor State Machine Magnitude

Read

Result

LT

Manager

Cordic core

Read/ write control

Read/ write signals
I and Q RAM

RAM Manager

Figure 54: FFT Internal architecture for LUT impilentation

4.2.3.6.3 Configuration

Parameter Possible values| Default value Description
depth 256/ 512 for 256 The frame length in
FFTL = 256/512 samples
Dwidth 16 16 The data width of
the | and Q data.
Iwidth 8 8 The integer part of
the data
Fwidth 7 7 The fraction part of
the data
Awidth 8/9 bits for 8 The address width
FFTL = 256/512 of the 1,Q

memories. The 2N
RAM address
width is 1 bit more
than that width.

Table 19: Memory requirements of the FFT component
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4.2.3.6.4 Signal width justification

The data width is 16 bits. The Integer part widi8ifor FFTL = 256
and 9 for FFTL = 512. The Fraction part width i$of FFTL = 256 and 6 for
FFTL = 512. This choice was based on run time tesafl real test vectors to
obtain the dynamic range of the signals, so tharftawv or underflow is
completely avoided in any stage of the calculatibmis analysis was done at
the algorithm level, using high level code of thgoaithm, were the fixed point
behavior was tested to obtain the right signal madt
Note that; limiting the signal widths to 16 bits tiopizes the number of
multipliers required for the butterfly operationnse the available embedded
multipliers on the FPGA are 18x18 multipliers, whimakes t possible to use

the on-chip multipliers instead of implementingrthe

4.2.3.6.5 State Machines

twiddle_factor_calc wait_last_write wait_cordic

O Cr

Figure 55: State machine of the FFT component
The description of these states is as follows:

* |IDLE: the module remains in this state until a stamaigs triggered.

» TWIDDLE_FACTOR_CALCthis is a transient state to calculate the
angle of rotation of the current vector to be ussdan input to the
CORDIC module.

 WAIT_CORDIC:the module remains in this state until the CODIC
finishes the vector rotation operation.

» BUTTERFLY_CALC:in this state the final Butterfly calculation is
done, and the result is written back in thendQ RAMs, except for the
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last stage, where the magnitude of the real andjimaay parts of the
result is written back to the RAM. If this is not the last magnitude
calculation of the algorithm, the next state willeb
TWIDDLE_FACTOR_CALC, otherwise it will be
WAIT_LAST_WRITE.

* WAIT_LAST_WRITE:during the last stage of the algorithm, the
magnitude of the result of the Butterfly is caldathin parallel with the
next Butterfly operation. However, for the last magde calculation,
there is no next Butterfly operation; so, we showdit till the
magnitude is calculated to announce the end oivti@e algorithm and

to write the last magnitude result.

4.2.3.6.6 Memory requirements

The memory required for RAM and Q RAM s kept in the Buffer
Manager component, as described in secdoh3.5.6, SO no memory is
required for the FFT component itself.
In case ofLook-up table(LUT) implementation mentioned i#.2.3.6.2.1, an
extra ROM of length FFTL/4 is needed.

4.2.3.6.7 Actual Chip Usage

The following is a summary of the chip usage asegatied by the

Quartus Il software based on CORDIC implementation:

Flow Status  Successful - Thu Oct 02 10:59:23 2008
Quartus Il Version 7.2 Build 203 02/05/2008 SP 2\&b Edition
Revision Name source_tb
Top-level Entity NameFFT_6
Family Cyclone Il
Device EP3C40F780C8
Total logic elements 2,314 /39,600 (6 % )
Total combinational functions 2,313/ 39,6% )
Dedicated logic registers 271/39,600 (< 1) %
Total registers 271
Total pins 169/536 (32%)
Total virtual pins 0
Total memory bits  0/1,161,216 (0 %)
Embedded Multiplier 9-bit elements 12 /252 (5 %)

Figure 56: Summary of resources usage of FFT mo&HeéL = 256
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Flow Status  Successful - Thu Oct 02 11:27:18 2008
Quartus Il Version 7.2 Build 203 02/05/2008 SP 2\&Db Edition
Revision Name source_tb
Top-level Entity NameFFT_6
Family Cyclone Il
Device EP3C40F780C8
Total logic elements 2,252 /39,600 (6 % )
Total combinational functions 2,248 / 39,6% )
Dedicated logic registers 271/39,600 (<1 %
Total registers 271
Total pins 173/536 (32%)
Total virtual pins 0
Total memory bits  0/1,161,216 (0 %)
Embedded Multiplier 9-bit elements 12 /252 (5 %)

Figure 57: Summary of resources usage of FFT mo&H&L = 512

4.2.3.6.8 Processing time

Let:

Number of clocks taken by CORDIC calculator circui€ = 12.

Number of clocks taken for Magnitude calculator = 1L1.

Magnitude Calculation is performed in the last stagly, in parallel

with the Butterfly operation, so the last calcudatonly should be added
to the total required time.

The number of times that the Twiddle factor is gehis dependent on
the current stage of the algorithm, where we hage=FTL stages. Let

the stage order be i, wherei% log,FFTL-1, then the number of times
the Twiddle factor changes during this stagé.is 2

Hence;

i=log, FFTL1
The total number of times the Twiddle factor change 22'

i=1

Every time the Twiddle factor changes, this requiagnew CORDIC

operation, so;

i=log, FFTL-1
The number of clocks for CORDIC operations =xC ) 2'

i=1

The above calculation should be added to the mtadber of clocks
required by the algorithm which is FFTL /2 * logFTL.
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Therefore:

i=log, FFTL-1

Processing time = FFTL /2 log, FFTL+Cx »'2' +L =
i=1

= 4095 for FFTL = 256
= 8447 for FFTL = 512.

In case of LUT implementation, the processing twilebe:

Processing time = FFTL /2 L + FFTL =
= 1664 for FFTL = 256
= 3328 for FFTL = 512.

4237 Mel-Filter

4.2.3.7.1 Basic functionality
This module is responsible of calculating the 23 Bteefficients. The
centre frequencies of the channels in terms of BiRTindices (cbini for the ith

channel) are calculated as follows:

Mel{x} = 2595 % log,, [1 4 i}
700

‘ :Mef"%ﬂ {EMWHMEI{;Q _,.-g}_mref{fj__,_m,_}i}_ 213

2341

"

chin, = i“ﬂnﬂd-{{%f'fj—l }

ebin, = I'G!I?’!d{% FFTL %

3

cbin,, = rmmd{ ff 2 FFTL } =FFTL/2.
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The 25 chin coefficients are pre-computed and dtofidhose stored
values are dependent on the FFTL configuration.

The output of the mel filter is the weighted sumtloé FFT magnitude
spectrum values (bini) in each band. Triangulalf-dnerlapped windowing is

used as follows:

chim - - chimg ., - -
fbank, = X I__ Cbm*_‘] +l bin, + ZI 1-— r cbm_}_, bin,
i=ebm,, b, —cbin,_ +1 it 41 cbin,,, —cbin, +1

Where k = 1... 23.

Following to this step, the Non-linear transforroatis calculated:

f, =In(fbank,).i=1....,23

4.2.3.7.2 Internal Architecture

This section shows the data flow graph of the medtihis graph is just
for design purpose and does not mean that the $yrahesized hardware on

the chip will look like that, yet it should be vemgar to it. Define:

LOW_PART_CONST(K) = cbin(k) — cbin(k-1) + 1

HIGH_PART_CONST(K) = cbin(k+1) — cbin(k) + 1

The data flow graph of calculating these constegfiown in Figure 58:
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Cbin(k) Cbin(k+1) Cbin(k-1)  Cbin(k)

L, !

v 16 bits > « 16 bits \
A4 v
[
| 16 bits
v
4 «— 1
|
A\

LOW_PART_CONST(k)
OR
HIGHT_PART_CONST(k)

Figure 58: Data flow graph of calculating the LOWARPT _CONST and the
HIGH_PART_CONST
The above circuit is used to calculate both constaccording to a
configuration parameter, which act as the seleadhefMUX’s shown in the

figure. These constants are then used to calcthati®llowing:

CL(j) = (i+1)/(LOW_PART_CONST(K))

CH(i) = (HIGHT _PART_CONST(K) - i)/(HIGHT_PART_CONSYT

Where i = cbin(k-1)...cbin(k), for the low frequenpgrt calculation and
= cbin(k) + 1...cbin(k+1), for the hiflequency part calculation.
Figure 59 shows the data flow graph of the abovmaggn.
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1 OR HIGH_PART_CONST(k)

Modulo 8/9 bits i

counter
16 bits 16 bits
+/-
16 bits
4 LOW_PART_CONST(k)
OR
/ HIGH_PART_CONST(k)
4—
CL(i) OR CH(i)

Figure 59: Data flow graph of CL(i) and CH(i)

The division operation is done using a CORDIC pssoe (please refer
to Appendix A). The division operation takes 1laki@ycles.

The final step to calculate fbank(k) is to multighe above calculated
constants by the corresponding bin(i) coefficiesftshe FFT, and accumulate
the result, for i in the range

cbin(k-1)<i < chin(k), for the low frequency calculation, then
cbin(k) + 1<i < cbin(k+1), for the high frequency calculation.

First, foank_low(k) is calculated, then fbank_highis calculated next,
and finally the two results are added to get fblhk{The calculation of
fbank_low(k) or fbank_high(k) is done incare circuit that can be configured
to calculate either of them. The data flow graphtihes calculation is shown in

Figure 60:
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———————————————————— » Control Path
CL(i) OR CH(i) bini

——» Data Path

16 bits

* A
4

i 16 bits
Y

R1

{ 16 bits 16 bits

Control R +
Logic
Accumulate for: 16 bits
cbin(k-1) <i < cbin(k), for fbank_low(k) and
16 bits
cbin(k) + 1<i < cbin(k + 1), for fbank_high(k) R2 —_—
16 bits
Y fbank_low(k)/

foank_high(k)

Figure 60: Data flow graph of Mel-Filter

The data flow graph in Figure 60 is to calculate @mank(k) coefficient.
The whole operation is repeated 23 times to getki{dg to fbank(23).

Every time a coefficient fbank(k) is generated,ntgural logarithm is
calculated. The natural logarithm is calculatedhgsa CORDIC processor,
please refer to Appendix A. The calculation of tiaural logarithm is done in
parallel with calculating the next fbank(k). Thetural logarithm calculation

takes 16 clock cycles.

4.2.3.7.3 Configuration

Parameter Possible Default value Description
values
N_MEL 23 23 Number of mel-filter
coefficients
Dwidth 16 16 The data width of
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f

Parameter Possible Default value Description
values
the | and Q data.
Iwidth 8for FFTL= |8 The integer part of
256 the input data
9 for FFTL =
512
Fwidth 7forFFTL= |7 The fraction part of
256 the input data
6 for FFTL =
512
Awidth 8 for FFTL= |8 The address width ¢
256 the 1,Q memories.
9 for FFTL =
512
Shift 3 forFFTL= |3 The Iwidth and
256 and 512 Fwidth of the input

data is different than
those of the internal
signals, so the Shift
parameter defines
the number of bits
needed to adapt the
input to the internal
signals fixed point
widths. This
parameter is used tq
shift the input signal
right with this

)

number of bits, so
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Parameter Possible Default value Description
values
that the Iwidth of the
internal signals
(lwidth_internal) is
Iwidth of the input +
Shift
Shift_output 16 for FFTL 3 16 The accumulated
256 signal Fwidth is
15 for FFTL = made wider to obtai
512 more accurate result,

—

and at the end, the
result need to be
fixed to the external
world width, so this
parameter defines
the number of bits tg
fix from the Fwidth
part of the
accumulated signal
before connecting it
to the external
fbank(k) output. So,
the Fwidth of the
internal signals will
be Fwidth of the
input + (Shift_output
- Shift)

Table 20: Memory requirements of the Mel-Filter mled

The values of cbin(k) are stored in ROM based enRRTL configuration.
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4.2.3.7.4 Signal width justification

The input and output data widths are Dwidth (=1&%.bThe internal
signal widths are Dwidth + Shift_output = 32 bits.

The integer part width Iwidth of the internal si¢ggw&s increased by the
Shift parameter to accommodate the accumulatedkkpto be 8 bits in case
of FFTL = 256, and 9 bits in case of FFTL = 512eTimal fbank(k) after
taking the natural logarithm has a dynamic range tteeds only 3 bits for
integer part, hence the Iwidth of the final fbarnkik fixed to only 3 bits after
the natural logarithm is calculated using the CO&Dlodule.

Also, the fraction part width Fwidth of the intefrsagnals is increased
by Shift_output — Shift, to be 23 in case of FF=1256 and 22 in case of
FFTL = 512. This is to increase the accuracy ofabeumulated signal before
it is fixed in both cases to Fwidth = 12 when caied to the final fbank(k)
after the natural logarithm is taken using the CORBodule.

The above choice of signal widths was based onini@ results of real
test vectors to obtain the dynamic range of th@adsy so that overflow or
underflow is completely avoided in any stage of ¢hkulation. This analysis
was done at the algorithm level, using high levade of the algorithm, were

the fixed point behavior was tested to obtain tgktrsignal widths.
4.2.3.7.5 State Machines

4.2.3.7.5. Mel-Filter

This part defines the general state machine thatras the low and
high part sub-filters. The low part sub-filter igpdied first, then the high part.
After the low and high part are calculated theultssare added to get

fbank(k) as follows:

chimy : . chimgy [ . . ™

; i—chin, +1 _ ; i—chin _

fbank, = ) _ = bin,+ Y |1-— £ bin,
i=etm,, €bin, —cbin,_; +1 o\ ebing, —ebin, +1/
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The outer state machine defined here controls peeadion of thecore sub-

filter that calculates the low and high parts filbg. The following is the

definition of the states:

IDLE: the module remains in this state till a starhalgcomes, and then
it goes tCACTIVATE_MEL_LOWtate.

ACTIVATE_MELthis is a transitional state, the module remainsfor
one clock to activate the low part sub-filter, ahdn it goes to the state
WAIT_MEL_LOW.

WAIT_MEL_LOW.Iin this state, the module waits the low part &libr

or finish operation, then it goesACTIVATE_MEL_HIGHstate.
ACTIVATE_MEL_HIGHthis is a transitional state, the module remains
in it for one clock to activate the high part sultef, and then it goes to
the stateVAIT_MEL_HIGH.

WAIT_MEL_HIGH in this state, the module waits the high part-sub
filter or finish operation, then it goes INCREMENT _COUNTERtate.
INCREMENT_COUNTERIf all Mel coefficients (N_MEL = 23) were
calculated, the module goesWAIT LOG_CORDICotherwise it goes
to ACTIVATE_MEL_LOWstate to start calculating the next Mel
coefficient.

WAIT_LOG_CORDIC:in this state the module waits for the natural
logarithm of the last coefficient to be calculatgdthe CORDIC module
to announce that all coefficients have been caledlaThis waiting is
done only in the last coefficient, since the ndtlogarithm of the rest of
the coefficients was calculated in parallel witke tbalculation of the
next one, however for the last one, there no neltutation, so we
should for the CORDIC module to finish calculatirige natural
logarithm of the last coefficient.

MEL_FINISHED_ALL reaching this state means that all 23 Mel

coefficients were calculated.
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4.2.3.7.5.2 0w/ High Frequency part

activate_cordic

o>

wait_cordic multiply_accumilate

mel_finished

Figure 61: State machine of the Low/ High part Aeler
This is the state machine of thmore subfilter. This sub-filter is
responsible of calculating the multiply-accumilafgeration of the low or high

parts of the filter. The low part operation is abdws:

W i—chin,_ +1

2

p=climy 4

bin,

cbin, —cbin,_, +1

And the high part operation is:

ehingy, |

)
> 1= bin,

mepmal, ebing, —cbin, +1)

i —chin,

The module start iIMEL_IDLE state. With the start signal it goes to the
ACTIVATE_CORDIGtate, in which the CORDIC divider is activatecgriht
goes to theWAIT_CORDIC state, till the CORDIC finishes. When the
CORDIC finishes, the module goesMJLTIPLY_ACCUMILATEstate, where
the bini coefficient is multiplied by the result die CORDIC divider and
accumilated. If the accumilation counter reachedimit, the module goes to
MEL_FINISHED otherwise it goes tACTIVATE_CODIGstate.

4.2.3.7.6 Memory requirements

The input values of bin(i) of the magnitude of timal FFT coefficients
are stored in thé RAM managed by the Buffer Manager. The resulting Mel-
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Filtered coefficients are stored in tReRAM These memories are managed in
the Buffer Manager component.

The cbin(k) coefficients are stored in ROM.

Memory Size Description

cbink_rom 25* 16 Pre-computed center
frequencies of the bands
of the Mel-Filter. These

are stored in ROM.

Table 21: Memory requirements of the Mel-Filter gament

4.2.3.7.7 Actual Chip Usage

The following is a summary of the chip usage asegaed by the Quartus Il

software:

Flow Status  Successful - Fri Oct 03 13:53:51 2008

Quartus Il Version 7.2 Build 203 02/05/2008 SP 2\&Db Edition

Revision Name source_tb

Top-level Entity NameMel_Filter

Family Cyclone Il

Device EP3C10U256C8

Timing Models Preliminary

Total logic elements 2,076 / 10,320 (20 %)
Total combinational functions 2,043 /10,32D(% )
Dedicated logic registers 275/10,320 (3 %)

Total registers 275

Total pins 54/183 (30 %)

Total virtual pins 0

Total memory bits  0/423,936 (0 %)

Embedded Multiplier 9-bit elements 8 /46 (17 %)

Figure 62: Summary of resources usage of Mel-Fiftedule: FFTL = 256

Flow Status  Successful - Fri Oct 03 13:54:45 2008
Quartus Il Version 7.2 Build 203 02/05/2008 SP 2\&b Edition
Revision Name source_tb
Top-level Entity NameMel_Filter
Family Cyclone Il
Device EP3C10U25617
Timing Models Preliminary
Total logic elements 2,157 /10,320 (21 %)
Total combinational functions 2,116 /10,3201 (% )
Dedicated logic registers 269/10,320 (3 %)
Total registers 269
Total pins 56/183(31%)
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Total virtual pins 0
Total memory bits  0/423,936 (0 %)
Embedded Multiplier 9-bit elements 8 /46 (17 %)

Figure 63: Summary of resources usage of Mel-Fiftedule: FFTL = 512

4.2.3.7.8 Processing time
Let:
* Number of clocks taken by the divider = D = 11.
* Number of clocks taken by natural logarithm CORBGIL = 16
* Largest difference between any two center frequsncbin(k-1) and
cbin(k+1l) =K =
0 21 in case of sampling frequency 8 kHz ,and
0 23in case of 11 kHz, and
0 51in case of 16 kHz.
Therefore:

Processing time = N_MEK K * D + NL

» 5560 clocks for sampling frequency =8 kHz
» 6088 clocks for sampling frequency =11 kHz
» 13480 clocks for sampling frequency =16 kHz

4238 DCT

4.2.3.8.1 Basic functionality

13 cepstral coefficients are calculated from thgpouof the Non-linear
Transformation block.

23 . A
" T
C,=> f; xcm‘ :
f:':]

{;'—[::.5}|. 0

IA
A
b

L 23

4.2.3.8.2 Internal Architecture

This section shows the data flow graph of the medtihis graph is just
for design purpose and does not mean that the $yrahesized hardware on

the chip will look like that, yet it should be vengar to it.
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Const(i,j) f]

16 bits

Y 16 bits
A A

R1

{ 16 bits 16 bits ;

16 bits

A

16 bits

R2

i 16 bits

Cj

Figure 64: Data flow graph of DCT component

Const(i,)) is as shown below:

o]
[
.
[
—
I3

This can be calculated with the CORDIC Core like time described in
Appendix A.
The data flow graph in Figure 64 is to calculate @h coefficient. The

whole operation is repeated 13 times to get C01i2.C

4.2.3.8.3 Configuration

Parameter Possible Default values | Description
values
N_MEL_COEFF 23 23 Number of mel-
filter coefficients
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Parameter Possible Default values | Description
values
N_CEPSTRAL 13 13 Number of cepstrs
coefficients
Dwidth 16 16 The data width of
the | and Q data.
Iwidth 7 7 The integer part of
the data
Fwidth 8 8 The fraction part o
the data
Awidth 8 bits for 8 The address width
FFTL = 256 of the 1,Q
9 bits for memories. The 2N
FFTL =512 RAM address width
is 1 bit more than
that width.
Shift_sum 4 bits 4 bits The internal

accumulated signal
Is made wider than
the input and outpu
signals bu
Shift_sum bits to
increase the
accuracy of
accumulation. The
final result is
eventually fixed to
the Dwidth of the

—+

input signal.

Table 22: Memory requirements of the DCT component
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4.2.3.8.3.1.ook-up table implementation

The argument of the cosine factor in the basic D&gjliation has a
resolution of 0.5, which means that, 46 values ragpiired to be stored to
represent the whole cosine wave. Having those ifastored in a LUT, there is
no need for the CORDIC core, which reduces thegwsiag time. On the other
hand, extra ROM of 24 entries is needed.

4.2.3.8.4 Signal width justification

The input and output data signals widths are 16. bitowever, the
accumulator signal used internally is wider by Shfim bits to increase the
accuracy of accumulation, then the final resufixed again to Dwidth.

The above choice of signal widths was based onini@ results of real
test vectors to obtain the dynamic range of th@adgy so that overflow or
underflow is completely avoided in any stage of ¢h&ulation. This analysis
was done at the algorithm level, using high levade of the algorithm, were

the fixed point behavior was tested to obtain tgktrsignal widths.

4.2.3.8.5 State Machines

The module is divided into two parts; the firsttp@mner state machire
Is responsible of calculating the inner multiplycamulate operation to
calculate every Cepstal coefficient. The multipbcamulate operation of this

state machine is as shown:

A

(j—0.5)

A

23 i

> f; xcos‘

J=1 h,

1
23

The second parto(iter state machines responsible of managing the
overall state machine of the DCT, where it conttbistrigger of the inner state

machine to calculate next coefficient, until alld®:fficients are calculated.

The definition of the states of tlo&iter state machinis as follows:
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IDLE : if start signal is raised, the DCT operationriggered, and the
module goes to the stattCTIVATE_DCTto start calculating the
cepstral coefficients.

ACTIVATE_DCT: in this state thenner state machinés activated to
calculate the next cepstral coefficient. The modien goes to the
WAIT_DCTstate.

DCT_ACTIVATEDthis is a transient state to reset internal sigaals
activate theinner state machineThe module unconditionally goes to
WAIT_DCTstate.

WAIT _DCT: the module remains in this state until timmer state
machinefinishes calculating the current cepstral coeffitse
INCREMENT_COUNTER in this state a counter is incremented, if it
reached 13, which means that all coefficients weatulated, the
module goes toDCT_FINISHED_ALL. otherwise it goes to the
ACTIVATE_DCT

DCT_FINISHED_ALL:the finished signal is generated in this state
indicating the end of DCT filtering.

The definition of the states of tlivner state machines as follows:

DCT_IDLE the system remains in this state until timmer state
machineis activated, then the system goes to AT IVATE_CORDIC
state.

ACTIVATE_CORDIC the CORDIC processor that calculates the
following constant is activated in this state, dinein the system goes to
the WAIT_CORDIGstate:

cos(fxr{j—[}.ﬁ}

L 23

WAIT_CORDIC the system remains in this state till the CORDIC
finishes, then it goes to tMULTIPLY_ACCUMILATEstate
MULTIPLY_ACCUMILATEIn this state the following multiplication is

performed and the result is accumulated.
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K

|23 U_D‘S}J

f xcos‘ dlal

A counter is incremented till it reaches 23, thiea $ystem goes to the
DCT_FINISHED state, otherwise it goes to tWeCTIVATE_CORDIC
again.

» DCT_FINISHED:reaching this state means that the Ci DCT coefiicie

was successfully calculated.

4.2.3.8.6 Memory requirements

The memory required for RAM and Q RAM s kept in the Buffer
Manager component, as described in secdoh3.5.6, SO no memory is
required for the DCT component itself. In case bfTLimplementation, extra
ROM is required to store the 24 DCT factors.

4.2.3.8.7 Actual Chip Usage

The following is a summary of the chip usage asegated by the Quartus Il

software based on CORDIC implementation:

Flow Status  Successful - Fri Oct 03 14:29:35 2008
Quartus Il Version 7.2 Build 203 02/05/2008 SP 2\&b Edition
Revision Name source_tb
Top-level Entity NameDCT_1
Family Cyclone Il
Device EP3C10U256C8
Timing Models Preliminary
Met timing requirements N/A
Total logic elements 1,153/ 10,320 (11 %)
Total combinational functions 1,153/10,3200(% )
Dedicated logic registers 87 /10,320 (<1 %)
Total registers 87
Total pins 46/183 (25%)
Total virtual pins 0
Total memory bits  0/423,936 (0 %)
Embedded Multiplier 9-bit elements 2/46 (4 %)
Total PLLs 0/2(0%)

Figure 65: Summary of resources usage of DCT module
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4.2.3.8.8 Processing time

Let the number of clocks taken by cosine calculatoouit = C = 12.
Therefore:

Processing time = C* N_MEL * N_CEPSTRAL = 3744.

In case of LUT implementation:

Processing time = N_MEL * N_CEPSTRAL = 299

4239 Split-Vector Quantization

4.2.3.9.1 Basic functionality

The feature vector y(m) is directly quantized with split vector
guantizer. Coefficients are grouped into pairs, @ach pair is quantized using
its own VQ codebook. The resulting set of indexuesl is then used to
represent the speech frame. Coefficient pairingsf(@nt-end parameter) are

shown in table 5.1, along with the codebook sizdusr each pair.

Size Weight Matrix
Codebook (N (w1 Element1 Element 2
{]':'-I 64 I Cq Co
Q23 64 | ¢y cq
a3 64 I C5 CR
Qb7 B4 I Cy cg
q8.2 54 I Cg €10
Qo1 64 ! C11 €12
ql213 256 Mon-identity Cg log[E]

Figure 66: Split Vector Quantization Features Rgs[2]
Two sets of VQ codebooks are defined; one is usedgeech sampled
at 8 kHz or 11 kHz while the other for speech sau@t 16 kHz. The weights

used (to one decimal place of numeric accuracy) are

1215 14460 0 |

8 kHz or 11 kHz sampling rate n B 0 14.7 |
AL _ 12489 0O

16 kHz sampling rate H B 0 12.7!
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The closest VQ centroid is found using a weightadliBean distance to

determine the index:

‘?i'..'+'. V (I”:I i,5+]
d, =| ", |79,
] Y | 1,
oy arg o \
idxH m )= Al g\l 004012
1ax” " (m | D"ij‘il‘f i+l 1“|£?? 1 c’; ][ ! -

Where ¢;"* denotes the jth code vector in the codel@dk, N''™ is

the size of the codebooky' '™ is the (possibly identity) weight matrix to be
applied for the codebook)''**, and idx'**(m) denotes the codebook index
chosen to represent the vecfor(m),y,.,(m)]". The indices are then retained

for transmission to the back-end.

4.2.3.9.2 Internal Architecture

The code books centroids are calculated and storethe ROM,
according to the configuration of the chip, whdre there are different tables
for 8 kHz, 11 kHz and 16 kHz. These values areestan 7 tables., hence we
need 7 ROMs to store the tables. Every pair of tifpatures (ci, ci+1) are
guantized using the proper quantization table. diseance between the input

vector and each entry in the proper table is catedl as follows:

(Dist)® = (Ci - Q(i,)))* + (Ci+1 - Q(i+1,))’

Then the index (j) of min(Dis}) is chosen, and put in the output frame
as a 6/ 8 bits value. Note that: the operatiorha imodule is triggered when
every new feature (LogE, CO... C13) becomes readygsantization is done
in parallel with the DCT module. Every time two fieees are ready, they are
input to the Vector Quantizer module to be quantiZeccording to the current
features being quantized, the access is givenetocdgheQuantizer to the proper

ROM that contains the proper quantization table.
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4.2.3.9.3 Configuration

Parameter Possible values Default values | Description
Awidth 8 bits for FFTL | 8 The address width
= 256 of the 1,Q
9 bits for FFTL memories.
=512
Dwidth 16 16 The data width of
the features
Iwidth 7 7 The integer width
Fwidth 8 8 The fraction part
Shift_energy 4 4 The lwidth of the

LogE feature is 3
bits, while the
Iwidth of the
internal signals is 7
bits, so the LogE
feature needs to bg
fixed by shifting it
right by 4 bits.

1Y%

Table 23: Memory requirements of the Vector Quanittn component

4.2.3.9.4 Signal width justification

The width of the input features is 16 bits, witle ttame width as the

output of the previous module. This choice of sigm@ths was based on run

time results of real test vectors to obtain theasyit range of the signals, so

that overflow or underflow is completely avoided any stage of the

calculation. This analysis was done at the algorikbvel, using high level code

of the algorithm, were the fixed point behavior wasted to obtain the right

signal widths.
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4.2.3.9.5 State Machines

The module starts in the IDLE state, until the tsséagnal comes (which
indicates that the LogE feature is ready), so tloelute goes to the wait_CO
state. Every time a store signal is triggered tloelufe goes to the next state.
When a feature pair is ready (like LogE-CO, C1-C3:-C4,...C11-C12), the
core Quantizer is activated, and the access oRtBb! is given to the proper

guantization table ROM.

4.2.3.9.6 Memory requirements

Memory Size Description

Q0 64 * 16 Quantization table of
feature CO

Q1 64 * 16 Quantization table of
feature C1

Q2 64 * 16 Quantization table of
feature C2

Q.3 64 * 16 Quantization table of
feature C3

Q4 64 * 16 Quantization table of
feature C4

Q5 64 * 16 Quantization table of
feature C5

Q6 64 * 16 Quantization table of
feature C6

Q7 64 * 16 Quantization table of
feature C7

Q.8 64 * 16 Quantization table of
feature C8

Q9 64 * 16 Quantization table of
feature C9

Q_10 64 * 16 Quantization table of
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Memory Size Description

feature C10

Q 11 64 * 16 Quantization table of
feature C11

Q 12 256 * 16 Quantization table of
feature C12

Q_13 256 * 16 Quantization table of

feature LogE

Table 24: Memory requirements of the Split-Vectara@tization module

4.2.3.9.7 Actual Chip Usage

The following is a summary of the chip usage asegstied by the

Quartus Il software:

Flow Status Successful - Fri Oct 03 15:53:55 2008

Quartus Il Version 7.2 Build 203 02/05/2008 SP 2\&b Edition
Revision Name source_tb

Top-level Entity Name Vector_Quantization

Family Cyclone llI
Device EP3C10U256C8
Timing Models Preliminary

Met timing requirements  N/A
Total logic elements 729 /10,320 (7 %)
Total combinational functions 675/ 10,320%7)
Dedicated logic registers 132/10,320 (1 %)
Total registers 132
Total pins  89/183 (49 %)
Total virtual pins 0
Total memory bits 20,480 /423,936 (5 %)
Embedded Multiplier 9-bit elements 4146 (9 %)

Figure 67: Summary of resources usage of the Splitor Quantization

module

4.2.3.9.8 Processing time

This module runs in parallel with the DCT, whereegvcoefficient is
guantized once it is produced by the DCT. Hence ptlocessing time is taken

as the maximum quantization time of the 14 featusmsch is 256 clock cycles
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needed to search for the minimum distance in tlatgation tables of CO and
LogE.

In case of LUT implementation of DCT, the Vectordptization will
take longer time than DCT, and hence will not besked by the DCT time, in

this case the Vector Quantization processing tintiebe.

Processing time = 256+64*6 = 640 clocks

4.2.3.10 Bit Stream Framing

4.2.3.10.1 Basicfunctionality

This module forms the bitstream used to transnaitctimpressed feature
vectors, using the defined frame structure andetiner protection mechanism
defined in the standard.

In order to reduce the transmission overhead, eadtiframe message
packages speech features from multiple short-timalyais frames. A
multiframe, as shown ifigure 68, consists of a synchronization sequence, a

header field, and a stream of frame packets.

Sync Sequence Header Field Frame Packet Stream

<- 2 octets > <- 4 octets -= =- 138 octets =

144 octets -=

Figure 68: Multiframe format2]

In order to improve the error robustness of thaquoal, the multiframe
has a fixed length (144 octets). A multiframe représ 240 ms of speech,
resulting in a data rate of 4 800 bits/s.

According to the standard, octets are transmitteascending numerical
order; inside an octet, bit 1 is the first bit te ttansmitted. When a field is
contained within a single octet, the lowest-numdesi of the field represents
the lowest-order value (or the least significari). Bivhen a field spans more
than one octet, the lowest-numbered bit in the Gcdet represents the lowest-
order value (LSB), and the highest-numbered bihenlast octet represents the

highest-order value (MSB). An exception to thiddienapping convention is
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made for the cyclic redundancy code (CRC) fields. these fields, the lowest
numbered bit of the octet is the highest order tesimthe polynomial

representing the field. In simple stream formattidgagrams, fields are
transmitted left to right.

Each multiframe begins with the 16-bit synchron@atsequence 0 x
87B2. Following the synchronization sequence, ad@edield is transmitted.
Ordering of the message data and parity bits isvehim Figure 69, and
definition of the fields appears in Figure 70. ®#hbit multiframe counter gives
each multiframe a modulo-16 index. The counter edbr the first multiframe
is "0001". The multiframe counter is incrementeddmne for each successive
multiframe until the final multiframe. The final rtiframe is indicated by

zeros in the frame packet stream

Bit 8 7 6 5 4 3 2 1 Octet
EXP1 MframeCnt feType SampRate 1
EXP9 EXP8 EXPT EXP8& EXP5 EXP4 EXP3 EXP2 2
] P7 P& P& P4 P3 P2 P1 3
P16 P15 P14 P13 P12 P11 P10 P9 4

Figure 69: Header field form§2]

Field No. Bits Meaning Code Indicator

SampRate 2 sampling rate 00 8 kHz

01 11 kHz

10 undefined

11 16 kHz
FeType 1 Front-end specification 0 standard

1 noise robust
MframeCnt 4 multiframe counter OO0 Modulo-16 number
EXP1- EXP9 9 Expansion bits (TBD) 0 izero pad)
P1-P16 16 Cyclic code parity bits (see below)

Figure 70: Header field definitigj2]

The generator polynomial used to generate P1-P16 is

(X)=1+ X+ X+ x4+ xP

g

The parity bits of the codeword are generated uiagalculation:
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? 1000000010001011 SompRare
p| |t100000011001110 SompRate?
p| |T110000011101101 oTipe
Pl |0111000001110111 B
P, 101110001011 0O0O0O0 MFErameCni2
Rl |0101110001011000 MFrameCnt3
E 0010111000101 100 MFrameCnit4d
R|_|oooro11100010110f | &%
Bl [to0o0101100000001| | £X2
Pol 0100010110000001 .
A1 |001000101100000°1 e
ol 100010001011 00001 EAP
Bl 000010001011 0001 EXF?
Al lo000010001011001 .
Bsl looooo001000101101 AP
B | B
‘%) loo0o0000100010111

Each 10 ms frame from the front-end is represebiedhe codebook
indices. The indices for a single frame are forgthfior a frame according to

Figure 71. The exact alignment with octet boundawd! vary from frame to
frame.

Bit 8 7 6 5 4 3 2 1 Octet
idx2.3(m) 1dx21(m) 1
idx*2(m) idx2-3(m) {cont) 2
idxB.7(m) idx®5(m) (cont) 3
idx10.11(m) 16x-9(m) 4
idx 1213(m) idx 12.11(m) (cont) o
idx 12.13(m) (cont) 6

Figure 71: Frame information for mth frarf&g
Two frames worth of indices, or 88 bits, are theouged together as a
pair. A 4-bit CRC with generator polynomial

(g(X)=1+Xx +x9)]
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It is calculated on the frame pair and immediafellpws it, resulting in
a combined frame pair packet of 11,5 octets. Twalehese frame pair
packets are combined to fill the 138 octet feasiream. Figure 72 illustrates
the format of the protected feature packet stréafmen the feature stream is
combined with the overhead of the synchronizatiequence and the header,

the resulting format requires a data rate of 4865Ib

Frame #1 Frame #2 CRC#1-2 | [ Frame #23 | Frame #24 | CRC #23-24
< 44 bits> | < 44 bits > | <- 4 bits >

<~ 138 octets /1104 bits > |
Figure 72: CRC protected feature packet strggm

4.2.3.10.2 Internal Architecture

The module functionality is handled through a 4est&tate machine. A
CRC engine is used to generate the header CRCarawitier one is used to
generate the frame pair CRC’s, both are contradied activated according to
the state machine. Another core module is usedro the frame and assign

the frame length according to the current statd@fstate machine.
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——» Data path

77777777777777 » Control path

frame, frame_length

.

Header CRC

Header | Frame
CRC Engine formatting
5 K
* 7777777777 Main State | R
Machine
v

Frame-pair CRC

Frame-pair
CRC Engine .

Figure 73: Internal architecture of the Bit Strelaraming

4.2.3.10.3 Configuration

Parameter Possible Default value Description
values
Sampling_Rate “00” “00” : for 8 kHz| The configured
“01” : for 11 sampling
kHz frequency. This
“11” : for 16 will be included in
kHz the header field of

the Multi-frame.

Table 25: Configuration table of the Bit framing dube

4.2.3.10.4  Signal width justification

None
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4.2.3.10.5

State Machines

>

first_frame_multi_frame

@»

second_frame_crc

o>

Figure 74: State machine of the Bit stream frantogponent

Source State

Destination State

Condition

idle

first_frame_multi_frame

D

first_frame_multi_frame

first_frame_multi_frame

(send_frame)

first_frame_multi_frame

second_frame_crc

(send_frame)

first_frame

first_frame

('send_frame)

first_frame

second_frame_crc

(send_frame)

second_frame_crc

first_frame_multi_frar

nieame_counter = 24

second_frame_crc

first_frame

frame_counter < 24

Table 26: State transition of the Bit stream fragrstate machine

The description of the states in Table 26 is ds\id:

component.

state until a send_frame command is triggered, thet it goes to
SECOND_FRAME_CRGtate. In this state the header field is formed

and appended before the data frame.

State.
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IDLE: this transitional state just to reset the intercalinters of the

FIRST_FRAME_MULTI_FRAMEDbeing in this state indicates that this

is the first frame in the current multi frame. Tim@dule remains in this

FIRST_FRAMEthis state indicates that the frame is the firsh dfame
pair, but not the first of a multi frame, so no tieaor CRC fields are
added to the frame. The module will go to 8#COND_FRAME_CRC

when a send_frame command is triggered, othergisemains in its

first_frame




» SECOND_FRAME_CRCthis state indicates that this is the second

frame of a frame pair, which means that 4 bits #a@RC should be
calculated and appended to the formatted franm@24 frames were sent,
then this multi frame is terminated, so the moduees to
FIRST_FRAME_MULTI_FRAME state, otherwise it goes to
FIRST _FRAMEstate.

4.2.3.10.6 Memory requirements

None.

4.2.3.10.7 Actual Chip Usage

The following is a summary of the chip usage asegaed by the Quartus I

software:

Flow Status Successful - Fri Oct 03 17:11:07 2008

Quartus Il Version 7.2 Build 203 02/05/2008 SP 2A&Db Edition
Revision Name source_tb

Top-level Entity Name Bit_Framing

Family Cyclone llI
Device EP3C10U256C8
Timing Models Preliminary

Met timing requirements  N/A
Total logic elements 474 /10,320 (5 %)
Total combinational functions 474 /10,320%5
Dedicated logic registers 4/10,320 (<1 %)
Total registers 4
Total pins 147 /183 (80 %)
Total virtual pins 0
Total memory bits 0/423,936 (0 %)
Embedded Multiplier 9-bit elements 0/46 (0%)
Total PLLs 0/2(0%)

Figure 75: Summary of resources usage of Bit frgnmmodule

4.3 Overall System Performance

4.3.1 Actual Resources Utilization

The overall usage for the whole chip based on th#iguration of the

frame length is shown below for the FPGA device |Gye Il
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EP3C10U256C8. Note that, the following results besed on LUT table

implementation of Hamming Window, FFT and DCT.

Flow Status Successful - Fri Mar 13 06:39:21 2009

Quartus Il Version 7.2 Build 203 02/05/2008 SP 2\&b Edition
Revision Name source_tb

Top-level Entity Name Front_End_Processor

Family Cyclone llI
Device EP3C10U256C8
Timing Models Preliminary

Met timing requirements  No
Total logic elements 7,844 / 10,320 (76 %)
Total combinational functions 7,724/ 10,32Z(6(% )
Dedicated logic registers 1,179/10,320 (1) %
Total registers 1179
Total pins  138/183 (75 %)
Total virtual pins 0
Total memory bits 39,712 /423,936 (9 %)
Embedded Multiplier 9-bit elements 46 /46 (100 %
Total PLLs 0/2 (0 %)

Figure 76: Actual resources usage: Sampling R&é=z, N=200,
FFTL=256, Cyclone Il EP3C10U256C8

Flow Status Successful - Fri Mar 13 06:39:21 2009

Quartus Il Version 7.2 Build 203 02/05/2008 SP 2\&b Edition
Revision Name source_tb

Top-level Entity Name Front_End_Processor

Family Cyclone llI
Device EP3C10U256C8
Timing Models Preliminary

Met timing requirements No
Total logic elements 7,844 / 10,320 (76 %)
Total combinational functions 7,724/ 10,32(5(% )
Dedicated logic registers 1,179/10,320 (1) %
Total registers 1179
Total pins  138/183 (75 %)
Total virtual pins 0
Total memory bits 42,512 /423,936 (10 %)
Embedded Multiplier 9-bit elements 46 /46 (100 %
Total PLLs 0/2(0%)

Figure 77: Actual resources usage: Sampling Rdte kHz, N=256,
FFTL=256, Cyclone Il EP3C10U256C8
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Flow Status Successful - Fri Mar 13 06:08:27 2009

Quartus Il Version 7.2 Build 203 02/05/2008 SP 2\&b Edition
Revision Name source_tb

Top-level Entity Name Front_End_Processor

Family Cyclone llI
Device EP3C10U256C8
Timing Models Preliminary

Met timing requirements  N/A
Total logic elements 8,575/ 10,320 (83 %)
Total combinational functions 8,447/ 10,3Z2(% )
Dedicated logic registers 1,186 /10,320 (1) %
Total registers 1186
Total pins  138/183 (75 %)
Total virtual pins 0
Total memory bits 58,928 / 423,936 (14 %)
Embedded Multiplier 9-bit elements 46 /46 (100 %
Total PLLs 0/2(0%)

Figure 78: Actual resources usage: Sampling Rdté kHz, N=400,
FFTL=512, Cyclone Ill EP3C10U256C8

4.3.2 Processing time and Speed limitations

The processing time performance discussed hehe ismhe taken to perform:

» MFCC Features Extraction Algorithm,

» Split-Vector Features Quantization and Compression,

* And Bit-Stream Frame Formatting.

The calculations mentioned here assume that trecbdeame (N-samples)
is already buffered and ready. In other words pipelining delay till the frame
is buffered is not considered, since it dependsheninput sampling rate and
not on the system performance. In general, thislipimg time is calculated as

(in clock cycles):

SamplingFequency (clocks
InternalChpFrequenyg

Where N is the number of samples in a speech framieh depends on
the configured sampling frequency asTiable 8 The sampling frequency can
be 8, 11 or 16 kHz. The internal chip frequencyet®s on the hardware

platform used.
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4321 Frame Processing Time

The Frame Processing Timis the summation of the time required by
the Offset Compensation, Pre-emphasis, Hamming WndFFT, Mel-Filter,
DCT, Vector Quantization and Bit-Stream Framing mled to process a
speech frame of N-samples, from the instant theyeady in the input samples
buffer till the output frame bit-stream is readythé output ports. In other
words, it is the time between the rising of theungignal “store” to the time of
the rising of the output signal “frame_ready”.

After the whole frame is processed, thRAM and Q RAMshould be
reset again, which requires FFTL (FFT length) ceo¢(®56/512). This is done
in parallel with the last feature quantization, @fhrequires 64 clocks, so it is
less than the memory reset time, hence it is nesidered in the total time. In
general, the Vector Quantization module runs iralerwith the DCT module,
so its time is masked by the DCT processing tinngl, laence not included in
the total time calculation.

For the very first frame, the input samples bufeeempty, so the FFT
and the consecutive modules should wait till N-sia@re ready. Hence, for
the very first frame the Offset Compensation, Pnepkasis and Hamming

Window times will be added to the Total time.

First Frame Processing Time =
Offset Compensation Time + Pre-Emphasis Time + Hamgm/indow Time +
FFT Time + Mel-Filter Time + DCT Time + Memory Rée3éme + Bit-Stream
Framing Time =
i=log, FFTL

N+N+(C+1)x N+FFTL/2x log, FFTL+Cx > 2" +L+N_MEL

i=1

xKx D+ NL+CxN_MELx N_CEPSTRAL + FFTL

However, for consecutive frames, the operation bE tOffset
Compensation, Pre-Emphasis and Hamming Window nesdwlll be done in
parallel with the operation of the FFT and conseeutmodules, so the

processing times of the first three modules iscooisidered.
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Next Frames Processing Time =
FFT Time + Mel-Filter Time + DCT Time + Memory Ré3éme + Bit-Stream
Framing Time =

i=log, FFTL-1

FFTL /2 x log, FFTL + C x ZZi +L+N MELx Kx D+ NL+C x
i=1

N_MEL x N_CEPSTRAL +FFTL

Where:
* The number of samples per frame = N = 200/256/400.
 The FFT length = FFTL = 256/512.
e The number of Mel-Filter Banks = N_MEL = 23.
* The number of Cepstral Coefficients = N_ CPESTRAL3=
* Time taken by the CORDIC Sine/Cosine Calculator =1.
» Time taken by the CORDIC Magnitude Calculator = Lk
* Time taken by the CORDIC Divider Calculator =D £ 1
* Time taken by the CORDIC Natural Logarithm Calcafat NL = 16.
» Largest difference between any two center frequsncbin(k-1) and
cbin(k+1l) =K =
0 21 in case of sampling frequency 8 kHz ,and
0 23in case of 11 kHz, and
0 51in case of 16 kHz.

The Energy Measure operation is always performegbarallel with
other modules operation, so its processing tinadwslys masked and hence not
considered in the total time calculation.The comfégion of these parameters is
show in Table 8 and Table 38.

The numerical value of the processing time willdiéerent according
to the configured sampling rate and the correspandonfiguration parameters
that follow it. The following table shows the diféat processing times with the

sampling rate:
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Fs =8 kHz Fs=11kHz Fs =16 kHz
First Frame 15124 clock 16492 clock 29644 clock
cycles cycles cycles
Next Frames 12124 clock 12652 clock 23644 clock
cycles cycles cycles

Table 27: Frame processing time with different siamgpfrequencies

The maximum allowed processing time for each frag8.16 ms as

discussed it.1.1. Now, we wish to get the ratio (in %) betwela allowed

and actual consumed time, which will follow theléating equation:

FrameProcessingTimeInClaks/ InternalClipFrequeny _ , o

MaximumAlbwedProcessingtime

The following table shows this percentage for In&rChip Frequency

of 100 MHz:

Fs =8 kHz Fs =11 kHz Fs =16 kHz
First Frame 1.7284% 1.8847% 3.3878%
Next Frames 1.3856% 1.4459% 2.7021%

Table 28: Frame processing time as a percentate @ilowed time for 100

MHz chip frequency

4.3.2.1.1 Look-up table implementation

In case of Look-up table implementation of HammWindow, FFT
and DCT mentioned i4.2.3.4.2.14.2.3.6.2.4.2.3.8.3.1, the frame processing

time will be:

First Frame Processing Time =
Offset Compensation Time + Pre-Emphasis Time + Hemgwindow Time +
FFT Time + Mel-Filter Time + Vector Quantizationrte + Bit-Stream
Framing Time =
N+N+(C+1)xN+FFTL/2x L+ FFTL+L+N_MELxK x D+ NL +
640
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Next Frames Processing Time =
FFT Time + Mel-Filter Time + Vector Quantizationrte + Bit-Stream
Framing Time =
FFTL/2x L+FFTL+ L+ N_MELx K x D+ NL + 640

Note that; in case of LUT implementation, the Vecuantization time

is larger than the DCT time; hence, the DCT timmasked.

Fs =8 kHz Fs=11kHz Fs =16 kHz
First Frame 10633 clock 11979 clock 22887 clock
cycles cycles cycles

Next Frames 7633 clock cycles 8139 clock cycles 16887 clock

cycles

Table 29: Frame processing time with different siamggrequencies for LUT

implementation

Fs =8 kHz Fs =11 kHz Fs =16 kHz
First Frame 1.1608 % 1.3078 % 2.4986 %
Next Frames 0.8333 % 0.8885 % 1.8436 %

Table 30: Frame processing time as a percentathe @fllowed time for 100

MHz chip frequency for LUT implementation

43.2.2  Minimum Internal Chip Frequency

The internal chip speed is limited by the inputnfearate, where the
internal chip processing should be faster than rthis, otherwise some input
samples will be missed, and the input samples bwiié overflow. The frame
processing time was calculated in the previousi@echence, this time (in
seconds) should be less than or equal to the inguie rate. In this calculation
we will consider the next frames processing timé aat the first frame, since
the first frame time only occurs in the very begngnof the system operation.

The minimum internal chip frequency can be dedufredh the following

equation:
NextFrameimelnClocls _ M (FrameShifintervallnSample¥ _ 10ms
MinimuminernalChipRequency SamplingFequency
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For this equality, the percentage of the maximunowsd frame
processing time consumed by the system is 100%.
The frame shift interval (M) configuration is shownTable 8 The following
table shows the minimum internal chip speed forfed#nt sampling
frequencies:

Fs =8 kHz Fs =11 kHz Fs =16 kHz
Minimum 1.2124 1.2652 2.3644
Internal Chip
Frequency
(MHz)

Table 31: Minimum Internal Chip Speed for differ&ampling Frequencies

In case of Look-up table implementation the reswltsbe:

Fs =8 kHz Fs =11 kHz Fs =16 kHz
Minimum 0.7633 0.8139 1.6887
Internal Chip
Frequency
(MHz)

Table 32: Minimum Internal Chip Speed in case oflLithplementation

4.3.3 Memory

The only RAM memory required is in the Buffer Maeragnodule
mentioned in4.2.3.90. The ROM memory exists in Mel-Filter and Split-
Vector Quantization module 4.1.7 and 4.1.9.

The overall memory requirements are shown in thHeviing table:

SamplingFrequency| Size in Type
bits

8 kHz 16192 RAM
20880 ROM

11 kHz 18432 RAM
20880 ROM

16 kHz 32384 RAM
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20880 ROM

Table 33: Memory requirements of the System

4.4 Effect of Run-time configurability of the chip

The configurations mentioned in the modules dedagliee done statically,
which means that; once the chip is manufacturedetto®nfigurations cannot
be modified anymore. This section discusses theired) modifications to the
system to enable making this configuration procassun-time, such that
modifications can be done dynamically during theragion of chip. To enable
this modification, the architecture of the systesmmodified, such that a new
module is added to manage different configuratiargch is theConfiguration
Manager

Buffer Interface Com?)gﬁ(seetation Pre-emphasis Energy Measure
Windowing
Buffer Manager FFT
Mel-Filtering
Bit-Stream Framing Quantizer DCT l;lI%r;]-sI:%?gqr

Figure 79: Modified Static Architecture for Run-gnsonfigurability
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This will certainly affect many modules of the systin different ways;
this effect will be mentioned for each module-fiieated- independently in the

next sections.

4.4.1 Energy Measure

This module has a configuration parameter N as ioeed in4.2.3.3.3.
This configuration parameter will be declared asimgput variable that is
modified by the Configuration Manager This reading frequency of this
variable will be every frame, such that it will meffective to change it during

the processing of the current frame.

Parameter Update frequency

N Every frame

Table 34: Update frequency of the configuratiorapaters of the Energy
Measure component
The Configuration Managewill be in charge of reading this variable

from the RAM area dedicated for chip run-time cguafation.

4.4.2 Windowing

This module has a configuration parameter N as imeed in section
4.2.3.4.3. This configuration parameter will be ldesd as an input variable
that is modified by th€onfiguration ManagerThis reading frequency of this
variable will be every frame, such that it will meffective to change it during

the processing of the current frame.

Parameter Update frequency

N Every frame

Table 35: Update frequency of the configuratiorapaters of the Windowing
component
The Configuration Managewill be in charge of reading this variable

from the RAM area dedicated for chip run-time cguafation.
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4.4.3 Buffer Manager

This is the most affected component of the systghere the memories
managed by this component shall be declared to t&@ximum, assuming 512
FFT points, however, the actual used portion ofse¢henemories will be
controlled by the configuration parameters managgdthe Configuration
Manager

This module has the configuration parameters meatoin section
4.2.3.5.3. The run-time configurable parametergra@ationed in the following
table. These configuration parameters will be dedas input variables that
are modified by theConfiguration Manager The update frequency of these

parameters is shown in the following table.

Parameter Update frequency
N Every frame
FFTL Every frame
M Every frame

Table 36: Update frequency of the configuratiorapaters of the buffer
manager component
The Configuration Managewill be in charge of reading these variables
from the RAM area dedicated for chip run-time cgafation.

4.4.4 FFT

This module has the configuration parameters meatoin section
4.2.3.6.3. The run-time configurable parametergra@ationed in the following
table. These configuration parameters will be dedas input variables that
are modified by theConfiguration Manager The update frequency of these
parameters is shown in the following table.

Parameter Update frequency

depth Ever frame

Table 37: Update frequency of the configuratiorapaers of the FFT
component
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The Configuration Managewill be in charge of reading these variables

from the RAM area dedicated for chip run-time cgafation.

4.45 Mel-Filter

The cbink coefficients will be stored in two grouppsROM, one for
FFTL of 256 and the other for FFTL of 512. The mogroup will be used
according to the current configuration. Using dedé#nt group than the current
one is not allowed during the processing of theenirframe. Apparently, this
will double the needed ROM space t0%Q6 bits for the cbink coefficients.

The Configuration Managewill be in charge of indicating which group

to be used according to the required configuration.

4.4.6 Split-Vector Quantization

This module is affected in the quantization taltlest it uses, where
every sampling frequency will use different quaatian table. In case of
compile-time configuration, the proper quantizattable was loaded in ROM
according to the sampling frequency configured,clwlgannot be the case for
run-time configuration of the sampling frequency.

One solution to this problem is to load the thiaadds (for 8, 11 and 16
kHz sampling rates) in ROM and using the proper aweording to the
required rate. However this solution would requniple the ROM area used
before, which is about 7.5 Kbytes.

The other solution is to put the three tables inEaternal ROM, and
load the proper one to the On-chip ROM based onréugired rate. The
disadvantage of this solution is that it requi@sgl copying time from External
to On-chip ROM. However, it is not expected that tlate of changing the
sampling rate configuration to be high, so thisglaropy operation will be

performed rarely during system operation.

4.4.7 Configuration Manager

This is the new component added to manage rundonégurability. A

dedicated RAM area will be declared for run-timenfogurations, which will
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be accessible by the external entity (the user) vioiting, and by the
Configuration Managefor reading, this will be referred as tli®nfiguration
RAM area. The only configurable parameter by the eateamtity is the

sampling rate. The correspondence between the samphate and other

configurations parameters is mentioned in Table 38:

Sampling rate N(Frame length) | M(Frame shift) | FFTL (FFT
(kHz) length)

8 200 80 256

11 256 110 256

16 400 160 512

Table 38: Relation between sampling rate and atbefiguration parmaters
The responsibilities of this module are as follows:

* Read the sampling rate configuration from @enfiguration RAMand
communicate the proper configuration parameterthéomodules that
need them, like Mel-Filter for example.

» Copy the proper quantization tables from externr@MRto the on-chip

ROM whenever the sampling rate configuration is ined.
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Chapter 5

5 Compliance to the Aurora Standard Test Vectors

Hardware testing is usually a hard task. This icabee hardware
debugging is hard, and locating the problem takegédr time that testing a
Software program. Also, fixed point errors neethe¢atested carefully to ensure
that the hardware implementation of a referencéwswé algorithm is not
deviating away to give results that are far fromn@ecorrect. In modern
HDL'’s, test benches facilitates the task of hardwgasting to some extent,
together with modern simulation and validation sotlat are integrated with
the development tools and synthesizers to forrmtagrated development and
testing environment.

In order to test the validity of the design, theefl point results of
simulating the system using ModelSim software iBdesed against standard
results of floating point implementation provideg the ETSI with the Aurora
standard, so that compliance to the standard i&epro

In this chapter we will present the test benchseted to test and validate
the front end hardware. The types of test casefonpeed will be clearly
explained. All kinds of tools used to develop, diae or test the system will
be mentioned and explained in details. And finalhg simulation and testing

results of the test cases mentioned will be present

5.1 Test Bench Setup

When writing a design, it is important to verifg functionality. The most
common method of doing this is to create a testlheire., instantiating a
Device Under TestDUT), generate test vectors (a set of inputs)l, monitor
the output, as shown in Figure 80. Common test beasks are to generate
clock and reset signals, and read/write informatma file. Writing the output
values to a file makes it possible to verify theuleusing test scripts written in

high level language like C-language.
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Figure 80: Typical VHDL Test Bendi6]

5.2 Performed Test Cases

The front end system was tested and validated sigthia reference result
vectors generated by the high level C-code provige&TSI with the Aurora
standard ETSI ES 201 108. The same input stimubgsov of samples that is
used with the reference C-code was applied torth@ £nd system designed in
hardware and coded in VHDL. The VHDL code will lefarred from now on
as theDevice Under TeqiDUT). The outputs of both systems (the referddee
code and the DUT) are then compared to detect th€& performance against

the reference high level code.

Bit-Stream
Input Stimulus Features Bit-Stream Frames
Front End ) )
— Algorithm > Compression »  Framing +——
\ Algorithm \ Algorithm
Unquantized Quantized
Features Features

Indices
Figure 81: Observed System Outputs
Here we are interested in two observed outputs footh systems, shown

in Figure 81:
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» The Unquantized Features Vectoconsists of the 13 Cepstral
Coefficents resulting after the DCT operation, ghes natural logarithm
of the frame energy.

* The Quantized Features Indicesonsists of 7 indices representing the
guantized features.

Using the above observations from reference and Ddy3tems, the

following tests can be performed:

5.2.1 Unquantized Features Error Test- Test 1

Output features before quantization and after t&d [@peration of both
the reference and DUT systems are compared to ethers. TheAverage
Absolute Erroris the result of this test, and is defined by th#owing

equation:

Z| DUTFeature— Re ferenceFeéure |

AverageAbeIuteError - AllTestedFamesFeattes
TotalNumbeOfFeatures

The above number is simply the deviation betweem EUT and
reference features. In other words, the correctifea are in the range the DUT

featurest TheAverage Absolute Error

151
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Input Stimulus DUT DUT DUT Frames
Features Bit-Stream
——»  Front End »> : > ) E—
Algorithm Compression Framing
Algorithm Algorithm
Unquantized
FeItures
Test ———>Average Absolute Error
Unquantized
Features
Bit-Stream
Input Stimulus Reference Reference Referenoe Frames
Features Bit-Stream
——» FrontEnd : > - E—
Algorithm Compression Framing
Algorithm Algorithm

Figure 82: Unquantized Features Error Test

5.2.2 Quantized Features Error Test- Test 2

In this test, the two output quantized featuredciesl are considered,
decoded to get the corresponding features, thetwihelecoded features of the
DUT and the reference systems are compared tovgatsults:

1. The Average Absolute Errocalculated exactly as #2.1.

2. The Error Ratecalculated as follows:

NumberOflieorrectindces
TotalNumbeOfTestedhdices

Again, the correct features are in the range thel Déhturest The

ErrorRate=

Average Absolute Error
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Quantized

Features Bit-Stream
|nput Stimulus DUT DUT Indices DUT Frames
Features Bit-Stream
——» Front End > - ) e
Algorithm Comprgssmn Framlng
Algorithm Algorithm
y
A
,Average Absolute Error
Quantization Tables —» Test
> Error Rate
A
A
Bit-Stream
Input Stimulus T Reference Reference Frames
Features Bit-Stream
—» Front End : > ) >
Algorithm Compression Framing
Algorithm Quantized| _ Algorithm

Features
Indices

Figure 83: Quantized Features Error Test
The Error Rate represents the number of times by which the DUT
guantized indices deviates from the reference dmesigh the whole tested
features of all the tested frames. Normally, thig rshould be low, as the DUT
guantized indices are usually the same as theergferones, except for very
few features that the fixed point error (represente the Average Absolute
Error) makes the Quantiser mis-classify the featurestpa wrong index. The
following figure is a snap-shot of the results fiethe difference between the
DUT and reference decoded features from the guehtindices using the
guantization tables. It is clear that most of tbsutting difference is”0”, which

means the DUT and reference indices are exactlgahee.
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5.2.3 Quantization Error Test- Test 3

Since the last stage of the front end system is 3ipéit-Vector
Quantization, a quantization error must exist fathbreference and DUT
systems. This test aims at observing the differémt¢lee AverageQuantization
Error between the DUT and reference systems. Akerage Quantization

Error for both DUT and reference systems is defined as:

Z| Quantizedleature—-UnquantizelFeature]

AverageQuatizationError = AlTestedrameindics
TotalNumbeOfTestedfFamesFeattes

The Quantized Featuresare the decoded features from the result
guantized indices using the quantization tableg ®ttput of this test is the
Difference In Quantization Errorwhich is the difference between the DUT

and reference quantization errors. The number ghmeismall.
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Figure 85: Quantization Error Difference Test

5.3 Environment and Tools

Quartus 1l 7.2 IDE is used for development, synhenodule simulation,

FPGA programming bitmap generation and net listtimgi ModelSim PE

Student Edition 6.4 a tool is used to perform fsilnulation and module

integration tests. Finally, Visual Studio 6.0 IDERsvused to develop, compile

and link the test scripts used with the test bdilels to perform the required

test cases.

5.4 Testing and Simulation Results

Two configurations of the front end were testediohlare:

Configuration A: sampling frequency = 8 kHz, frarength

sample.

Configuration B: sampling frequency = 16 kHz, frameagth

sample.
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The tests explained i6.2 were executed on the two chip configurations

above, and the results are summarized in the folipwables. The FPGA chip
EP3C10U256C8. For more infororat about the

used is Cyclone Il

performed test se& 2.

Test 1 Test 2 Test 3

Average | Average | Error DUT Reference Quantisation

Absolute | Absolute | Rate Quantisation | Quantisation | Error

Error Error Error Error Difference
Configuration | 0.033725 | 0.041925 0.052188 1.902172 1.899551 021026
A
Configuration | 0.049192 | 0.210935 0.082411 1.670316 1.665433 081848
B

Table 39: Testing and Simulation results

The following observations can be drawn from treults in Table 39:

* For Test 1: theAverage Absolute Erroseems to increase slightly for

Configuration B than Configuration A.

» For Test 2: theAverage Absolute Errorincreases notably for

Configuration B than Configuration A. However, th&ror Rate

experiences a slight increase in Configurationdt@onfiguration A.

e For Test 3: theQuantisation Errorseems to remain unaffected in the

DUT than the reference system in both configuratiadowever, the

difference in Configuration B is nearly double tb&Configuration A.

The general conclusion that can be drawn from thesdts is that:

1. As appears from Test 3 results, the DUT do not siddificant

error to the already existing quantization errorthe reference

system, which means that the performance of the lavho
Distributed Speech Recognitisgstem will remain unaffected by
the fixed point approximations done in the hardware
implementation of the front end part. Even in Tkaind 2 results,

the Average Absolute Errorremains small. This error-as

mentioned before- means that the correct featueemahe range
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the DUT featurest The Average Absolute Errorhence, the
DUT is correct to 2 decimal places in most casesl & 1

decimal place in only one case.

2. As the frame length increases, which means moratibes and
steps in summations, this increases the fixed peimbrs
significantly (nearly the double in most casespuiih remains

reasonable even for the longest frame length irfiGaration B.
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Chapter 6

6 System Benchmarks

In this chapter, we try to find a way to evaludte front end processor
hardware design presented in this thesis by comgpait to other
implementations and reference designs.

Benchmarking is a way to measure performance obrapcter system.
More specifically, benchmark is a reference algponitor program used to
guantitatively evaluate computer hardware and soBwesources. To get a
better picture of a computer system, engineersiddfenchmark suites - sets of
benchmarks. By choosing a suitable benchmark feyséem it is possible to
test if it behaves the way we expect.

The above definition of a benchmark is more sugdblsoftware programs
and algorithms, however, we will try to alter itlitile to suite the hardware
custom designs like-in our case- the front end dp@eocessor. Following the
above definition of a benchmark, we consider trenFend processing together
with the vector quantization algorithms definedthe Aurora standard as the
reference algorithm that is used to evaluate aaredesign. The reference
hardware platform will be Altera FPGAs (Cyclone, liStratix Il... etc).
Evaluation is to be done based on the FPGA ressuttdization and
processing time.

Since the system is custom in its nature, therenaravailable complete
hardware designs for the front end processor tefered to as a benchmark.
So, comparing the whole system to another refereneewill not be possible.
However, some of the main components constitutiegsiystem have reference
hardware designs provided by the FPGA manufactiusedf (like Altera,
Xilinix... etc), which are optimized for their targePGAs. These components

are.
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* The Fast Fourier Transform (FFT) processor.

 The CORDIC processor.

* The hardware divider.

The above mentioned components are the most exgeresources usage
and area consuming components in the system, B Rlso, the CORDIC
processor, is used extensively in many parts of dgtem to do many
functions, like Sine and Cosine calculations, Magie calculation, Logarithm
calculation,... etc. So, comparing those main comptmmdividually to their
reference designs provided by the FPGA manufactahall give a good
indication of how optimized is the design present&anpared to already
existing related hardware designs in the areagifallisignal processing.

In brief, the benchmark here will be based on th@va components. What
to be compared to reference designs will be FPGbueee utilization and
processing time required. In addition, the wholstey can be considered as a
new benchmark for the front end speech processsigme in future related
works. In the following sections, this comparisoifi e held, with their results
clarified in tables.

6.1 Individual Components Comparison

In this section, individual comparison will be madasgtween some chosen
components of the front end processor, and theiresponding reference
designs provided by the FPGA manufacturer. Throughbis study, Altera
FPGA's reference designs will be referred to. Comnspa is done based on
more than one FPGA family, like Cyclone lll, Strali, ...etc.

6.1.1 Fast Fourier Transform Processor (FFT)

All the information in this section on the referendesign features is extracted
from [19] and[20].
As mentioned before, our design is area optimizagtier than time

optimized.
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Figure 86: Resources versus throughput for Architet options of FFT
implementatiorf20]

Figure 86 (refer t420]) illustrates the trade-off of throughput vessesource
usage for four architectures

* Radix-2 lite Burst I/O

* Radix-2 Burst I/0O

* Radix-4 Burst 1/0O

» Streaming architecture

For more information about the above architectwseg|19] and[20].
As a rule of thumb, each architecture offers astleafactor of “2” difference in
resource from the next architecture. The most Blg@tarchitecture to compare
our FFT to it is the radix-2 lite Burst I/O, sindeis the resource optimized
architecture among the four mentioned architectudest, comparison will be
held for Radix-2 lite Burst I/O architecture verdine FFT presented in this
thesis. Radix-2 lite Burst I/O architecture will teferred to as Burst Data Flow
architecture with single-output, for more infornaetiabout the details of this
architecture typ§20].
Table 40 shows a comparison between the front &iddesign and the Altera

reference FFT design with Burst Data Flow architext Single output, 16 bits
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signal width. For more information about the refex@ design architectures see

[20].
Device Point | Points | Combina | Logic Mem | Memory | Multipl | Clock
tional Registers| ory (Bits) iers Cycle
LUTs (M9K Count
)

Reference| EP3C10F256C6 Fixed | 256 1,463 1,476 3 9,472 4 1628

Design- (18x18)

Burst

Data

Flow™

Front EP3C10F256C6 Fixed | 256 1,212 235 3 9,232 4 256

End (18x18)

Design

Result 17.19%7 | 84%Y [0 9?2597 [0%” |6.39

Table 40: Comparison of FFT on Cyclone Il DevicBsirst Data Flow
Architecture, Single Outpyi9]

(1) The Reference Design Architecture Type.

(2) Difference (in %) between the Front End Designiigand the Reference Design figure of the

©)

corresponding feature. Where

Difference = (Reference Designs figure - Front Basign figure)/

Reference Designs figure

If this percentage is positive, then it means thatFront End Design outperformed the

reference design in the corresponding featureyvaredversa. This number will represent the

reduction (if positive) or increase (if negative)reésources introduced by the Front End

Design over the Reference Design.

The ratio between the times taken by the referelesign to the time taken by the front end

design.

Note that; the reference design does not providariagnitude of the FFT

output; hence, the resources utilization and tiregfgpmance shown in the

results do not take in consideration the magniwaleulation of the final FFT

output.
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The above presented comparisons show that the érahtlesign of FFT in
general outperformed the reference design in theAResources utilization

and time performance.

6.1.1.1 Analysis of the FFT benchmarking results

The detailed design aspects of the reference FSigmias not publicly
available, since it is an IP core of Altera, howethe improved performance of
the local design over the reference one can bereef¢o the following reasons:

* In terms of time performance, the bit reversal apen of the local
design is performed on the fly with every new inpample, where the
bit reversed address is calculated immediately aftery new sample is
stored in the input buffer, this saves the timederder the samples
after they are completely buffered, in additiorstimplicitly performs
the zero padding operation.

* Using dual port memories (ROM and RAM) makes itgiole to read
and write two butterfly inputs or outputs in oneakt cycle, which
reduces the butterfly time by 50%.

* In terms of hardware utilization, making use of teebedded
multipliers saves the need to implement them.

* Thanks to the fixed point width of 16 bits of atiternal signals, it is
possible to use the 18x18 on-chip embedded mu@tgli

* In terms of memory resources, the LUT implemeniatis highly
optimized by the memory algorithm used to storesine/cosine values
of the twiddle factors, where only ¥ the cosine & stored and the

rest of the values are deduced from it.

6.1.2 CORDIC Processor

All the information in this section on the referendesign features is
extracted fromj17].
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Table 41 shows a comparison between reference ramil énd designs for
CORDIC processor on Cyclone devices.

Clocks Logic Elements
Reference Design 16 963
Front End Design 16 399
Difference (%)% 0 58.5%

Table 41: Comparison between Reference and FrahCEsigns for CORDIC

processor on Cyclone DevicgY]

(1) Difference (in %) between the Front End Designfiiggand the Reference Design figure of the
corresponding feature. Where

Difference = (Reference Designs figure - Front Bagign figure)/
Reference Designs figure
If this percentage is positive, then it means thatFront End Design outperformed the
reference design in the corresponding feature yaedversa. This number will represent the
reduction (if positive) or increase (if negative)résources introduced by the Front End
Design over the Reference Design.

The results show that the time required for bothigtes is the same.
However, the front end design offers 58.5 % redunctn resources utilization
over the reference design.

6.1.3 Hardware divider

All the information in this section on the referendesign features is
extracted from{18]. Table 42 shows a comparison between the erter and

front end designs for the hardware divider.
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FLEX® EP10K100E| APEX™ EP20K100E| ACEX® EP1K100
Reference 3,338 3,428 3,338
Design
Front 244 248 244
End
Design
Difference 92.6 % 92.7% 92.6%
(%)@

Table 42: Comparison between the Reference and ErahDesigns for the

hardware divider [4]

(1) Difference (in %) between the Front End Designiigand the Reference Design figure of the
corresponding feature. Where
Difference = (Reference Designs figure - Front Bagign figure)/
Reference Designs figure
If this percentage is positive, then it means thatFront End Design outperformed the
reference design in the corresponding feature yaedversa. This number will represent the
reduction (if positive) or increase (if negative)résources introduced by the Front End
Design over the Reference Design.

From the Table 42, it is clear that the front eedign offers more than
92 % reduction in resources utilization over thiemrence design.
The time required for the reference design of aware divider to

finish is 15 clocks, while it is only 11 clocks ftire front end design.

6.1.3.1 Analysis of the hardware divider benchmarking resuls

The local implemented hardware divider is enhanbgdthe use of
CORDIC core in its linear version, which highly vegd the hardware
resources. Also, thanks to the fast convergencahefCORDIC algorithm, 4

cycles saving in time performance is achieved.

6.2 Overall System Benchmark

As mentioned in the introduction of this chaptance the front end

processor system is custom by nature, so no ovieealkchmark exist for the

164



whole system to compare the design to it. Hence,ctirrent design will be

considered a reference for future works to compaurié In the following, the

system features (FPGA resources utilization anccgmsing time) will be

presented for all system configurations.

6.2.1 System performance on Cyclone Ill FPGA Family

In this section the front end design performancerssented when

Cyclone Il FPGA family devices are used.

Total Logic

Elements

Total

Registers

Total
memory
bits

Total

multipliers

EP3C10U256C8

7,844 (76 %)

1,179 (11 %
)

39,712 (9%)

46(100%)

EP3C55F780C8

7,871 (14%)

1,179 (2%

39,712 (29

0) 46 (15%)

Table 43: Front End Processor Performance on CgdlbiDevices- Frame

length configuration = 200 samples

Total Logic

Elements

Total

Registers

Total
memory
bits

Total

multipliers

EP3C10U256C8

7,844 (76 %)

1,179 (11 %
)

42,512 (9%)

46(100%)

EP3C55F780C8

7,871 (14%)

1,179 (2%)

42,512 (29

0)

46 (15%))

Table 44: Front End Processor Performance on Cgdlbievices- Frame

length configuration = 256 samples
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Total Logic

Elements

Total

Registers

Total
memory
bits

Total

multipliers

EP3C10U256C8

8,575 (83%)

1,186 (12%

58,928
(14%)

46(100%)

EP3C55F256C8

8,603 (15%)

1,186 (2%)

58,928 (29

0)

46 (15%

Table 45: Front End Processor Performance on CgdlbiDevices- Frame

length configuration = 400 samples

6.2.2 System performance on Stratix || FPGA Family

In this section the front end design performancerssented when

Stratix Il FPGA family devices are used.

Total Logic | Total Total Total
Elements Registers memory bits | multipliers
EP2S15F484C3 6,395 (51%)| 1,169(9%)| 40,096(10%) 54(56%

Table 46: Front End Processor Performance on Stidbievices- Frame

length configuration = 200 samples

Total Logic

Elements

Total

Registers

Total

memory bits

Total

multipliers

EP2S15F484C3

6,395 (51%)

1,169(9%)

42,896(9%)

54(56%

Table 47: Front End Processor Performance on $lidbevices- Frame

length configuration = 256 samples

Total Logic | Total Total Total
Elements Registers memory bits | multipliers
EP2S15F484C3 6,414 (51%)| 1,176 (9%) 59,312(14%) 54(56%

Table 48: Front End Processor Performance on Stidbievices- Frame

length configuration = 400 samples

6.2.3 System time performance

Table 49 shows the frame processing time with défie sampling frequencies
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Table 49: Frame processing time with different siamydrequencies
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Chapter 7

7 Conclusions

In this thesis, the front-end part of the DistrditSpeech Recognition
system specified in the Aurora standard (ETSI ES 208 V1.1.3) is
implemented in hardware. The VLSI design cycle atyes were presented,
and a brief comparison was made between threeeaf th choose the proper
one to implement the system. Based on this congarisPGA was chosen for
prototyping the design, with consideration of migma to structured ASIC
design fashion in case of mass production.

The constraints on the design were presented. Tomstraint (10 ms
frame processing time) is relatively relaxed coredato nowadays chip
frequencies. On the other hand, area constraintiantegd hardware resources
are the major constraints, hence, the design ieriteras directed towards
hardware optimization.

Based on the above constraints, the system stadicdgnamic architecture
were designed, where hardware optimized algoritkenCORDIC was used to
implement non-linear computationally intensive @ens in the system, like
natural logarithm, magnitude, trigonometric funaotioetc. Also, in some
cases, two options of implementation were avaitalmemory optimized
solution and time optimized solution, like in casfeHamming window, FFT
and DCT components. CORDIC algorithm was used enniemory optimized
solution, and look-up tables were used in the wpémized solution.

The proposed design was synthesized and tested ¢t dates low-cost
Cyclone Ill FPGA. Finally, performance was evalaabased on compliance of
the system output to the reference test vectorgiged by ETSI. Also, some
system components, like FFT, CORDIC and hardwargleli were compared

to reference designs provided by Altera.
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7.1 Contributions

The first contribution of this thesis is the conipl&LSI implementation
of the front-end client of the DSR system in VHD&ing FPGA design style,
in contrast to software implementations, which wietended merely for the
sake of DSR system simulation. The design presentedtested to the RTL
simulation level, and benchmarked against Altefaresce designs.

The second contribution made in this thesis is dpgmization of the
hardware implementation of the front-end systeny asspecting the time
constraint as well, such that, the complete sydfiesnin 10 K gates FPGA
utilizing 83% of its resources based on maximuntesysconfiguration. Using
hardware optimized algorithm like CORDIC reduced thRsources utilization
of the numerous non-linear operation in the systespecially in non-linear
transformations like natural logarithms in many nieiin the system, the
magnitude calculation of the FFT output, and thgotrometric functions in
many parts of the system. Also, the re-use of n@mponents in the system
optimized the hardware resources utilization. Usimgjle computational core
and iterating on it (like the cases of FFT, DCT, [¥¥liéer, and Vector
Quantization), improved the hardware usage, keejpimgind the relaxed time
constraint on the design.

Fixed point implementation constrained the signalts in most of the
system parts to be less than 18 bits; this was ttmmeake use of the on-chip
embedded multipliers and DSP MAC units (18 bits eyidnstead of
implementing them.

Memory resources usage was highly optimized in design. For
example, in case of FFT twiddle factors storagdy éhthe cosine wave was
stored in a ROM, which saved about 82.5% of the orfgmesources required
for FFT twiddle factors. The same concept was riggokeen Hamming window
factors and DCT factors in case of LUT implemewntatiAlso, RAM buffers
were re-used between components, like FFT, Maffdind DCT, to exploit the

serial nature of their operation.
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Finally, time performance was also improved by gsthe inherent
feature of the on-chip memories, which is the da@k memory operation,
which reduce the access time by 50% in case ofldtkErflies. Also, time was
improved by parallel operation of some modules like FFT last stage and
the magnitude calculation of the FFT output, areldperation of the Mel-filter
the non-linear (LOG) operation following it, anadily the DCT operation and
the Vector Quantizer. This time optimization makbs time taken by the
front-end algorithm between 0.8 to 1.8% of theva#d frame processing time,

leaving the rest of the time to the remaining bank-recognition task.

7.2 Recommendations for Future Work

The next versions of the Aurora standard can beemented. These
versions use the same basic core implemented beremplementing any of
these version will be a feature addition to therenir design. It is highly
recommended to implement the noise robust featutieel Advanced Front-end
(AFE) system, and test its performance in noisyirenmnents; this is because
the DSR system is intended to be deployed in mothdeices, which are
operated in noisy environments.

The design presented was verified to the RTL lewdy, which can be
extended to be tested to the gate level, and dadelb to real FPGA chip.
Also, the design could be ported to other styldse DSP processors for
example to compare the performance on both pladfoivigration to ASIC
style is highly recommended for future implememtasi to reduce cost and
power consumption.

Power consumption measurement and optimizationilisneeded to be
completed for the current design.
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9 Appendix

Some useful algorithms and concepts

In this Appendix, some useful algorithms and coitedpat were used in
the design, like CORDIC algorithm, Radix-2 FFT d&ided and Floating point

concepts and notations.

1 CORDIC Algorithm

It is an efficient hardware algorithm based onatee numerical method to
compute a wide range of functions including certamonometric, hyperbolic,
linear and logarithmic functions. For more inforioat about CORDIC
algorithm, mathematical derivations, equations moeetd in this section,
please refer t@l5].

The trigonometric functions are based on vectoatiahs, while other
functions such as square root are implemented @singcremental expression
of the desired function. The trigonometric algamthis called CORDIC;
CORDIC is an acronym of Gépdinate Rtation Dpital Computer. The
incremental functions are performed with a very genextension to the
hardware architecture, and while not CORDIC in #tect sense, are often
included because of the close similarity.

The CORDIC algorithm generally produces one adagidit of accuracy
for each iteration. The main advantage of the dlgor is that it permits to
compute those functions, that are widely used i @fplication through a set
of shift-add operations, which permits to implemémém only using shift
registers, adders and Look-up tables (LUT), whigjmly reduces the hardware
complexity of the implementation.

The trigonometric CORDIC algorithms were originaliieveloped as a
digital solution for real-time navigation probleniie original work is credited
to Jack Volder. Extensions to the CORDIC theoryeldasn work by John
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Walther and others provide solutions to a broadasscof functions. The
CORDIC algorithm has found its way into diverse laggtions including the
8087 math coprocessor, the HP-35 calculator, raigmal processors and
robotics. CORDIC rotation has also been proposedctomputing Discrete
Fourier, Discrete Cosine, Discrete Hartley and @Hirtransforms, filtering,

Singular Value Decomposition, and solving lineasteyng 15].

1.1 Basic Theory of the Algorithm

All of the trigonometric functions can be computed derived from
functions using vector rotations, as will be disadsin the following sections.
Vector rotation can also be used for polar to megidar and rectangular to
polar conversions, for vector magnitude, and asui&ibg block in certain
transforms such as the DFT and DCT. The CORDICrdlgo provides an
iterative method of performing vector rotations drpitrary angles using only
shifts and adds. The algorithm, credited to Volfles], is derived from the
general rotation transform:

x’=xcosp— ysind

y’= ycosd+xsind

Which rotates a vector in a Cartesian plane byatigde®. These can be
rearranged so that:

x’=cosd- [.*r — ytan cj)]

v'=cosd- [1 + x tan (])]

So far, nothing is simplified. However, if the rtten angles are
restricted so that tan(f)=#2, the multiplication by the tangent term is reduced
to simple shift operation. Arbitrary angles of toda are obtainable by
performing a series of successively smaller eleargnbtations. If the decision

at each iteration, i, is which direction to rotaggher than whether or not to
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rotate, then the cadj term becomes a constant (becausedtos{ cos(i)).

The iterative rotation can now be expressed as:

_ - . —i
X, =K [.T;- -y, -d; -2 ]
; = K ' . ol
Vi = K, [LI +x,-d, -2 ]

Where:

7
]

cos(tan™ 27 ) = 1/ 1+ 27

Removing the scale constant from the iterative #guos yields a shift-
add algorithm for vector rotation. The product bk tKi's can be applied
elsewhere in the system or treated as part of &ersyprocessing gain. That
product approaches 0.6073 as the number of itesatigoes to infinity.
Therefore, the rotation algorithm has a gain, Anagproximately 1.647. The

exact gain depends on the number of iterationsp@egs the relation

4, =]]vi+2™

The angle of a composite rotation is uniquely dediby the sequence of
the directions of the elementary rotations. Thgusace can be represented by
a decision vector. The set of all possible decisi@ttors is an angular
measurement system based on binary arctangentvefG@ns between this
angular system and any other can be accomplished aslook-up. A better
conversion method uses an additional adder-subtrabat accumulates the
elementary rotation angles at each iteration. Tleenentary angles can be
expressed in any convenient angular unit. Thoselangalues are supplied by
a small lookup table (one entry per iteration) & hardwired, depending on
the implementation. The angle accumulator addsrd tifference equation to
the CORDIC algorithm:
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Z,q=2z,—d, -tan'l(Z'j)

i+l T

The CORDIC rotator is normally operated in one wb tmodes. The
first, called rotation rotates the input vector dgpecified angle (given as an
argument). The second mode, called vectoring,esttite input vector to the x-

axis while recording the angle required making toition.

1.1.1 Rotation mode

In rotation mode, the angle accumulator is iniiedl with the desired
rotation angle. The rotation decision at each ii@nais made to diminish the
magnitude of the residual angle in the angle actatmu The decision at each
iteration is therefore based on the sign of thedued angle after each step.
Naturally, if the input angle is already expressethe binary arctangent base,
the angle accumulator may be eliminated. For mtathode, the CORDIC

equations are:

— v — 1 . .07
Xy =X,—V,-d -2

Vi =V +x,-d; 27

2, =z,—d, tan_l(ﬁ_f)

=i{l T

Where:

d=-1ifz; =0, +1 otherwise

This provides the following result:

x, =4, [.TG Cosz, — V, 5i11:,:,]

vV, = A” ['1-",:, COSZ,; + X, si :,:,]
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1.1.2 Vectoring mode

In the vectoring mode, the CORDIC rotator rotates input vector
through whatever angle is necessary to align teeltreector with the x axis.
The result of the vectoring operation is a rotatiamgle and the scaled
magnitude of the original vector (the x compondrthe result). The vectoring
function works by seeking to minimize the y compunef the residual vector
at each rotation. The sign of the residual y corepbns used to determine
which direction to rotate next. If the angle acclator is initialized with zero,

it will contain the traversed angle at the end fud iterations. In vectoring

mode, the CORDIC equations are:

Where:

Then:

—_— — 1 . ,’j_‘i
i+l _'T;' .1'3' d}' =

X

i

—F . N

R |

z,,=2,—d tan” (2_’)

i+l T

d=+1 if ¥; < 0, -1 otherwise.

{..2 2
X, = An "\l'l ‘T{] + .1'C.
v, =0

« M

(v
z =z,+tan I[V )
b = .T{]

4, =[]v1+27*
n
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The CORDIC rotation and vectoring algorithms asestare limited to
rotation angles between -pi/2 and pi/2. This litiita is due to the use of 20
for the tangent in the first iteration. For compegiotation angles larger than
pi/2, an additional rotation is required. Voldersdebes an initial rotation

1pi/2. This gives the correction iteration:

Where:

d =+1if y=0. -1 otherwise.

There is no growth for this initial rotation. Altetively, an initial
rotation of either pi or 0 can be made, avoiding tlassignment of the x and y
components to the rotator elements. Again, thermigrowth due to the initial

rotation:

x'=d- x
j,:" {?’-1'-

z zif d=1.orz-mifd=-1

d =-1if x<0, +1 otherwise.

The CORDIC rotator described is usable to compueversl
trigonometric functions directly and others inditgc Judicious choice of
initial values and modes permits direct computatibsine, cosine, arctangent,
vector magnitude and transformations between @owidrCartesian coordinates.
The following sections present some of these fonstithat are utilized in the
design.
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1.1.2.1  Sine and Cosine

The rotational mode CORDIC operation can simultaisgo compute
the sine and cosine of the input angle. Settingytlm®mponent of the input

vector to zero reduces the rotation mode result to:

x, =4, x,cosz,

v, =4, x,s1mz,

By setting x0 equal to 1/An, the rotation produttes unscaled sine and

cosine of the angle argument, z0.

1122 The Fast Fourier Transform (FFT)

A DFT with N input values s can be described as rtiedrix vector

multiplication

- . - _13Euk
S=V-s with V= JT"

By exploiting the properties of V the operations ¢e greatly reduced,
and the well known Fast Fourier Transformation (JksTderived. An eight
point FFT leads to the network shown in Figure he Twiddle factors are

derived as:
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Figure 87: 8-point FFT Network
The multiplication by the twiddle factor is equigat to rotation by the
angle (2*pi*x/y). This can be easily implementedhgsthe CORDIC algorithm

in its basic vector rotation mode.

1.1.23 Vector magnitude

The vectoring mode CORDIC rotator produces the ntade of the
input vector as a byproduct of computing the amgptaut. After the vectoring
mode rotation, the vector is aligned with the xsaxihe magnitude of the
vector is therefore the same as the x-componerihefrotated vector. This

result is apparent in the result equations fovietor mode rotator:

[2, 2
Y?’? — .’4.” ,\I,' ."CG + _1’,:]

The magnitude result is scaled by the processaor, gdiich needs to be
accounted for elsewhere in the system. This impigaten of vector
magnitude has a hardware complexity of roughly ondtiplier of the same
width. The accuracy of the magnitude result impsowy 2 bits for each
iteration performed. The same vectoring can bectyeused to get the
Cartesian to Polar transformation of a vector, wharal xn is the magnitude
of the vector multiplied by An, and zn is the ané&ween x0 and y0, such that
tan(zn) = y0/x0.
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1.1.3 Extension to Linear functions- Multipliers and Dividers:

A simple modification to the CORDIC equation pesnitthe

computation of linear functions:

— —0- 1. - Mo It
X,y =X,—0-3,-d,-27 =x,

i i

y

<

Ziq = Z, —(fj~(2_f)

i+l T

— 17 . .’.)_j

For rotation mode (di= -1 if zi < 0, +1 otherwidbg linear rotation produces:

.T” = .Y,:,
.Ta_i' - TIJ + ‘TC':C'
z, =0

This operation is similar to the shift-add impleraion of a multiplier, and as
multipliers go is not an optimal solution. The nplitation is handy in
applications where a CORDIC structure is alreadhilable.

The vectoring mode (di= +1 if yi < 0, -1 otherwisge)more interesting,
as it provides a method for evaluating ratios (CQRDivider):
X, = X,
v, =0

-_—

= =0 Yo/ Xg

The rotations in the linear coordinate system hawenity gain, so no

scaling corrections are required.

1.1.4 Extension to Hyperbolic functions- Natural Logarithm:

The close relationship between the trigonometria dryperbolic
functions suggests the same architecture can lietas®mpute the hyperbolic
functions. While, there is early mention of usitge tCORDIC structure for
hyperbolic coordinate transforms, the first dedesip of the algorithm is that

by Walther[15]. The CORDIC equations for hyperbolic rotaticare derived
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using the same manipulations as those used toedér@vrotation in the circular

coordinate system. For rotation mode these are:

— S e I
Xy=X+y,-d -2

Vin =V, +X,-d;- 2"

- - 1 =i

Z,q=Z,—d,-tanh (2 )
Where:

d=-1ifz;< 0, +1 otherwise.
Then:

x, =4, [rﬂ cosh z; + y, sinh :ﬁ]
v, = A4, [_vﬂ cosh z; + x, smnh :[}]
z, =0

4,=1] J1-27% <080

n
il

In vectoring mode (di= +1 if yi < 0, -1 otherwig@p rotation produces:

x, =4, VX — Vo
J?.F'! = 0

- - -1l Vo
z =z, +tanh (/1:@]

4, =]]v1-27

The elemental rotations in the hyperbolic coordinaystem do not
converge. However, it can be shown that convergen@chieved if certain
iterations (I1=4, 13, 40... k, 3k+1...) are repeated

The hyperbolic equivalents of all the functionscdssed for the circular

coordinate system can be computed in a similaridashAdditionally, as
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Walther points out, the following functions can derived from the CORDIC
functions:

tanc = sind/cosc.
tanha = sinha/coshor
expa = sinhd + cosho

Inot = 2tanh ' [y/x] where x=0 +1 and y=0-1

(o)t = (x*-y")"* where x=01+1/4 and y=0i-1/4

This will be useful when calculating the Naturalgasithm (Ln), which is
encountered twice in the system, the first timegakulating the Log of the
Energy. The second time is when calculating theutddtlogarithm of the
output of the Mel-Filter.

1.2 General Hardware | mplementation of the CORDI C Processor:

Figure 88 shows general hardware architectureefd@RDIC processor

in its basic form:
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Figure 88: Iterative CORDIC Process$thb]

2 The Fast Fourier Transform (FFT)

There is a family of fast algorithms to compute thescrete Fourier
Transform (DFT), which is called Fast Fourier Trhans (FFT). Direct
computation of DFT follows the equation:

X[kl =" xn]e 2™ O<k<N
Which requires N operations, assuming that the trigonometric fumstio
have been pre-computed. The FFT algorithm onlyiregN logN operations,

so it is widely used for speech recognition tasks.
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2.1 Radix-2 FFT

There are many algorithms to compute the Fast Eotiransform. In our
design, we adopted the Radix-2 FFT algorithm, duets simplicity and
suitability to the timing and resources requirerseoft the design. For more
information about the algorithm, mathematical dations, equations

mentioned in this section, please refeflip

2.1.1 Mathematical derivation

Let’s express the discrete Fourier transform of &g

X[K] =" xn]e 2N =3 gk 0<k<N

n=0 n=0
Where we have defined the Twiddle Factqf as:
Wk — e—j27k/N
N
Let's suppose that N is even, and let f[n] = x[2apresent the even-indexed

samples of x[n], and g[n] = x[2n+1] the odd-indexaanples of x[n], so:

X[K1 = 37 F I, + W 3 gl = FIK] AW GIK]

Where F[k] and G[k] are the N/2 point DFTs of f[@nd g[n],
respectively. Since both F[k] and G[k] are defifed o< k < N /2, we need to
also evaluate them fom/2< k< N which is straight forward, using the
periodicity and symmetric properties of the DFT:

F[k + N/2] = F[K]

Glk + N/2] = G[K]

If N/2 is also even, then both f[n] and g[n] can de&composed into
sequences of even and odd indexed samples andotieeress DFT can be
computed using the same process. Furthermore,sfas integer power of 2,
this process can be iterated and it can be shoatnthle number of multiplies
and adds is N log\, which is a significant saving from®N This is called
decimation in timeA dual algorithm calledlecimation in frequencgan be

derived by decomposing the signal into its firs2 ldhd last N/2 samples.
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2.1.2 Algorithm Implementation

A graphical representation of the radix-2 algoritlershown in Figure
89. This algorithm optimizes the memory usage hpguenly one buffer of
depth equal N in all the steps of the algorithmewehcalculations are done and
restored in their places again in the buffer. At &md of the N log\N operations
of the algorithm, the same input buffer that camdi the input samples will
have the result samples. This is why the algorittroalledin-place radix-2
algorithm.

The algorithm is composed of g stages, with N operations taking

place at each stage, as shown in Figure 89.

(0} N A ol X(0)
hY 1 !
\\ . 0
f\(\ W 8
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/ \\ /
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\h \/
X(3) -1 ya = > X(3)
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Figure 89: the 8 point Decimation In Time (DIT) Ra@ FFT algorithm
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There are three four basic operations that takeeptathe algorithm:
1. Bitreversal
2. Butter fly
3. Twiddle factor calculation

This will be presented in the following sections

2121 Bit Reversal

The first step of the algorithm is to order the p&m in the buffer in a
certain order called bit-reversed order, wheredibgtination index of the input
sample in the buffer is the result of reversing thmary equivalent

representation of the source index. The followingure illustrates this

operation:

Odd number of bits Even number of bits
0ooao oo0o0 oooao oooo0
001 100 0001 1000
010 010 o010 D100
011 — 110 aoo0t11 — 1100
100 001 o100 0010
101 101 0101 1010
110 011 o110 D110
111 111 o111 1110

Bit 0 and bit 2 are exchanged. Bit 0 and bit 3 are exchangad.

Bit 1 is in the middle and Bit 1 and bit 2 are exchanged.

remains unchanged.

Figure 90: Bit Reversal operation

2.1.22 Butterfly

This operation is repeated N/2 times in every tteraof the logN
stages of the algorithm. The basic butter fly openais shown inFigure 91,
where it takes 2 samples as an input, and prod2icesv result samples to be
placed in the same location of the input samplakenbuffer. The addresses of
the input samples are generated according to an gredtern that depends on

which stage the algorithm is in, as illustratedrigure 90. The twiddle factors
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(W, ) used in the butter fly operation depend on thdresbes of the input

samples and the stage of the algorithm.

Figure 91: Basic Butter fly operation

The above operation can be reordered as:

/ length-2 DFT
G(1) @

H () —F >
“twiddle factor”

Figure 92: Reordered Butter fly operation
Which enables the usage of basic 2-points FFTy afidtiplying H(i) by the

proper twiddle factor as shown. Hence, the newsladhphe algorithm will be:
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2.1.2.3 Twiddle factor calculation

The twiddle factow, is defined as:
WK = e—jan/N
N
Which is equivalent to vector rotation with angt&/ N, which enables

to use the CORDIC algorithm in its rotation modedascribed earlier in this

Appendix.

2.2 Other FFT Algorithms
Although radix-2 FFT is the best known algorithrherte are other

variants. Among those are the radix-4, radix-8jtsptix and prime factor
algorithm. Next information is obtained frojj.

The same process used in the derivation of the+&diecimation in time
algorithm applies if we decompose the sequencesfair sequences: f1[n] =
X[4n], f2[n] = x[4n+1], f3[n] = X[4n+2], and f4[n¥ x[4n+3]. This is the radix-
4 algorithm, which can be applied when N is a powfet.
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Similarly, there are radix-8 and radix-16 algorithfior N being powers
of 8 and 16 respectively. These algorithms use f@adders and multiplies then
the famous radix-2 algorithm, however, they addraextonstraints and
additional control logic, which makes them not resegily faster than the
radix-2 equivalent, and need to be customizeddiven processor.

Some values of N cannot use radix-4, radix-8 oixrd8. A combination
of radix-2 and radix-4 is called split-radix candygplied to N being a power of
2.

Finally, another possible decomposition is N=plp2.wph pi being
prime numbers. This leads to the prime-factor allgor. While this family of
algorithms offers a similar number of operationstfas algorithms above, it

offers more flexibility in the choice of N.

3 Concept of Fixed and Floating Point Arithmetic

The basic element in digital hardware is the birdeyice that contains one
bit of information. A register (or memory unit) daming B bits of information
is called a B-bit word. There are several differer@thods for representing
numbers and carrying out arithmetic operations. Mlest famous among those
ways are the fixed and floating point representetidBoth representations are
given in the following sections, with more emphasis the fixed point
notation. Information in this section is obtainedn [6]

3.1 Floating Point

The term floating point refers to the fact that tiaglix point (decimal
point, or, more commonly in computers, binary ppaan "float": that is, it can
be placed anywhere relative to the significant tdigpf the number. This
position is indicated separately in the interngresentation, and floating-point
representation can thus be thought of as a compeé&dization of scientific
notation.

In scientific notation, the given number is scabgda power of 10 so that it

lies within a certain range — typically betweenrd a0, with the radix point
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appearing immediately after the first digit. Thelgay factor, as a power of
ten, is then indicated separately at the end ofntlmaber. For example, the
revolution period of Jupiter's moon is 152853.504&conds. This is
represented in standard-form scientific notatiorl #28535047x105 seconds.
oating-point representation is similar in concept $cientific notation.

Logically, a floating-point number consists of:

1. A signed digit string of a given length in a giviesise (or radix). This is
known as the significand, or sometimes the mantissaefficient. The
radix point is not explicitly included, but is imgikly assumed to always lie
In a certain position within the significand — oftgist after or just before
the most significant digit. The length of the sigrand determines the
precision to which numbers can be represented.

2. A signed integer exponent, also referred to ashia@acteristic or scale,

which indicates the actual magnitude of the number.

The significand is multiplied by the base raisedtie power of the
exponent, equivalent to shifting the radix poirdnir its implied position by a
number of places equal to the value of the exporento the right if the
exponent is positive or to the left if the exponennhegative. Using base-10
(the familiar decimal notation) as an example, nhenber 152853.5047, with
ten decimal digits of precision, is representedh@ssignificand 1528535047
together with an exponent of 5. To recover thealotalue, a decimal point is
placed after the first digit of the significand athe result is multiplied by 105
to give 1.528535047 x 105, or 152853.5047.

Symbolically, this final value is

s x b°

Where s is the value of the significand (afterigkinto account the implied

radix point), b is the base, and e is the exportequivalently, this is:
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bp_ - % hr.'

Where s here means the integer value of the esigreficand, and p is the
precision: the number of digits in the significafthe significand always stores
the most significant digits in the number: thetfin®n-zero digits. When the
significand is adjusted in this way so that itgriedst digit is nonzero, it is said
to be normalized, and its value obeys § < b, given that the radix point is
assumed to follow the first digit. Zero is a speaase and is normally
represented as s =0, e =0. (Subnormal numbercemain other cases also
need special treatment; see dealing with excepgtoases.)

Floating point arithmetic has always been verylgastterms of resources
needed to implement or processing time requireecialy when dealing with
hardware implementations, despite the simplicitydeiveloping applications
using this type of mathematical representationsTlads to the fixed point

notation.

3.2 Fixed Point

The most commonly used fixed-point representatidnaofractional
number X is illustrated in Figure 94. The word #ng B(= M + 1) bits, i.e., M
magnitude bits and one sign bit. The most signitidat (MSB) is the sign bit,

which represents the sign of the number as follows:

0, x =0 (positive number)

f’.?q) = . .
I, x < 0 (negative number)

In the following figure, the fixed point number regentation is illustrated.
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15
(X0 = Z 27 =212 24 ... 4270

m=1

— 1 — 275 2 0.999969.

X= hO . h] hz ---hj_‘f_[ h__.\.f

L Binary point
Sign bit

Figure 94: Fixed point representation of binargfi@al number§l1]

The remaining M bits give the magnitude of the nemf@he rightmost
bit bM is called the least significant bit (LSB)high represents precision of
the number.

As shown in the following figure, the decimal valoé a positive (b0 = 0)

binary fractional number x can be expressed as:

(Mo =by 27 by 2774 by 27

M
— E bm 2_”? .

m=1

In general, the decimal value of a B-bit binarycfranal number can be
calculated as:

15
(X))o = —f’)ﬂ + Z bm 2~
m=1
In general, according to the dynamic range of thmler, there can be
more than one bit (b0) to represent the non-fraeligpart of the number in

addition to the sign bit, this will be pointed te @helnteger partof the number
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through out this thesis, and the bits after theindacpoint (b1l to bM in the

above example) will be noted as fin&ctional part.

x=hbb,..bhb.

Integer Fraction
part part
Sign bit Binary point

Figure 95: A general binary fractional number

In this case, the conversion to decimal equati@ukhbe modified such
that the final number is the sum of the decimalieant of the integer part
and the fraction part, where the integer part Wwitsbe multiplied by 2 raised
to positive powers according to the index of thie Wwhile the fraction part bits
will be multiplied by 2 raised to negative powecgarding to their index too.

In general, conversion can be easily done by digdihe decimal
equivalent of the binary number by the maximum lué fraction part. For
example, if the fraction part is 10 bits, thenntaximum value is 1024, then
the decimal equivalent is obtained by dividing tireed point number in

decimal by 1024, which will give the original nunibe
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